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Abstract

Many biochemical events of importance are complex and dynamic. Fluorescence mi-
croscopy offers a versatile solution to study the dynamics of biology at the mesoscale.
An important challenge in the field is the simultaneous study of several objects of
interest, referred to as optical multiplexing. For improved multiplexing, some prior
techniques used repeated reporter washing or the geometry of nanostructures; how-
ever, these techniques may require complex nanostructure assembly, multiple reporters
or advanced multistep drift correction. Here we propose a time-based approach, for
improved optical multiplexing, that uses readily available inexpensive reporters and
requires minimal preparation efforts. We program short DNA strands, referred hereby
as DNA devices, such that they undergo unique conformation changes in presence of
the dye-labeled reporters. The universal fluorescent reporter transiently binds with
the devices to report their activity. Since each device is programmed to exhibit dif-
ferent hybridization kinetics, their fluorescent time trace, referred to as the temporal

barcode, will be unique. We model our devices using Continuous-time Markov Chains



and use stochastic simulation algorithm to generate their temporal patterns. We first
ran several simulation experiments with a small number of our devices, demonstrating
several distinct temporal barcodes, all of which use a single dye color. Later, using a
nanostructure, we designed a much larger pool of unique temporal barcodes and per-
formed supervised learning using support vector machine. Our simulation experiments
and design principles can aid and influence the experimental design of temporal DNA
barcodes.
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Introduction

Far-field microscopy can offer a dynamic view of biology at the cellular and molecular scale.
In the past decade, single-molecule localization microscopy (SMLM) techniques'? have made
tremendous progress. These techniques achieve sub-diffraction imaging resolution by tem-
porally separating the fluorescence of the targets closer than the diffraction limit. This is
achieved by switching the target between the fluorescent-ON and the fluorescent-OFF states
for which several different ways have been proposed.®® The temporal separation is used to
find a centroid of each fluorescent spot separately and achieve sub-diffraction resolution by
a manual overlay of image stack with localizations. Multiplexed imaging with more than
one dye color have been incorporated into existing techniques to push the resolution limit
further.

Further multiplexing beyond the three basic colors is desirable therefore a few different mul-
tiplexing techniques have been proposed.” ! The simplest form is wavelength multiplexing
where several fluorescent colors are used. The state-of-the-art wavelength multiplexing tech-
nique by Woehrstein et al. uses a DNA nanostructure to demonstrate over 100 colors by
the linear combination of simple RGB dyes.?° Such techniques are easy to implement in

practice, however, they are fundamentally limited by the number of non-overlapping dye



emission spectra. Another class of multiplexing techniques includes using the geometry of
a mesoscale structure such as the DNA origami barcodes proposed by Lin et al. 7 These
uniquely identifiable nanostructures can later be used as a taggant for studying the species of
interest. These techniques generally have much more room to encode information, however,
they require complex nanostructure self-assembly.

Passive encoding techniques such as Exchange-PAINT?!122 have also been reported. We re-
fer to such techniques as passive since the multiplexing information is not directly visible as
different fluorescent colors. State-of-the-art technique Exchange-PAINT uses the sequence
of fluorescent reporters to encode the multiplexing information. A given fluorescent DNA
reporter can only report a subset of locations that are complementary to it. Once these
locations are successfully reported, the current reporters can be washed out of the sample
chamber for a new set of fluorescent DNA strands which can then report new locations
or sample types. This process can be repeated a few times until all the required sample
species have been successfully reported to achieve high optical multiplexing using a single
dye color but multiple fluorescent DNA strands. Although the multiplexing capacity of
Exchange-PAINT is theoretically infinite, it requires multiple dye-labeled reporter strands
and washing steps, which makes it slightly expensive to implement, requires a complex hard-
ware setup and, finally, needs multistep drift corrections to account for the additional drift
due to washing.

In this work, we introduce a generalized time-based reporting framework to improve the
multiplexing capabilities of the objects studied using fluorescence microscopy systems. Our
framework contains a set of short DNA strands called DNA devices and a complementary
universal fluorescent reporter strand called reporter. These DNA devices can be attached
to the glass surface and observed using total internal reflection fluorescence microscopy
(TIRFM)? since this will limit the background fluorescence of the reporter strands. Each
time a reporter transiently attaches to our DNA devices it comes in the focal plane of the

camera and we see a short-lived bright fluorescent spot. Since each device is programmed to



undergo unique conformational changes, the stochastic intensity trace of each DNA device
will be distinct, if captured for sufficient time. We define these fluorescent intensity traces
as temporal DNA barcode since they can uniquely identify the underlining DNA device. We
model our devices using time-homogeneous Continuous-time Markov Chains (CTMC) and
use stochastic simulation algorithm (SSA) to generate their temporal patterns.

There have been some prior works such as hairpin-based nanoclocks,?* nanoparticle doping

distances, "

resonance energy transfer (RET) based temporal taggants?® which use the time-
domain to encode information. However, to our knowledge, our work is the first to introduce
the use of temporal signatures and DNA hybridization kinetics for the unique identification
of single-molecules. Several other sophisticated applications also exploit the programmable
nature of DNA hybridization?® 3% making the time ripe for the development of frameworks
such as ours that require tuning the DNA hybridization kinetics. Our work also provides a
systemic approach to searching a set of DNA devices from the design space such that they
follow experimental restrictions.

The rest of the paper is organized as follows. First, we introduce the abstract modeling
of simple DNA devices using the time-homogeneous CTMC. Second, we use the stochastic
model to predict a set of programmable parameters to generate a large pool of distinguishable
DNA devices. In particular, we program the following parameters: (a) the length of DNA,
(b) the number of available domains, (¢) domain sequestering using DNA hairpins, and (d)
the competing secondary structure. Third, using these simple devices and a DNA nanostruc-
ture as a platform, the temporal barcodes of several devices are combined to achieve a much
larger pool of temporal barcodes. Finally, we demonstrate an end-to-end large-scale simula-
tion experiment using a DNA nanostructure with five staple extensions, each of which can
act as a DNA device to create a set of 56 different temporal DNA barcodes using the principle
of linear combination of DNA devices. We perform supervised machine learning by training
a classification model and identify the temporal barcodes of designed nanostructure-based

devices using the trained model with high accuracy. We close the paper with a discussion



on some potential applications of our technique and opportunities to scale up the temporal

barcode set by using multiple dyes.
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Figure 1: A summary figure illustrating our temporal barcoding framework, with example
DNA devices parametrized by domain lengths. (a) The workflow for unique identification
of single-molecules using our devices. A set of devices are designed, modeled and simulated
to generate temporal barcodes which are analyzed in the parameter space for clustering (or
classification). (b) An example DNA device tuning domain length parameter to program
the barcode behavior. (c) Designing the number and lengths of reportable domains to tune
the temporal barcode. (d) Sequestering a domain to enforce event sequence. (e) Program-
ming length of a competing secondary structure to tune dark-time of the temporal barcode.
(f) Using a nanostructure as a breadboard for tuning the linear combination of individual
temporal DNA barcodes. Note that only one universal fluorescent is used for all the devices.

Results

Stochastic modeling of DN A devices

The stochastic behavior of DNA hybridization for single-molecule system is often modeled as

a time-homogeneous CTMC. 3537 This way of modeling single-molecule interactions can offer
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Figure 2: A simple example illustrating the idea of modeling a single-molecule DNA device.
(a) A short ssDNA device is attached on a glass surface. When fluorescent DNA strand
attaches to the device, it gets reported. (b) A CTMC model showing this transient binding
process. (c) The initial probability value matrix and the transition matrix of the 2-state
CTMC model. This model can be simulated to generate a state trajectory resembling the
ideal fluorescence intensity trace of a single device-reporter combination.

the benefit of adding an abstraction layer to the DNA sequence level, making the simulation
process simple yet retaining the necessary details. By modeling DNA hybridization and de-
hybridization as a CTMC, we assume that the holding time of each state is an exponentially
distributed random variable. CTMC is a stochastic modeling technique where each random
variable follows Markov property i.e. the probability of the random variable being in the
current state depends only on the previous state. Formally, CTMC is a random process
X (t)>0) with a finite state space S, such that the generated state sequence at time ¢ +
1 follows the property P(X;11|X, ... X2, X1) = P(Xi41]Xy). At any time ¢, a CTMC is
represented using a transition rate matrix () and a state space S for a given initial probability
vector w. The holding time in each state is an exponentially distributed random variable
with the rate value )\;;. The CTMC models used in this work can be easily implemented
at the corresponding DNA sequence level with existing tools such as NUPACK.3® Several
techniques have been suggested to simulate a CTMC, however, in this work, we will adhere
to the stochastic simulation algorithm (SSA) by Gillespie since it is the computationally
preferred choice for simulating a few molecules.?® A simple single-stranded DNA (ssDNA)
device and its corresponding CTMC model is shown in Fig. 2. Refer Trivedi, K. (2006)*°
for more details on CTMC.



Programmable DNA device parameters

DNA devices can be designed with several programmable parameters, such as the length
of DNA, salt concentration, temperature, and secondary structures. We assume that the
experimental conditions such as the temperature, salt concentration and others are kept
constant, and only tune the DNA device parameters in this study. All the rate constants of

reactions were adopted from prior experimental studies.3”

Tuning the lengths of binding sequence to create diversity

The simplest way to tune the kinetics of DNA hybridization to modify its length as studies
have shown exponential decrease in the melting temperature of double-stranded DNA (ds-
DNA) with increased length.*! Since we want to achieve transient binding of DNA strands,
we designed the device domain length in the 7 - 10 nt range. Prior PAINT studies have used
these lengths in their single molecule experiments to achieve transient binding behavior using
DNA. 4212237 This length range is short enough to achieve transient DNA hybridization and
yet long enough to be captured by the current detector technology. Some single-molecule
studies have captured kinetics of shorter DNA strands, however, such probes were noise-free
and expensive since they used fluorescence-quencher pairs.®® Similarly, longer DNA strands
can be used however with their average binding time ranging in the several seconds range,
the relative immunity to photo-bleaching might be lost. Hybridization and de-hybridization
rate constants were adopted from Jungmann et al. (2010).37

We represent a DNA device using the notation |a| where |a| € S = {z|z € [7,8,9,10]} and |a|
indicates the length of the domain a. To design a set of temporal DNA barcodes, we modeled
the DNA hybridization behavior using a two state CTMC as shown in Fig. 3b where the k¢
rate for each length will be different. We started with three simulation experiments one for
8 nt, one for 9 nt and one for 10 nt device. The length of simulation experiment was also al-
tered from 10 minutes to 1 hour assuming the complementary fluorescent reporter strand has

a concentration of 25 nM. More details about MATLAB scripts, simulation techniques and
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Figure 3: Tuning device length to program temporal barcodes. (a) Transiently binding fluo-
rescent strand to ssDNA device. (b) A 2-state CTMC model representation. (c) Estimated
mean value for the generated exponential distributions where error bars indicate a 95% con-
fidence interval. (d) Histograms of on-time for ssDNA devices with length 10 nt, and 9 nt
and 8 nt. (e) An example of signatures generated with SSA and added Gaussian noise. (f)
A sample temporal barcode showing the on-time (t,,) and off-time (t,¢s) in a signature. (g)
A scatter plot for ssDNA devices with data collected for 10 and 30 minutes. The blue shade
represents each device can be clustered effectively with longer data-collection times.



rate constants can be found in the Methods section. For each temporal barcode collected,
the length of their on-time peaks was collected and a histogram which was approximated by
an exponential distribution, as shown in Fig. 3d. The on-time peaks represent the amount
of time when a fluorescent reporter strand is attached to the DNA device which is also the
amount of time system is in the state S1 (also called the binding time) in Fig. 3b. The
estimated rate value for each exponential distribution that best represents data for different
collection times is shown in Fig. 3c. The error bars indicate an interval for estimating the
mean value of the distribution with 95% confidence. The histogram plots in Fig. 3d show
on-time distribution fits to an exponential probability density function (pdf) for a collection
time of 60 minutes.

The log plot shown in Fig. 3c clearly shows the difference in the estimated rate values for
each DNA device. This means that each device can be distinguished by estimating their
average on-time parameter. Additionally, the difference in the estimated value of the mean
on-time is also significant demonstrating the potential space that can be packed with several
new DNA devices by designing a sophisticated set of DNA devices. Also note that the error
bars of the estimated parameter gets tighter as the data collection time is increased. This is
expected as the summary statistics of memoryless stochastic process can be approximated
better as the samples size increase. This can also be achieved by increasing the frequency
of hybridization if shorter data collection time is critical for reporting application. Several
other physically tunable parameters can, therefore, be exploited to achieve a much finer
distribution of the range while ensuring sufficient distinguishability. Fig 3e shows a sample
temporal DNA barcode for 8, 9 and 10 nt device with added Gaussian noise for visualization
purposes. A quick visual inspection of devices in Fig. 3f with length 9 nt and 10 nt also
indicates distinguishable behavior.

For further analysis of data, the same simulation experiment was repeated for 100 samples
one for each 7, 8, 9 and 10 nt device with data collection times 10 minutes and 30 minutes.

The mean on-times for each temporal barcode was estimated and is shown in Fig. 3g. As



shown in the figure, there is a significant overlap among sample points of different devices if
the data collection time is only 10 minutes at the given concentration of fluorescent reporter
strand. However, if the data collection time is increased to 30 minutes, the samples are fur-
ther separated allowing us to easily cluster them using a simple spatial clustering algorithm
such as k-mean, nearest neighbor etc.2

Note that 107* on the vertical axis scale is numerical zero for the scatter plots shown in
Fig. 3 indicating the detection limit for our simulation experiments. Also note the red dot
at 107 seconds in Fig. 3g. It represents no output on-peaks in the temporal barcode of a
device and therefore the estimated on-time for that sample point is numerical zero. Since
the process is stochastic, this is possible but very unlikely as seen in only one of the hundred
samples recorded. It can be avoided by longer data-collection times as observed in the next

figure with collection time 30 minutes.

Tuning the number of domains to create diversity

After tuning the length parameter, we next tune the temporal barcode of a ssDNA with mul-
tiple domains as summation of temporal barcodes of the constituent domains for additional
programmability as shown in Fig. 4. A simple two domain device will have three observable
states and an unobservable state, termed as the dark state, as represented with a 4-state
CTMC model in Fig. 4b, where states S1 and S3 each represents one of the device domains
bound to fluorescent strand. The additional state S2 represents the device with multiple
fluorescent strands hybridized at the same time. Such state will have a visible jump in the
fluorescence intensity since the emitted photon count is linearly proportional to the number
of fluorescent dyes.*?

We represent a double domain device using the notation (|al, |b|) where {|al, |b|} € S and |z|
indicates the length of the domain. Note that we cannot control the order in which reporter
strands attach to our devices hence (|al,|b]) = (]|, |a]). We performed a simulation experi-

ment with 10 different devices with rates similar to previous section. Like prior simulation
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experiments, we restricted our domain lengths from 7 to 10 nt i.e. S = {z|x € [7,8,9,10]}.
We analyzed all the output signals to compute two parameters: (a) the on-time (t,,) and
(b) the double-blink time (¢4,). We define double-blink time as the amount of time when
both the fluorescent strands are attached to our devices. A histogram plot for both these
parameters was constructed and an exponential distribution was fitted to extract the rate
parameters (or mean) of these distributions. The entire process was repeated for a few hun-
dred samples and a 2D plot of the estimated parameters for all the simulated devices are
shown in Fig. 4c. When the data collection time was 30 minutes, some of the shorter devices
had an overlap in the scatter plot. However, this was easily resolved with an increase in
the data collection time. A data collection time of roughly 60 minutes at 25 nM fluorescent
strand concentration allows us to easily classify these 10 devices with high accuracy. For
some shorter devices, there are samples without any double-blinks but these are still sepa-
rable.

Note that we restricted the simulation experiments to devices 7 nt and longer since most
detectors can only capture events longer than 1 ms. However, if a CMOS camera is used,
one could easily integrate shorter devices to increase the pool of distinguishable devices.??
Finally, note that 10~3 on the vertical axis scale is numerical zero for the scatter plots shown

in Fig. 4. They signify that the barcode signatures did not have any double-blink.

Tuning the order by domain sequestering to create diversity

An interesting functionality of secondary structures such as DNA hairpins is their ability to
sequester information. As an improvement over ssDNA devices, this programmability can be
useful to enforce a binding order of the reporter strands. This can help differentiate between
devices (|al, |b|) where domain a is exposed, and b is sequestered, and (|b], |a|) where domain
b is exposed and a is sequestered, thereby increasing the number of distinguishable devices.
Therefore, by simply reversing the order of reporter domains, we can approximately double

the number of devices.

11
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Figure 4: Tuning the number of domains to program temporal barcodes. (a) The transient
binding of fluorescent strands to our DNA device. (b) A 4-state CTMC model representation.
(c) A scatter plot in the parameter space generated by learning parameters from intensity
signatures of 10 different devices. (d) A typical signature of (10,10) and (9,9) device collected
for 10 minutes. (e) A sample temporal barcode showing on-time (t,,), off-time (t,fr) and
double-blink time (tgp).

The model for hairpin-based devices with two domains is very similar to prior ssDNA de-

vices with two domains as shown in Fig. 4b and Fig. 5b. The only difference is a fluorescent
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reporter’s inability to bind with the hidden domain without successfully opening the hairpin.
A simulation experiment with 25 nM fluorescent strand was performed with similar rate pa-
rameters as prior sections for individual domains. The noisy output signal was analyzed to
compute the following parameters: (a) single-step time (t4s), (b) double-blink time (t4,), and
(c) double-step time (tgs). A histogram was generated by analyzing all the signals to com-
pute all 3 parameters. The exponential distributions best approximating these histograms
produced estimated mean values with 95% confidence.

Note that tg, and t4s are computed differently as shown in Fig. 5d. We compute the single-
step time by calculating the on-time for all the peaks that had exactly one reporter strand
attached to it while the double-step time here refers to the on-time time for all the peaks
with double-blink time greater than zero. A 3D scatter plot in parameter space for all pos-
sible device combinations of 7 to 10 nt domain length is shown in Fig. 5. The scatter plot
of data collected for 200 minutes can easily be classified using popular clustering algorithms
such as k-mean, mean-shift etc.*? with high accuracy. Note that for some of the shorter
devices there are samples where no double-blink was observed. Therefore, devices with at
least one longer domain is the preferred choice when designing such DNA devices to report
single-molecules. Note that this strategy assumes that we design the hairpin sequence such
that after annealing it remains as a stable hairpin. This can be ensured by having longer
stems. Additionally, prior studies also suggest longer hairpin stem for higher stability and

therefore lower leak.36

Tuning the dark-time with a competing secondary structure

It is a well-known phenomenon that ssDNA can also be programmed to form a secondary
structure such as the DNA-hairpin if complementary sub-sequences exists.?® This is helpful
since it gives more room for programming signatures of DNA devices. Such competing
secondary structure changes the dark-time (t,ss) of the temporal barcode. As shown in

Fig. 6, a DNA device with complementary sub-sequence can form a DNA hairpin which

13
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Figure 5: Tuning the sequence of domains to program temporal barcodes. (a) The transient
binding of fluorescent strands to our DNA device with hairpin secondary structure such
as DNA hairpin to sequester a domain. (b) A 4-state CTMC model representation. (c)
A 3D scatter plot in the parameter space generated by learning parameters from intensity
signatures of 10 different devices. (d) A typical signature of a device indicating the difference
between the calculated parameters single-step time and double-step time.

inhibits attachment of the fluorescent reporter. Therefore, we modeled this system using the
3-state CTMC as shown in Fig. 6b and performed a simulation experiment with rates for
hairpin closing adopted from Tsukanov et al.3¢ A fluorescent reporter of length 10 nt was
allowed to interact with the devices that can form hairpins with a stem length of 6 to 10 nt.
The estimated dark-time for all the simulation experiments with a data collection time of 90

minutes yielded a distinguishable device set as shown in Fig. 6¢. These type of devices are
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extremely important since most existing multiplexing techniques that do not use wavelength
multiplexing, encode information in the DNA sequence.?!' Therefore, they need multiple
dye-labeled DNA strands which increases the experimental costs significantly. With our
technique, only a single dye-labeled DNA strand is required for multiple reporting devices

making this reporting technique highly cost-effective.
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Figure 6: Tuning the secondary structure of the device to program temporal barcodes. (a)
The transient binding of fluorescent strands to our DNA device which can inhibit this process
if it forms a secondary structure. (b) A 3-state CTMC model representation. (c) A scatter
plot in the parameter space (dark-time) generated by learning parameters from intensity
signatures of 5 different devices. Length of fluorescent strand was constant at 10 nt while
hairpin stem length ranged from 6 to 10 nt.

Enhanced tunability with nanostructures

We have so far only tuned individual DNA devices in this work, however, the tunability of
our temporal barcoding framework can be further scaled up by using a nanostructure as a
breadboard. The field of structural DNA self-assembly is sophisticated enough to produce
structures ranging from a few nanometers to several hundreds of nanometers.** Several com-
plex shapes have been proposed and it is straightforward to construct a simple breadboard-
like DNA rectangle with length under 200 nm using the DNA origami technique.?® Some
of the staples can be extended to act as DNA devices attached to the breadboard. The

nanostructure can act as one DNA device and will have overlapping point spread function
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(PSF) for individual devices on its surface as this structure is smaller than the diffraction
limit of light. While this property is undesired for the field of super-resolution imaging,3* it
can be exploited here to achieve a large set of temporal barcodes using a linear combination
of individual device barcodes.

Using a nanostructure, there are mainly two tunable barcode regimes: (a) low reporter con-
centration, and (b) high reporter concentration. In regime (a), the reporter concentration
is set to be sufficiently low so that only one reporter binds at a time. This regime is also
widely used by SMLM techniques to localize each spot with high accuracy.?® In regime (b),
the reporter concentration is much higher and, therefore, multiple reporters can bind at the
same time. The behavior of each regime can be visualized Fig. 7b. A simple DNA origami
rectangle-like nanostructure can be modified to have four extended staple strands, as shown
in Fig. 7a, each acting as a DNA device. A sample temporal barcode for each device and
their observed accumulated effect in both the regimes described above is shown in Fig. 7b.
As shown in Fig. 7a and Fig. 7b, each modified staple acts as a DNA device for a reporter to
attach. However, since all the staples are within the diffraction limited zone and a reporter
with only single-dye is present, the output temporal barcode will be a linear combination of
individual temporal DNA barcodes.

A simple simulation experiment with a small set of devices was run to study the effect of
nanostructure-based temporal barcodes. Assuming the nanostructure shown in Fig. 7a, sev-
eral output device combinations are possible. Here we take a small subset of the device
space (about 12 device combinations) to generate temporal barcodes in the low-reporter
regime and high-reporter regime. More details about the simulation experiment parameters
can be found in the Methods section. The output temporal barcodes for each regime were
analyzed to extract on-time and double-blink parameters like prior simulation experiments.
The scatter plots with estimated parameters are shown in Fig. 7c and Fig. 7d demonstrating
the distinct behavior of the temporal barcodes set constructed using a linear combination of

individual devices. Note that we only used partial information, on-time for level one and two,
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for the temporal barcode in the high reporter regime for visualization purposes. Additionally,
we manually chose a small subset of device combinations for demonstration purposes, how-
ever, the problem of choosing a set of non-overlapping devices can be reduced to the classic

NP-complete maximal set packing problem and can be solved by greedy algorithms.*>
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Figure 7: Using a nanostructure as a breadboard to design a set of temporal DNA barcodes.
(a) An illustration of a DNA nanostructure with 4 staple modifications each of which can act
as a DNA device. The red spot on the nanostructure indicates a fluorescent reporter bound
to the device. (b) A sample temporal barcode in the low and high reporter regime generated
using four devices on a nanostructure. Note the difference in the final temporal DNA barcode
of the nanostructure in each regime. (c) A small subset of the possible device combinations
was chosen to generate 12 different temporal DNA barcodes using the low reporter regime.
(d) A small subset of the possible device combinations was chosen to generate 11 different
temporal DNA barcodes using the high reporter regime.

Using supervised machine learning for barcode classification

We demonstrate the scalability of the temporal barcoding framework by running a concrete

large-scale experiment. Using the design principles of our framework, we ran a simulation ex-
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periment which assumes a DNA nanostructure such as DNA origami rectangle with five staple
modifications. Each of these staples can be one of the simple devices {7nt,8nt, 9Int, 10nt}
and they all attach to the same universal complementary reporter strands floating in the
solution. The DNA origami rectangle design*® is about 90 nm tall and 70 nm wide and,
therefore, the temporal barcode observed will be a linear combination of individual device
barcodes as this is smaller than the diffraction limit of light. The reporter concentration
for our simulation experiment was kept high at 30 nM so that our temporal barcodes would

operate in the high reporter regime, as shown in Fig. 7b. The total number of unique com-

N+K-1

7 ), where K is the number of staples and N is the

binations of devices is given by (
number of simple DNA devices.%® This is result of the counting the number of ways of to
distribute K objects into N distinct cells such that ¢; +co + ... + cy = K. For example, if
we have 5 staple extensions and 4 different devices, the total number of unique combinations
will be (4+g_1) = 56 and up to five observable on-states with quantized intensities.

For successful identification of each device, we extract multiple on-times from their temporal
barcode, with one on-time per level as shown in Fig. 8a. For a temporal barcode with k+1
levels, there will be k bright states or on-states and one dark state. In our experiment, as
each nanostructure has five devices, each temporal barcode will have up to five on-states
and one off-state. We can measure the average on-time for each bright state and construct
a five-dimensional input feature vector for each temporal barcode. Each value in the feature
vector stands for the estimated on-time obtained by fitting an exponential distribution to
the histogram plot. This vector can be fed as an input to a machine learning model for
automatizing the classification (or barcode to device identification) process. In this work, we
will train an SVM model with Gaussian kernel for the classification of temporal DNA bar-
codes. A feature vector of a temporal barcode is a [a;]xx1 matrix where the i" row indicates
the average on-time of i’ level in the temporal barcode. This k + 1 state temporal barcode

will have a k x 1 feature vector as we ignore the dark state. We ran a 5-hour simulation

experiment for each nanostructure to collect the corresponding temporal DNA barcode and
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Figure 8: Training a non-linear SVM classifier on a large pool of temporal DNA barcodes. (a)
A typical nanostructure with five extended staples. The location of staples can be modified
as long as the inter-staple distance is > 10 nm. (b) A typical temporal barcode with up to
5 states. (c) In general, a nanostructure can have k devices and can generate a temporal
barcode with up to k-levels. The corresponding on-time measured for each level will form a
k-dimensional feature vector for a classification model. (d) A confusion matrix plot generated
using the test data set on a trained SVM model. All the important evaluation parameters
- accuracy, precision, F1 score and recall - are summarized in the tables for each confusion
matrix plot.

analyzed each barcode to generate a feature vector. Using MATLAB’s deep learning toolbox,
we trained our SVM model and evaluated its performance on the test data set. More details
on simulations and scripts can be found in the Methods section. The confusion matrix for
the test data set is shown in Fig. 8b along with the evaluation scores, namely, accuracy,
precision, F1 and recall. Most of the weight lies on the diagonal of the matrix indicating
good overall classification performance and close to perfect accuracy. However, there are
some misclassifications giving us a little over 70% precision. This is mainly due to overlap in

shorter devices as their events are short-lived and unlikely. Based on the results of simple de-
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vices shown in prior sections, we already saw that to achieve higher distinguishability, longer
devices are preferred in the high reporter regime. This is mainly because shorter devices lead
to short-lived events and therefore unlikely higher-dimensional values in the feature vector
space. Therefore, we mask out all the device combinations that contain 7 nt devices and
re-ran the model training and evaluation process with the subset of combinations. Since we
have N = 3 type of devices and K = 5 staple buckets, the total number of combinations
will be (3+§_1) = (;) = 21. The confusion matrix for these devices is shown in Fig. 8b. As

expected, we achieve a much higher classification performance with over 90% F1-score. This

shows the ability of the trained model to distinguish our designed device set.

Discussion

In this work, we have introduced a novel time-based framework for designing a family of
DNA-based devices, for unique identification of the single-molecule. These devices undergo
a series of dynamic transformations that result in a unique temporally-varying fluorescence
signal. Since they encode information in the time domain, we can design several devices with
as few as one-dye greatly simplifying the hardware setup for data collection. These devices
are easy to design and require only one universal fluorescence reporter strand making them
extremely cost-effective. In addition, they follow the principle of transient binding which
makes them relatively immune to photo-bleaching when imaged using TIRF microscopes.

Our framework introduced five different design methodologies to generate several distin-
guishable temporal barcodes, namely (a) tuning the device length (b) tuning the number of
domains (c) tuning the order by domain sequestering (d) tuning the dark-time with com-
peting secondary structure formation and (e) using nanostructures for linear combination.
Each of these design principles was then used to generate a family of DNA devices with
different barcodes using only one fluorescent dye. We modeled the behavior of our DNA de-

vices using CTMCs and performed several simulation experiments to demonstrate our idea
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and identify experimental conditions for maximal distinguishability. Finally, using simple
principles of our framework, we showed an end-to-end large-scale nanostructure example by
training an SVM model for non-linear classification, indicating the robustness of our frame-
work. Nearly 100 temporal DNA barcodes were designed, modeled, simulated and analyzed
in this work. Although our barcodes can work with as few as one dye, by adding multiple
dyes, we can create much larger families of uniquely identifiable reporter molecules which

makes our framework highly scalable.

Scaling the number of unique barcodes

Although our simulation experiments were made using only one type of dye, here we estimate
the number of unique barcodes we can make with the use of multiple dyes to demonstrate the
robustness of our technique. In the previous subsection, we already showed the number of

temporal barcode combinations for a nanostructure with K staple extensions, for N tunable

N+K-1

P ) However, if we use multiple dye colors (for example,

device lengths, is given by (
D), the total number of unique temporal barcodes further scales up. A realistic value for D

can be 4 with a sample dye set containing ATTO 405, ATTO 488, Cy3B, ATTO 655 giving

DXxN+K-1

P ) devices. For the suggested values of D = 4, a simple nanostructure

us a total of (
with 5 staple extensions can generate (4X4;5_1) = (250) = 15504 combinations. While this
design space certainly has overlapping barcodes, it should be noted that it only tunes the
length of ssDNA devices residing on a DNA origami-like platform. We can also use a prior

technique, that utilizes the geometry of nanostructures” in combination with our temporal

encoding to scale this number even further.

Error-correcting optical barcodes using DNA nanostructure

A natural application of our temporal barcoding framework is DNA nanostructure tagging
as shown in earlier sections. With nanostructures such as a 6-helix bundle,” error-correcting

optical barcodes can also be created as this structure is longer than light’s diffraction limit.
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As shown in Fig. 9, the ends of a 6-helix bundle can be tagged with two devices (of similar or
different types), which can independently report the tagged structure. If error correction is
desirable in the detection application; each nanostructure can be tagged with the same device
multiple times because the identification of even a single temporal barcode should uniquely
identify the structure of interest. Such redundant multi-tagging can also ensure that the re-

porting occurs even if an origami nanostructure has incomplete binding fidelity of all staples.

/W ;

Insights for experimental demon- ‘///

Figure 9: A 6-helix bundle can be tagged with

key points which can help expedite the ex- our temporal reporters (without using wave-

length multiplexing) in two regions to gener-
perimental demonstration: (a) Longer do- 46 5 unique temporal signature. These types
of nanostructure tagging can also be error-
resistant since only one of the two devices is

stration

Our simulation experiments suggest a few

main length is preferred. This will enable
relatively slower dynamics of the molecular required.

process enabling a higher signal-to-noise ratio for the signal detected. (b) Fluorescence mi-
croscope in TIRF mode is preferred. This will reduce the background fluorescence arising
from the free-floating reporter strands. (c) Longer data acquisition is preferred. This will
help to reduce the variance of the acquired temporal barcodes and eventually the estimated
statistical parameters. (d) Extremely low device concentration is preferred. This is crucial
as our devices are much smaller than the diffraction limit of light. Since the device location
of surface binding is random, it is possible that multiple devices sit in the vicinity of each
other. This can be avoided by reducing the concentration of DNA devices as it can make
the likelihood probability extremely small. (e) False positive should be discarded. Since the
overall goal of the study is the development of taggants, accurate identification of the DNA
device is crucial. Therefore, a strict software or hardware protocol is essential to discard all

the non-specific fluorescent events recorded.
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The decision of which reporter regime to work with depends on the available experimental
setup and the target number of devices in the set. This is because the high variance in the
estimated parameters due to shorter devices can lead to poor model performance if we are
working in the high reporter regime as this regime prefers cascading events. If the devices
are shorter, they are not conducive to generating higher order events since their binding
events are short-lived. However, such short events are desirable in the low-reporter regime

since the regime aims to avoid cascaded events completely.

Cost-effectiveness of temporal DNA barcodes

A hypothetical experiment design can demonstrate the cost-effectiveness of our barcoding
technique. For example, if the experiment requires ten-fold multiplexing, we need to design
a pool of ten orthogonal temporal DNA barcodes. This requires ten DNA strands (approx.
$10 each, < $0.1 per bp) and one dye-labeled universal reporter (approx. $250) bringing
the total cost to $250 4+ $100 = $350. In comparison, an Exchange-PAINT experiment with
ten-fold multiplexing will require ten reporters and therefore the approximate cost will be

$2500 + $100 = $2600 demonstrating the cost-effectiveness of our technique.

Methods

Generating temporal barcode for individual devices

All the simulation experiments were conducted using custom-written MATLAB scripts avail-
able as part of the supplemental material. Briefly, we used MATLAB’s SimBiology toolbox
to represent our Markov models as chemical reactions and simulated them using SSA al-
gorithm also available as a part of the SimBiology package. The programming details can
be found in the supplementary scripts and MATLAB’s online documentation. For further
resemblance to experimental data, we added Gaussian noise to the simulated state chain

since the combined effect of shot noise, dark noise and all other detector noises are usually
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approximated by a Gaussian distribution.*” The unbinding rate constants for 7 nt, 8 nt, 9 nt
and 10 nt were 10 ms, 60 ms, 550 ms, and 9 s respectively. The binding rate constants for all
the simulation were 10 M~!s™!. More details on rate constants can be obtained from prior
literature. 212237 The simulated state chain output was analyzed to compute parameters such
as on-time, off-time, double-blink etc. Once all the samples of a parameter were acquired
from the state chain, a histogram was constructed and fit to an exponential distribution
using maximum likelihood estimator. This can estimate the rate parameter (or mean) of
the exponential distribution. Since the overall DNA hybridization process is stochastic, the
simulation experiments were repeated several times to generate the scatter plots shown in

Fig. 3, Fig. 4, Fig. 5 and Fig. 6.

Generating temporal barcode for nanostructures

To emulate the behavior of a nanostructure, the simulation script independently simulated
each device on its surface similar to the prior section and linearly combined their temporal
barcodes to resemble experimental behaviors of single-molecules observed under the diffrac-
tion limit of light. This kept the simulations simple and modular as the modules used for
generating individual device barcode were reused. For low reporter concentration regime,
the simulation experiment was kept 8 hours and the reporter concentration set to 1 nM.
For high reporter concentration regime, the simulation experiment was kept 5 hours and the
reporter concentration set to 30 nM. The simulation experiment was repeated multiple times

to generate enough samples for the scatter plot shown in Fig. 7c and Fig. 7d.

Training SVM model for supervised learning

For the nanostructure example, we ran the simulation experiments for each device 600 times
giving us a total of 33600 samples for all the combinations of the devices. This ensured that
enough data was available for model training and testing purposes. From each sample, a

5-dimensional feature vector was extracted where each dimension indicates the average on-
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time for that level. After random shuffling, 70% data samples were fed to the SVM model
for training purposes and the remaining 30% of the data samples were left for the testing
purposes. Using the gradient descent method, the model was trained to minimize the loss
function of the SVM model using the OneVsAll encoding scheme. More details about training
an SVM model and model parameters can be found in the online MATLAB documentation
for the method fitcecoc. Once the model was trained, we evaluated its performance by
generating a confusion matrix plot and calculating several metrics such as accuracy and
precision. The open source package confusionmatStats was used to calculate these metrics
and MATLAB'’s built-in method was used to generate the plot.

The cluster machine used to run the simulation experiments and model training had the
following configuration: 10x Tensor TXR231-1000R D126 Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz (512GB RAM - 40 cores).
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