
Advances in Water Resources 132 (2019) 103386 

Contents lists available at ScienceDirect 

Advances in Water Resources 

journal homepage: www.elsevier.com/locate/advwatres 

Short communication 

Aging and mixing as pseudo-chemical-reactions between, and on, particles: 

Perspectives on particle interaction and multi-modal ages in hillslopes and 

streams 

David A. Benson 

a , ∗ , Michael J. Schmidt a , Diogo Bolster b , Ciaran Harman 

c , Nicholas B. Engdahl d 

a Hydrologic Science and Engineering, Colorado School of Mines, Golden, CO 80401, USA 
b Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA 
c Johns Hopkins University, USA 
d Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, 99164, USA 

a r t i c l e i n f o 

Keywords: 

Particle methods 

Mixing 

Aging 

Age distribution 

a b s t r a c t 

The particle-tracking method was recently extended to allow inter-particle mass transfer and arbitrarily complex 

reactions by allowing each particle to represent any number of distinct chemical compounds. This methodology 

allows the tracking (and broadening due to mixing) of the age probability density function (PDF) on each particle. 

Aquifer heterogeneity leads to channeling and multi-modal age PDFs in stream samples. This observation supports 

the concept of age classes but clearly shows the more complicated interplay of dispersion, mixing, and travel times 

on the age distributions. 
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. Introduction 

Direct simulation of age in hydrologic systems is often necessary

hen interpreting environmental tracers, assessing water quality, and

valuating contamination risks, among other possible needs. Both Eu-

erian and Lagrangian methods have been used for these purposes in

he past and each method has tradeoffs. Eulerian simulations ( Goode,

996; Varni and Carrera, 1998; Cornaton and Perrochet, 2006 ) can sim-

late the moments of the age distribution, or the full distribution, in

ach cell of the model but these are computationally expensive, gener-

te overly diffuse probability density functions (PDFs) because of the

umerical dispersion inherent in heterogeneous velocity fields, and are

ifficult to generalize to transient fields ( Cornaton, 2012 ). Classical La-

rangian particle tracking eliminates the numerical dispersion by de-

ign ( Labolle et al., 1996 ) and reduces the computational load because

ach particle in a classical particle tracking (PT) scheme is independent

rom the others. However, the PT approach comes with the implicit as-

umption that mixing of particle ages does not occur until a sampling

s taken (i.e., at monitoring wells), at which point the ages of each par-

icle in the sample create a PDF. This can lead to step-wise or abruptly

arying PDFs ( Weissmann et al., 2002; Engdahl et al., 2016 ), which

re not expected in natural systems. Conceptually this is identical to

treamline/streamtube models but the lack of mixing in these models

an significantly impact their results ( Herrera et al., 2010; Cirpka et al.,

015; Sanz-Prat et al., 2015 ). Put simply, Eulerian techniques overesti-
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ate age mixing while classical PT techniques underestimate mixing. A

ompromise between these end members would more closely represent

eality (i.e., limiting numerical dispersion while still allowing evolution

f age PDFs as waters from different sources mix) but this is a deficiency

n the capabilities of the currently available methods for simulating

ge. 

The classical PT method is limited to a Dirac-delta distribution for

he age of each particle, but simulating age mixing requires storing a rep-

esentative age PDF on each particle and also a dynamic and realistic

article/particle interaction model. A recent series of advances provides

he algorithms needed to explicitly model Lagrangian age-mixing, but

as yet to be applied to this task. The first component allowed parti-

le interactions via birth/death chemical reaction processes, where the

ikelihood of reacting was found to be a function of the dispersion coef-

cients of the particles and their separation distances, combined to form

heir co-location probabilities ( Benson and Meerschaert, 2008 ). This was

ater generalized ( Bolster et al., 2016 ) so that the birth/death process

as replaced by a change to each particle’s mass, keeping the size of

he particle ensemble constant over time. The last necessary algorithm

 Benson and Bolster, 2016 ) allows any number of chemical species and

eactions on particles: each particle is treated as a moving container

hat carries an arbitrary number of chemical components; the masses of

ach component are exchanged between different particles to represent

ixing. The degree of mixing remains a function of the particle/particle

o-location probability. Conservative quantities can be represented this
19 
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ay, so that the algorithm can be extended to represent dynamic water

ge-mixing between particles. 

This technical note proposes a modification of the recent reactive PT

ethods where chemical components are replaced with the bins of a

iscrete age PDF, and aging is represented as a pseudo-reaction. Each

article is initialized as a Dirac-delta distribution when it enters the do-

ain and functions as a “clock ” where all of its age-mass increases by

ne time unit every time step; importantly, this satisfies the requirement

hat there can be no artificial dispersion in the age dimension ( Ginn,

999; Engdahl et al., 2012 ). However, diffusive mixing between parti-

les allows each PDF to evolve away from its initial Dirac-delta into an

rbitrary, non-parametric PDF as long as the number of bins is suffi-

ient enough to hold all the ages. Since the aging velocity is always the

ame as the time step, a unit Courant number is achieved along the age

imension, thus the proposed scheme achieves the goal of eliminating

umerical dispersion while allowing age mixing between streamlines.

he approach is demonstrated on an idealized hillslope domain with

istributed recharge under homogeneous and heterogeneous hydraulic

onductivity ( K ) fields. The latter fields generate multi-modal age dis-

ributions that are not discernible using the classic PT method. 

. Review of inter-particle mixing 

Denote by 𝑚 

𝐴 
𝑖 

the mass of species A on particle i . For a bimolecular re-

ction 𝐴 + 𝐵 → 𝐶, with rate expression 𝑑 [ 𝐴 ]∕ 𝑑 𝑡 = 𝑑 [ 𝐵]∕ 𝑑 𝑡 = − 𝑘 [ 𝐴 ][ 𝐵] ,
nd using a (well-mixed) thermodynamic rate coefficient k , a first-order

xpression of mass change over time step Δt is Bolster et al. (2016) : 

𝑚 

𝐴 
𝑖 
= 

∑
𝑗≠𝑖 

𝑚 

𝐵 
𝑗 
𝑚 

𝐴 ( 𝑘 Δ𝑡 ) 𝑣 𝑖𝑗 , (1)

here v ij is the probability density function (PDF) of co-location of the

 

th and j th particle over the timestep ( Benson and Meerschaert, 2008 ).

his probability depends on the perceived physics of random motion,

ut for Brownian motion this is a simple convolution of the individual

Gaussian) location densities in d -dimensions. If the i th and j th particles

located at vectors x i and x j ) have local isotropic dispersion coefficients

 i and D j , then 

 𝑖𝑗 = 

(
4 𝜋( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

)− 𝑑∕2 exp [− ||𝑥 𝑖 − 𝑥 𝑗 ||2 ∕ (4( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 
)]
, (2)

.e., a Gaussian with a variance that is the sum of the two location density

ariances. 

The mixing of the same species between particles may be viewed as

 “bimolecular ” reaction of the form 𝑝𝐴 + 𝑞𝐴 → 𝑝 + 𝑞 
2 𝐴 + 

𝑝 + 𝑞 
2 𝐴 . This reac-

ion also happens with the probability described above, so that the mix-

ng process on the i th particle can be written ( Benson and Bolster, 2016 ):

𝑚 

𝐴 
𝑖 
= 

∑
𝑗 

1 
2 

(
𝑚 

𝐴 
𝑗 
− 𝑚 

𝐴 
𝑖 

)
𝑃 𝑖𝑗 , (3)

here the total probability P ij ∝v ij is normalized so that 
∑

𝑗 𝑃 𝑖𝑗 = 1 . A
seudo-code that shows how the model works and a snippet of mat-

ab code that performs inter-particle mixing is shown in Fig. 1 . While

his double-looping code is neither the fastest nor most accurate method

 Schmidt et al., 2018; Engdahl et al., 2019 ), we include it here to demon-

trate the simplicity of the algorithm. In practice, the mass transfer is

est performed in a single matrix operation that provides a physical ba-

is for more arbitrary smoothed-particle-hydrodynamics (SPH) methods

 Sole-Mari et al., 2019 ). 

. Aging 

Particles may be given a set of species that represent ages from 0 to

 maximum of the total simulation time t . Define an age discretization

 = 0 , 1 , … , 𝐾 and denote these species 𝜌k , with age k Δa . Without loss of

enerality we use equal age and timestep sizes Δ𝑎 = Δ𝑡 . The mixing at

ach time step follows (3) . The aging “reaction ” 𝜌𝑘 → 𝜌𝑘 +1 simply moves

ll water mass from each bin k to bin 𝑘 + 1 (see also Massoudieh et al.,
017 ; Engdahl et al., 2012) . Any new particles introduced to the domain

ave a certain mass given by the specifics of the problem and all mass

n those particles is placed in bin 𝑘 = 0 . Any particles removed from the

omain cease aging. Here we use unit initial mass for 𝜌0 , and conserva-

ion of mass implies that 𝜌k ≈ 𝜌( a, t ) is a numerical approximation of the

ontinuous PDF of age a at a given time t . Clearly, if no mixing between

articles takes place, the simulated mass PDF on each particle remains

 Dirac-delta function of the particle’s elapsed time in the system, as

as been done in prior PT simulations (e.g., Weissmann et al., 2002 ).

owever, if mixing between particles takes place, then water of differ-

nt ages will, with some probability, move around the domain between

articles in exact accordance with the specified local physics of mixing.

. Numerical implementation considerations 

One of the advantages of the classical particle-tracking algorithm

s that the Courant-number stability requirement inherent in Eulerian

grid-based) codes is lifted. The particles may be moved for different

imesteps Δt with no instability. Because of the potentially large dis-

repancy of particle velocities, immense computational gains may be

ad by allowing slower particles to move for longer times between re-

alculating local velocity or dispersion coefficients. However, this in-

ites two complications in the present model. First, the aging algorithm

iven above assumes that the timestep size and the age bins are equal

nd the same for all particles. Then the hyperbolic (wave) equation
𝜕𝜌

𝜕𝑡 
= − 

𝜕𝜌

𝜕𝑎 
is solved exactly, with no numerical age dispersion, using first

ifferences and setting Δ𝑎 = Δ𝑡 . Various higher-order techniques may

e used if Δt ≤ Δa on any particle (see the review of second-order tech-

iques in the appendix of Benson et al. (2017) ). This equation does carry

 Courant-number type restriction that Δt ≤ Δa , so that the discretiza-

ion of the age PDF should be done with care if variable timesteps are

sed. Second, choosing the same timestep for all particles allows (2) to

e implemented as-is for the inter-particle mixing. But recognizing that

2) is simply the convolution of the i th and j th particle location densities

ets us expand somewhat to 

 𝑖𝑗 = 

(
4 𝜋

(
𝐷 𝑖 Δ𝑡 𝑖 + 𝐷 𝑗 Δ𝑡 𝑗 

))− 𝑑∕2 exp [− ||𝑥 𝑖 − 𝑥 𝑗 ||2 ∕ (4 (𝐷 𝑖 Δ𝑡 𝑖 + 𝐷 𝑗 Δ𝑡 𝑗 
))]

, 

(4) 

hich allows each particle to use its unique optimal timestep Δt i . Ide-

lly, one would choose to classify the particles into integer “classes ” of

ixing calculation frequency. The fastest class of particles are calcu-

ated every timestep, the second class would be calculated every other

imestep, etc. Because the timesteps are not all equal, an occasional short

imestep is implemented to “sync ” all particles to the same elapsed time.

hile we did not choose variable timesteps in the examples that fol-

ow, we have implemented such an algorithm as proof-of-concept. The

ixing algorithm itself, and therefore the entire model, is accurate to

 (Δ𝑡 ) , so enlarging the timesteps of some particles may engender errors

hat are transferred between particles. There are also several technical

etails that are outside the scope of this study. A detailed analysis of

he magnitude of computational gains and increase in errors among the

dvection, dispersion, mixing, and aging algorithms is the subject of a

uture manuscript. 

It is also difficult to directly compare the accuracy and computational

emands of Lagrangian versus Eulerian methods. Adding the many age

ins has an equal effect on both in terms of added memory and cal-

ulations. In heterogeneous velocity fields, the Eulerian methods suffer

ignificantly from numerical dispersion and therefore typically require

uch finer spatial discretization (i.e., more nodes than particles, see

enson et al. (2017) ). For high Peclet number flows, the grid-Peclet

umber requirement in Eulerian methods can be much more restrictive

han any Courant-number restrictions shared by both. In some cases,

 super-computer may be required for Eulerian simulation of mixing-

imited reaction ( Benson et al., 2019a ), while the same problem using

he newer Lagrangian methods can be run in minutes on a laptop PC. 
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Fig. 1. Top: Pseudo-code for particle tracking and age-mixing code. Bottom: Explicit looping-over-particles Matlab code for the inter-particle mixing portion of the 

algorithm. 
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Fig. 2. a) Schematic and particle positions at t = 250,000 d. Only every other particle trace is shown for clarity. Circle diameters denote approximate diffusion distance 

2 
√
2 𝐷Δ𝑡 over Δ𝑡 = 500 d. b) Age PDFs of all exiting particles (colored lines) and average age PDF (black “+ ” symbols). Analytic PDF for pure advection shown by 

red line. This simulation has Peclet number 𝑃 𝑒 = 
𝐼𝐻 

𝐷𝜙
= 250 and expected travel time = 𝐻𝜙∕ 𝐼 = 25 , 000 d. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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. Examples 

To illustrate the functioning of the model, we use a very simple con-

eptualization of water transport in a perfectly rectangular “hillslope ”

quifer that has uniform recharge from above and discharges to a com-

letely penetrating stream on the right ( Fig. 2 a). The aquifer is given

 width of 𝑥 = [0 , 𝐿 ] m, a height of 𝑧 = [0 , 𝐻] m, and a uniform poros-

ty of 𝜙 = 0 . 25 . Because the water table is conceptualized as flat, the

ivergence-free condition for an incompressible fluid gives each stream-

ine an analytic solution for velocity 𝑣 𝑥 = 𝐼 𝐿𝑥 ∕( 𝐻 𝜙) , 𝑣 𝑧 = − 𝐼 𝑧 ∕ 𝜙, where

e set 𝐼 = 2 . 5 × 10 −4 m/d as the vertical recharge into the aquifer.

or these simulations, 𝐿 = 100 m, 𝐻 = 25 m. Particles are advected by

his velocity field by forward Euler methods. The infiltration in each
imestep is split among 100 evenly-spaced particles along the top bound-

ry. Diffusive mass transfer is by (3) alone, i.e., no random walks are

sed to disperse particles ( Schmidt et al., 2018 ). The simulations were

un for 250,000 d (684 yr) with timesteps of 500 d, giving 500 age bins

n each particle. Two simulations were run with spatially uniform dis-

ersion, one with local dispersion coefficient set to approximately that of

olecular diffusion ( 𝐷 = 10 −4 m 

2 /d) ( Fig. 2 ) and another with a larger

 = 2 . 5 × 10 −3 m 

2 /d ( Fig. 3 ). These values give approximate aquifer-

verage Peclet numbers of 250 and 10, respectively (see Appendix for

erivation of the Peclet number). 

Each simulation gives about the same calculated stream sample mean

ge (24,803 and 24,786 days (67.9 years) for lower and higher D , respec-

ively). Because the average PDFs are reasonably close to an exponential
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Fig. 3. a) Schematic and particle positions at t = 250,000 d. Only every other particle trace is plotted for clarity. Circle diameters denote approximate diffusion 

distance 2 
√
2 𝐷Δ𝑡 over Δ𝑡 = 500 d. b) Age PDFs of all exiting particles (colored lines) and average age PDF (black “+ ” symbols). Analytic PDF for pure advection 

shown by red line. This simulation has Peclet number 𝑃 𝑒 = 
𝐼𝐻 

𝐷𝜙
= 10 and expected travel time = 𝐻∕ 𝐼 = 25 , 000 d. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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unction over the majority of age (which agrees with the pure advection

ase, see the Appendix), the standard deviations are also close to the

eans (23,597 and 24,625 days, respectively). These statistics are calcu-

ated by averaging the PDFs for all particles exiting the system in a single

imestep after the system has equilibrated (heavy black “plus ” symbols

n Figs. 3 b and 2 b). For the lower dispersion coefficient, the age PDF for

ach particle is narrower, as is average “stream sample ” PDF. However,

n this simple system the average PDF is primarily based on the peak, or

ean age, of each particle. In the case of higher D , even the fastest mov-

ng particles exchange significant older water among nearby particles.

t is highly likely that many factors that influence segregation of waters

ill change this mixing dynamic. Here we only look at the combined ef-

ect of two: velocity-dependent dispersion and heterogeneous hydraulic
onductivity ( K ), both of which should lead to “channeling ” of flow and

oorer mixing of slower-moving, older water (especially with higher K

ariability). 

Here we chose an isotropic, velocity-dependent dispersion coeffi-

ient 𝐷 = 𝛼|𝑣 |, with an approximate Peclet number of 250 (see Ap-

endix), which gives an isotropic dispersivity of 𝛼 = 0 . 1 m. First we

sed finite-differences to solve the steady velocity field within a het-

rogeneous K field with anisotropic, exponential correlation function

 Fig. 4 a). The K correlation lengths in the horizontal and vertical di-

ections are 9 and 3 m, and the standard deviation of the natural loga-

ithm of K was set to unity. The heterogeneous field gives rise to focus-

ng of flow into preferential flow paths ( Fig. 4 b) that are discernible at

teady state ( Fig. 4 c). The high-speed channels lead to well-mixed and
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Fig. 4. a) Heterogeneous K distribution and 

head equipotentials (black curves) in same 

size aquifer as in Figs. 1 and 2 ; b) Par- 

ticle positions at t = 6,000 d. Circle diame- 

ters denote approximate diffusion distance 

2 
√
2 𝛼|𝑣 |Δ𝑡 over Δ𝑡 = 500 d; c) Steady-state 

particle positions and dispersion distances; d) 

PDFs of all exiting particles (colored lines) 

and average age PDF (black “+ ” symbols). 

Analytic PDF for pure advection in homoge- 

neous K shown by red line for comparison. 

This simulation has Peclet number 𝑃 𝑒 ≈
2 𝐻 
𝛼𝑅 

= 
250 . (For interpretation of the references to 

colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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Fig. 5. Dirac-delta “PDFs ” of all exiting particles 

(colored lines) and 100-particle average age PDF 

(black lines and “+ ” symbols) for pure advection 

( 𝑃 𝑒 = ∞). This simulation uses the same velocity 

distribution as Fig. 4 . Numerical delta functions 

(colored lines) are Δt wide and 1/ Δt tall. 
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istinct-age modes that enter the stream, but also leaves distinct poorly-

ixed slow paths (e.g., see very bottom of Fig. 4 c). Inspection of the

DFs of particles entering the stream reveals a multi-modal travel time

DF with clear “groups ” of younger versus older water that correspond

o the modes of the average PDF ( Fig. 4 d). Furthermore, the standard

eviation of travel time has increased by 20% over the homogeneous

ase with the same aquifer-wide Peclet number. 

We may compare the PDFs that arise during inter-particle mixing to

hose that must be inferred when using the previous method of non-

nteracting (Dirac-delta function) particles ( Fig. 5 ). In this case, the

elta-particles give similar estimates of mean and standard deviation

f age, but it is nearly impossible to discern the several distinct age

odes that are found in the interacting-particle case ( Fig. 4 d). Here a

elatively large number of particles (100) are used to represent a stream

sample ” and the creation of the average age PDF. In order to discern

ny structure in the real PDF, one would have to arbitrarily choose an

nterpolation kernel that almost certainly lacks the details of the mix-

ng processes that are unique to each particle. In other words, due to

article/particle dependence, the shape of each particle age PDF (i.e.,

he kernel function needed post-process each Dirac delta particle) is too

omplex to capture by intuition (see also Benson et al. (2019b) ). 

We expect that other parameters that influence this mixing, such as

quifer aspect ratio and heterogeneity, anisotropic dispersion, K hetero-

eneity statistics, partitioning to immobile water phase(s), and spatio-

emporal variability of recharge (for recent examples, see Massoudieh

t al., 2017; Engdahl et al., 2012; Green et al., 2018; Koh et al., 2018 ),

ill significantly change the PDFs and will be explored in a future paper.

. Conclusion 

The particle mixing method for chemical reactions can simulate age

istributions upon particles. These ages must mix between particles,

hich represent parcels of water; therefore, the PDF of age must be

racked on each particle in order to accurately simulate the age distri-

ution of aquifer and stream water. When spatial heterogeneity of K

nd/or D is present, the age distribution becomes multi-modal, which is
ifficult or impossible to discern solely from particle transit times (i.e.,

irac-delta particle age PDFs). 
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ppendix. Analytic Age Distributions for Pure Advection 

For a constant infiltration (recharge) rate I evenly distributed across

 rectangular hillslope of length L and height H ( Fig. 2 a), the Darcy dis-

harge exiting the right hand side is IL / H for incompressible steady flow,

o that the linear increase in x -direction velocity follows 𝑑 𝑥 ∕ 𝑑 𝑡 = 𝑣 𝑥 ( 𝑥 ) =
𝐼𝑥 

𝐻𝜙
. (The divergence-free condition 

𝜕𝑣 𝑥 

𝜕𝑥 
= − 

𝜕𝑣 𝑧 

𝜕𝑧 
gives 𝑣 𝑧 ( 𝑧 ) = 

− 𝐼𝑧 
𝐻𝜙

.) Sep-

ration and integration of the differential equation in x leads to a travel

ime based on the point of infiltration 𝑡 ( 𝑥 ) = 

𝐻𝜙

𝐼 
ln 𝐿 

𝑥 
. To get the steady-

tate travel time distribution, assume that the infiltration points are the

andom variable U uniformly distributed on [0, L ], so that the random

ime 𝑇 = 

𝐻𝜙

𝐼 
ln 𝐿 

𝑈 
. The probability equality 𝑃 ( 𝑈 < 𝑥 ) = 𝑃 ( 𝐿 exp ( − 𝑇 𝐼 

𝐻𝜙
) <

 ) = 𝑥 ∕ 𝐿 leads to the distribution of travel time 𝑃 ( 𝑇 < 𝑡 ) = exp ( − 𝑡𝐼 
𝐻𝜙

) .
imilar to Paster et al. (2014) , we can define dimensionless numbers

or the transport characteristics of the aquifer as a whole and for the

umerical method, which will have local mixing that depends on the

umber of particles. The mean residence time is H 𝜙/ I , which leads us

o define an aquifer-wide Peclet number 𝑃 𝑒 = 

𝐼 

𝐻𝜙

𝐻 

2 

𝐷 
= 

𝐼𝐻 

𝐷𝜙
. In the case

here mixing is given by a velocity-dependent dispersion, we use the

pproximation that the mean velocity is found at the mean distance L /2
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valid for small H ), so that the mean dispersion time is 𝐻 

2 

𝛼𝐿𝐼 ∕(2 𝐻 𝜙) , giving

 𝑒 = 

2 𝐻 

2 

𝛼𝐿 
= 

2 𝐻 

𝛼𝑅 
, where R is the aquifer aspect ratio. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.advwatres.2019.103386 . 
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