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Abstract— In this paper, an attack-resilient estimation al-
gorithm is developed for linear discrete-time stochastic sys-
tems with inequality constraints on the actuator attacks and
states. The proposed algorithm consists of optimal estimation
and information aggregation. The optimal estimation provides
minimum-variance unbiased (MVU) estimates, and then they
are projected onto the constrained space in the information
aggregation step. It is shown that the estimation errors and
their covariances from the proposed algorithm are less than
those from the unconstrained algorithm. Moreover, we proved
that the state estimation errors of the proposed estimation
algorithm are practically exponentially stable. A simulation on
mobile robots demonstrates the effectiveness of the proposed
algorithm compared to an existing algorithm.

I. INTRODUCTION

Cyber-Physical Systems (CPS) have been of paramount

importance in power systems, critical infrastructures, trans-

portation networks and industrial control systems for many

decades [1]. Recent cases of CPS attacks have clearly illus-

trated the vulnerability of CPS and raised awareness of the

security challenges in these systems. These include attacks

on large-scale systems, such as the StuxNet virus attack on an

industrial supervisory control and data acquisition (SCADA)

system [2], German steel mill cyber attack [3], and attacks

on modern vehicles [4], [5].

Literature review. Traditionally, cyber-attack detection has

been studied by monitoring the cyber-space misbehavior [6].

With the emergence of CPS, it becomes vitally important

to monitor the physical misbehavior as well, because the

attacks on CPS always have an impact on physical system.

Model-based detection has been intensively studied in recent

years. Attack detection has been formulated as an `0/`∞ op-

timization problem, which is non-deterministic polynomial-

time hard (NP-hard) in [7], [8], [9]. A convex relaxation

has been studied in [7], [9]. On top of this, the worst case

estimation error has been analysed in [9]. A residual-based

detector has been designed for power systems against false

data injection attacks, and the impact of attacks has been

analyzed in [10]. Linear algebraic conditions, as well as

graph-theoretic conditions for detectability and identifiability

have been provided in [11]. A switching mode resilient
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detection and estimation framework for GPS spoofing attacks

has been studied in [12]. A multi-rate controller to detect

zero-dynamic attacks has been designed in [13]. While most

of the detection techniques were passive, some papers have

studied active detection [14], [15], where the control input

is watermarked with a pre-designed scheme that sacrifices

optimality. The attack detection problem has been formulated

as a simultaneous estimation problem of the state and the

unknown input in [16]. The approach has been extended to

nonlinear systems in [17], constrained systems in [18], and

stochastic random set methods in [19]. The aforementioned

detection algorithms rely on stochastic thresholds. For accu-

rate detection, a smaller covariance is desired.

To reduce the covariance, the current paper focuses on

information aggregation. In particular, we consider inequal-

ity state constraints and input constraints. There is a rich

literature on Kalman filter with constraints [20], [21], [22].

We refer to [23] for more details for constrained filtering.

Unknown input estimation algorithm with input constraints

is introduced in [18]. This paper considers both inequality

state and input constraints for unknown input estimation.

Contribution. We design an attack-resilient estimation

algorithm given inequality constraints on the states and the

attacks. The proposed algorithm consists of actuator attack

estimation and state estimation. For each step, we design an

optimal linear estimator without considering the constraints

and then project the estimates onto the constrained space. We

prove that the projection reduces the estimation error, as well

as the error covariance. The practical exponential stability

of the estimation error is proved formally. A numerical

simulation on mobile robots shows the performance of the

proposed attack-resilient estimation algorithm. The proofs of

the lemmas and theorems are omitted due to the page limit.

The complete version of the current paper can be found

in [24].

II. PRELIMINARIES

This section discusses some preliminary knowledge in-

cluding notations, motivation, and problem statement.

A. Notations

The following notations are adopted: We use the sub-

script k of xk to denote the time index; R
n denotes the n-

dimensional Euclidean space; R
n⇥m denotes the set of all

n⇥m real matrices; A> A�1, A†, diag(A), tr(A) and rk(A)
denote the transpose, inverse, Moore-Penrose pseudoinverse,

diagonal, trace and rank of matrix A, respectively; I denotes

the identity matrix with an appropriate dimension; k · k
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Algorithm 1 Attack-resilient Estimation with State and Input

Constraint: Akdk  bk and Bkxk  ck

Input: x̂k�1|k�1; Px
k�1;

Output: d̂k�1; Pd
k�1; x̂k|k; Px

k .

. Prediction
1: x̂k|k�1 = Ak�1x̂k�1|k�1 +Bk�1uk�1;

2: Px
k|k�1

= Ak�1Px
k�1A>

k�1 +Qk�1;

. Actuator attack estimation
3: R̃k =CkPx

k|k�1
C>

k +Rk;

4: Mk = (G>
k�1C>

k R̃�1
k

CkGk�1)
�1G>

k�1C>
k R̃�1

k
;

5: d̂u
k�1 = Mk(yk �Ck x̂k|k�1);

6: P
d,u
k�1 = (G>

k�1C>
k R̃�1

k
CkGk�1)

�1;

7: Pxd
k�1 =�Px

k�1A>
k�1C>

k M>
k

8: d̂k�1 = argmin
d

(d � d̂u
k�1)

>(Pd,u
k�1)

�1(d � d̂u
k�1)

subject to Ak�1d  bk�1;
9: ¯Ak�1 and b̄k�1 corresponding to active set;

10: γd
k�1 = P

d,u
k�1

¯A >
k�1(

¯Ak�1P
d,u
k�1

¯A >
k�1)

�1;

11: Pd
k�1 = (I � γd

k�1
¯Ak�1)P

d,u
k�1(I � γd

k�1
¯Ak�1)

>;
. Time update

12: x̂?
k|k = x̂k|k�1 +Gk�1d̂u

k�1;

13: P?x
k = Ak�1Px

k�1A>
k�1 +Ak�1Pxd

k�1G>
k�1

+Gk�1(P
xd
k�1)

>A>
k�1 +Gk�1Pd

k�1G>
k�1

�Gk�1MkCkQk�1 �Qk�1C>
k M>

k G>
k�1 +Qk�1;

14: R̃?
k =CkP?x

k C>
k +Rk �CkGk�1MkRk �RkM>

k G>
k�1C>

k ;
. Measurement update

15: Lk = (P?x
k C>

k �Gk�1MkRk)R̃
?†
k

;
16: x̂u

k|k = x̂?
k|k +Lk(yk �Ck x̂?

k|k);

17: P
x,u
k

= (I �LkCk)Gk�1MkRkL>
k +LkRkM>

k G>
k�1(I �LkCk)

>

+(I �LkCk)P
?x
k (I �LkCk)

>+LkRkL>
k ;

18: x̂k|k = argmin
x

(x� x̂u
k|k)

>(Px,u
k

)�1(x� x̂u
k|k)

subject to Bkx  ck;
19: B̄k and c̄k corresponding to active set;
20: γx

k = P
x,u
k

B̄>
k (B̄kP

x,u
k

B̄>
k )�1;

21: Px
k = (I � γx

k B̄k)P
x,u
k

(I � γx
k B̄k)

>;

attack estimate d̂u
k in (6). In (7), the output yk is used to

correct the current state estimate as in KF, where Lk is

the filter gain that is chosen to minimize the state error

covariance P
x,u
k . The state constraints are applied in (8) to

obtain the constrained state estimation x̂k|k. The algorithm is

summarized in Fig. 1 and presented in Algorithm 1.

B. Algorithm Derivation

1) Prediction: Given the previous state estimate x̂k�1|k�1,

the current state can be predicted by (3). Its error covariance

matrix is

Px
k|k�1 , E[x̃k|k�1x̃>k|k�1] = Ak�1Px

k�1A>
k�1 +Qk�1,

where Px
k ,E[x̃k|kx̃>

k|k] is the state estimation error covariance.

2) Actuator attack estimation: The actuator attack estima-

tor in (4) utilizes the difference between the measured output

yk and the predicted output Ckx̂k|k�1. Substituting (1) and (3)

into (4), we have

d̂u
k�1 =Mk(CkAk�1x̃k�1|k�1 +CkGk�1dk�1 +Ckwk�1 + vk),

which is a linear function of the actuator attack dk. Applying

the method of least squares from [35], which gives linear

minimum-variance unbiased estimates, we can get the opti-

mal gain in actuator attack estimation:

Mk = (G>
k�1C>

k R̃�1
k CkGk�1)

�1G>
k�1C>

k R̃�1
k ,

where R̃k ,CkPx
k|k�1

Ck +Rk. It error covariance matrix is

Pd
k�1 = MkR̃kM>

k = (G>
k�1C>

k R̃�1
k CkGk�1)

�1
.

When apply the constraint in (2), the problem is formulated

as the constrained convex optimization problem:

d̂k�1 = argmin
d

(d � d̂u
k�1)

>W d
k�1(d � d̂u

k�1)

subject to Ak�1d  bk�1,

(9)

where W d
k�1 can be any positive definite symmetric weighting

matrix. In the current paper, we choose W d
k�1 = (Pd,u

k�1)
�1

which results in the smallest error covariance as shown

in [20]. From Karush-Kuhn-Tucker (KKT) conditions of

optimality, we can find the corresponding active constraints.

We denote by ¯Ak and b̄k the rows of Ak and the elements of

bk corresponding to the active constraints. Then (9) becomes

d̂k�1 = argmin
d

(d � d̂u
k�1)

>W d
k�1(d � d̂u

k�1)

subject to ¯Ak�1d = b̄k�1.

The solution of the above program can be found by

d̂k�1 = d̂u
k�1 � γd

k�1(
¯Ak�1d̂u

k�1 � b̄k�1),

where γd
k�1 , (W d

k�1)
�1 ¯A >

k�1(
¯Ak�1(W

d
k�1)

�1 ¯A >
k�1)

�1. Its es-

timation error is

d̃k�1 = (I � γd
k�1

¯Ak�1)d̃
u
k�1 + γd

k�1(
¯Ak�1dk�1 � b̄k�1). (10)

The error covariance matrix can be found by

Pd
k�1 , E[d̃k�1d̃>

k�1] = (I � γd
k�1

¯Ak�1)P
d,u
k�1(I � γd

k�1
¯Ak�1)

>
,

under the assumption that γd
k�1(

¯Ak�1dk�1� b̄k�1)= 0 in (10).

The cross error covariance matrix of the state estimate and

the actuator attack estimate is

Pxd
k�1 =�Px

k�1A>
k�1C>

k M>
k .

3) Time update: Given the actuator attack estimate d̂u
k�1,

the state prediction x̂k|k�1 can be updated as in (6). We can

derive the error covariance matrix of x̂?
k|k as

P?x
k , E[(x̃?k|k)(x̃

?

k|k)
>] = Ak�1Px

k�1A>
k�1 +Ak�1Pxd

k�1G>
k�1

+Gk�1Pdx
k�1A>

k�1 +Gk�1Pd
k�1Ĝ>

k�1 +Qk�1

�Gk�1MkCkQk�1 �Qk�1C>
k M>

k G>
k�1,

where Pdx
k�1 = (Pxd

k�1)
>.

4) Measurement update: In this step, the measurement

yk is used to update the propagated estimate x̂?
k|k as shown

in (7). The covariance matrix of the state estimation error is

P
x,u
k , E[(x̃u

k|k)(x̃
u
k|k)

>] = (I �LkCk)Gk�1MkRkL>
k +LkRkL>

k

+LkRkM>
k G>

k�1(I �LkCk)
>+(I �LkCk)P

?x
k (I �LkCk)

>
.

The gain matrix Lk is chosen by minimizing the trace norm

of P
x,u
k : minLk

tr(Px,u
k ). The solution of the program is given

by
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Lk = (P?x
k C>

k �Gk�1MkRk)R̃
?†
k ,

where R̃?

k ,CkP?x
k C>

k +Rk �CkGk�1MkRk �RkM>
k G>

k�1C>
k .

Now we apply the constraint in (2) to the state estimate

x̂u
k|k. We formalize the state estimation with the constraints

as the constrained convex optimization problem:

x̂k|k = argmin
x

(x� x̂u
k|k)

>W x
k (x� x̂u

k|k)

subject to Bkx  ck,

(11)

where W x
k = (Px,u

k )�1 for the smallest error covariance.

We denote by B̄k and c̄k the rows of Bk and the elements

of ck corresponding to the active constraints of (11). Using

the active constraints, we reformulate the problem (11) as

x̂k|k = argmin
x

(x� x̂u
k|k)

>W x
k (x� x̂u

k|k)

subject to B̄kx = c̄k.

The solution of the above problem is given by

x̂k|k = x̂u
k|k � γx

k (B̄kx̂u
k|k � c̄k),

where γx
k , (W x

k )
�1B̄>

k (B̄k(W
x
k )

�1B̄>
k )

�1. Under the as-

sumption that γx
k (B̄kxk � c̄k) = 0 holds, the state estimation

error covariance matrix can be expressed as Px
k = Γ̄kP

x,u
k Γ̄

>
k ,

where Γ̄k , I � γx
k B̄k.

IV. ANALYSIS

In Section IV-A, we show that the projection induced

by inequality constraints improves attack-resilient estimation

and detection by decreasing the state estimation error and

false negative rates. However, the projection induces a biased

estimate as well [18]. In this context, we will seek to prove

practical exponential stability, as shown in Section IV-B. All

the proofs of the lemmas and theorems can be found in [24].

A. Performance Improvement through Constraints

The projection reduces the estimation errors and the co-

variance, as formulated in Theorem 4.1.

Theorem 4.1: We have kx̃k|kk  kx̃u
k|kk and kd̃kk  kd̃u

kk;

Pk  Pu
k , and Pd

k  P
d,u
k . Strict inequality holds if rk(B̄k) 6= 0,

and rk( ¯Ak) 6= 0, respectively.

The properties in Theorem 4.1 are desired for accurate

estimation as well as attack detection. In particular, if the

size of attack is smaller than the statistical threshold, the

χ2 detector cannot distinguish the attack from the noise.

Given dk 6= 0, the covariance reduction implies the threshold

reduction:

d>
k (Pd,u

k )�1dk  d>
k (Pd

k )
�1dk,

where the test value d>
k (Pd

k )
�1dk may reject the null hypoth-

esis, while d>
k (Pd,u

k )�1dk cannot. Moreover, the estimation

error reduction implies an accurate test value:

kd>
k (Pk)

�1dk � (d̂k)
>(Pk)

�1d̂kk

 kd>
k (Pk)

�1dk � (d̂u
k )

>(Pk)
�1d̂u

kk,

which further reduces false negative rates.

B. Stability Analysis

Although the projection reduces the estimation errors and

the covariance as shown in Theorem 4.1, it trades the

unbiased estimation off according to Proposition 6 in [18].

This is because we can guarantee B̄kxk  c̄k instead of

B̄kxk = c̄k, but the unconstrained estimate x̂u
k|k is projected

onto B̄kxk = c̄k. In the absence of the projection, Algorithm 1

reduces to the algorithm in [33], which is unbiased.

It is essential to construct an update law x̃k|k from x̃k�1|k�1

to analyze stability of the estimation error. However, the

construction is not straight forward comparing to that in

filtering with equality constraints [18], [20] or filtering

without constraints [33], [36]. Especially, since B̄kxk  c̄k,

it is difficult to find the exact relation between x̃k|k and x̃u
k|k:

x̃k|k = x̃u
k|k � γx

k (B̄kx̂u
k|k � c̄k) 6= (I � γx

k B̄k)x̃
u
k|k.

To address this issue, we first decompose the estimation

error x̃k|k into two orthogonal spaces

x̃k|k = (I � γx
k B̄k)x̃k|k + γx

k B̄kx̃k|k (12)

and then, we apply the following lemmas to each term.

Lemma 4.1: It holds that (I�γx
k B̄k)x̃k|k = (I�γx

k B̄k)x̃
u
k|k.

Lemma 4.2: It holds that γx
k B̄kx̃k|k = αkγx

k B̄kx̃u
k|k, where

αk = diag(α1
k , · · · ,α

n
k ) and α i

k , (γx
k B̄kx̃k)(i)((γ

x
k B̄kx̃u

k)(i))
†

2 [0,1) for i = 1, · · · ,n.

According to Lemmas 4.1 and 4.2, the errors in the space

I � γx
k B̄k remain identical after the projection, while the

errors in the space γx
k B̄k reduce through the projection. By

Lemmas 4.1 and 4.2, (12) becomes

x̃k|k = Γkx̃u
k|k,

where Γk , (I � γx
k B̄k) +αkγx

k B̄k. Note that αk is an un-

known matrix and thus cannot be used for the algorithm.

We use it only for analytical purposes.

Now under the following assumptions, we present the

stability of Algorithm 1.

Assumption 4.1: It holds that rk(B) < n. There exist ā,

c̄y, ḡ, m̄,
¯
q,

¯
β , β̄ > 0, such that the following holds for all

k � 0: kAkk  ā,kCkk  c̄y,kGkk  ḡ,kMkk  m̄,Qk �
¯
qI.

It is assumed that rk(B) < n; i.e., the number of the state

constrains are less than the number of state variables. The

rest of Assumption 4.1 is widely used in literature on

extended KF [37] and nonlinear ISE [17].

Theorem 4.2: Consider Assumption 4.1 and assume that

there exist non-negative constants
¯
p and p̄ such that

¯
pI 

P
x,u
k  p̄I holds for all k. Then the estimation errors x̃k|k and

d̃k are practically exponentially stable in mean square; i.e.,

there exist constants ax,ad ,bx,bd ,cx,cd such that, for all k,

E[kx̃kk
2] axe�bxk

E[kx̃0k
2]+ cx

E[kd̃kk
2] ade�bdk

E[kd̃0k
2]+ cd .

Theorem 4.2 holds under the assumption of boundedness

of P
x,u
k . One of the sufficient conditions is the uniform

detectability of the transformed system as shown in The-

orem 4.3.
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Theorem 4.3: If the pair (Ck, Ãk�1) is uniformly de-

tectable, then there exist non-negative constants
¯
p and

p̄ such that for all k
¯
pI  P

x,u
k  p̄I, where Ãk�1 ,

(I � GkMk(CkGk�1Mk)
�1Ck)Āk�1Γ̄k�1 and Āk�1 = (I �

Gk�1MkCk)Ak�1.

V. NUMERICAL SIMULATION

We simulate a scenario shown in Fig. 2, where a two-agent

system that has state and input constraints gets attacked and

moves to the attacker’s desired place.

100

Attack

Fig. 2: Illustration of the simulation scenario: (i) red dash line
denoted the path after attack; (ii) 100 denotes the minimum distance
difference between two agents by physical state constraint.

A. Single Agent Model

We consider a double integrator dynamic model for each

agent i 2 {1, · · · ,n}, where n denotes the number of agents

in the system. In this simulation, the subscript (i) is used to

represent the agent i’s vector/matrix; e.g., x
(i)
k and A

(i)
k denote

the state and the system matrix of agent i. Its discrete time

state vector x
(i)
k that considers planar position and velocity

at time step k, is given by

x
(i)
k = [r

(i)
x,k,r

(i)
y,k,v

(i)
x,k,v

(i)
y,k]

>
,

where r
(i)
x,k, r

(i)
y,k denote x,y position coordinates and v

(i)
x,k,

v
(i)
y,k denote velocity coordinates. The actuator attack in this

simulation is constrained by the acceleration limit, and the

state is constrained due to the speed limit and required

minimum distance between the two agents:

|d
(i)
k (n)| 20, |v

(i)
x,k| 80, |v

(i)
y,k| 80;

|r
(i)
x,k � r

( j)
x,k |� 100 or |r

(i)
y,k � r

( j)
y,k |� 100,

where (n) denotes the nth element in the vector.

Each model is discretized into the following matrices with

sampling time of 0.1 seconds:

A
(i)
k =









1 0 0.1 0

0 1 0 0.1

0 0 1 0

0 0 0 1









, B
(i)
k = G

(i)
k =









0 0

0 0

0.1 0

0 0.1









,

and the output y
(i)
k is the sensor measurement of positions

and velocity; i.e., C
(i)
k = I. The covariance matrices of noises

are chosen as Q
(i)
k = 0.1I, and R

(i)
k = 0.01I.

B. Multi-agent System Model

The multi-agent system of n agents, where n 2 N,

can be written in the form of system (1), where Ak

and Ck are diagonal matrices as follows: diag(Ak) =

(A(1), · · · ,A(i)), diag(Ck) = (C
(1)
k , · · · ,C

(i)
k ); Bk = Gk ,

[B(1), · · · ,B(i)]>. The state vector, input vector, actuator

attack and sensor measurement are denoted by xk ,

[x
(1)
k , · · · ,x

(i)
k ]>, uk , [u

(1)
k , · · · ,u

(i)
k ]>, dk , [d

(1)
k , · · · ,d

(i)
k ]>

and yk , [y
(1)
k , · · · ,y

(i)
k ]>, respectively.

C. Attack Scenario

We consider the scenario that the attacker injects the

identical actuator attack to the both agents so that they move

horizontally to the right at same time. The unknown actuator

attacks are

dk(1) = dk(3) =







20 if 100n  k < 40+100n,

0 if 40+100n  k < 60+100n,

�20 if 60+100n  k < 100+100n,

dk(2) = dk(4) = 0,

where n 2 {1,2, · · · ,9}.

D. Simulation Result

Fig. 3: Unconstrained and constrained estimation of the actuator
attack dk(1). Trace of unconstrained estimate error covariance of the

actuator attack tr(Pd,u) and constrained estimate error covariance

of the actuator attack tr(Pd).

Figures 3 and 4 show a comparison of the actuator attack

and state estimation with and without the constraints. When

the actuator attack estimate and the state estimate are pro-

jected to the constrained space, the constrained estimations

have smaller estimation error and smaller error covariance

as expected.

VI. CONCLUSION

This paper studies attack-resilient estimation algorithm for

time-varying stochastic systems given inequality constraints

on the states and actuator attacks. We formally prove that

estimation errors and their covariances are less than those

from unconstrained algorithms, which is a desired condition
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Fig. 4: Unconstrained and constrained estimation of states (distance
difference of two agents and speed of one agent). Trace of uncon-
strained estimate error covariance of state tr(Px,u) and constrained
estimate error covariance of state tr(Px).

for attack detection in stochastic systems. We prove that

the estimation errors are practically exponentially stable. A

simulation is presented to reveal the attack-resilient property

and efficiency of the proposed algorithm in attack detection.
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