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Abstract A storage-discharge relation tells us how discharge will change when new water enters a
hydrologic system but not which water is released. Does an incremental increase in discharge come from
faster turnover of older water already in storage? Or are the recent inputs rapidly delivered to the outlet,
“short-circuiting” the bulk of the system? Here I demonstrate that the concepts of storage-discharge
relationships and transit time distributions can be unified into a single relationship that can usefully
address these questions: the age-ranked storage-discharge relation. This relationship captures how
changes in total discharge arise from changes in the turnover rate of younger and older water in storage
and provides a window into both the celerity and velocity of water in a catchment. This leads naturally to a
distinction between cases where an increase in total discharge is accompanied by an increase (old water
acceleration), no change (old water steadiness), or a decrease in the rate of discharge of older water in
storage (old water suppression). The simple theoretical case of a power law age-ranked storage-discharge
relations is explored to illustrate these cases. Example applications to data suggest that the apparent
presence of old water acceleration or suppression is sensitive to the functional form chosen to fit to the
data, making it difficult to draw decisive conclusions. This suggests new methods are needed that do not
require a functional form to be chosen and provide age-dependent uncertainty bounds.

1. Introduction
1.1. A Motivating Question About Discharge Across the Age Distribution
A significant advance in surface water hydrology over the last several decades has been the widespread
observation that the stream discharge released by a headwater catchment in response to a storm may not be
entirely (or even mostly) made up of water that fell during that storm (Kirchner, 2003; McDonnell et al., 2010;
McGuire & McDonnell, 2006; Neal & Rosier, 1990; Sklash & Farvolden, 1979). Rather, event hydrographs
are often composed of older water stored in the catchment from previous storms, only now driven into
the stream as a result of the increased potential energy contributed by the addition of new water, and the
activation of new flow paths (Klaus & McDonnell, 2013).

Recently, an additional pattern has been identified: Many catchments tend to preferentially release younger
water under wetter conditions (Benettin et al., 2015, 2017; Birkel & Soulsby, 2016; Birkel et al., 2015; Harman,
2015; Hrachowitz et al., 2013; Klaus et al., 2015; Remondi et al., 2018; Rodriguez et al., 2018; Soulsby et al.,
2015; Tunaley et al., 2017; van Huijgevoort et al., 2016; Yang et al., 2018). This has been termed the “inverse
storage effect” because it runs counter to the behavior that would be expected if catchments were a single
well-mixed store (in which greater storage would result in a smaller contribution of the youngest water;
Harman, 2015).

This paper discusses a more general question: How does the discharge of water of different ages change when
there is a change in the overall discharge? While the derivations and examples developed here focus on dis-
charge, the framework proposed can equally apply to evapotranspiration or other fluxes out of the system.
We are interested particularly in the absolute changes, rather than the relative contributions to the total,
since the absolute changes cause the total discharge to change. When storm or snowmelt inputs induce
changes in the release of water of different ages, the sum of those changes is the change in total discharge.

This shift in perspective is helpful for thinking about how time-variable age structure arises. In catchments
that exhibit an inverse storage effect in the age-structure of discharge, for example, the effect might arise in

RESEARCH ARTICLE
10.1029/2017WR022304

Key Points:
• Storage-discharge relations and

transit time distributions are
unified in a single relationship
capturing both celerity and velocity
effects

• Empirical data and theory suggest
old water release may be accelerated
or suppressed at high discharge or
catchments wetness

• Robust inferences about oldest water
turnover require new approaches
to functional estimation with
age-dependent uncertainty

Correspondence to:
C. J. Harman,
charman1@jhu.edu

Citation:
Harman, C. J. (2019). Age-ranked
storage-discharge relations: A unified
description of spatially lumped flow
and water age in hydrologic systems.
Water Resources Research, 55,
7143–7165. https://doi.org/10.1029/
2017WR022304

Received 27 NOV 2017
Accepted 1 JUL 2019
Accepted article online 6 JUL 2019
Published online 23 AUG 2019

©2019. American Geophysical Union.
All Rights Reserved.

HARMAN 7143

http://publications.agu.org/journals/
https://orcid.org/0000-0002-3185-002X
http://dx.doi.org/10.1029/2017WR022304
https://doi.org/10.1029/2017WR022304
https://doi.org/10.1029/2017WR022304
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2017WR022304&domain=pdf&date_stamp=2019-08-23


Water Resources Research 10.1029/2017WR022304

several different ways: (i) It may be purely because of an enhanced release of younger water, (ii) the discharge
of older water may also increase, just not as much as younger water, or (iii) the release of older water may
in fact decline, suppressed in some way by the processes that are preferentially delivering younger water.
All three are physically plausible in a catchment. Additional potential energy may pressurize the saturated
zone, increasing discharge of older water. It may bypass the existing storage and have no effect on the release
of older water. Or groundwater ridging at the hillslope base may generate adverse gradients at the hillslope
toe (Zimmer & McGlynn, 2017), perhaps reducing the discharge of older water.

This fundamental question has a bearing on more applied problems, such as how long it takes for excess
nitrate leaching from agricultural soils to reach receiving water bodies and how long it would take for the
efforts at mitigation to show up as reduced nitrate loads (Meals et al., 2010; Van Meter & Basu, 2015). Would
a change in hydroclimate result in an increase or a decrease in the time required to “flush” the landscape
(e.g., Wilusz et al., 2017)?

But it can also be seen as a test of our basic understanding and of the tools we use to construct that under-
standing (i.e., models). What does the available data allow us to say about the release of water of different
ages from storage, and do our models agree? This paper does not suppose to have a complete answer to this
question, but I do want to suggest a framework for asking the question in a way that leads (hopefully) to
useful answers.

1.2. Celerity and Velocity in Hydrologic Systems
The question above could be framed in terms of the relationship between the celerity of a catchment's hydro-
logic response to water inputs and the velocity of the water molecules that make up that response (McDonnell
& Beven, 2014). Celerity, broadly speaking, is the rate additional potential energy supplied by water inputs
propagates through the landscape and ultimately does the work of mobilizing water into the stream and out
of the watershed. Thus, celerity determines how quickly the stream responds to the storm and how long
it takes for discharge to decline after the storm. Velocity, on the other hand, determines how long it takes
water molecules to traverse the watershed and so controls the age composition of discharge.

Celerity and velocity are controlled by different mechanisms; in particular, they have distinct relationships to
storage. As McDonnell and Beven (2014) point out, velocity is controlled by the rate of flow at the pore scale,
which is determined by the total flux of water and the total volume that flux is turning over. Celerity, on the
other hand, is often controlled by the amount of water required to fill storage deficits and raise the water table
(and thus the water potential of hydraulically connected water), as well as the amount of water that must
be released through lateral flow in order to lower water tables again. The former is typically significantly
larger than the latter (McDonnell & Beven, 2014), and so celerity in watersheds is typically many times faster
than the velocity. Since the “wave” of energy (i.e., hydraulic head) moves ahead of the molecules of water
it arrived with, the water ultimately mobilized into the stream as discharge is necessarily partly made up of
water that was already in the watershed.

Despite their differences, velocity and celerity are intimately related to one another in catchments. The
energy being transmitted (at the rate described by the celerity) is also the energy that is accelerating the
velocity of pore water and being lost to heat through viscosity. The question posed in this paper is about
the nature of that relationship. Parcels of water that take a long time to travel through the catchment (thus
having an apparently slow velocity) might have a slow celerity, resulting in a slow, steady rate of discharge,
or they might have a fast celerity, making small, brief “jumps” each time it rains (but yielding a slow rate of
discharge when averaged over time).

For a variety of reasons, landscape units like watersheds, hillslopes, and stream reaches are often exam-
ined and modeled as integrated wholes (Sivapalan, 2005). The integration of these flow systems into
(roughly) equivalent “lumped” units prevents consideration of length scales explicitly. The heterogeneity
and spatiotemporal variability that produces a (changing) distribution of velocities and celerities have been
integrated out of the picture. This makes it difficult to sensibly talk about a length/time ratio like celerity
and velocity.

It would be helpful to have a framework of well-defined corresponding quantities that can be applied in
lumped systems. In fact, these already exist as the transit time and hydraulic response time. The transit time
is simply the time taken for a parcel of water to move through the system from input (e.g., as precipitation)
to output (e.g., as discharge or ET) and so is a lumped measure of the velocity. The hydraulic response time
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can be understood as the time taken for a perturbation in the inputs (i.e., some impulse of precipitation
or recharge) to propagate through the system and ultimately produce a perturbation in the output (i.e., a
hydrograph peak). Both transit time and hydraulic response time are not single quantities for a given catch-
ment (or for a given moment in time) but rather must be represented by distributions (which may vary in
time). We will discuss transit time distributions (TTDs) shortly. The distribution of hydraulic response times
can be represented by the instantaneous unit hydrograph (the impulse response function) in a linear model.
But what about for a nonlinear storage-discharge relationship? And how are TTDs and hydraulic response
times related to each other? As we shall see, it is more natural to address these questions by considering the
relationship to storage, rather than to age or time itself.

1.3. Fundamental Quantities: Storage, Discharge, and Age
Here I propose a framework for representing the dynamics of storage, discharge, and age in a way that
addresses many of the issues raised above. I propose to combine (or at least set side-by-side) well-studied
approaches to understanding relationships between storage and discharge (e.g., the catchment sensitivity
functions of; Kirchner, 2009) with the StorAge Selection (SAS) approach to identifying which water (in terms
of age) is release from storage (Botter et al., 2011; Harman, 2015; van der Velde et al., 2012). The major
elements of this framework are not new, though the way they are combined and arranged is. I will argue
that when SAS and storage-discharge dynamics are combined, they are in a sense “greater than the sum of
their parts”: They allow new insights to be obtained that are obscure when discharge and SAS functions are
considered separately. They reveal how changes in discharge are accommodated by changes in the turnover
of storage of different ages. Simultaneously, they reveal the converse: How changes in the age distribution
of discharge arise from changes in rate of discharge of older and younger water from the catchment.

In its most basic form, this framework is simply a way of unifying information about hydrologic storage,
discharge, and water age. Where data suggest that the time variability of flow and transport (celerity and
velocity) are indeed tightly coupled to storage, the implications of this coupling for the release of water of
different ages can also be examined. It can therefore be useful for examining data obtained directly from
observations (Kim et al., 2016; Harman & Kim, 2014), a 3-D spatially distributed particle-tracking model
(Danesh-Yazdi et al., 2018) or a lumped conceptual model (Benettin et al., 2015; Hrachowitz et al., 2013).

The relationship between storage and discharge is at the heart of many descriptions of catchment hydro-
logical behavior (Beven, 2012). This relationship may be tightly captured by some 1-to-1 storage-discharge
relationship or catchment sensitivity function (Kirchner, 2009), or it may be highly hysteretic, particularly
when parts of the catchment connect and disconnect in complex ways (e.g., Spence, 2010, and see Beven,
2006). Either way, it represents a fundamental expression of the hydrologic dynamics of a watershed. A
variety of methods have been developed to extract storage-discharge relationships empirically from analy-
sis of observed hydrographs (particularly recession curves), in order to gain insight into catchment function
(Wittenberg, 1999; Wittenberg & Sivapalan, 1999), and attempt to infer physical properties of the watershed
(Brutsaert & Nieber, 1977; Dralle et al., 2017).

SAS functions are a generalization of TTDs to time-variable flow systems. A TTD is the distribution of ages
that parcels of water attain as they exit the system, measured from the time they first entered (e.g., as rainfall
or snowmelt into a catchment). SAS was developed to capture the time variability of TTD in a rigorous
mathematical framework (Botter et al., 2011; Harman, 2015; van der Velde et al., 2012). The SAS functions
themselves are probability distributions over the storage “ranked” by age (Harman, 2015) describing the
relative contribution of each “age-ranked storage” to discharge.

Although both S-Q relations and transit time analysis address fundamental relationships between stor-
age and discharge, the application of TTD and SAS has been largely disconnected from consideration of
storage-discharge relations and the associated recession curve analysis methods. As demonstrated below,
these conceptual tools can be easily unified into a single family of functional relationships. No new
assumptions are needed to unify SAS functions and storage-discharge relations—doing so is actually quite
trivial.

The resulting framework provides an elegant way to examine whether changes in discharge resulting from
a precipitation event are associated with an increase, decrease, or no change in the rate of discharge of older
water present in the catchment prior to the event. This allows us to make some more precise statements
about the relationship between velocity and celerity in lumped hydrologic systems.

HARMAN 7145



Water Resources Research 10.1029/2017WR022304

This framework is be elaborated below, along with a number of theoretical derivatives. Application of the
framework is demonstrated using data from two case studies that appear in Harman (2015) and Harman
et al. (2016). Finally, some lessons and further research needs are discussed.

2. Theoretical Foundations of Age-Ranked Storage-Discharge Relationships
2.1. Storage and Storage-Discharge Relations
The storage of water in a watershed (or some subcompartment of a watershed, like the saturated groundwa-
ter zone) is determined by conservation of mass, which requires that the sum of input minus output fluxes
equal the change in storage over time. For instance,

dS
dt

= J − Q − E, (1)

where J is the precipitation rate and Q and E are the rates of discharge and evapotranspiration, respectively.
All the variables (S, J, Q, and E) are typically assumed to be spatially averaged over the watershed and vary
only in time. Note that even with perfect knowledge of these fluxes, the conservation law cannot be solved
to give the total storage in a system, only the storage relative to some reference state ΔS = S − Sref.

A storage-discharge relationship is the assertion that the rate of discharge has some functional dependence
on storage:

Q = 𝑓 (ΔS). (2)

This relationship parameterizes the Q term in the conservation equation, allowing it to be solved once data
or some other parameterizations are provided for J and E. When used as model components, such rela-
tionships are most commonly used to approximate streamflow released from groundwater (Wittenberg,
1999), at scales where time delays due to routing along the river network can be neglected and at times and
places where connectivity is high or the landscape connects and disconnects in a consistent way. The catch-
ment sensitivity function g(Q) was proposed by Kirchner (2009) as an alternative form of storage-discharge
relations:

dQ
dS

= 𝑓 ′(𝑓−1(Q)) = g(Q), (3)

where f
′

is the derivative of f and ΔS = f−1(Q) is the inverse function. Note that g encodes essentially the
same information and assumptions as f but differs from f in two ways: It is the derivative, and it is expressed
in terms of the discharge, rather than the storage.

Even where Q does not have consistent relationship to the storage ΔS that appears in the water balance,
it may be possible to extract storage-discharge relationships from recession analysis (Brutsaert & Nieber,
1977; Wittenberg & Sivapalan, 1999). Dralle et al. (2018) recently showed how these can be combined with
estimates of ΔS (obtained by integrating the water balance components directly) to decompose catchment
storage into hydraulically connected and disconnected components and related these to observed water
storage and runoff generation processes.

2.2. Storage and Storage-Discharge Relations as a Measure of Celerity
It seems reasonable to equate “celerity” in lumped hydrologic systems as the rate a perturbation in the
inputs (i.e., some impulse of precipitation or recharge) propagates through the system and ultimately pro-
duces a perturbation in the output (i.e., a peak in the hydrograph) and the hydraulic response time as the
time required for this propagation. The physical processes underlying the propagation of a perturbation are
captured by storage-discharge and catchment sensitivity functions in certain cases. In analytical solutions
relating storage-discharge relationships to physical principles like Darcy's Law, storage is explicitly used
as a proxy for the potential energy gradient driving flow (Harman & Sivapalan, 2009; Troch & De Troch,
1993; Troch et al., 2003) and a master variable controlling the aggregate resistance along the connected flow
paths available to dissipate that gradient (Lehmann et al., 2007; Rupp & Selker, 2005). Viewed this way, the
hydraulically connected storage obtained by Dralle et al. (2018) from integration of g(Q) can be seen as the
volume of storage deficit that must be drained to decrease the potential gradients and hydraulic connectivity
such that discharge decreases by a given amount.

Therefore, there ought to be a way to extract a measure of the celerity and hydraulic response time scale
from the storage-discharge relationship itself. Where a storage-discharge relation holds, the effect of such a
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Figure 1. (a) Illustration of the way a storage-discharge relationship can be related to the concept of celerity using the idealized example of discharge response
to periodic inputs (black line) for simple power law storage-discharge relations like (27) with b = 1.5, Q0 = 1, and s = 0.05 (cyan), s = 0.1 (magenta), and s = 0.2
(green). The phase shift ts at the base frequency 𝜔 = 1∕tr is given for each case, along with the value of 1∕g(Q*) (with Q* evaluated at the output hydrograph
peak). For small values of 1∕g(Q*), this value closely approximates the phase shift, justifying its interpretation as the hydraulic response times, and
characteristic of the celerity of a lumped hydrologic system. Details are given in Appendix A. (b) The phase shift at the base frequency as a function of 1∕g(Q*),
showing how the periodicity of the forcing ion this simple example limits the size of the time delay that can be induced by a given 1∕g(Q*). (c) Phase shift as a
function of frequency for a fixed 1∕g(Q*), showing that higher-frequency components of the inputs undergo a larger phase shift in the outputs—this changes
the shape of the output hydrograph.

perturbation will decay in the outflow at a rate that depends on g(Q), which has units of 1/time. In fact, when
g(Q) is constant, the decay is exponential with an e-folding time of exactly 1∕g(Q). Otherwise, the decay rate
must vary in time (Kirchner, 2009). This suggests we might equate the (time varying) hydraulic response
time with the time scale 1∕g(Q).

This idea can be demonstrated more precisely using spectral analysis. If we linearize g(Q) around some
characteristic discharge Q*, we can solve the resulting model in the spectral domain (see Appendix A for
details). The nonlinear model and results of spectral analysis are illustrated in Figure 1. It can be shown that
for periodic inputs (with period tr), the phase shift ts between the inputs and outputs at the base frequency
𝜔 = 1∕tr can be approximated by

ts ≈ 1∕g(Q∗). (4)

In other words, under appropriate conditions, the time scale given by 1∕g(Q) closely approximates the
delay between a fluctuation in the inputs and a fluctuation in the outputs. Of course, the situation is made
more complex by the presence of multiple frequencies in the input signal (higher frequencies experience
larger phase shifts) and the nonlinearity of the storage-discharge relationship. Despite these complications,
it is clear that 1∕g(Q) is characteristic of the hydraulic response time of the system, which has the same
relationship to the celerity through the lumped system as the transit time has to the velocity.

Note that the derivations below do not assume or require the existence of a tight storage-discharge relation
unless stated explicitly.

2.3. Age-Ranked Storage and Discharge and Their Complements
The SAS approach to understanding water age dynamics is also built on an expression of conservation of
mass, but one generalized to consider changes in the storage of water of different ages. The age-ranked
storage ST(T, t) is the volume of water in storage that is younger than age T at time t. Similarly, the age-ranked
discharge QT(T, t) is the rate that water younger than T is leaving the catchment as discharge at time t. Note
that for T = 0, ST = 0 and QT = 0.

The conservation law for age-ranked storage is given by (Botter et al., 2011; Harman, 2015; van der Velde
et al., 2012):

𝜕ST

𝜕t
+

𝜕ST

𝜕T
= J − QT − ET . (5)

As with equation (1), data or parameterizations of QT and ET must be provided in order to solve the equation.
A SAS function ΩQ is a (possibly time-varying) function that provides this. It is normalized by the total
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discharge, so

QT = Q(t) ΩQ(ST , t). (6)

The function Ω has the properties of a cumulative probability distribution function over ST and can be
parameterized using any appropriate distribution. A uniform distribution reproduces the behavior of a
well-mixed system, but other distributions, such as a gamma distribution, can also be used (Harman, 2015).

It is useful to also consider complementary quantities that represent the storage and discharge of water older
than age T:

QT(T, t) = Q(t) − QT(T, t), (7)

ST(T, t) = S(t) − ST(T, t). (8)

Since it is not possible to know S, only ΔS, it is more useful to replace the latter definition with a similar sort
of relative storage:

ΔST(T, t) = ΔS(t) − ST(T, t) (9)

= ST(T, t) − Sref. (10)

Note that for T = 0, ΔST = ΔS and QT = Q. Figure 2 provides a visualization of these quantities and their
relationships to one another.

The quantities QT and ST and their complements QT and ΔST differ in an important way. Consider how
they change when new water is added to the system, but its additional potential energy is not added to
the potential energy of the existing water in storage, and it does not modify the connectivity or aggregate
resistance to flow anywhere. This might be the case for a small storm over a forested catchment that is mostly
captured by canopy interception. In this case the values of ΔST and QT for older water in storage are not
affected by the additional new water. Nor does QT have to change, since the rate of discharge younger than
any particular age has not changed. However, the values of ST associated with every parcel of water in the
system do change, since the intercepted water is now the youngest water in the system. This means that the
relationship between ST and QT (discussed in the next section) must also change.

2.4. Age-Ranked Storage-Discharge Relations
In previous applications of the SAS approach, it has been typical to consider discharge Q and the SAS func-
tion Ω separately. A central purpose of this paper is to demonstrate that insights can come from considering
them together as a whole—insights that are obscure when they are only considered apart.

One way of considering them together is illustrated in Figure 2, which shows the relationship between ΔST
and QT implied by equations (6)–(9). The blue curve is simply the SAS function Ω but rotated a half turn
and scaled vertically by the discharge. We will call this curve the age-ranked storage-discharge relation fT
defined by

QT = 𝑓T(ΔST , t). (11)

From the definitions above, this curve is related to the discharge and SAS function by

𝑓T(ΔST , t) = Q(t)
(

1 − Ω(ΔS(t) − ΔST , t)
)
. (12)

An example of this function is illustrated in Figure 2. The colored bar along the horizontal storage axis
represents the age-ranked storage in a watershed. Each colored interval represents an identical volume of
storage, and the total length of the bar represents the total volume. These volumes are arranged with the
youngest on the right and the oldest on the left. The colored bar on the vertical axis represents the total
discharge, broken up into contributions of water drawn from each of the storage volumes.
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Figure 2. The age-ranked storage-discharge relation QT = 𝑓T (ΔST , t) (the blue curve in the plot above) maps volumes of water of different ages (age-ranked
storage—the colored bar sections on horizontal axis) onto rates of discharge of water of different ages (age-ranked discharge—colored bar sections on vertical
axis). Note that each color represents a volume of water of a different age. If these stores were associated with time steps or individual storm events, the ages T1,
T2, and so forth are associated with the start of the time step or event that introduced that water to the system. Note that fT does not depend on the ages T but
only on age rank in storage ST . At the right hand end of the curve is the total storage S and total discharge Q (black dot). Because absolute storage may not be
known, storage is quantified as ΔS relative to some reference state Sref. Both age-ranked storage and age-ranked discharge can be measured from oldest to
youngest as ΔST and QT (left to right, bottom to top, respectively, along the colored bars) or vice versa as ST and QT . The total storage and discharge may follow
a 1-to-1 storage-discharge relation f (dotted line), or it may be some complex hysteretic relationship. As storage and discharge change, the fT curve must change
also in a way that may, or may not, be uniquely determined by the storage state ΔS (inset plot).

The blue curve fT describes the relationship between the intervals of age-ranked storage and their corre-
sponding intervals of age-ranked discharge, as the green interval example illustrates. The green interval of
age-ranked discharge on the vertical axis is the absolute rate water that is released as discharge from the
green interval of age-ranked storage on the horizontal axis. The slope of fT at a given age rank storage ΔST
determines the rate water of that age rank is released. Water is released from storage at greater rates from
steeper intervals and not at all from flat intervals.

The cumulative release of water from each interval gives the total discharge, so that whenΔST = ΔS, we have
QT = Q, and so fT(ΔS, t) = Q(t). This means that the upper end points of the age-ranked storage-discharge
relation (the large black dot in Figure 2) are pinned to the time-varying relationship between storage and
discharge. If a functional relationship between storage and discharge (e.g., the dotted black line in Figure 2)

HARMAN 7149



Water Resources Research 10.1029/2017WR022304

can be said to exist for a given system (in the sense of being a good approximation of the system dynamics
over time), then the upper end of fT will be pinned to it.

However, despite its similarity to a storage-discharge relation (2), the age-ranked storage-discharge relation
fT is fundamentally different: It is a 1-to-1 function defined at a moment in time. That means it is possible to
plot the fT function whether or not a useful storage-discharge relationship Q = f(ΔS) exists. The fT function
is defined whenever it is possible to define a TTD and SAS function.

2.5. Storage-Dependent Transport and the Inverse Storage Effect
Despite this theoretical distinction, there is evidence to suggest that f and fT are in fact linked. The SAS
function Ω can in principle vary in time and has been observed to do so in a way that is related to storage in
experimental systems where tracer data can be used to infer its shape directly (Kim et al., 2016; Pangle et al.,
2017). In a number of applications to real catchments, it has proved useful to parameterize the temporal
variability of Ω in terms of the storage state ΔS (Harman, 2015; van der Velde et al., 2014). At the catch-
ment scale, this is fundamentally an empirical observation based on an ad hoc model parameterization. The
physical origins of this dependence are not well known. However, there has been a few studies that suggest
several mechanisms may be important, including the activation of overland flow, macropore flow, and the
rise of the water table into relatively transmissive horizons at high storage (Benettin et al., 2017; van der
Velde et al., 2012, 2014).

If Ω and f can be written as a function of ΔS rather than t, then of course we can write fT the same way.
The rate water is released from the volume ΔST (representing water older than some age T) and is then
determined by the relationship:

QT = 𝑓T(ΔST ,ΔS), (13)

which is to say

𝑓T(ΔST ,ΔS) = 𝑓 (ΔS)
(

1 − Ω(ΔS − ΔST ,ΔS)
)
. (14)

Since Q = fT(ΔS, t) (as described above), it must also be the case that f(ΔS) = fT(ΔS,ΔS) for all ΔS. This
means that when f exists, 𝑓T(ΔST ,ΔS) is a family of curves that intersect f at a unique point determined by
ΔS. This places a constraint on the parameterization of fT that can be exploited to automatically tie it to ΔS
(this will be demonstrated in section 4).

3. The Turnover of Old Water in Storage
So what is the advantage of examining fT , given that it is simply the product of Q and Ω (rotated and trans-
lated by ΔS)? The advantage is that fT clarifies how changes in both Ω and Q arise from something arguably
more fundamental: changes in the release rate of water of different ages from storage.

To be clear, fT does not introduce new assumptions not already present in Q andΩ. Instead (I would argue), it
provides a different way of looking at these quantities. It emphasizes the fact that a change in total discharge
may arise from a change in the rate water that is being released from some flow paths, while others perhaps
remain unchanged or even change in the opposite direction. In other words, it shows how the potential
energy of the system is expended through discharge (at a rate related to the celerity) as a function of the age
of the water being released (which is related to the average velocity along the flow path traveled by a parcel
of water).

Consequently, the question asked in section 1—how does the turnover of older water change in time?—can
be immediately answered by considering changes in the fT function. It is simply determined by whether the
value of fT at a given ΔST increases, stays the same, or decreases. Thus, the fT presents a different perspective
on the hydrologic processes thanΩ or Q do alone. TheΩ form shows us how the age composition of discharge
changes under high flows and low flows, but it does so in a relative sense and obscures the absolute changes.

The Ω and fT functions suggest subtly different perspectives on the nature of causality. Ω suggests that the
changes in age composition are merely occurring at the same time as changes in discharge. In contrast, fT
highlights the fact that the cumulative changes in the rates water of different age ranks are being released
from storage determine the aggregate change in discharge. When the discharge changes, the fT function
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reveals how that change was driven by an increase or decrease in the release rate across the age-ranked
storage.

The fT function is expressed in terms of QT and ΔST rather than QT and ST to avoid the issue mentioned
above: The addition of new water immediately changes the value of ST associated with a particular parcel
of water and so modifies the relationship between ST and QT , even if QT is unchanged. On the other hand,
the addition of new water that bypasses or never modifies the discharge of older water in the system simply
extends fT to a larger storage (representing the additional volume) and discharge (if any of the additional
storage is released immediately). Thus, an invariant physical reality (the rate of old water release unper-
turbed by the addition of new water) maps to an invariant mathematical structure (the value of fT at a given
ΔST unperturbed by a change in ΔS).

These ideas can be made more precise by considering the derivatives of fT with respect to ΔST and ΔS. These
each have a meaning that aids in the interpretation of the function. Those meanings are discussed below.

3.1. 𝝏QT∕𝝏𝚫ST : Age-Ranked Storage Release Rates
Regardless of whether fT is assumed to be a function of ΔS, we can take the derivative of QT with respect to
ΔST . This gives a quantity qT with the dimensions of a rate [T−1]:

qT =
𝜕QT

𝜕ΔST

=
𝜕𝑓T

𝜕ΔST

, (15)

which is also equal to Q times the unnormalized probability density function of the SAS function 𝜔. This
quantity can be usefully (and accurately) interpreted as the rate that water with a given age rank in storage
is partitioned to discharge, rather than remain in storage and get older (i.e., it is the volumetric removal rate
per volume of storage). It is partially related to the “velocity” of water moving through the lumped system,
since the age of water at exit is related to its velocity through the system and the travel distance.

3.2. 𝝏QT∕𝝏𝚫S: Age-Ranked Discharge Sensitivity Function
In the special case where Q and QT are assumed to be a function of ΔS, we can take the derivative of QT with
respect to ΔS. This gives a quantity that is closely related to the catchment sensitivity function g(Q) defined
by Kirchner (2009). In a similar way, the derivative of fT with respect to ΔS is a function that captures the
sensitivity of age-ranked discharge to changes in total storage:

𝜕QT

𝜕ΔS
=

𝜕𝑓T

𝜕ΔS
= 𝑓 ′

T(ΔST ,ΔS), (16)

which also has the dimensions of [T−1]. Note that 𝑓 ′
T is defined for a fixed ΔST , not a fixed T. That is, it is the

sensitivity of the rate water is discharged from the oldest ΔST volume, not the sensitivity of the rate water is
discharged that is older than some age T.

We can also, for the same reasons as Kirchner (2009) laid out, express the resulting function in terms
of discharge, rather than storage, and in terms of QT rather than ΔST if fT is invertible to give ΔST =
𝑓−1

T (QT , 𝑓
−1(Q)), so we could define gT(QT ,Q) = 𝑓 ′

T(𝑓
−1
T (QT , 𝑓

−1(Q)), 𝑓−1(Q)). The fT function may not
be invertible however, particularly if some range of young water does not produce discharge, but older
water does—this produces a horizontal section of fT which prevents inversion for ΔST . Moreover, it is more
meaningful to consider gT for a fixed ΔST than for a fixed QT . Therefore, we define

gT(ΔST ,Q) = 𝑓 ′
T(ΔST , 𝑓

−1(Q)) (17)

as the age-ranked discharge sensitivity function, where 𝑓 ′
T is the derivative of (13) with respect to ΔS. If

g(Q) can be thought of as capturing the celerity of a system by quantifying the rate that a perturbation in
potential energy decays through the release of storage to discharge, the gT(ΔST ,Q) function extends this by
quantifying how that release is distributed across storage of different ages. To the extent that age and velocity
are related, the function therefore represents the interconnection of the celerity and velocity.

3.3. 𝝏qT∕𝝏𝚫S and the Old Water Measurement Problem
One might ask why not take the next logical step and consider the quantity:

𝜕2QT

𝜕ΔS𝜕ΔST

=
𝜕qT
𝜕ΔS

. (18)
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This quantity might be seen as a synthesis of both the celerity and velocity of water through the system. It
is (in the sense alluded to above) the rate that a perturbation in total storage is dissipated by a change in the
release of a particular age rank in storage.

For all its attractiveness as a theoretical construct, this quantity is likely laden with uncertainty. As a second
derivative, it may be highly sensitive to properties of the chosen functional form for fT that are absent or
different in other reasonable choices. It is also likely that for storage older than some threshold, the value of
qT is less constrained by passive tracer data (e.g., weekly streamflow and precipitation stable water isotopes)
than the value of QT is. This is because of limitations on the ability of tracers to reveal old-age structure.
Streamflow isotopes variability is small and typically can be partially explained by some contribution of the
long-term mean isotope composition (Kirchner, 2016). Consequently, it cannot provide decisive information
about the relative contribution of, say, 2-year-old versus 2-and-a-half-year-old water but might say something
about the contribution of water older than 2 years. Similar issues exist for active tracer injection tests, which
have difficulty “seeing” the age structure of old water.

These structural and parameter uncertainty issues may be tempered somewhat if instead of attempting to
quantify (18) for a particular age rank, we instead choose some subset range of age ranks whose response to
hydrologic variability we are interested in

𝜕QT
𝜕ΔS

||||ΔST 2

− 𝜕QT
𝜕ΔS

||||ΔST 1

ΔST 2 − ΔST 1

≈
𝜕qT

𝜕ΔS
, (19)

where [ΔST 1,ΔST 2] represents some range in age ranks that is well-characterized by available tracer data.

3.4. Old Water Acceleration, Steadiness, and Suppression
Earlier, we discussed the question of whether old water release increases or decreases when total discharge
changes. Put more generally, we can ask how does the function fT vary in relation to Q (or f , if it exists), and
what does this tell us about a hydrologic system?

Since fT is related to the product of discharge and Ω at a given ΔST , it can vary in two ways: due to changes
in discharge Q (perhaps as determined by f ) or due to changes in the shape of Ω. Kim et al. (2016) referred to
these as external and internal variability, respectively, as both affect the variability of transit times through
the system. External variability modifies that the rate storage is turning over, such that an increase in flow
will tend to make storage and discharge younger even when there is no change in the flow pathways through
the system. Internal variability implies that the relative contributions of faster and slower flow paths have
changed in some disproportionate way, producing a change in the SAS function. Kim et al. (2016) showed
that pure external variability can occur in a system in which flow paths and storage vary little when flow
through the system changes (as might be case in a confined aquifer or other pressurized hydraulic system at
low Reynolds number). They also showed that an increase in discharge in such a system is associated with
increases in the turnover rate of all age ranks, and so the SAS function Ω is invariant. (Furthermore, the
TTD becomes invariant when expressed in flow-corrected time, as per Rodhe et al. (1996), assuming there
is only one flux out of the system).

However, here we are interested in the more general case where discharge, storage, and Ω may all be chang-
ing. It would be useful to say something more nuanced about how different age ranks in storage contribute
to hydrologic variability.

Let us define a metric characterizing how the discharge of the older part of storage changes relative to
changes in total discharge. For a given “older part” of volume ΔST at a moment in time t, we define 𝛾 as the
relative change in QT per relative change in Q. That is, given a small interval of time 𝛿t, let 𝛿Q = Q(t+𝛿t)−Q(t)
and 𝛿QT = 𝑓T(ΔST , t+ 𝛿t)−𝑓T(ΔST , t) and then define 𝛾(ΔST ,Q), which we will call the old water discharge
sensitivity, as

𝛾(ΔST , t) =
𝛿QT

QT

/
𝛿Q
Q

. (20)

If Ω and storage ΔS are constant, so that (following Kim et al.'s, 2016, definition) all variability is external
variability, we would expect that some small proportional increment in discharge 𝛿Q would be associated
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with a proportional increment in age-ranked discharge 𝛿QT : 𝛿QT∕QT = 𝛿Q∕Q, so 𝛾 = 1 for all ΔST . That is,
the percent change in each age-ranked discharge matches the overall percent change in discharge.

Further consideration of different possible values of 𝛾 suggests a framework for classifying different types
of hydrologic behavior:

Old water acceleration when 𝛾 > 0: old water discharge QT from the volume defined by ΔST is
increasing/decreasing as total discharge Q increases/decreases;

Old water proportional acceleration when 𝛾 ≈ 1: rate of increase/decrease of QT is proportional (relative
to the magnitude) to that of Q;

Old water hyper-acceleration when 𝛾 > 1 rate of increase/decrease of QT is greater (relative to the
magnitude) than that of Q;

Old water steadiness when 𝛾 ≈ 0: old water discharge is not changing, so increases/decreases in dis-
charge must be accommodated by increasing/decreasing the turnover of younger water (i.e., only Q−QT
changes); and

Old water suppression when 𝛾 < 0: the increase/decrease in total discharge is associated with a
decrease/increase in the release of old water.

The value of 𝛾 may of course be different for a given QT at different Q (assuming Q > QT) and for a given Q
at different QT .

In previous work, Harman (2015) defined the inverse storage effect as the tendency of catchments to pref-
erentially release younger water under wet conditions. In the framework developed above, this corresponds
to 𝛾 < 1. Note that the observation of an inverse storage effect does not imply that there is old water sup-
pression or acceleration. Both are possible, and more detailed analysis of fT is required to determine which
is the case.

3.5. Relationship Between Old Water Sensitivity 𝜸, SAS Functions 𝛀, and Catchment Sensitivity g
We can express 𝛾 in terms of the SAS function Ω(ST , t) directly by taking the time derivative of equations (11)
and (12). Note that since Ω is expressed in terms of ST rather than ΔST , we are obliged to account for the
relative storage ΔS that relates these two quantities (by equation (9)) and its increment in time 𝛿S. Taking
the limit of small 𝛿t, we get

𝛾(ΔST , t) = 1 −
𝜕Ω
𝜕t

+ dΔS
dt

𝜕Ω
𝜕ST

dQ
dt

1−Ω
Q(t)

(21)

If Q and Ω are assumed to be functions of ΔS (as in equation (13)), it is also possible to express 𝛾 in terms of
the sensitivity functions g and gT , since we can say 𝛿Q = g(Q)𝛿S and 𝛿QT = gT(ΔST ,Q) 𝛿S. Then 𝛾(ΔST ,Q)
is simply

𝛾(ΔST ,Q) =
gT(ΔST ,Q)

QT

/
g(Q)

Q
. (22)

Or alternatively in terms of Ω(ST ,ΔS)

𝛾(ΔST ,Q) = 1 −
𝜕Ω
𝜕ΔS

+ 𝜕Ω
𝜕ST

g(Q) 1−Ω
Q

, (23)

where Ω and its partial derivatives are evaluated at ST = ΔS − ΔST .

From the expressions above, we can see that indeed 𝛾 = 1 ifΩ andΔS are invariant in time, as expected given
Kim et al.'s (2016) definitions of internal and external variability. However, a system with variable storage
can also have 𝛾 = 1 if Ω is variable such that

𝜕Ω
𝜕t

= −dΔS
dt

𝜕Ω
𝜕ST

. (24)
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For a system to have 𝛾 = 0 (old water steadiness), then gT(ΔST ,Q) = 0, and the shape of the SAS function
must satisfy

𝜕Ω
𝜕t

= dQ
dt

1 − Ω
Q(t)

− dΔS
dt

𝜕Ω
𝜕ST

, (25)

or

𝜕Ω
𝜕ΔS

= g(Q)1 − Ω
Q

− 𝜕Ω
𝜕ST

. (26)

This is due to the fact that theΩ function describes the SAS of water in terms of ST (which progresses from the
youngest to the oldest) so that the addition of new water changes the value of ST associated with a particular
parcel of older water. Equations (25) and (24) describes how Ω would need to change to compensate if the
release rate of that older water is to remain invariant.

4. Power Law Age-Ranked Storage-Discharge Relations: A Simple Theoretical
Case With Constant 𝜸

It can also be useful to choose some parsimonious functional form (i.e., with few parameters) with inter-
esting features and consider what we can learn from its (in)ability to capture the essential behavior in
a top-down manner (Farmer et al., 2003; Jothityangkoon et al., 2001). Here we consider the unified ele-
mentary case of a power law model for both the storage-discharge and the age-ranked storage-discharge
relationship. The resulting model has the interesting feature of a constant value of 𝛾 . This highlights a
potential advantage of considering how Ω and Q combine to produce fT—doing so allows us to address
the acceleration/suppression dynamics directly and perhaps even parameterize the model in terms of these
dynamics.

Plots of log(−dQ∕dt) versus log Q sometimes appear (with some considerable scatter) to be approximately
linear, with a slope that is conventionally termed b (Brutsaert & Nieber, 1977). There are several different
models that can reproduce this behavior (Harman et al., 2009; Rupp & Selker, 2006), but a simple one is a
power law storage-discharge relationship of the form f(ΔS) = mΔSn. In that case it can be easily shown that
n is related to b as n = 1∕(2 − b). Kirchner (2009) showed that a dimensionally consistent way of expressing
m can be obtained by breaking it into three parts, so that m = Qref((2 − b)∕s)n. Note that by replacing one
variable with two purely for the purpose of dimensional consistency, we introduce a degree of freedom.
Consequently, we can set the value of one of Qref or s to be arbitrary, though the choice will influence the
value of the other needed to produce the “correct” m (see ; Dralle et al., 2015, for a discussion of the surprising
consequences of this arbitrariness). Here we will take Qref to be the arbitrary scaling factor. Qref and s are
assumed to be positive with units of discharge and storage, respectively. Thus, the storage-discharge relation
can be expressed as

𝑓 (ΔS) = Qref

(
(2 − b)ΔS

s

) 1
2−b

. (27)

This function can also be inverted and expressed as

S − Sref

s(2 − b)
=
(

Q
Qref

)2−b

. (28)

The power law storage-discharge relationship can be thought of as having three parameters: b (discussed
below), a scale parameter (which is m but which here is determined by s), and the shift Sref that determines
the value of S at which ΔS goes to zero. Even though we do not typically know Sref, we can implicitly modify
its value by shifting ΔS by a constant and so change the state of storage that corresponds with ΔS = 0. Since
the power law above will either produce Q = 0 or Q = ∞ when ΔS = 0, the value of Sref is an important
control, despite its absolute value being unknowable.

As discussed by Kirchner (2009), when 0 < b < 2, the value of ΔS = S − Sref must be positive. Sref is the
storage (or rather, the maximum storage) at which Q = 0. On the other hand, when b > 2, this model only
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produces positive values for discharges that increase with storage if we assume ΔS is negative, so S < Sref.
In this case discharge becomes asymptotically large as storage approaches Sref (i.e., ΔS → 0 from below).
Consequently, |ΔS| is the current deficit of storage below this upper limit.

In order to better understand the relationship between total and age-ranked storage-discharge relations, it
may be useful to adopt a similar (and similarly simple) mathematical form for fT as for f . Let us assume that
the age-ranked storage-discharge relationship also follows a power law:

𝑓T(ΔST ,ΔS) = Qref

(
(2 − bT)(ΔST − ΔSc)

sT

) 1
2−bT

. (29)

As with (27), this expression has three parameters: an exponent bT , a scale parameter determined by sT , and
a shift Sc. By expressing this shift relative to Sref (asΔSc = Sc−Sref), we can associate this shift parameter with
a particular value ofΔST . The meaning ofΔSc depends on the exponent bT , as discussed below. The arbitrary
discharge scale Qref can be taken to be the same in both expressions with no loss of generality. However, we
must satisfy the requirement that fT(ΔS,ΔS) = f(ΔS). This reduces the degrees of freedom in equation (29)
by one parameter. Setting (27) and (29) equal to each other with ΔST → ΔS and solving for sT gives

sT =
(
2 − bT

) (
ΔS − ΔSc

)( (2 − b)ΔS
s

)− 2−bT
2−b

. (30)

Thus, one way to satisfy the requirement would be to determine sT from the equation above, rather than
allowing it to be a free parameter (to be determined by fitting to data). An alternative would be to determine
either ΔSc or bT by rearranging the equation above. For ΔSc, this gives

ΔSc =
sT

(
−(b−2)ΔS

s

) bT−2
b−2

bT − 2
+ ΔS, (31)

and for bT , this gives

bT = 2 +

(2 − b)W

(
−

sT log
(
(2−b)ΔS

s

)
(2−b)(ΔS−ΔSc)

)

log
(

(2−b)ΔS
s

) , (32)

where W(·) is the Lambert W (or Product Log) function (Abramowitz & Stegun, 1964). Through these
equations, the value of one of sT , ΔSc, or bT becomes dependent on the storage state ΔS.

Here we have chosen to keep bT and ΔSc as constant free parameters and allow sT to be determined by the
constraint. In this case the value of 𝛾 becomes independent of ΔST (as discussed below)—this is not true if
ΔSc or bT are used instead. This is similar to the choice made in Harman (2015) to allow the scale parameter
of the gamma distribution to vary while keeping the shape parameter constant.

Thus, the combined model for f and fT has four free parameters (b, bT , s, and ΔSc) and an arbitrary reference
discharge Qref.

Substituting the constraint on sT back into (29) yields the rather elegant relationship:

QT

Q
=

𝑓T(ΔST ,ΔS)
𝑓 (ΔS)

=

(
ΔST − ΔSc

ΔS − ΔSc

) 1
2−bT

. (33)

In this equation we can start to see the consequences of assuming these two simple power law relationships
for f and fT . Figure 3 illustrates this with examples.

If 0 < bT < 2, the critical age-ranked storage ΔSc represents the lower bound of the storage that is turning
over and contributing water to discharge. It is the value of ΔST at which QT = 0. Therefore, ΔSc must always
be less than the storage state ΔS. The storage volume −ΔSc effectively represents a “dead store” that cannot
be drained even in very long streamflow recessions, but it does turn over and contribute to streamflow. If
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Figure 3. Classification of different types of old water release dynamics for the power law f and fT case described in section 4. Upper center plot shows the sign
of the 𝛽 (given in equation (37)) for different exponents b and bT and the way these exponents control the properties of the storage-discharge and age-ranked
storage-discharge relation. The lower plot shows how the value of the critical storage parameter ΔSc and 𝛽 determine the old water sensitivity 𝛾 . On either side,
the inset plots show the f (solid black line) and fT for different storage states (blue lines) corresponding with the combinations of b and bT on the center plots
(with ΔSc = 0). When 𝛾 > 0, there is old water acceleration (green arrows), and when 𝛾 < 0, there is old water suppression (red arrows). When 𝛾 ≈ 0, old water
discharge is steady, and additional discharge comes from the release of new water (plot E). The distribution of values of 𝛾 for the Lower Hafren is also shown on
the lower plot.

b > 2, discharge never reaches zero for any ΔS, so as storage declines toward ΔSc, the slope of QT becomes
steeper and steeper, until only the youngest water remaining in the system is removed as discharge. Beyond
that point, ΔS < ΔSc, and the model is not valid.

If bT > 2, the volume of water turning over and contributing to discharge is effectively infinite, but older
water contributes asymptotically small amounts. In this case ΔSc represents an upper bound of age-ranked
storage at which QT becomes infinitely steep (i.e., a step function from 0 to Q), so that all discharge is selected
from only the very youngest water in the system. Total storage cannot therefore be higher than this (i.e., we
require ΔSc > ΔS always). If 0 < b < 2, the storage below ΔST = 0 is again a dead store that contributes to
discharge but cannot be drained. If b > 2, it can be drained (mathematically speaking) down to any level of
storage depletion given enough time.

Using the relationship in equation (14), we can obtain the SAS function equivalent for (29)

Ω(ST ,ΔS) = 1 −
(

1 −
ST

ΔS − ΔSc

) 1
2−bT

, (34)

where ΔS − ΔSc takes the role of a scale parameter that varies linearly with storage and goes to zero when
ΔS = ΔSc. For −∞ < bT < 2, this is a Kumaraswamy distribution on the bounded interval 0 ≤ ST ≤
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ΔS −ΔSc. This distribution is similar to the Beta distribution used by van der Velde et al. (2012) and others
to parameterize the SAS function. For bT > 2, it is fundamentally a different distribution as the sign of
ΔS −ΔSc is negative, and support of the distribution is the entire positive real axis ST > 0. This is actually a
Lomax distribution, which is a special case of the generalized Pareto distribution. Either way, the mean of
the distribution is given by

𝜇 =
2 − bT

3 − bT

(
ΔS − ΔSc

)
, (35)

if bT < 3. For bT > 3, the mean is undefined. If this model were to provide a good fit to real tracer data with
bT > 3, we would have to conclude that the tracer data must only be constraining the SAS of a small fraction
of the total storage volume and could not constrain the behavior of the larger part.

With some manipulation, we can also obtain an expression for the old water sensitivity function as

𝛾 =
𝛽 − (ΔSc∕ΔS)
1 − (ΔSc∕ΔS)

, (36)

where 𝛽 is a bounding value of 𝛾 given by

𝛽 =
b − bT

2 − bT
. (37)

Interestingly, 𝛾 is a function of ΔS but is independent of ΔST—thus, the sensitivity is the same for all
age-ranked storage. In the special case that ΔSc = 0, we have 𝛾 = 𝛽, and 𝛾 is a constant than only depends
on b and bT . The scale parameter s provides a storage scale (in conjunction with the arbitrary Qref) that will
interact with the variability of inputs (J) to control the actual time scale of discharge variability and storage
turnover. But in a certain sense, the underlying structure is set by only the two exponents, modified by the
storage state if ΔSc ≠ 0.

This allows us to think about a simplified classification of types on the basis of b and bT and the ratioΔSc∕ΔS.
Figure 3 shows how 𝛽 varies for different combinations of b and bT , and some of the types of behavior that
arise. For b = 1, the storage-discharge relationship is a familiar linear reservoir, and for bT = 1, the SAS
is uniform, as would be expected in a well-mixed tank (Danckwerts, 1953), homogeneous semiconfined
aquifer (Haitjema, 1995), or highly dispersive system (Benettin et al., 2013).

Other combinations of b and bT produce different characteristics of storage age selection, as shown. The
green and red domains in the top plot show the combinations of b and bT for which 𝛾 > 0 (old water
acceleration) and 𝛾 < 0 (old water suppression), respectively, for the special case thatΔSc = 0. The lower plot
shows the way 𝛾 is modified by the value of ΔSc. Plots on either side show the age-ranked storage-discharge
relation fT and storage release rate qT for a variety of combinations of b and bT , all assuming ΔSc = 0. These
illustrate (A) old water preference, (B) old water acceleration, and (C) old water suppression in a storage with
a finite lower bound. Plots (D)–(F) show old water suppression, steadiness, and acceleration (respectively)
for a system without a finite lower bound.

The lower plot in Figure 3 shows the values of 𝛾 calculated from equation (36) for other values of ΔSc. These
show that for a given value of 𝛽, the value of 𝛾 declines (moving toward less old water acceleration and more
suppression) as ΔS approaches ΔSc. Note that for 0 < b < 2, this happens when ΔS is decreasing (since
ΔS > ΔSc in that case), but for b > 2, it occurs when ΔS is increasing (since ΔS < ΔSc).

5. Example Applications
The concepts of the age-ranked storage-discharge relation fT and old water sensitivity 𝛾 can be illustrated
using published case studies that have employed SAS functions determined using tracer data. We can use
the Ω and f functions obtained in those studies to obtain fT and its related quantities. In the second example,
the power law fT derived above will also be applied to the original data and the results compared.

5.1. Stream-Hyporheic Flow and Transport, H. J. Andrews, WS01 Reach
Harman et al. (2016) applied the SAS approach to analyze stream tracer injection and recovery along a
stream reach in a forest. Over a 28-hr period, salt slugs were introduced at the upstream end of the reach,
and breakthrough curves were obtained at upstream and downstream electrical conductivity probes spaced
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Figure 4. Application of the theory to data from (a–c) an active tracer injection in a short reach reported in Harman et al. (2016) and (d–f) catchment-scale
passive tracer data reported in Harman (2015) and (g–i) is a power law fT fit to the same catchment data. The top row shows age-ranked storage-discharge
relations. Each colored solid line represents fT for a different value of ΔS. Middle row shows the corresponding age-ranked storage release rate qT , and the
bottom row shows the old water sensitivity 𝛾 .

25 m apart. Over the study period, discharge varied between 0.74 and 1.2 L/s as part of a diurnal cycle typical
of this stream in the late dry season (Wondzell et al., 2009, 2007).

Stream depth observed with pressure transducer varied linearly with discharge at the nearby gauge (Har-
man et al., 2016) suggesting an approximately linear storage-discharge relationship. Using estimates of
effective stream width and length, Harman et al. (2016) obtained a storage-discharge relationship given by
Q = f(ΔS) = kΔS, where k = 7.7 hr−1. Here ΔS = 0 represents the relative storage at which discharge
is zero. Note that this does not imply that when discharge is zero, storage (even within-channel storage) is
also zero. It is merely a reference datum for storage with some useful physical interpretation, and one well
outside the range of relative storages inferred from the data. Values of ΔS actually ranged from 336 to 557 L.

The time series of seven breakthrough curves was found to be well approximated by modeling the SAS
functionΩ as a shifted gamma distribution whose parameters vary with discharge (Harman et al., 2016, table
2, Nash Sutcliffe Efficiency = 97%). Specifically, discharge was assumed to be linearly related to the mean,
standard deviation, and shift of the Ω function as S𝜇 = 4,279–4,084 ×(Q − 0.870), S𝜎 = 2,698–2,431 ×(Q −
0.870), and Smin = 874–60×(Q−0.870) for Q in liters per second and S𝜇 , S𝜎 , and Smin in liters. These were then
used to obtain the scale parameter 𝛽 and shape parameter 𝛼 of the gamma distribution as 𝛽 = S2

𝜎
∕(S𝜇−Smin)

and 𝛼 = S2
𝜎
∕𝛽2. The predicted fT was then obtained from equation (14).

The resulting age-ranked storage-discharge functions fT (and f ) are shown in Figure 4. The SAS modeling
suggested that over the 4 hr between each tracer injection, the tracer-labeled water reached an age rank of
around ΔST = −5, 000 L, so behavior for larger age ranks is not informed by data and is not shown.
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The inferred fT functions suggest there are three ranges of ΔST over which QT behaves in different ways.
At the highest values of ΔST (representing the youngest water in the system), the fT function is flat, which
indicates that no discharge is drawn from that (approximately 750–950 L) storage. This represents the advec-
tive delay along the stream channel (Benettin et al., 2013). Over an intermediate domain of ΔST from about
−2,500 to −800 L, the value of fT increases with increasing ΔS. Below that, it stays nearly constant for low
ΔS and decreases for high ΔS.

The age-ranked storage release rate (Figure 4) provides a clear picture of how storage turnover changes with
age rank. As ΔS and Q increase, the advective storage volume does not change in a consistent way, so qT = 0
over a fairly constant range at the highest ΔST . Increases in Q are associated with increases in the rate of
turnover of the next oldest ΔST , and peak turnover rates are found at younger and younger ΔST . The peak
turnover rate varies from around qT = 0.5 hr−1 at ΔST = −3, 000 L at the lowest flow to qT = 1.3 hr−1

at ΔST = −1, 740 L at the highest flow. Storage in the oldest tracer-labeled age-ranked storage does not
seem to turn over faster at higher discharge. The apparent decline in turnover rate at the highest discharge
is small and may be an artifact of the structure of the chosen functional form for Ω. The more substantial
decline in qT at even lower age ranks below the plotted range is not supported by the data (as discussed in ;
Harman et al., 2016). Thus, it seems plausible that the discharge of water drawn from ΔST below −4, 000 to
−3, 000 L is in fact invariant with respect to ΔS and Q. Harman et al. (2016) suggested that this relatively
constant turnover rate may be driven by the down-valley topographic gradients and not by the in-stream
processes, corroborating observations from others studying the same reach (Ward et al., 2016; Ward et al.,
2017; Schmadel et al., 2017).

The limitations on the old water mobilization behavior imposed by the choice of a gamma function for
Ω are illustrated by the plot of the acceleration factor 𝛾 (Figure 4). Here 𝛾 was determined by taking the
numerical derivative of QT with respect to ΔST , as parsimonious analytical solutions could not be found.
The figure shows that 𝛾 = 1 in the advective delay storage, reflecting the fact that increases in discharge
are always accommodated by increases in the release of water older than that which is in transit along the
fastest pathway through the reach. The 𝛾 then declines monotonically for lower ΔST . If the suggestion above
is true and old water turnover is actually insensitive to ΔS and Q, then these curves ought to not drop below
𝛾 = 0. However, the chosen functional form does not permit this.

5.2. Catchment Flow and Transport, Lower Hafren Stream
Harman (2015) applied the SAS approach to model chloride transport in the Lower Hafren stream, a 3.5-km2

catchment in Plynlimon, Wales. The Lower Hafren has a long record of stream gauging and chemistry from
weekly precipitation and streamflow samples. TTDs have been examined in this watershed in the past using
chloride as an (assumed) conservative tracer, and storage-discharge relations have been analyzed in the
larger Severn River (Kirchner, 2009) of which it is a part.

Harman (2015) assumed that the SAS function of discharge was a gamma distribution whose scale parameter
S0 was linearly related to relative storageΔS, as S0 = 𝜆(ΔS−ΔSc). Thus, in addition to the shape parameter 𝛼,
the parameters 𝜆 andΔSc had to be calibrated against the observed stream chloride data. Relative storage was
determined by fitting a catchment sensitivity function using the methods of Kirchner (2009) and integrating
to obtain ΔS. The value of Sref was set to the mean storage (this only affects the apparent value of ΔSc).
The 𝜆 parameter represents the sensitivity of the SAS function to variations in ΔS, and ΔSc is the storage
state at which the scale parameter reaches zero. At that point, the SAS function collapses into a Dirac Delta
distribution, and all discharge is drawn from the youngest water in storage. The evapotranspiration SAS
function was assumed to be an invariant uniform distribution over the youngest storage SET. All water in
storage at the start of the simulation was assumed to have a fixed concentration Cold = 7.11 mg/L, which
was the observed flux-weighted mean discharge concentration. Fitted values reported by Harman (2015) are
𝜆 = 103, ΔSc = 48 mm, 𝛼 = 0.69, and SET = 398 mm.

Figure 4 shows the storage-discharge relation f and the age-ranked storage-discharge relation fT for the
observed range of daily discharges. The f curve appears relatively steep in this plot compared to fT , as the
observed range of storage ΔS (about 106 mm over 27 years of record) is much smaller than the mean of the
SAS function (which varies from day to day with storage but was around 3,300 mm on average). The fT func-
tion is nearly flat at low discharges, suggesting water is drawn from a very large storage. At higher storage,
the discharge of older water (lower ΔST) is greater, but the slope of the fT function at the right-hand end also
increases, indicating that the contributions of younger water are increasing faster. For the highest discharge
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(the red line in Figure 4), the contributions of old water appear to have actually decreased, suppressed by
the increasing contributions of young water.

This rapid increase in young water contributions with increasing storage and discharge was termed the
inverse storage effect by Harman (2015). It can also be clearly seen in the plot of age-ranked storage release
rate qT in Figure 4 (note the log scale). As discharge increases, the rate of storage turnover increases for
all values of ST . However, the increment of qT is larger for younger storage than it is for older, indicating
that the increase in discharge is disproportionately accommodated by an increase in the rate of release of
young water.

Despite the inverse storage effect, the old water sensitivity factor is typically 𝛾 > 0 suggesting that old water
is generally accelerated at moderately high flows. Only at the highest flows does there appear to be a sup-
pression of old water. However, as with the previous example, it seems this old water suppression may be
an artifact of the choice of a gamma distribution for Ω.

5.3. Comparison of Gamma and PowerLaw fT in Lower Hafren
In the examples above, the chosen functional form for Ω placed constraints on how 𝛾 could vary across age
ranks. A different functional form, with different constraints on 𝛾 , might produce similarly good fits to the
data but could imply quite different old water sensitivity for age ranks where the SAS function is poorly
constrained by data. This uncertainty about which functional form is the “best” (or even which might be
grounded in some sort of physical model) is a kind of “structural uncertainty” (Ajami et al., 2007; Clark
et al., 2008).

The constant value of 𝛾 in the power law form of fT derived in section 4 is a useful counterpoint to the gamma
distribution considered above. The power law model was fit to Lower Hafren data (1983–2008) using the
same approach as described in Harman (2015). Best-fit parameters were calibrated by minimizing root mean
square error (RMSE) of predicted chloride concentration for a 10-year period (1989–1998), and performance
was checked against a 10-year validation period (1999–2008). A 7-year spin-up period was allowed. The
fitted parameters are b = 2.2, s = 12.7 mm (with Qref = 1 mm/hr), bT = 12.2, and ΔSc = −53 mm. The
evapotranspiration SAS function from Harman (2015) was used (uniform distribution over the youngest
storage SET = 398 mm).

This alternative functional form had a comparable fit to the observed data (gamma distribution RMSE:
0.91-mg/L calibration and 0.98-mg/L validation and power law RMSE: 0.90-mg/L calibration and 0.95-mg/L
validation). However, the power law model makes very different predictions about the mobilization of old
water.

Figure 4 shows the power law age-ranked storage-discharge relations. They closely agree with the gamma
distribution at low storage and discharge and for the youngest age-ranked storage. But where the gamma
distribution suggested that old water is not mobilized as strongly at high flows and is in fact suppressed at
the highest flows, the power law predicts a consistent mobilization of old water into discharge. It essentially
predicts that the volume of old water that is being mobilized is much larger (and the rate of turnover qT at
a given ST is smaller, as seen in Figure 4).

In fact, not just larger but infinite. Since bT > 3, the mean of the SAS distribution is infinite, which is
not physically possible. Despite being physically impossible, the power law model reproduces the chloride
behavior as well as the gamma distribution.

Why is this? A clue can be seen in comparing the plot of 𝛾 for the gamma and power law approaches shown
in Figure 4 and highlighted in the inset plot. The two functions give similar degrees of old water mobilization
for a narrow range of age-ranked storage, and that range gets narrower at high flows. This suggests that the
model fit (as measured by RMSE at least) is insensitive to the model predictions of old water mobilization
beyond some threshold ΔST . This is in accordance with other studies suggesting that the chloride tracer
data does not constrain the old water contributions in this watershed (Kirchner et al., 2000).

6. Discussion and Conclusion
This paper has laid out the basic connections between storage-discharge relations and SAS functions and
suggested the age-rank storage-discharge relation as way to understand them. This is a curve QT = 𝑓T(ΔST , t)
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that maps age rank in storage onto age rank in discharge, such that the end point of the curve repre-
sents the total storage and total discharge at a point in time. The trajectory of this end point represents
the time-variable (possibly hysteretic) relationship between storage and discharge. Where the relationship
has limited hysteresis, a storage-discharge relation f(ΔS) can be seen as the upper boundary of a family of
age-ranked storage-discharge relationships 𝑓T(ΔST ,ΔS).

The concepts of celerity and velocity have also been discussed in the sense proposed by McDonnell and
Beven (2014). The catchment sensitivity function g(Q) has been discussed as a means to approximately
quantify celerity and the TTD as a means to quantify velocity when considering lumped systems. Quanti-
ties obtained from the two partial derivatives of the fT curve can be seen as representing the way transport
variability in the system is determined by (respectively) the velocity and celerity.

I have argued that fT could serve to extract a clearer picture of catchment processes from tracer data than
consideration of Ω alone. This is not to say that we should dispense with consideration of Ω. Rather, there is
information in fT useful to the investigation and modeling of runoff generation and transport that cannot be
discerned when Q and Ω are considered separately. Figure 2 visualizes the relationship between age-ranked
storage and discharge (expressed in terms of the complementary quantities ΔST and QT). It is likely useful
even if discharge relation (and its age-ranked extension) is not a unique function of storageΔS, as it is defined
for each moment in time. This can be used to examine the effects of old water suppression and acceleration
even in the case of complex hysteretic relationships.

6.1. Old Water Suppression and Acceleration: Artifact or Reality?
The phenomena of old water suppression and acceleration have been described and illustrated using data.
These concepts may be useful for understanding the dynamics of old and young water in the landscape.
There has been some progress using SAS functions to understand the influence of global change on young
water fractions (e.g., ; Wilusz et al., 2017), but a deeper understanding of the effects of changes in recharge on
old water storage and release is needed to make meaningful projections about the impact of global change.
The oldest water fractions are especially relevant to issues of drought resilience (e.g., ; McGuire et al., 2002)
and nutrient lag times (Van Meter & Basu, 2015).

It is possible to conceive of physical mechanisms that might generate such a suppression. For example,
observations of the groundwater table at the toe of hillslopes in gentle terrain suggest that during storm
events, the higher rates of recharge there (relative to further upslope where the water table is deeper) gener-
ate adverse hydraulic gradients away from the stream (Zimmer & McGlynn, 2017). The adverse slope could
conceivably reduce the absolute (not just proportional) rate old water is delivered to the stream during high
flows, thus creating a negative value of 𝛾 . More investigation is needed to test this hypothesis though.

Unfortunately, as has been demonstrated in the catchment example presented here, catchment passive
tracer data such as conservative ionic and isotopic tracers from precipitation may be insufficient to determine
whether old water acceleration or suppression is occurring. The gamma and power law models provided
similarly good fits to the data but made radically different (though similarly unrealistic) assertions about
the mobility of old water in the catchment.

The application of the framework in the examples revealed that the gamma SAS function used by Harman
et al. (2016) and Harman (2015) embeds some potentially unrealistic structure. The functional form requires
old water suppression for a portion of the storage, and that portion gets larger at high flows. Although I
have suggested this phenomenon could potentially be real, we cannot draw any conclusions since it is not
possible for the gamma SAS function to not produce this behavior.

Furthermore, the power law model does not produce old water suppression in this case. However, it is not
possible for this functional form to produce old water suppression while also capturing the mobilization
of younger water needed to reproduce the data. Consequently, the SAS function implied by this functional
form also shows some potentially unrealistic behavior of an opposite character to the gamma distribution.
The value of 𝛾 is constant for all ΔST implying old water acceleration throughout the storage. The degree of
acceleration is so large that it must be drawn from a very large storage in order to be sustained. The value of
bT = 12.2 implies that even at the highest flows, less than half the water is drawn from the youngest 4 m of
storage—the rest is drawn from an even larger volume. It seems unrealistic to imagine that the majority of
peak discharges is released from such a large volume.

HARMAN 7161



Water Resources Research 10.1029/2017WR022304

The indeterminacy regarding the true behavior of the old water can be understood as a consequence of the
ability (or lack thereof) of the available data to constrain the parameters of the given functional form and
to assess the goodness of fit of the resulting predictions. With additional data or a better functional form,
we might be able to reject one or both of these as suboptimal. Given that the gamma and power law models
seem to be providing unrealistically low and unrealistically high predictions of old water contributions, it is
likely that they bracket the true behavior. As Figures 4d and 4e show, these models produce nearly identical
predictions about the contributions of the youngest water but diverge for older water. It may be useful to
compare both approaches in future applications in order to get a sense of the structural uncertainty inherent
in predictions of old water contributions.

6.2. The Need for Age-Dependent Uncertainty
Ultimately, the indeterminacy mentioned above must be addressed through data and improved methods
for integrating the data with the model in a way that accommodates uncertainty. Indeed, it might be best
to go beyond current approaches based on ad hoc functional forms and calibrated parameters. Even where
rigorous uncertainty analysis is used in the parameter estimation (e.g., Visser et al., 2019; Wilusz et al., 2017),
these methods cannot tell us how uncertainty is distributed among the different age ranks in storage or how
it changes in time. Thus, we risk being overconfident about the inferences that can be made regarding (for
example) the contributions of old water to discharge at high flows.

It would be far better to let the data constrain only the portion of age selection that it is sensitive to and clearly
determine when it can tell us little or nothing at all. This will likely only require adaptation of methods
already developed for other purposes. Three components would be required:

• Do away with the constraining need to choose a functional form for Ω or fT in favor of methods that either
(a) test hypotheses, in the form of functions derived from physical insights about the internal controls on
the flow and transport behavior, or (b) allow the data to determine the form of the data in a more flexible
way.

• Place uncertainty bounds on the Ω or fT that vary with age rank in storage and in time and show us the
extent to which the data are able to provide insights about the turnover rate of water of different ages.

• Allow information from multiple tracers to be integrated together, each perhaps constraining different
parts of the age-ranked storage—for example, stable isotope tracers constraining the contributions of 0- to
2-year old water, SF6 constraining the contributions of water 2–20 years, and 3H constraining contributions
of older water (if possible). This was previously suggested in Rinaldo et al. (2015), and progress toward this
goal can be found in Visser et al. (2019).

Massoudieh et al. (2014) has developed a method for steady-state TTD estimation that incorporates these
abilities and that could be extended to SAS functions. Such methods could determine whether phenomena
like the old water suppression observed in both examples above are an artifact of the choice of a gamma dis-
tribution or a physical reality. Without these rigorous steps, there is a risk that as the number of applications
grow, the SAS approach will produce more heat than light, and the insights it generates could be regarded
with suspicion.

Appendix A: The Catchment Sensitivity Function as Celerity
When a catchment sensitivity function or storage-discharge relation is used to represent catchment
response, there is effectively no delay between the input of additional water to storage and the response at
the outlet. In that sense, the celerity is effectively infinite. However, when we consider the propagation of
variability through the system, a finite celerity may still be obtained. The celerity in that case represents the
phase shift between the input (precipitation) and the output (discharge) response.

For example, consider the simple case where the catchment sensitivity function is given by

g(Q) =
Qref

s

(
Q

Qref

)b−1

, (A1)

and this captures the response of the system through

dQ
dt

= g(Q) (J(t) − Q(t)) , (A2)

HARMAN 7162



Water Resources Research 10.1029/2017WR022304

as suggested by Kirchner (2009). Let us assume that the input J(t) consists of periodic precipitation events
occurring with period tr . Figure 1 shows the solution (obtained numerically) when J(t) = J0(sin(𝜋t∕tr))k with
J0 = 1, tr = 1, k = 10, b = 1.5, Qref = 1, and s = 0.05, 0.1, and 0.2. The delay between the input and output is
the result of the hydraulic response time implied by this model. Note that it is not a pure delay (translation
in time), due to the nonlinearity of the model, and the presence of multiple frequencies of fluctuation in
the input time series. We can nevertheless estimate the dominant phase shift and see that it is related to the
hydraulic response time 1∕g(Q).

To see this, we can linearize the model above around a characteristic discharge Q*, so

g(Q) ≈ g(Q∗) =
Qref

s

(
Q∗

Qref

)b−1

. (A3)

Substituting this into (A2) gives a linear ordinary differential equation (ODE) that can be solved in the
Fourier domain in the form of a product of the input J̃(𝜔) and a transfer function:

Q̃(𝜔) = J̃(𝜔) 1
1 + 2𝜋i𝜔∕g(Q∗)

= J̃(𝜔)H̃(𝜔). (A4)

The phase shift ts induced by the transfer function at the base frequency 𝜔 = 1∕tr is then given by the
negative argument of the transfer function:

ts =
tr

2𝜋
arctan

(
Im(H̃(𝜔))
Re(H̃(𝜔))

)
=

tr

2𝜋
arctan

(
2𝜋

trg(Q∗)

)
. (A5)

Figure 1b shows this relationship with tr = 1, and Figure 1a shows the estimated phase shifts superimposed
on the model results. For small values of trg(Q*), this shows that

ts ≈ 1∕g(Q∗). (A6)

A Taylor series expansion shows that this is true to O((1∕g(Q*))3) accuracy.
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