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Attack-resilient Estimation for Linear Discrete-time Stochastic Systems
with Input and State Constraints
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Abstract—1In this paper, an attack-resilient estimation al-
gorithm is developed for linear discrete-time stochastic sys-
tems with inequality constraints on the actuator attacks and
states. The proposed algorithm consists of optimal estimation
and information aggregation. The optimal estimation provides
minimum-variance unbiased (MVU) estimates, and then they
are projected onto the constrained space in the information
aggregation step. It is shown that the estimation errors and
their covariances from the proposed algorithm are less than
those from the unconstrained algorithm. Moreover, we proved
that the state estimation errors of the proposed estimation
algorithm are practically exponentially stable. A simulation on
mobile robots demonstrates the effectiveness of the proposed
algorithm compared to an existing algorithm.

I. INTRODUCTION

Cyber-Physical Systems (CPS) have been of paramount
importance in power systems, critical infrastructures, trans-
portation networks and industrial control systems for many
decades [1]. Recent cases of CPS attacks have clearly illus-
trated the vulnerability of CPS and raised awareness of the
security challenges in these systems. These include attacks
on large-scale systems, such as the StuxNet virus attack on an
industrial supervisory control and data acquisition (SCADA)
system [2], German steel mill cyber attack [3], and attacks
on modern vehicles [4], [5].

Literature review. Traditionally, cyber-attack detection has
been studied by monitoring the cyber-space misbehavior [6].
With the emergence of CPS, it becomes vitally important
to monitor the physical misbehavior as well, because the
attacks on CPS always have an impact on physical system.
Model-based detection has been intensively studied in recent
years. Attack detection has been formulated as an {y/l. oOp-
timization problem, which is non-deterministic polynomial-
time hard (NP-hard) in [7], [8], [9]. A convex relaxation
has been studied in [7], [9]. On top of this, the worst case
estimation error has been analysed in [9]. A residual-based
detector has been designed for power systems against false
data injection attacks, and the impact of attacks has been
analyzed in [10]. Linear algebraic conditions, as well as
graph-theoretic conditions for detectability and identifiability
have been provided in [11]. A switching mode resilient
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detection and estimation framework for GPS spoofing attacks
has been studied in [12]. A multi-rate controller to detect
zero-dynamic attacks has been designed in [13]. While most
of the detection techniques were passive, some papers have
studied active detection [14], [15], where the control input
is watermarked with a pre-designed scheme that sacrifices
optimality. The attack detection problem has been formulated
as a simultaneous estimation problem of the state and the
unknown input in [16]. The approach has been extended to
nonlinear systems in [17], constrained systems in [18], and
stochastic random set methods in [19]. The aforementioned
detection algorithms rely on stochastic thresholds. For accu-
rate detection, a smaller covariance is desired.

To reduce the covariance, the current paper focuses on
information aggregation. In particular, we consider inequal-
ity state constraints and input constraints. There is a rich
literature on Kalman filter with constraints [20], [21], [22].
We refer to [23] for more details for constrained filtering.
Unknown input estimation algorithm with input constraints
is introduced in [18]. This paper considers both inequality
state and input constraints for unknown input estimation.

Contribution. We design an attack-resilient estimation
algorithm given inequality constraints on the states and the
attacks. The proposed algorithm consists of actuator attack
estimation and state estimation. For each step, we design an
optimal linear estimator without considering the constraints
and then project the estimates onto the constrained space. We
prove that the projection reduces the estimation error, as well
as the error covariance. The practical exponential stability
of the estimation error is proved formally. A numerical
simulation on mobile robots shows the performance of the
proposed attack-resilient estimation algorithm. The proofs of
the lemmas and theorems are omitted due to the page limit.
The complete version of the current paper can be found
in [24].

II. PRELIMINARIES

This section discusses some preliminary knowledge in-
cluding notations, motivation, and problem statement.

A. Notations

The following notations are adopted: We use the sub-
script k of x; to denote the time index; R" denotes the n-
dimensional Euclidean space; R"*™ denotes the set of all
n x m real matrices; AT A~!, AT, diag(A), tr(A) and rk(A)
denote the transpose, inverse, Moore-Penrose pseudoinverse,
diagonal, trace and rank of matrix A, respectively; I denotes
the identity matrix with an appropriate dimension; || - ||
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denotes the standard Euclidean norm for vector or an induced
matrix norm; E[-] denotes the expectation operator. For a
symmetric matrix S, § > 0 and S > O indicates that S is
positive definite and positive semi-definite, respectively. For
a vector a, (a)(i) = a(i) denotes the i’ element in the vector
a. Finally a, a4, a £ 4 — 4 denote the true value, estimate and
estimation error of a.

B. Motivation

1) x? test for detection: In attack detection for stochastic
systems, the x2 test is widely used [15], [25].

Given a fixed attack input v # 0 and attack input estimate
v # 0, a smaller covariance induces a larger normalized
test value 'Y !9, which decreases false negative rates.
To reduce the covariance, the minimum variance estimation
method is being considered intensively [26], [27], [28]. The
current paper pursues an optimal filter design technique.

2) Constraints: It has been shown that constraints can be
used to further reduce the covariance in optimal filtering;
i.e., state constraints in Kalman filter (KF) [22], [23], and
input constraints in input and state estimation (ISE) [18]. We
consider linear filtering with both input and state constraints
to reduce false negative rates in attack detection and to
achieve accurate state estimation. The constraints are induced
by unmodeled dynamics and operational processes. Some of
these examples include vision-aided inertial navigation [29],
target tracking [30] and power systems [18], [31].

C. Problem Statement

Consider the linear time-varying discrete-time stochastic
system !:

X1 = Ay + Brug + Grdy +wy,

)
i = Cexy + vy,

where x; € R", u; € R™, di € R? and y; € R are the state,
the known input, the unknown actuator attack and sensor
measurement, respectively. Noises w; and v, are assumed
to be independent identically distributed (i.i.d.) Gaussian
random variables with zero means and covariances Q; £
E[wiw, ] >0 and Ry £ E[vgv] ] > 0 respectively. Moreover,
vy is also uncorrelated with the initial state xo and process
noise wy. We assume that rk(CyGy_1) = p as in [32], [33].

In the cyber-space, digital attack signals could be uncon-
strained, but their impact on the physical world is restricted
by physical and operational constraints. Any physical con-
straints and ability limitations on states and actuator attacks
are presented by known inequality constraints:

Fdy < by, Brxy < cx. 2

We assume that the feasible sets of the constraints .@7.d), <
by and HBix; < ¢ are non-empty. The vectors by and cy,
matrices <7, By, Ar,Bi,Cr and Gy are known and bounded.

The estimator design problem, addressed in this paper,
can be stated as: Given a linear discrete-time stochastic

! The current paper considers a general formulation for the attack input
matrix. If dj, is injected into the input, then Gy = By. If dy is directly injected
into the system, then Gy =1I.

system (1) with constraints on the input and state (2),
design an attack-resilient and stable filtering algorithm that
simultaneously estimates the system state and the actuator
attack.

III. ALGORITHM DESIGN

In this section, we design an attack-resilient estimation
algorithm with inequality constraints. The algorithm design
is motivated by unknown input estimation [32], [33], [34],
and a projection method for inequality constraint [18], [23].
We design an estimation algorithm as in [32], [33], [34]
without considering the constraint, then project the estimates
using inequality constraints as in [18], [23].
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Fig. 1: The algorithm consists of two parts: optimal estimation and
information aggregation.

A. Algorithm Statement
The proposed algorithm can be summarized as follows:
1) Prediction:
Rkk—1 = Ak—181k—1 + Br—1ug—1 (3)
2) Actuator attack estimation:
di_y = Mi(vk — Cifp—1) 4)
-y = argmin(d —d{ ) (F2)™ (d —diy)
subject to o7,_1d < by_ ®))
3) Time update:
e =B + Gi—1dy_, (6)
4) Measurement update:
e = T+ L — Cikye) (7
fe = argmin(x —£,) " (B") 7 (v — 20
szbject to Bix < ¢y, ®)

Given the previous state estimate £;_;_;, the defender
can predict the current state £ under the assumption
that the unknown actuator attack is absent (i.e., dy_1 = 0)
in (3). The estimation of the unconstrained actuator attack
af,’f_l can be obtained by observing the difference between the
predicted output Cify 1 and the measured output y; in (4),
and M is the filter gain that is chosen to minimize the input
error covariances P,fl . Then, we apply the constraints on
the unconstrained actuator attack estimate in (5) and obtain
the constrained actuator attack estimation dAk,l. The state
prediction £, can be updated incorporating the actuator
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Algorithm 1 Attack-resilient Estimation with State and Input
Constraint: #dy < by and Bix; < ci
Input: %15 B_s
Output: dy_y; P,il; Ks B
> Prediction
I Ryt = Ak 18— 1 =1 + Br— 1413

. — T 5

2 Py = A B A Gt
> Actuator attack estimation

3: Ry :CkP,f‘k_IC/j‘i'Rki
4 M= (G_,C/R'CGr1) "G CI R
5t di | = M3k — Cifp—1)s

L opdu T Tp—1 —1.
6: Pkgl = (kalckTRk Tckqgcfl) s
7 By = =B A G My .
8 dir_1 —argmin(d di ) (Pkdu ) Hd—d )

subject to _1d < by_q;
9: of_ and by_; corresponding to active set;

10: % =P (G P AT )
P == G P U= )T
> Time update )
12: XAZ\k :xAk‘k,l +Gk_1d;€[71;
13 B = A B AL A RE G
+G1 (B ) TAL + Gt B Gy
—Gr A MyCrQp—1 — Qk—1C{ M G + Qx_1:
14: R} = G PFCl + Ry — GGy | MRy — RiM,! G/ C/];
> Measurement update
15: Lk (P*kaT Gk IMkRk)R 5
16: )?Z‘k xk\k+Lk(yk Ckxk\k)
17: P = (I — LiCy) G 1 My R L] + LiReM, G (I — LiCy)
+(I = LiC) P (I — LiCy) T + LR Ly 5
18: Sy = argmin(x—fz‘k)T(P,:’”)*l(x—)?z‘k)
siclbject to Zix < cx;

19: % and ck corresponding to active set;
200 ¥ =P B (PP B )]
21: BY = (- %P, u(l an@k) ;

attack estimate cf,’: in (6). In (7), the output y; is used to
correct the current state estimate as in KF, where L; is
the filter gain that is chosen to minimize the state error
covariance P". The state constraints are applied in (8) to
obtain the constrained state estimation £;;. The algorithm is
summarized in Fig. 1 and presented in Algorithm 1.

B. Algorithm Derivation

1) Prediction: Given the previous state estimate £;_ 1,
the current state can be predicted by (3). Its error covariance
matrix is

Plf|k—1 = Eixk\k—lilgkfli :Ak,1$71A2_1 + Ok-1

where P} = ]E[)’Ek|ki,j‘k] is the state estimation error covariance.
2) Actuator attack estimation: The actuator attack estima-
tor in (4) utilizes the difference between the measured output
Yk and the predicted output Cyfy;— . Substituting (1) and (3)
into (4), we have
df | =My (CeAr1%_1je—1 + CeGr1di—1 + Cowi—1 + ),

which is a linear function of the actuator attack di. Applying
the method of least squares from [35], which gives linear

minimum-variance unbiased estimates, we can get the opti-
mal gain in actuator attack estimation:

M = (G G R, ' CGiGr1) ' G G R,
where R, £ Ck lk— 1Ck + Ry 1t error covariance matrix is
Pl = MRM = (G_\C/ R 'CiGy—1) ™!

When apply the constraint in (2), the problem is formulated
as the constrained convex optimization problem:

di—y = argmin(d —dj_,) "W (d —d}_,)
d ©))

subject to <7 _1d < by_1q,
where W,f_l can be any positive definite symmetric weighting

matrix. In the current paper, we choose Wkd_ | = (P,i""l)’

which results in the smallest error covariance as shown
in [20]. From Karush-Kuhn-Tucker (KKT) conditions of
optimality, we can find the corresponding active constraints.
We denote by .27 and by the rows of .27 and the elements of
by, corresponding to the active constraints. Then (9) becomes

Cz\kfl = argmin(d — dA]Lcl—l)TWkd—l (d— jl?—l)
d

subject to o%_1d = by_1.
The solution of the above program can be found by
de-1 = df_y = f 1 (Fhadi_y = bi-1),
where ¥, £ (WL )"\l (o (WL)) L) s es-
timation error 18
di—y = (I =Y o) di_ + Y\ (Ferdi—y —Dr—r). (10)
The error covariance matrix can be found by

P £ Eldd )= —A )P T =Y )T,

under the assumption that y,‘f_l (,;z{k, 1di—1 — l_yk,l) =01in (10).
The cross error covariance matrix of the state estimate and
the actuator attack estimate is
d T ~Ta,T
Py = =B Ay G My

3) Time update: Given the actuator attack estimate d}?ﬁl,
the state prediction £;;_; can be updated as in (6). We can
derive the error covariance matrix of )?Z‘ ¢ 8s

P2 B0 (G) ] = Al B AL H A R Gy
+ kalP,fflA,L + kalplf—] Gy + Qi1
— Gk 1 MyCrQs—1 — Ok 1C{ M G}y,
where P& = (P )T,
4) Measurement update: In this step, the measurement

Yk 1s used to update the propagated estimate ﬁz‘k as shown
in (7). The covariance matrix of the state estimation error is

P& E[(J?Z\k)(%kf] =
+ LReM, G} (1 — L) T +

(I — LiCi) Gy 1 MRy L] + LR Ly
+ (I = LiCi) P (I — LiCr)

The gain matrix L; is chosen by minimizing the trace norm
of P*: miny, tr(P;™). The solution of the program is given
by
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Ly = (P°C{ — Gy 1 MkRORY,

where R; £ CtP*C]l + Ry — Cy Gy \ MRy, — RiM] G, C.

Now we apply the constraint in (2) to the state estimate
£Z|k. We formalize the state estimation with the constraints
as the constrained convex optimization problem:

Fipe = argmin(x fﬁz‘k)Tka(x = Xe)
x (11)
subject to Bx < ¢y,

where W = (P, *)~1 for the smallest error covariance.

We denote by %y, and ¢ the rows of %y and the elements
of ¢ corresponding to the active constraints of (11). Using
the active constraints, we reformulate the problem (11) as

A . au N\ Tyrx AU
T = arg}r{mn(x — X)W (= S0
subject to Zjx = ¢y.

The solution of the above problem is given by
B = T — W (B — &),

where ¥ £ (W) 1B (% (WF) 12 )~!. Under the as-
sumption that ¥ (%rx — ¢x) = 0 holds, the state estimation
error covariance matrix can be expressed as P} = r WP T
where fk £ I— y,f%_’k

IV. ANALYSIS

In Section IV-A, we show that the projection induced
by inequality constraints improves attack-resilient estimation
and detection by decreasing the state estimation error and
false negative rates. However, the projection induces a biased
estimate as well [18]. In this context, we will seek to prove
practical exponential stability, as shown in Section IV-B. All
the proofs of the lemmas and theorems can be found in [24].

A. Performance Improvement through Constraints

The projection reduces the estimation errors and the co-
variance, as formulated in Theorem 4.1.

Theorem 4.1: We have ||| < ||)Zz‘k|| and ||di|| < [|d¥|);
P, < P!, and P4 < P, Strict inequality holds if rk(%;) # 0,
and rk(<7;,) # 0, respectively.

The properties in Theorem 4.1 are desired for accurate
estimation as well as attack detection. In particular, if the
size of attack is smaller than the statistical threshold, the
x? detector cannot distinguish the attack from the noise.
Given dj # 0, the covariance reduction implies the threshold
reduction:

di (P i < df (B) i,
where the test value d;| (P?)~!dy may reject the null hypoth-

esis, while d,;r (P,f ‘“)_ldk cannot. Moreover, the estimation
error reduction implies an accurate test value:

dd (Pe) " die— (di) T (Pe) " de||
< \ld{ (P)di— (d) T (P)~dyl,

which further reduces false negative rates.

B. Stability Analysis

Although the projection reduces the estimation errors and
the covariance as shown in Theorem 4.1, it trades the
unbiased estimation off according to Proposition 6 in [18].
This is because we can guarantee Zx; < ¢; instead of
PByxy = ¢, but the unconstrained estimate )2,’:‘ « 1s projected
onto %yx; = &. In the absence of the projection, Algorithm 1
reduces to the algorithm in [33], which is unbiased.

It is essential to construct an update law %y from Xy
to analyze stability of the estimation error. However, the
construction is not straight forward comparing to that in
filtering with equality constraints [18], [20] or filtering
without constraints [33], [36]. Especially, since %x; < ¢,
it is difficult to find the exact relation between %, and i]’gl i

Ty = T — N ( By — &) # (1= K BT

To address this issue, we first decompose the estimation
error &, into two orthogonal spaces

Sk = (I = RB)Fui + Vi Biik

and then, we apply the following lemmas to each term.
Lemma 4.1: It holds that (7 —y; %)X = (I — y,f%’k))?,'jlk.
Lemma 4.2: It holds that ¥} %% = akﬁ@kfz‘k, where
oy = diag (o}, o) and of 2 (328 ()((F B8 ()
€0,1) fori=1,---,n.
According to Lemmas 4.1 and 4.2, the errors in the space
I — ¥; %) remain identical after the projection, while the

errors in the space y,f%_’k reduce through the projection. By
Lemmas 4.1 and 4.2, (12) becomes

12)

~ ~U
Xkl = 1—‘kx]<|k7

where Ty = (I — y{ %) + oY Pi. Note that o is an un-
known matrix and thus cannot be used for the algorithm.
We use it only for analytical purposes.

Now under the following assumptions, we present the
stability of Algorithm 1.

Assumption 4.1: It holds that rk(%) < n. There exist a,
¢y, & m, q, B, B >0, such that the following holds for all
k> 0: A < a.IC < &, IGell < & [Mil| < m, O > gl
It is assumed that rk(%) < n; i.e., the number of the state
constrains are less than the number of state variables. The
rest of Assumption 4.1 is widely used in literature on
extended KF [37] and nonlinear ISE [17].

Theorem 4.2: Consider Assumption 4.1 and assume that
there exist non-negative constants p and p such that pl <
P < pl holds for all k. Then the estimation errors fk‘k_ and
dy are practically exponentially stable in mean square; i.e.,
there exist constants ay,ay,by,by,cy,cq such that, for all k,

E[[[%]1%] < ave™ ™ E[|1%]|] + cx

E[lldell2] < age " B[|do 2] + ca.

Theorem 4.2 holds under the assumption of boundedness
of P*. One of the sufficient conditions is the uniform
detectability of the transformed system as shown in The-
orem 4.3.
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Theorem 4.3: If the pair (Ck,Ak,l) is uniformly de-
tectable, then there exist non-negative constants p and
p such that for all k pI < P < pl, where A £
(I = GiMi(CkGr—1 M) ' CR)Ay1 Tk and Ary = (I —
G 1MiCr) A1

V. NUMERICAL SIMULATION

We simulate a scenario shown in Fig. 2, where a two-agent
system that has state and input constraints gets attacked and
moves to the attacker’s desired place.

=
e
Sy 7

Attack %

Fig. 2: Illustration of the simulation scenario: (i) red dash line
denoted the path after attack; (ii) 100 denotes the minimum distance
difference between two agents by physical state constraint.

A. Single Agent Model

We consider a double integrator dynamic model for each
agent i € {1,--- ,n}, where n denotes the number of agents
in the system. In this simulation, the subscript (i) is used to
represent the agent i’s vector/matrix; e.g., x,(() and A() denote
the state and the system matrix of agent i. Its dlscrete time
state vector x,((l> that considers planar position and velocity
at time step k, is given by

(i)_[(i) () @ (i)]T

X = g Ty Vo Vykd

X\Shere rx o ¥ denote X,y position coordinates and v()
denoté Veroc1ty coordinates. The actuator attack in tfns

51mulat10n is constrained by the acceleration limit, and the
state is constrained due to the speed limit and required
minimum distance between the two agents:

|d (n)| 20, | k\<80
| )

%l =100 or |ryk

|v k‘ < 80;
A1 > 100,

where (n) denotes the n'" element in the vector.

Each model is discretized into the following matrices with
sampling time of 0.1 seconds:

1 0 01 0 0 0

@_ 10 1 0 0.1 i _~0H_ 10 0

A=1loo 1 ol BTG =01 o]
00 0 1 0 01

and the output y,((’) is the sensor measurement of positions
and velocity; i.e., C,E') = I. The covariance matrices of noises

are chosen as Q,(j) =0.1/, and R,(j) =0.011.

B. Multi-agent System Model

The multi-agent system of n agents, where n € N,
can be written in the form of system (1), where A
and C; are diagonal matrices as follows: diag(Ay) =
AW ... ADY, diag(Cy) = (C]EI)’...’CIE’)); =G, 2
[B(l),--- ,B(i)]T. The state vector, input vector, actuator
attack and sensor measurement are denoted by x £

1 1 1 :
[xl(c)v xz(g)]T, uj, é [M,({), : u,(()]—r dy [dlg),...,dlg)]'l'
and y, = [y;(c ), T, y,(;)]T, respectively.

C. Attack Scenario

We consider the scenario that the attacker injects the
identical actuator attack to the both agents so that they move
horizontally to the right at same time. The unknown actuator
attacks are

20  if 100n < k < 40+ 100n,
=di(3)=40 if 40+ 1001 < k < 60+ 100n,

—20 if 6041001 < k < 100+ 100,
di(2) = di(4) =0,

where n € {1,2,---,9}.

di(1)

D. Simulation Result

—— Cons. estim.

—— Uncons. estim.

—— True

Attack input, di(1)

0 200 400 600 800 1000
Time, k

=4 trace(PV)  —— trace(PY)

200 4

150 -

trace(P9)

100 -

509

Time, k

Fig. 3: Unconstrained and constrained estimation of the actuator
attack d (1). Trace of unconstrained estimate error covariance of the
actuator attack rr(P%*) and constrained estimate error covariance
of the actuator attack r(P?).

Figures 3 and 4 show a comparison of the actuator attack
and state estimation with and without the constraints. When
the actuator attack estimate and the state estimate are pro-
jected to the constrained space, the constrained estimations
have smaller estimation error and smaller error covariance
as expected.

VI. CONCLUSION

This paper studies attack-resilient estimation algorithm for
time-varying stochastic systems given inequality constraints
on the states and actuator attacks. We formally prove that
estimation errors and their covariances are less than those
from unconstrained algorithms, which is a desired condition
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—— Uncons. estim. 8501 [14]
100.6 4 —— Cons. estim. 82.51
5 80.0
2l e [15]
10041 CORA (- Uncons. estim.
° 75.0 1 —— Cons. estim.
% 100.2 4 7251 f Ma>'<. spee:d ‘ ‘ [16]
£ 40 45 50 55 60
' 1000 Time, k
-‘gj 99.8 4 10 —— trace(P*Y) (7]
—~— trace(P¥)
99.6 1 % > [18]
5]
99.4
100 200 40 45 50 55 60 [19]
Time, k Time, k

Fig. 4: Unconstrained and constrained estimation of states (distance

difference of two agents and speed of one agent). Trace of uncon-

strained estimate error covariance of state tr(P*") and constrained  [20]
estimate error covariance of state tr(P~).
[21]

for attack detection in stochastic systems. We prove that [y

the estimation errors are practically exponentially stable. A

simulation is presented to reveal the attack-resilient property 23]

and efficiency of the proposed algorithm in attack detection.
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