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Abstract   
 
 

Metahuman systems are new, emergent, sociotechnical systems where machines that learn join 
human learning and create original systemic capabilities. Metahuman systems will change many 
facets of the way we think about organizations and work. They will push information systems 
research in new directions that may involve a revision of the field’s research goals, methods and 
theorizing. Information systems researchers can look beyond the capabilities and constraints of 
human learning toward hybrid human/machine learning systems that exhibit major differences in 
scale, scope and speed. We review how these changes influence organization design and goals. 
We identify four organizational level generic functions critical to organize metahuman systems 
properly: delegating, monitoring, cultivating, and reflecting. We show how each function raises 
new research questions for the field. We conclude by noting that improved understanding of 
metahuman systems will primarily come from learning-by-doing as IS scholars try out new 
forms of hybrid learning in multiple settings to generate novel, generalizable, impactful designs. 
Such trials will result in improved understanding of metahuman systems. This need for large 
scale experimentation will push many scholars out from their comfort zone, because it calls for 
the revitalization of action research programs that informed the first wave of socio-technical 
research at the dawn of automating work systems. 
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META-HUMAN SYSTEMS = HUMANS + MACHINES THAT LEARN 

 

INTRODUCTION 

 
Machines that learn interact adaptively with their environment while increasing their 

capabilities through experience. Such machines are now being embedded in apps, news feeds, 

video streaming services, and email filters. Machines that learn do so in a manner similar to 

human trial-and-error learning. But because of digitally enabled transfer capability, they differ in 

learning speed, scope and scale. We use the term machines that learn here however as a distinct 

category from the common noun phrase in computing fields called machine learning.  Machine 

learning is a specialized kind of computational process (Domingos, 2012) whereas  machines 

that learn abstract from the details of the computation and focus on the process features, 

outcomes and emergent features of systems like their scale, scope, speed and architecture. This 

paper addresses machines that learn as parts of wider systems where both humans and machines 

learn jointly (Davenport and Kirby, 2016). These are called meta-human systems. The 

capabilities of machines to learn can change in such systems at a different rate than in how 

humans learn. Our focus is on the socio-technical consequences of introducing machines that 

learn to work settings and systems as organizations start deploying meta-human systems. 

We use the Greek meta as a prefix for such systems because it fits with the nature of these 

systems etymologically, colloquially, and prescriptively.  Etymologically meta means ‘after’ and 

‘beyond,’ as in post-human. Metahuman systems invites us to explore things that go beyond 

what machines or humans alone possess. Such superhuman aspects of meta-human systems 

show now often up in popular books (Bostrom, 2017).  They can also be oppressive (Zuboff, 

2015, 2019).  There is also a colloquial meaning of meta in denoting “about” and “above” as in 
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meta-studies that analyze and synthesize findings of other studies. In our case meta used 

colloquially relates to expanding and synthesizing ways in which humans and machines are 

connected in work systems and that study of metahuman systems encompass all systems using 

machines that learn in the context of human work systems.  Our prescriptive use of meta is 

focused on “beyond” in the sense of models of models and related meta-models that humans use 

to reason about assessments made by machines come to fore in the examination of metahuman 

systems. Before humans delegate to a machine a task as they would to a colleague, for example 

when doctors who use AI to diagnose cancer and delegate that task to a machine they want to 

understand how the AI machine has been trained to calibrate their delegation. In this regard they 

either understand the process or engage in constant monitoring of it (Cai et al., 2019).  In such 

settings higher meta-levels affect always design of systems at work. For example, a fleet of 

autonomous vehicles operates in an ecology of designers, passengers, controllers and regulators 

who need to work together and react to some situations that the (meta)system creates.  They must 

always consider the next generation and understand also the design for design. Meta-design, if 

done well, allows to design better systems, and possibly paves way to systems that design 

themselves. 

When machines learn, their capabilities change in unexpected ways and at a speed and scale 

different than we have encountered before. Currently, Information Systems (IS) research does 

not reason pragmatically and diligently about this. Some IS research presupposes that machines 

do not change or change very slowly, as seen in on use (Venkatesh et al., 2003) and affordance 

(Leonardi, 2011) related theorizing. Some advanced sociotechnical research presupposes 

symmetry between machine and human (Latour, 2005).  The truth lies likely in between: 
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machines capability changes, sometimes rapidly, even if not rivaling the capabilities of humans 

because machine and human learning processes are embodied differently (Lawrence, 2017).  

Organizational bureaucracies where metahuman systems now operate serve important 

purposes (du Gay, 2005). This is particularly true with respect to delegation and training of 

people that comes with the design of metahuman systems (Barnard, 1938; Simon, 1997).  Meta-

human systems are changing and will change these dramatically in future. For example, 

knowledge production in Wikipedia is already now shared between humans and bots which both 

approve and manage processes (Zheng et al., 2019). The proposed IS research agenda involves 

multiple levels of meta: first understanding differences in cognitive architecture and how this 

affects the design of organizational meta-processes for delegation and monitoring (operational 

processes), cultivation (capability-building processes), and reflection (systems improvement 

processes). 

It is still early days of metahuman systems, but these systems already now receive growing 

attention under different monikers in multiple discourses. Simon (1997, p. 234ff) anticipated 

meta-human systems that build with their own initiative knowledge beyond the developments of 

the organization’s internal research departments. Now such systems are used in automated drug 

discovery (Schneider, 2018) and other fields.  The concept is creeping in management discourse 

when Uber drivers are managed by algorithms that delegate driver tasks irrespective of human 

resistance (Lee et al., 2015; Möhlmann and Henfridsson, 2019). The notion appears when 

doctors now use adaptive robotic surgery systems to delegate surgery tasks to machines, but find 

at the same time that they must protect patients from swinging robotic arms (Sergeeva et al., 

2018). Meta-human systems are showing up in multiple work settings: industrial organization, 

market making, election results, transportation and urban mobility, education, and scientific 
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research, just to name a few.  Machines that learn have been overhyped similar to the hype of 

1930s Hugo Gernsback futuristic fanzines. They can produce negative, unanticipated effects 

(Marcus and Davis, 2019; Zuboff, 2015, 2019). Innocuous rectangles on traffic signs can fool 

autonomous vehicles leveraging the way machines are trained to cause accidents (Heaven, 2019). 

Given a certain brittleness of machines that learn, meta-human systems are susceptible to new 

types of attacks. IS research agenda has from early days blended social and technical 

(Hirschheim, 1985; Kling, 1980). IS researchers should now consider meta-human systems as 

unique kinds of socio-technical systems in their inquiries to remain relevant (Sarker et al., 2019). 

An ongoing experiment in metahuman type learning provides an illustrative and powerful 

example of the immediate salience of the issues the field faces. The Never Ending Language 

Learner (NELL) learns substantially on its own and through humans about language and its uses.  

It reads web pages on its own to build a repository of contemporary beliefs, and then uses 

humans to explore the exact meaning of these beliefs (Pedro and Hruschka, 2012). By 2015 it 

had amassed over 80 million beliefs, with high confidence in over 2 million (Mitchell et al., 

2018). When NELL fails to recognize a belief, it tweets human followers, parses the replies, and 

integrates the results to improve and expand its understanding (Carlson et al., 2010; Pedro and 

Hruschka, 2012). In learning terms NELL is a mixed-initiative, autonomous learning system 

(Horvitz, 1999; Parasuraman et al., 2000)(Horvitz, 1999; Parasuraman et al., 2000), and 

illustrates a growing trend in which machines use humans to further learning (Ekbia and Nardi, 

2014). Any technology like NELL will go as part into meta-human systems. Such systems 

require novel research to address challenges like those identified by Zuboff (2015, 2019) 

regarding hidden or latent monetizing of consumer’s ‘behavioral surplus,  by Aleksander (2017) 

that robotic systems far from human intelligence demonstrate character, capabilities and 
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motivations different from humans while lacking transparency required for organizational use. 

Meta-human systems will blur the boundaries between the socio (the human) and the technical 

(the machine) in unanticipated ways which calls for novel inquiry. 

The IS field grew out from the need for experts who can skillfully work at and bridge the 

boundary of the social and the technical (Su et al., 2017). Meta-human systems create a new kind 

of need for experts who can work at a rapidly shifting learning boundary in organizations.  

Advances in machine learning technologies will change learning assumptions on which the 

foundations of modern management were built.  Herbert Simon hinted at this several decades 

ago when he noted the difference in speed between human learning and learning by machines 

(Simon, 1983, p. 26-27). Even if it takes a while to get machines to learn specific tasks or 

content, once learned, the machine can disseminate the learned capability quickly (Kallinikos et 

al., 2013; Lyytinen et al., 2016). Meta-human systems will bring higher speed of machines that 

learn and alter the scale and scope in which meta-human systems learn. A myriad of 

consequences is likely to follow - many of them not intended. This calls for a revision of the IS 

research agenda how we think of sociotechnical systems where learning forms one of the main 

dimensions of their behavior. 

 

THE CONCEPT OF META-HUMAN SYSTEM 
 

Meta-human systems are a hybrid of humans and machines that learn, complementing and 

amplifying capabilities that potentially make such systems better at learning than either humans 

or machines separately.  What makes the story challenging and interesting is that machines and 

humans have different cognitive architectures and so far organizational design has operated 

under the assumption that all learning components in organizations have similar (though 
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somewhat varying in level and skill) of cognitive architectures and ergo learning speed, scope 

and embodiment. The emergence of different cognitive architectures explains differences in 

learning speed which affects the scale and scope of learning at the system level. This calls for a 

joint common definition of learning that covers learning as an outcome irrespective of cognitive 

architecture. In this essay we define learning as a process of increasing capabilities in a 

configuration of agents: human, machine, or mixed.  

Past IS research assumes that humans learn and machines do not (Venkatesh et al., 2003).  At 

the same time humans have used machines to improve the overall performance of a system given 

machine characteristics of accuracy, speed or nearly fault-free behavior. In consequence, 

research on learning in organizational contexts has focused on human cognition and related 

learning (Leonardi, 2012). That machines can learn is sort of implied by actor network theory 

(Latour 2005), critical realism (Mingers et al., 2013), and DeLanda’s (2019) theory of 

assemblages.  However, they do not recognize the emerging learning capability of hybrids where 

both machines and humans learn. As the discussion of cognitive architectures below will show, it 

does not ultimately matter whether humans and machines learn through similar or dissimilar 

processes.  Nevertheless, much of the research, including ours, in the context of meta-human 

systems proceeds on assuming the presence of mechanisms for learning in both humans and 

machines (Lake et al., 2015). The dynamics that surface when these types of learning agents with 

different architectures and skills interact are still unknown.  Using a machine in a cognitive loop 

will for example causes humans also to anthropomorphize the machine expert (Cai et al., 2019), 

or only selectively follow machine advice when it reinforces human’s own biases (Green and 

Chen, 2019). 
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A thorough review of learning literature is beyond the scope of this essay.  Learning spans 

many disciplines with many denotations and connotations. We constrain our discussion to 

learning relevant to meta-human systems.  We differentiate between trial-and-error learning, 

when skills might be learned for the first time by humans and machines, and diffusion-based 

learning when skill are transferred (Argall et al., 2009).   Given this distinction learning can be 

first simplified to the observation that any agent’s learning involves some sort of trial and error 

process (Thorndike, 1932) with intermittent rewards and punishments regarding goals (Sutton 

and Barto, 2018). An agent acts in an environment, and based on environmental reaction, decides 

what to do next. As it moves through this process it acquires new capabilities that make it better 

fit operating in that environment. The increased capabilities that accrue from learning can be 

measured by testing what an agent can do after a learning event in that setting. Testing might 

involve tasks to infer cognitively what agents can do when they are actively functioning as a 

learning system. Machines that learn receive reward or punishment based on the environment’s 

response to the machine’s action (Sutton and Barto, 2018). Even with their current limitations, 

this simple learning process allows machines to move into domains hitherto reserved to human 

learning. There are trade-offs: reinforcement learning in machines requires massive amounts of 

data, while humans learn through similar process using a small number of instances (Lake et al., 

2017).  

Trial-and-error learning encompasses also meta- level: learning to learn. Trial and error 

single loop learning builds specific capabilities to do something as well as generic capabilities to 

assimilate such specific capabilities. Double loop learning builds an ability to achieve higher 

learning capability which covers also changing goals and assumptions of learning (Argyris, 

2004). Trial and error learning is often costly and slow for both humans and machines so specific 
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solutions have been developed to circumvent it which enable diffusion-based learning.  In such 

learning mode humans and animals learn through imitation based learning (i.e. through 

observation or social participation). By watching others do something successfully or engaging 

in such activity with others, allows one to infer and repeat expected patterns of behavior (Frith 

and Frith, 2012). Multiple other mechanisms to diffuse knowledge might work in humans (and in 

many animals), with the fastest conjectured mechanism a kind of mirroring at the neurological 

level (Rizzolatti and Fogassi, 2014).  Machines cannot do any of the above yet to diffuse 

knowledge.  But this advantage of humans is met by a machine advantage in that they possess 

very fast mechanism of direct copying of learned capability accomplished by transferring lines of 

code, data, or matrix weights. Analogous tasks can therefore be transferred in machines by a 

process akin to human transfer learning (Mestre, 2006), wherein certain layers of a matrix are 

copied and recombined (Tan et al., 2018).  

Four aspects influence generally how meta-human systems will learn either through trial-

and-error learning or diffusion based learning 

1. Trial and error learning is context-dependent and requires language and cultural 

knowledge. Moral judgments that separate right from wrong fall here.  Humans tend 

to be better at this than machines (Marcus and Davis, 2019; Smith, 2019). Sometimes 

humans can do it and machines cannot.  Even when machines can do it, humans tend 

to do this more robustly.  This might change over time, but for now humans have the 

advantage.  Even basic language skills are elusive for machines: a prize has been of-

fered for a machine agent that can sustain a 20 minute conversation with a human, but 

by 2018 the median conversation lasted less than 2 minutes (Ram et al., 2018).  
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2. Trial and error learning takes time and requires significant attention. Performance 

time in humans might be less than in machines, but machines can operate relentlessly, 

24 hours a day in dedicated mode.  Elapsed time can be shorter for machines. Recent  

deep learning variants have made machines to progress in learning within realms 

where simulations can be used to produce infinite amounts of data. 

3. Diffusion based learning from one agent to another is fast if the agents are machines.  

Learning by knowledge transfer in machines speed up learning and response in meta-

human systems. In contrast learning between humans and machines is slow due to 

significant differences in diffusion learning skills and mechanisms. This can only be 

improved by significant improvements in human-computer interfaces.  

4. In diffusion based learning the use of sensory learning that extends human senses 

with those of machines can empower human learning (Sinz et al., 2019).  Machine 

augmentation in vision alone includes an arsenal of microscopes, telescopes, night-

vision equipment, and radar and such sensory capabilities have been a component of 

meta-human systems for some time. There are concerns about atrophication resulting 

from such advances for humans including the wide use of GPS tools reducing human 

unassisted navigation skills (Robbins, 2010) or how calculators have lowered arith-

metic skills in humans.  

 

A unique aspect of human learning is that it always happens in a cultural context (Engeström 

et al., 2016). Distributed cognition posits that any human knowledge, the consequence of 

learning, is embedded in the material organization of humans and machines in a cultural setting 

(Clark, 2017). Knowledge can reside in a human team, it can be embedded in their tools, or it can 
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be inscribed in the physical environment through maps, signs, switches, and other kinds of 

interfaces. No one yet knows how meta-human systems distribute (or should distribute) learning 

objectives and capabilities as part of larger organizational or institutional processes. IS research 

involving meta-human systems requires deepening understanding of learning in ways that goes 

beyond notions of anthropocentric learning. Scholars should not project onto machines the 

capabilities and processes of humans, and vice versa. But speed, scope of learning matters, and 

differences in degree in any of them can and will become differences in kind at the meta-human 

system level. 

  

Cognitive Architecture 
 

Embodiment in human learning suggests that humans’ cognitive processing related to 

learning depends on the architecture of human bodies (Lawrence  2017). Inbound and outbound 

information used in cognitive processing associated with learning in humans is communicated 

through sensory experience embodied in the  human body (this includes also spoken or written 

language). The human brain may have 100 million times the processing power of a desktop 

computer, but the computer can exchange information with another computer 100 million times 

as fast as humans. Meta-human system designs can and should take advantage of these 

differences in cognitive architectures.  A human takes perhaps 10,000 hours of learning to 

become an expert due to the biological foundation of human learning (Ericsson et al., 1993).  

Machines operate at different rates and the underlying technologies are improving. Moreover, as 

noted, machines already transfer information very fast.  This was observed early on by Herbert 

Simon: “The first obvious fact about human learning is that it’s horribly slow…” (Simon, 1983, 

p. 26-27). Simon was not sanguine that machines could match human learning, though it was 
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worth trying, because machines could replicate acquired capability quickly with other machines. 

Few doubt the organizational, social and economic consequences, if machines rival or surpass 

human learning and significant cognitive tasks observed in organizational settings. Even if it 

takes years to get there (such as conducting tax planning or trading equities with even 95% 

effectiveness), the machine’s ultimate advantage is in the fast transfer and replication of such 

capability which would have revolutionary consequences of related organizational tasks 

(Kallinikos et al., 2013; Lyytinen et al., 2016). But there is no need for machines to rival or 

surpass human learning in all aspects of complex knowledge tasks. The tasks can be distributed 

in specific ways in meta-human systems and such meta-human systems are already faster than 

biological-only- human based systems learning organizations. Acceleration of the scope of 

transfer learning and diffusion based learning between machines will affect how information 

systems, cognitive psychology, computer science, biology, and other fields approach learning in 

social settings (Kallinikos et al., 2013; Lake et al., 2017; Lawrence, 2017; Rosen, 1991). 

There are many sensational, science fiction-like claims about machines that learn without 

limits (Vinge, 1993). Most predictions are simple extrapolations of exponential improvements in 

raw ‘machine power’ like those applying Moore’s law where a given amount of money buys 

roughly twice as much computing capability every two years (e.g., Kurzweil (2000)). It is not 

clear that machines can rival human learning or design themselves to learn and replicate because 

of just their ever greater computing power. Much depends on the definition of intelligence 

(Aleksander, 2017); it also depends on its origin.  Human intelligence reflects human needs: 

surviving and adapting as biological and social organisms in evolving, complex environments. 

Machines possess no such needs. In consequence, machine intelligence might not serve all 

human needs, because teleology and meaning are part of human intelligence but not that of 
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machine (Ackoff and Emery, 2005). Not surprisingly machine survival in the current discourse is 

treated primarily in technical terms and posed as a problem of security or fault tolerance that are 

high priorities for human existence. Prior to machines that learn it was not necessary to care 

about this in a similar way. That may be changing.  

 

THE EMERGENT FIELD OF META-HUMAN SYSTEMS 

 
Machines that can think and their effects have excited and informed IS research for more 

than half a century. We posit machines that learn constitute a new threshold event that will 

impact the future social organization and all disciplines that deal with organizing (Marcus and 

Davis, 2019; Smith, 2019).  For example the NELL system shows that there is a new direction 

where meta-human systems are evolving which will apply and shape organizational practices 

involving machines in the years to come. Whether still in the lab or deployed, it is time to 

anticipate research challenges that come with meta-human systems. We will note some of them 

below by illustrating features of meta-human systems operating in the laboratories and reviewing 

uses of meta-human systems in select industries.  

 

Meta-human Systems in the Lab 

 
Machines that can rapidly edit and copy knowledge (Yoo et al., 2010) make it possible for 

machine trainers to quickly pass new skills to machine trainees (Buciluǎ et al., 2006; Hinton et 

al., 2015; Rusu et al., 2016). Parallel processing can in addition speed this up by a factor of ten 

(Nair et al., 2015). Finally, such knowledge can be compressed. As a result data sets based on 

new learning models aid significantly both trial-and-error learning and diffusion learning: 
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training machines can correct trainee machines. Then machines can distill their knowledge into 

smaller and more compact neural networks. Because of this, trainee machines can quickly match 

or surpass trainer machines.  

There are trade-offs with these advances. Machines will learn faster and better than humans 

in specific knowledge tasks that rely on pattern recognition with clear goals (e.g., recognizing 

tumor patterns in radiographs). But in settings with high costs of failure this machine advantage 

might not be reliable enough.  For example, autonomous vehicles that malfunction can cause 

significant damage. While high speed driving games have been built and simulated to advance 

machine learning (Johnson-Roberson et al., 2016), these simulations don’t train for a wide 

enough range of potential driving hazards (Santana and Hotz, 2016). New techniques are now 

emerging to address this weakness such as using empirical data extracted from cameras in 

vehicles to ground the simulations. More generally, new models of agent behavior and learning 

patterns will be necessary to build machines that learn for tasks where learning takes place in a 

context of many human and machine agents interacting, cooperating, and competing, as with 

driving (Panait and Luke, 2005; Lowe et al., 2017). 

Human intervention is still expected to set up initial machine capabilities and embedding 

them into the physical infrastructure, and for their subsequent modification and maintenance.  

Most machines that learn are not able to learn on their own (Blue and Andoh-Baidoo, 2010; 

Sutherland, 2008). However, this is now changing. After a learning harness is set up, a neural 

network system Deep Q uses reinforcement learning algorithms to take action while following a 

learned policy (Sutton and Barto, 2018).  It can also learn on its own and pass its knowledge to 

other machines.  For example, Deep-Q has been made to play video games by controlling a 

joystick, and then discovering strategies for playing the game that require complex cognitive 
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processing (Figure 1). To accomplish this Deep Q considers multiple appropriate computational 

methods and evaluates how they meet its needs to maximize the consequences of its actions 

expressed in game points. As of 2015 Deep Q had learned 49 types of games, with skill on 29 

comparable to a professional human game expert (Mnih et al., 2015).  

 

 

Figure 1. Deep-Q. Pixel images analyzed by three 
convolutional neural networks feed two fully con-
nected networks that in turn transmit actions to a 
joystick that affects game play and changes the 
video signal. Some training online; some by experi-
ence replay when not playing. 

 

Alphabet’s DeepMind has a Go game player that learns from humans (Moyer, 2016; Wang et 

al., 2016). It can also play by itself to learn game strategies no human invented (Silver et al., 

2018). It can start from scratch, continue learning, and work with other machines to build related 

game knowledge. Similar machines play now capture-the-flag games and discover strategies that 

humans have not used (Jaderberg et al., 2019). These successes, however, are all in closed 

worlds and artificial domains. These are machines that do not understand cultural settings and 

their strategies therefore can have effects that are anti-social (Aleksander, 2017).  For example, 

autonomous cars using machines that learn can sometimes brake sporadically after accelerating 
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and cause accidents. For machines this is acceptable behavior to learn to drive but such behavior 

lies outside expected norms in any normal traffic situation. 

Early models of the human mind in artificial intelligence sought to approximate thought  

through the manipulation of symbols: good old fashioned AI (Lieto et al., 2018). Subsequent 

models have been probabilistic. They used Bayesian modeling techniques to try to infer 

backward to causes from phenomenon  (Lake et al., 2017; Tran et al., 2017).  Indeed, recent AI 

based workflow research treats humans as ‘computational nodes’ in larger networks of 

probabilistic hybrid agents.  Machines recruit humans onto teams based on predicted 

compatibility with other group members and their behaviors (Retelny et al., 2014).  An important 

topic for IS research in the meta-human systems is machines selecting humans for joint tasks.  

This problem already shows up in ride sharing algorithms and decisions about hiring employees. 

Because of advances in machine learning the current understanding in the design and use of 

meta-human systems is that humans pick problems (knowledge tasks) and then create a learning 

environment for machines to learn about the tasks. After the initial choice the machines can teach 

themselves. But there are caveats with this scenario: when the design of the scope is initially 

done by humans some important knowledge tasks might not be amenable to this approach 

(Marcus and Davis, 2019). Moreover, everyday tasks are not like a video game; furthermore, a 

person’s options in most tasks greatly exceed the possibilities presented by game controls to a 

machine. More generally, there is a larger system surrounding machines that learn which consists 

of people in companies and universities who train machine creators and the related models of 

building the machine software (Mackenzie, 2017). Overall, laboratory examples and results in 

machine learning suggest that machines will continue to improve in learning without close 
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human monitoring. Possibly they may learn to design parts of themselves (Dean, 2019) which 

will pose new challenges and implications for IS research. 

  

Meta-human Systems in Operational Use 
 

Meta-human systems are already in use in a plethora of industries and settings covering: chip 

design (Bricaud, 2012), 3D printing metamodels (Kyriakou et al., 2017), travel and tourism 

(Orlikowski and Scott, 2015), among others. The machines in these systems incorporate various 

algorithms (Faraj et al., 2018), and are not constrained to the classical organizational containers 

of earlier sociotechnical systems theory (Winter et al., 2014). They often cross boundaries of 

market and infrastructure in emergent, poorly understood, complex, and distributed forms. We 

selected three illustrative examples of meta-human systems which currently shape organization 

of work and have produced many unanticipated outcomes: high-frequency trading (HFT, 

sometimes called algorithmic trading), elections; and autonomous vehicles.  

HFT shows how speed and scale effects arise from meta-human systems (Lawrence, 2017; 

MacKenzie, 2019). Trading machines rely now on complex learning algorithms to trade equities 

quickly and at very high volumes. HFT systems use timely, accurate and extensive market 

information and draw on that information to learn continuously. Older HFT without learning 

capability has become over the last 20 years a standard and have brought significantly lower 

prices per trade, narrowed spreads, created higher price fluctuations, fragmented markets 

(Arnoldi, 2016; Kearns and Nevmyvaka, 2013; Mattli 2019). Machines that learn are bringing 

new capabilities and problems to how financial market operate and how investors and investment 

banks operate (Hendershott and Riordan, 2013; Lenglet, 2011). 
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Meta-human system HFT can transact equity trades within a few milliseconds – about a 

million times faster than human traders. It can also adjust to environmental changes including its 

own actions or those of competing meta-human systems (Cartea et al., 2016). Humans cannot 

react in time to prevent frequent, small, short-duration anomalies (e.g., crashes and spikes) 

(Mattli 2019). Johnson et al. (2013) found 18,520 anomalies of less than 1.5 seconds duration in 

a five-year period.  This is much faster rate than traditional market crashes produced by human 

exuberance, bias and/or herd behavior. Meta-human systems HFT can now produce unexpected 

incidents like the flash crash of 2010 (Kirilenko et al., 2017) when humans become secondary to 

the machine and make decisions that come too late. Comparatively slow humans cannot act fast 

enough when meta-human HFT runs amok (MacKenzie, 2018). The fact that the U.S. Securities 

and Exchange Commission (SEC) has mandated circuit breakers to stop runaway HFT suggests 

the potential for unintended consequences of such machine based behavior (Kim and Yang, 

2004). 

Meta-human system HFT is also becoming common and pervasive. Many large investment 

banks (e.g., Blackrock) no longer use human traders in several asset classes or markets (Thomas, 

2017). The SEC estimated in 2013 that meta-human system HFT was used for more than 50% of 

all U.S. stock trades (SEC Staff, 2014) and it has since grown to over 60%  (Economist 2019). 

The SEC has mandated large scale monitoring and data collection to capture forensic 

information, new market making rules, real-time monitoring systems (e.g., MIDAS), and 

consolidated audit trails (e.g., CATS) (O’Hara, 2015). Meta-human HFT can do a great deal of 

damage before humans even know what is going on, and blaming human owners for prohibited 

trading practices makes little sense, if the prohibited behavior was executed by machines that do 

not ‘know’ better due to lack of understanding of cultural setting. Tight coupling that come with 
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electronic trading can precipitate “normal accidents” in adjacent meta-human system HFT 

(Perrow, 2010). For example, gas stations whose meta-human systems watch neighboring 

stations in real time and alter prices accordingly have been accused of collusion and price-fixing, 

(Schlechner, 2017). These systems can now be so complicated that consumers might need their 

own meta-human systems to cope (e.g., an app to avoid neighborhood fuel price fixing). 

Alternative monitoring and forensic investigation might be required to hold rule breakers 

accountable. 

Manipulations of voter behavior illustrates the importance of scale in how these systems 

learn. In the 2016 U.S. presidential election, social media manipulated voter attitudes in critical 

swing states (Valentino et al., 2017). Adjusting the algorithms or adding humans to cure 

problems created by machines might not solve this problem.  Similarly, highly assistive (nearly 

autonomous) vehicles are an example of meta-human systems already deployed that redefine the 

relationship between human and machine. They illustrate the importance of scope.  Drivers are 

expected to react correctly to unanticipated situations (Shapiro, 2016). To address this 

contemporary vehicles carry hundreds of millions of lines of code and 25-30% of the value of a 

new car can be in software enabled functions (Charette, 2009). Collision avoidance aids have 

helped bad drivers get better, but they still work through drivers (Gage et al., 2015). Nearly 

autonomous vehicles that send data to other cars, raise questions of who is in control.  Insurance 

companies entice drivers with less expensive insurance for continuous monitoring with, despite 

privacy implications (Ohlsson et al., 2015). Liability shifts from drivers to software designers, 

while rapid progress in sensors, data communications, and related software functions are met by 

lags in complements such as roads, signals, laws, training, licensing, insurance, and repair (King 

and Lyytinen, 2005). The significance and cost of social convention to drive on one side of the 
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road was illustrated by Sweden’s right-hand drive switch (Högertrafikomläggningen) of 

September 3, 1967.  Meta-human systems will affect such long-standing conventions.  For 

example, in the transportation ecosystem Uber’s computer-assisted dispatch uses data originating 

from customer mobile phones to assign drivers and facilitate pickups (Chen et al., 2015), 

changing the convention of communication between passenger and dispatcher to communication 

between phone and dispatch, both meta-human systems. 

 

META-HUMAN SYSTEMS: TOWARDS AN IS RESEARCH AGENDA  

 

The Evolution of Technology and Organizing toward Socio-Technical Thinking and Meta-

Human Systems 
 

Machines that learn are rapidly penetrating work systems.  It does not matter whether they 

are as intelligent as humans: they still provide an opportunity for design increasingly powerful 

meta-human systems. Rapid machine based accumulation, distribution and dissemination of 

knowledge will alter organizing and organizations for ever.  The period of organizing where only 

humans learned will end. This section addresses how an IS research agenda might recognize and 

respond to this inevitable trend and technological juggernaut. 

The IS field’s earlier focus on management information systems will prevail. The field still 

focuses on the prerogatives and challenges of management and organizing in the context of using 

novel technologies.  The best way to understand the new challenges meta-human systems pose 

for the IS field is by reviewing the evolving role of technology in the management of 

organizations and organizing of work over a long period. This helps put the recent change into a 

broader historical perspective and understand its significance in a context.  Different scholars 
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will frame the evolution differently, but for our purposes we will organize the grand arc of 

human organizing into four epochal changes which were punctuated by shifts in the mechanisms 

and technologies of organizational learning. 

The first shift took place about 10 millennia ago from hunter-gatherer to agrarian production 

(Day and Walter, 1989).  This introduced change in organization due to changes in human 

mobility (hunter-gatherers are nomadic, farmers are settled), specialization (job skills 

differentiated), and governance (given the surplus of agrarian production and related needs for 

coordination settlements could now grow from tribes into empires). The outcome was an 

emerging state that became a testbed for organization, along with new agriculture practice and 

knowledge (such as predicting seasons), rudimentary manufacturing (tools), and trade.  Other 

than a few examples of machines (the plow, possibly the wheel) played role in this shift.  

The second epochal change, the industrial revolution that began in Europe in the 15th century 

in Italy and then spread, made machines and associated production factors (e.g., electricity) 

central to everyday human life.  The speed of production, transportation, communication, etc., 

enabled by machines changed radically in degree which became changes in kind.  Records kept 

at that time demonstrate the importance of speed on scale and scope to improve production 

(Chandler and Hikino, 2009).  Production governance dependent on scale and scope became 

essential to modern management (Hughes, 1994). Through affecting scale and scope managers 

complemented the invisible hand of the marketplace with the visible hand of direction (Chandler, 

1993; Smith, 1937). Meta-human systems in management made machines as central to 

organizing as new forms of governance was in the shift from hunter-gatherer to agriculture.  

Machines that learn are central to meta-human systems that learn fast, thereby affecting scale and 

scope that requires rethinking of work systems design, as well as how to build and evolve them.  
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The third epochal change was synthetic, bringing together insights from centuries of 

governance, agriculture, trade, and industrialization into the functional view of executives as 

documented in Chester Barnard’s classic The Functions of the Executive (Barnard 1938). He 

built on insights from Henri Fayol’s study of the French state (Parker and Ritson, 2005) 

“scientific management” (Taylor, 1911) and the sociology of organization (e.g, Max Weber’s 

studies of bureaucracy and organizing values such as the Protestant Ethic) (Kilcullen, 1996).  

This functionalist work formed a foundation for distinct management functions and functional 

separation and their related knowledge bases as still reflected in terms like “the marketing 

function”, or “the information systems function.”  Meta-human systems involving information 

technology are likely to be affected and shaped by the IS function, reinforcing the centrality of IS 

research in meta-human systems.  It should also draw IS researchers into shaping the design of 

future work systems.  The functional view is stull the foundation of the IS research agenda below 

that concentrates on four managerial functions related to meta-human systems.  

The fourth epochal change elevates the machine to a closer and more intimate status with 

humans in work systems. The socio-technical systems movement of the mid 20th Century 

punctuated this trend when the British Government nationalized coal mining at the same time 

that fast, new long wall coal mining machines appeared.  These machines brought about work 

system re-design needs as mining work had to refocus from getting coal out of the seam to 

getting coal out of the mine. To inform the re-design research took place in real coal mines and 

not in laboratories. The action research involved management and unions and mixed knowledge 

creation with real improvements in coal mining processes (Trist, 1981). Technologies and social 

systems need to be designed jointly and cover mutual relationships between people, technology, 

tasks, and organization.  This perspective later fundamentally shaped the IS research goals and 
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framing (Sarker et al., 2019). In the early wave of socio-technical research machines did not 

learn while teams of humans learned to help achieve system-level goals of efficiency and work 

satisfaction (Sarker et al 2019; Jaderberg et al., 2019). Poorly designed sociotechnical systems 

with inadequate concern with mutual relationships were shown to fail and produce unintended or 

unwanted outcomes  (such as alienation or vulnerability).  

As computing machines moved in the 60’s and 70’s beyond performing simple arithmetic, 

sorting, and matching carried out by earlier punch-card systems to increasingly complex real 

time transaction recording where machine exhibit more autonomous and complex agency the 

shift called also for better learning among system users. In consequence, sociotechnical thinking 

had to change again (Alvesson and Sandberg, 2011; Ekbia and Nardi, 2014; Kallinikos, 2011; 

Sutherland, 2008; Seidel et al., 2018, 2019). Several extensions to understand the relationships 

between machines and people were put forward. These included Latour’s concept of Actor-

Network Theory (ANT) (Leonardi, 2012) where machines join humans as ‘actants’ to ‘perform’ 

networks (Latour, 2005). Now machines can act autonomously (Parasuraman et al., 2000) as 

parts of ‘networks of humans and machines’, and ANT provides a “…powerful tool to regain the 

sense of heterogeneity, but is a “…bad tool for differentiating associations” (Latour 1996, p 

380). Because of this ANT still does not fully open to the possibility of what happens when 

machines learn by themselves and from other machines in association with humans. But it brings 

machines closer to the human level in the work system analysis. The relationship between human 

and machine is more nuanced but human agency is primary. As a result, humans and machines 

‘imbricate’ one another (Leonardi, 2011).  For example, different capability levels in machines 

that learn will bring about significantly different allocations of tasks and related work sequences.  
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As these systems learn and adapt based on human action, the uses, goals and ways of using 

machines will also change. 

Generally, the sociotechnical tradition embraces mutually enforcing, sustainable relations 

between people, technology, tasks, and organization but also expects causal effects to emerge 

from features of technology – which are mediated by specific structures and features of task, 

people and organization. In such causal analysis humans and machines enter during work system 

design into relationships that need to be rendered analytically separable for causal analysis but 

which still remain ontologically intertwined.  Markus and Rowe’s (2018) recent review of 

sociotechnical thinking in IS research identifies different notions of causality when machines of 

varying kinds are integrated into work systems with specific effects. Agency in networks will 

involve machines which have causal powers that differ from those that are subjected to clean 

human control. Therefore, sociotechnical theory and how it conceives the causal effects between 

the machines and humans must change. Machines that learn will have new kinds of emergent 

system level effects on work systems. For example, the concern for human autonomy, integrity 

and value in design needs to be contrasted to F.W. Taylor’s scientific management (1911), which 

modeled humans as if they were machines, components of work systems. Now, if machines 

behave increasingly more like humans or beyond what humans can do cognitively should the 

principles of the work system design also change?  

One important element in meta-human system design is that human learning makes humans 

versatile. When viewed as machines, humans can be seen to act like truly general purpose 

machines applicable to many, even so far unconceived, tasks (Helpman, 1998). Computer and 

communications technologies which underlie the capabilities of machines that learn can also be 

characterized as general purpose technologies (David, 1990). Machine based learning expands 
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the general purpose character of such technologies making built machines closer to the human. 

In this sense, meta-human systems will create general purpose systems with new types of system 

level scale and scope economies that will shape the future of organizing.   

Both effects are important in understanding the evolution of management thought so far and 

how they will play out in the future. Machines draw closer to humans as interpreted in the socio-

technical and their variant ANT traditions. The origins of managerial thought suggest that when 

machines get better the joint capabilities with humans in meta-human systems will greatly 

improve organization’s ability to carry out a wider range of tasks in new ways and introduce new 

tasks. IS research into meta-human systems can be understood by applying a functional view into 

how to organize meta-human systems even though the growth of meta-human systems in 

organizations will shift their management away from the classic functional view.   

 

A Functional Frame for IS Research Involving Meta-Human Systems 
 

Four functions – delegation, monitoring, cultivating and reflecting – capture an initial IS 

research agenda involving metahuman systems with the objective of designing and integrating 

meta-human systems into work systems. As with most functional views of socio-technical 

systems, the agenda seeks to achieve a level of control that keeps the systems operational and 

helps achieve organization level goals that derive from new scale and scope economies. This 

type of control captures essentially the idea of management as it is now thought of (Yates, 

1988)(p. xiv). Controlling meta-human systems will in the coming decade and beyond become 

part of management practice and essential element of work systems design. This control might 

accommodate levels of machine autonomy to acquire capabilities, but follow also human goals 

as part of cooperative effort (Lawrence, 2017), or in setting goals (Aleksander, 2017). At the 
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same time machines will use humans for goal-setting the way Google’s search engine uses 

human input to discover and present content deemed useful when measured by click-through-

rates. With these new capabilities come new trade-offs. Narrow goals will constrain system level 

learning. while broader goals is likely to produce multiple unintended consequences (e.g., 

content manipulation, search results biased by stereotype). Controls that work for humans in a 

meta-human system will this not work for machines, and vice versa. 

IS research into new IT capability, changing properties of decision making, and 

organizational effectiveness, will remain relevant for IT based design and implementation 

generally, but are likely insufficient in guiding how to think of control of meta-human systems in 

future organizations.  In future, managers are still likely to operate a visible hand that shakes the 

invisible hand of the market, but many hand-shaking tasks will be carried out by meta-human 

systems where the hand and the shake are based on machine based learning (Chandler, 1993; 

Smith, 1937).  The functionalist view will remain relevant in this new setting. Simon’s 1948 

classic Administrative Behavior (Simon 1977) anticipated new kinds of digital technologies that 

would affect all the functions but he never questioned their value and role in organizing. This has 

also remained a core assumption in IS research: reap system-level rewards by exploiting 

technology use via effective adjustments of the social across the functions. Humans will set 

goals, refine plans, explain decisions, train other humans, and build or buy technology. It is 

human resistance and failure to learn that causes implementation failure. But machines that learn 

will make possible meta-human system where machines that learn operate with higher speed and 

autonomy, and this will affect the scale and scope of organizational learning ways of 

implementing systems. In consequence, organizing needs to be re-thought to ensure that 

technology and people remain re-aligned.  
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Four functional areas are suggested as key levers to manage meta-human systems (Table 1). 

The first two, delegating (letting machines that learn and humans do their job), and monitoring 

(anticipatory watching for consequences) relate to meta-human system operations. Delegating 

assumes agency, hierarchy, authority, and decision rights and responsibilities that are part of any 

meta-human system.  Monitoring involves attention costs, appropriate levels of psychological 

monitoring to balance indifference versus micromanagement with adequate subordinate learning 

(Simon, 1997). Both functional processes defined management in the 20th century (Holmstrom 

and Milgrom, 1991). The next two, cultivating (mindful enhancement of learning by setting up 

the right conditions) and reflecting (learning at the meta-human systems level) are new functions 

that relate to the autonomy and speed that characterizes all elements of meta-human systems. 

Cultivating is about system enhancement that touches both machine and human training, related 

management and organization. Reflecting captures the idea of double-loop learning that 

characterizes meta-human systems and allows critically evaluate their learning processes and 

outcomes (Argyris, 2004; Schön, 1983). 

The suggested framework is similar to many early IS research frameworks that helped frame 

pertinent topics for a nascent research field (Mason and Mitroff, 1973). The framework is just 

one possible sensitizing approach- not the only approach.  No one can predict accurately what 

will happen with meta-human systems or know how to best organize them. Much depends on 

framing and theorizing whereby IS researchers can learn to what differences meta-human 

systems make in different settings and how the management can learn to adjust machine and 

human relationships in ways that improve how all socio-technical elements fit together for 

established system goals (Markus and Rowe, 2018).  
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Table 1: Research Agenda to Meta-human Systems by Function 
Function Research  

Questions 
Theory base Potential Empirical 

Sites 
Design/experiment 

Delegating What types of govern-
ance processes are 
needed to map re-
sponsibility to humans, 
and how best to pro-
vide this?  

Forms and sources of 
governance relevant to 
meta-human systems 
(Zheng et al., 2019) 

Medical devices (Therac-25) 
Ride sharing companies 
(Uber, Lyft) 
Autonomous vehicle trials 
(Tesla, Waymo) 

Experimental engineer-
ing 
Exploratory field studies   
Online gaming experi-
ments 

What skills need to 
evolve to design and 
test responsibility-
based processes?  

Sociotechnical system 
design 
Business process mod-
els  
(Sergeeva et al., 2018) 

Process re-engineering 
Study of effects and non-in-
tended side effects 
Programming task evolution 
Data scientist career growth 

New curricula and rele-
vant evaluation 
Study of design curricula 
and effects  

Monitoring How should machine-
based decisions oper-
ating at high speed 
scale and scope be 
monitored?  
How to achieve this 
sustainably? 

(Real time) account-
ing/auditing 
High reliability organiz-
ing 
(Rozario and Vasar-
helyi, 2018) 
 

High frequency trading 
(flash crashes) 
Electric grid monitoring 
(failure and successes) 
Robotic surgery  
(Intuitive Surgical) 

Studies of system scal-
ing and interactions 
Simulation experiments 
of emergent system be-
haviors,  
Trading floor analyses 
and experiments 

How should humans 
interact with machines 
augmented with new 
functions?  
How to achieve this 
sustainably? 

HCI theory,  
Agency theory involving 
groups and technology,  
Studies of digital trans-
formation and digital on-
tologies 
(Cai et al., 2019) 

Design of machines (e.g. 
Synopsys software), games  
(Ubisoft, Activision), autono-
mous vehicles (Tesla, 
Waymo, Uber), etc. 

Interface theories and 
experiments  
Studies of work system 
change and behaviors 

Cultivating How best to achieve 
the right selection of 
training data for learn-
ing? 
How to achieve this 
sustainably? 

Statistical learning the-
ory 
(Wexler et al., 2019) 

Bots (Microsoft, Amazon) 
Newsfeeds(Facebook, Twit-
ter) 
Face recognition (UK, China, 
Las Vegas) 
   

Adversarial networks  
(generative and other-
wise)  

What criteria are use-
ful for evaluating 
learning regarding 
meta-human systems? 
How to affect learn-
ing?  

Cognitive science 
Learning science 
Education 
(Lake et al., 2017) 

Organizational learning in 
manufacturing and service 
industries  

Cognitive modelling 
Simulation of meta-hu-
man systems 
Behavioral economic ex-
periments 

Reflecting What processes help 
evaluate meta-human 
system progress? 
How to create such 
processes? 

Human- Computer Inter-
action 
IT governance models 
(Buchwald et al., 2014) 

Diffusion studies of past dis-
ruptive technologies: eleva-
tors, traffic signals, office au-
tomation. 

Longitudinal analyses of 
technological change 
and evolution 
Metadesign experiments 

What meta-human 
system features can 
be anticipated?  
How best to accom-
plish this? 

STS theory  
Cybernetics  
Technology history and 
policy 
(Kallinikos et al. 2013) 

Large projects (Manhattan, 
SAGE, space exploration, 
the Internet, etc.) Standardi-
zation efforts. 

Technology-focused field 
studies 
Public policy interven-
tions 
Regulatory actions 
 

Delegating 

 
Delegating grants authority and resources to agents to accomplish tasks, freeing resources for 

other work. In meta-human systems agents can be machines, humans or hybrid agents. 

Delegation is about discovering what will happen if we shift the agency in the system. It is 



29 

 

almost impossible to know ex ante how to configure the overall system if multiple possibilities 

are available for delegation (Colombo and Delmastro, 2004; Vickers, 1985). Delegation in meta-

human systems integrates machines that learn into tasks formerly restricted to human learning.  

For example, delegation of driving control requires new kind of autonomy in traffic control, road 

systems with sensors, and changes in insurance systems (King and Lyytinen, 2005). Delegation 

to automated traders invites illegal or unpredictable trading (Scopino, 2015).  Delegation of 

editorial decisions to newsfeeds can lead to the manipulation of voter behavior (Lazer et al., 

2018). 

The result of this delegation is new kinds of human/machine hybrids. Currently, our 

understanding of delegation advances through learning-by-doing and mostly in the field given 

the limitations of laboratory experiments. Delegation comes with new specific agency problems, 

and different policies can be used to evade agent responsibility in the event of failure (Bartling 

and Fischbacher, 2012). Research is needed on how humans can best delegate to machines, the 

parameters of delegation, undesired behaviors to be avoided, and desired behaviors to be hoped 

for. A good start might be to look at research into interactive algorithms for ways 

human/machine interaction can be improved (Goldin and Wegner, 2006; Wegner, 1998).  Fine-

grained individual interactions might be collected into to larger chunks of capability that allow 

higher-level delegation similar to the way sociologists use grounded interpersonal actions as a 

way of building higher level abstractions related to identity and organization (Abbott, 2016).  

Machine delegation to humans is a nascent and important topic as machine capabilities 

continue to improve. Social media companies rely now on learning-by-doing to watch humans 

accept and place advertising, then later delegate this role to machines thereby for example 

generating election fairness concerns (Berghel, 2017; Lazer et al., 2018). Machines often do not 
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understand what humans find important. Systems like NELL help reveal what works for the 

collective as a whole (including machines and humans), and enable machines to supervise 

humans (Pedro and Huschka, 2012; Retelny et al., 2014). There are trade-offs in new forms of 

delegation.  Legal constraints may prevent some forms of delegation, demanding responsibility 

from humans (Solaiman, 2017). New work quality issues will emerge:  human deskilling can 

become a significant source of work dissatisfaction (Trist, 1981). Machine substitution for 

humans in pure profit-seeking can risk reputational or emotional loss. Machines cannot 

understand feelings that guide human systems (Hubbard, 2010). Observational studies will help 

assess how and when to shift agency (List and Pettit, 2011), and how roles are already shifting 

(Mortensen and Haas, 2018).  

 

Monitoring 

 

Agency requires monitoring (Jensen and Meckling, 1976), but monitoring mechanisms timed 

for humans will be too slow for machines. For example HFT proceeds so quickly that monitoring 

needs to be performed by second level meta-human systems. Such monitoring is also social, as 

when algorithms act on changes in liquidity (Hendershott and Riordan, 2013). These systems are 

already driving research into how monitor and regulate market activity (Lenglet, 2011; Treleaven 

and Batrinca, 2017; Siering et al., 2017). Likewise, election monitoring systems can be audited 

to figure out what  truly happened (Masterson, 2019). IS researchers have raised concerns for 

meta-human system surveillance for hire (Clarke, 2019). Monitoring autonomous driving 

systems is currently a complex topic and requires interdisciplinary research (Koopman and 
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Wagner, 2017). For example, the complexity of handovers and takeovers in semiautonomous 

vehicles already taxes human cognitive load, and itself needs monitoring (Sibi et al., 2016).  

 During monitoring continuous auditing might help flag anomalous outputs (Kiesow et al., 

2016). or invoke rule-based triggers inside meta-human processes (Rozario and Vasarhelyi, 

2018; Singh et al., 2013). In institutionally regulated settings such as finance or transportation 

authorities can and need to be notified of fraudulent behavior or emergent changes in goals 

(Abbasi et al., 2012). There is need for observational studies to show which architectures work 

best under different circumstances for monitoring goals.  Election meddling is often a 

consequence of myopic architectural choice (Berghel, 2017) and can only be countered by taking 

a broader view. The recently introduced SEC’s forensic and real time monitors may lead to a 

better understanding of HFT (SEC staff, 2014) and better mechanisms.   

Overall, IS research is needed to better understand the consequences of using different 

strategies of monitoring.  Three approaches in particular deserve attention. Disclosive 

archaeology help show what to look for – this is where humans run experiments on machines to 

determine how they work (Ananny, 2016; Barocas et al., 2013). However, algorithms like 

Facebook’s news feed are changing constantly, so the utility of disclosive archaeology is limited. 

Transparent design involves stakeholders and users, and shows them explicitly what is driving 

the system (Introna, 2007; Lyons et al., 2017). But few organizations are willing to commit to 

such extensive transparency. Moreover, even with a goal of transparency, creating machines that 

divulge and explain their behavior in way humans can interpret is difficult. Data disclosure by 

the machine as it operates can provide some means for monitoring (Lenglet, 2019), but fast 

machines require fast monitoring to keep up : this in turn calls for more systems!  In principle, 

monitoring computers can better report to humans as now seen in smart watches, phones, and 
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clickstream analyzers. However, few companies disclose enough data to enable such monitoring 

of their own server-based capabilities.  

Cultivating  

 
The cultivation metaphor comes from agriculture (trimming, correct spacing, fertilizing and 

removal of insect pests and weeds). It is a stage in mentoring (Chao, 1997; Humberd and Rouse, 

2016). Cultivating systems or technology has been discussed in the IS context for some time 

(Bergqvist and Dahlberg, 1999; Hanseth, 2010; Henfridsson and Bygstad, 2013; Markus and 

Benjamin, 1996). Systems are prone to evolve organically, so cultivation focuses attention on 

meta-human systems learning and knowledge allocation to different system components 

(Martinez, 2014). HFT for example has a long history of research that has focused no cultivation. 

Algorithmic traders interact and change the way to think about  machine training (MacKenzie, 

2019). Autonomous driving systems, in contrast, focus on space rather than time. In this regard 

cars can be trained to anticipate running animals, but we do not have models for all animals in 

any landscape.  Kangaroos jump differently than deer (O’Rourke, 2017), and so a car may need 

to be trained differently to match the fauna in the environment.  Election systems are 

complicated by serious social as well as technical challenges. In particular, social media has 

political impact (Kreiss and Mcgregor, 2018), and currently machine learning systems can be 

trained to recognize political ads (Qi et al., 2016). But controversies over political ads and how 

far we can go point to the challenges of cultivation. For example, can the AI discriminate 

between antisocial political ads and eusocial political ads? Should those who run the AI systems 

censor ads? There are no easy answers to these questions (Kreiss and Mcgregor, 2019; The 

Washington Post, 2019). 
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 Organizations might not be ready now to cultivate their meta-human systems as suggested 

by multiple failures, examples of inherent bias, and systems running amok (Kulshrestha et al., 

2017; Lambrecht and Tucker, 2019).  However, work on these areas has proceeded and is 

receiving more attention.  For bias, one can visualize causes and adjust the system accordingly 

(Wexler et al., 2019).  As organizations acquire this capability, meta-human systems will come 

to address social processes with multiple viewpoints. An immediate need is to cultivate systems 

that serve human-defined and human-monitored purposes (Salimans et al., 2017), but eventually, 

machines might cultivate humans.  Electronic tutoring might be an early exemplar of this 

(Wenger, 2014).  

Reflecting  

 
Reflective practice helps human experts to build novel knowledge in any professional 

domain (Schön, 1983).  Reflection is also important to aesthetics and ethics of metahuman 

system design (Bostrom and Ord, 2006). For example,  reflection about HFT should anticipates 

large scale changes in the financial industry (Gomber et al., 2018).  Metahuman systems have 

now been accepted for increased liquidity and more efficient investing. But they also precipitate 

new approaches to regulation (Arner et al., 2016). Likewise, election systems are interwoven into 

media and other complex systems and call for reflection. Questioning algorithms that control 

news feeds and control advertising is far from affecting change. There are also disciplinary 

differences: sociology focuses on collective action (Coleman, 2017), while IS researchers 

concentrate on false news in social media (Aral and Eckles, 2019; Vosoughi et al., 2018). 

Autonomous vehicles may also pose a category error, attributing greater cognitive ability to 

robots than they warrant (Aleksander, 2017). Perhaps the road to full vehicle autonomy is very 

long though some say that benefits such as safety can be achieved without full automation 



34 

 

(Bailey and Erickson, 2019). The argument for full automation calls for changes in economic 

systems to handle labor displacement (Srnicek and Williams, 2015). Other analyses of labor 

displacement are more nuanced, considering which jobs in which orders might be displaced 

(Brynjolfsson and McAfee, 2014). From the IS research perspective, reflection here is about any 

case of metahuman systems can lead to a far-ranging analysis of societal impacts and values. 

 Asimov’s famous laws for robots proved circumventable (Asimov, 1942), perhaps 

inevitably, as they can be viewed as an early attempt to introduce reflection into automation 

studies. Clearly machines can harm humans because of poor design, careless programming, or 

malicious action. Machines that reflect on the behavior of other machines to detect problems 

seem far-off (Goertzel, 2012). We arguably don’t know how to build machines that understand 

and conform to human values (Etzioni and Etzioni, 2016). Thus far, grounding in human values 

requires reflection by humans. Reinforcement and reward engineering might be starting points 

for future research on how to design machines that reflect human values (Dewey, 2014). But the 

question of whether ethics for meta-human systems can be learned top-down, bottom-up, or both 

has not even been answered (Yampolskiy, 2016). 

IS research has applied the idea of reflective practice to understand how system design works 

(cf. (Córdoba, 2007; Mathiassen, 1998; Redmiles and Nakakoji, 2004; Stroulia and Goel, 1995). 

Reviews, consulting meetings, and coaching are but a few of the mechanisms used for such 

reflection. Reflection, however, has remained a uniquely human endeavor; and at present, 

machines do not engage in reflection. On the other hand, meta-human systems already 

outperform some human experts in law, finance, and medicine.  But, as noted above, they have 

not demonstrated an ability to invent mechanisms for their own governance or to understand 
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what they have learned and consequently, change their parameters for delegation, monitoring, or 

cultivation.  

IS researchers can do case studies of reflective practice for meta-human systems founded on 

action research of the sociotechnical systems tradition. However, many IS researchers within 

professional schools have seen such action research as methodologically flawed due to the 

within-system effects of the researcher.  Moreover, there is concern about such research being 

supported by those who might have a particular goal related to the outcome (e.g., owners, 

executives, and workers). Conflicts of interest, confounds, cognitive dissonance and 

confirmation bias threaten action research. Meta-human systems might require IS researchers to 

move into the unfamiliar and get out of their comfort zone. Two recent studies are signposts in 

this regard: Zuboff’s look at Google and Microsoft (2019) and Google’s look at its own AI 

systems as used by doctors (Cai et al. 2019). 

 

CONCLUSION 

 
Information systems increasingly incorporate machines that learn.  Together with humans, 

these machines that learn combine to form meta-human systems which exhibit sociotechnical 

systems of new ilk. On the one hand they embody classic machine advantages of calculating, 

recording and transferring information in simple intellective tasks.  On the other hand they come 

with higher level cognitive skills that affect the speed of organizational learning, and shape the 

scale and scope economies of organizations in new ways. Meta-human systems afford IS 

research in four areas of work system organization: delegating, monitoring, cultivating, and 

reflecting.  Differences in the ways humans and machines learn will affect how meta-human 

systems are organized.  
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This paper is a call to arms for IS research in the era of meta-human systems. It asks IS 

researchers to address issues of human goals and values in settings where meta-human systems 

evolve or are applied. Achieving benefits and avoiding problems will require better 

understanding of systems level learning, and how learning emanating from meta-human systems 

affects large ecosystems in manufacturing, agriculture, transportation, finance, medicine, and 

other fields. Design science researchers can explore and test alternative designs for meta-human 

systems similar to the sociotechnical systems tradition that confronted disruptive technology and 

was successfully adopted by IS research. IS researchers should join with practitioners and 

scholars from administration, policy, computing, law, and other fields relevant to understand, 

design and implement meta-human systems.  
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