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ABSTRACT Fourier transforms (FT) are universal in chemistry, physics, and
biology. Despite FTs being a core component of multiple experimental techniques,
undergraduate courses typically approach FTs from a mathematical perspective,
leaving students with a lack of intuition on how an FT works. Here, | introduce
interactive teaching tools for upper-level undergraduate courses and describe a
practical lesson plan for FTs. The materials include a computer program to capture
video from a webcam and display the original images side-by-side with the
corresponding plot in the Fourier domain. Several patterns are included to be
printed on paper and held up to the webcam as input. During the lesson, students
are asked to predict the features observed in the FT and then place the patterns in
front of the webcam to test their predictions. This interactive approach enables
students with limited mathematical skills to achieve a certain level of intuition for
how FTs translate patterns from real space into the corresponding Fourier space.
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I. INTRODUCTION

Fourier Transforms (FTs) are an essential mathematical tool for
numerous experimental and theoretical methods. Biophysical charac-
terization techniques, including nuclear magnetic resonance (NMR)
spectroscopy (1), infrared spectroscopy (2), x-ray crystallography (3),
mass spectrometry (4), and differential scanning calorimetry, rely on FTs
for data processing or analysis (5). Spatial reconstruction algorithms
based on FTs are at the core of modern biomedical imaging
applications, such as magnetic resonance imaging (6). Modern
molecular dynamics simulation packages implement fast FT algorithms
to improve computational accuracy and efficiency (7). Although certain
experimental methods, such as infrared spectroscopy, are nearly
universal in undergraduate teaching laboratories, FTs are automatically
carried out by internal software libraries with preprogrammed settings
that are typically hidden from the user (8). Developing an intuitive
understanding of FTs is therefore essential for undergraduate students
to fully grasp the principles behind these techniques. Although there
are many excellent articles and textbooks on Fourier methods,
pedagogical approaches can be highly mathematical (9-11), introduced
within the context of specific techniques (12), or be brief and
oversimplified (13). Thus, it is challenging for students not equipped
with strong mathematical skills to understand what a FT does and,
more so, to acquire intuition for how a FT translates one function into
its conjugate function in the Fourier domain.

Modern pedagogical approaches are designed to develop compe-
tency across the entire cognitive spectrum: Remembering, Understand-
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Interactive Fourier transforms
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Fig 1. Two example periodic grid patterns
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(left) alongside their absolute value two-
dimensional Fourier transforms (FTs, right).
Dark colors represent areas of higher
intensity. The upper grid shows a series of
equally spaced peaks in the Fourier domain.
The lower pair shows the effect of doubling
the periodicity along the horizontal axis. The
lower FT pattern maintains the spacing of
peaks along the vertical but doubles the
spacing along the horizontal.

FT

ing, Applying, Analyzing, Evaluating, and Creat-
ing (14). Classroom activities are needed that
provide students hands-on experience utilizing
Fourier techniques. Students should gain a
conceptual understanding of how patterns in
one domain are translated into its conjugate
domain, as well as more practical knowledge,
such as intuitively predicting the effect of a
Fourier filter. Specifically, it is important for
instructors to address advanced learning goals
by providing opportunities for students to
generate, analyze, and evaluate predictions.
Here, | present an interactive lesson plan that
uses computer software to enable students to
predict two-dimensional (2D) FTs of various
patterns and test their predictions in real time.
Figure 1 shows an example of the reciprocal
relationship between real and Fourier space,
where a periodic grid pattern is translated into
a series of peaks. The spacing between Fourier
peaks is inversely proportional to the spacing
between lines in real space.

Il. SCIENTIFIC AND
PEDAGOGICAL BACKGROUND

Fourier transforms are typically introduced in
upper-division undergraduate or graduate

courses. The typical lecture begins with the
concept of the Fourier series (9). Within this
approach, a function in one domain, for
example a function in space (x), is described
as a linear combination of functions in a
conjugate domain, such as reciprocal space g:

F(x) = zw:Ak cos(qkx) + Bk sin(qgkx), (1)

k=0

where A, and By are the Fourier coefficients,
which are interpreted as the amplitude of a
component with a given periodicity g,. This
mathematical transformation is analogous to a
change of basis, where the original function is
decomposed into coefficients in reciprocal
space, much like a change of coordinate
systems in Euclidean space. In this analogy,
the Fourier coefficients represent the projec-
tions of the original function onto the basis of
sine or cosine coordinates. In general, no
information is lost in converting between
domains because, given an FT, the original
function can be recovered by performing the
corresponding inverse transformation. Mathe-
matically, the FT may be introduced as a limit of
the Fourier series:
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Extending Fourier methods to multiple
dimensions is seldom introduced in under-
graduate courses, despite multidimensional
transforms being essential in techniques such
as molecular dynamics simulations (7), x-ray
crystallography (15), or NMR spectroscopy (16,
17). Therefore, it is important to expose
students to multidimensional FT methods
alongside these techniques. Consider a func-
tion in the x-y plane; the 2D FT of this function
may be interpreted as a one-dimensional FT
along the x dimension followed by a second
FT along the y dimension, and the result is
invariant with respect to the order of opera-
tion.

Formally, a 2D FT can be written as a double
integral:

exp[—i2n(gex + qyy)]dxdy,
(3)

where x and y represent real space and q,, g,
are the corresponding coordinates in Fourier
space. Although F(q,, g,) is a complex function,
its modulus or modulus squared is often
displayed for ease of visualization. Furthermore,
while the definition above is an integral over all
space, numerical algorithms involve sums over
discrete data points, analogous to the Fourier
series concept introduced above (Eq. 1). The
fast Fourier transform algorithm is arguably the
most ubiquitous implementation because of its
computational efficiency (8). Numerical FTs are
subject to sampling criteria, such as the Nyquist
limit, but these concepts are typically outside
the scope of introductory courses (18, 19). The
software package described here allows for
introducing multidimensional FTs, together
with Fourier filters, as well as more advanced
concepts and numerical considerations, such as
aliasing (9).

Interactive Fourier transforms

lll. MATERIALS AND METHODS

A. Software description

The software presented here is written in the
MATLAB R2019a (The MathWorks, Natick, MA)
programming language. Source code, docu-
mentation, and precompiled standalone exe-
cutables for Microsoft Windows and macOS
operating systems are available on GitHub [see
(20) for software URL]. Figure 2 shows a
screenshot of the main user interface. The
interface displays an image in real time (Fig 2B),
along with its Fourier transform (Fig 2D). The
user control enables adjusting the number of
frames displayed per second, the FT horizontal
and vertical axis scales, and the colormap scale.

Spectral filtering functions can be applied in
the Fourier domain, with the results shown in
the reconstructed image. Two filter types are
available: (a) a boxcar filter, represented by a
circle centered at the origin in the Fourier plane,
and (b) a Gaussian filter, represented by a two-
dimensional Gaussian function in the Fourier
plane (Fig 2E). These two functions can be
applied as low- or high-pass filters. The recon-
structed image (Fig 2C) shows the effect of the
filter. It is important to note that the displayed
Fourier image represents the absolute value, or
modulus, of the otherwise complex Fourier
plane, but the full complex FT representation is
used to reconstruct the real-space function.
Therefore, the software cannot be used to
illustrate phase effects in the Fourier domain,
an important consideration for techniques such
as x-ray diffraction crystallography (21).

In this example, the input pattern is a random
distribution of vertically elongated oval shapes
(Pattern S7). Horizontally elongated rings are
observed in the Fourier domain (Fig 2D). These
rings are directly related to the size and shape of
the ovals. The image illustrates how FTs can
extract information related to the molecular
shape despite random positions of molecules in
real space. For example, the well-known diffrac-
tion photograph of partially aligned nucleic acid
fibers recorded by Franklin and Gosling (22)
showed several diffraction spots arranged in an
“X” pattern oriented along the vertical axis,
together with oval-shaped diffraction rings. The
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Fig 2. Screenshot of the user interface. (A) The user control panel includes buttons for starting and stopping the frame acquisition process.
(B) In the center column, the top figure displays the images captured by the webcam; they are converted into grayscale by equally
combining the red, green, and blue channels. (C) The reconstructed image, obtained by inverse transformation after applying the filter, is
displayed below the main image. (D) The right-hand column shows the Fourier transform (FT) of the acquired image that uses a similar
grayscale color map as the original image. (E) The filtered FT is included underneath the main FT plot. In this example, a card with a random
arrangement of oval-shaped dots is held in front of the webcam. The FT plot shows rings that contain information on the size and shape of
these ovals. The FT plot displays the absolute value for simplicity. The center of the image represents g, = g, = 0. In this example, the
applied filter is a 30-inverse-pixel high-pass Gaussian filter. The reconstructed image lacks the variations in the background that are
observed in the original image. The noise observed in the FT patterns is pixel noise that results from the webcam and background lighting.
Proper lighting is recommended for best results. A portable reading light or a desk lamp can be used if classroom lighting is insufficient. In a
classroom setting, the computer should be connected to a projector.

pattern shows evidence of a helical conforma-
tion despite the random translation and partial
orientation of the DNA strands (22). The
recorded pattern was later analyzed and the
double-helix structure of B-DNA was proposed
(23).

The Supplemental Material includes a set of
patterns that can be printed on paper and used
as inputs to the FT program in the lesson
described below. This program bridges the gap

between physical and digital domains by
providing a physical input in the form of a
pattern on paper that becomes digitized. This
tool complements a traditional lecture by
providing a platform for instructors to address
advanced educational goals (14).

B. Lesson plan

The lesson presented here has a primary
learning objective: students will intuitively
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Fig 3. The image on the left resembled a two-dimensional (2D)
projection of the helical structure of B-DNA. The Fourier domain
shows an X-like shape analogous to the crystal x-ray diffraction
pattern. The rings observed in the pattern are a result of the curved
edges used to represent the 2D projection of each turn. The helix
was generated by the PyMOL (Schrédinger, LLC) molecular graphics
program. See Pattern S12.

understand the reciprocal relationship between
real and Fourier space and how periodicity is
translated across domains. This lesson should
be preceded by a mathematical introduction to
FTs, following the typical approach of upper-
level undergraduate textbooks, as outlined in
the Introduction (9, 11). The instructor begins
the lesson by demonstrating a selection of
example patterns, such as the patterns shown
in Figure 1. The instructor should describe each
pattern in real space and explain the origin of
the features observed in the corresponding
Fourier space. Certain patterns have direct
analogies to specific experiments or experi-
mental techniques, and the instructor may use
this part of the lesson to describe analogies to
FT applications in biophysics. For example, the
helical pattern in Figure 3 produces an “X” that
resembles the historic DNA x-ray diffraction
pattern first recorded by Franklin and Gosling
(22, 24). Pattern S14 contains a distribution of
partially aligned helices, with random tilt
angles. The Fourier transform of this image
produces an X-shaped pattern with specific
peaks displaying lower intensity. Namely,
counting outward from the center of the
diffraction pattern and labeling the center as
the first peak, the fourth peaks in the “X” are
suppressed compared with the others. The
suppressed peaks are a well-known character-
istic of the diffraction pattern of DNA (25).
During this part of the lesson, the instructor
should emphasize the following concepts: (a)

Interactive Fourier transforms

Real and reciprocal spaces are inversely related.
The instruction can demonstrate this relation-
ship in several ways; for example, moving the
paper closer to the webcam zooms in on the
pattern, effectively increasing the period and
causing the FT features to move closer to the
center of the FT plot. Several patterns with
different periodicities are provided in the
Supplemental Material. (b) Periodicity appears
as discrete peaks in the Fourier domain.
Together, these examples help students devel-
op a conceptual foundation for interpreting
Fourier transforms in two dimensions. Specific
patterns, such as the pair shown in Figure 1, are
provided with the dual purpose of illustrating
how periodicity in real space is translated into
discrete peaks, as well as showing how
decreasing the period in real space generates
peaks spaced farther apart in reciprocal space.
(c) The built-in high- and low-pass filters can be
applied to display how different frequency
components are represented in the recon-
structed image. The instructor can select
specific cutoff frequencies and toggle high-
and low-pass filters to demonstrate how
images can be represented as a sum of low-
frequency (smooth) components along with
certain high-frequency (sharp) components.
The software enables the user to apply filters
in either horizonal, vertical, or both dimensions
simultaneously. The duration of this first
introduction to FTs should typically occupy
15-20 min of the lecture period.

During the second half of the tutorial, the
instructor hands out a different pattern to each
student. Students spend a few minutes study-
ing their assigned patterns and are then asked
to predict the expected features in the Fourier
domain. Each student then brings the assigned
pattern to the front of the classroom, shows it
to the class, and predicts the Fourier features.
The class is asked whether they agree or
disagree with the student’s interpretation.
When students are not in agreement, a short
discussion should follow. Although the purpose
of this exercise is to enable students to apply
their knowledge, asking each student to
announce a prediction to the entire class
provides a valuable opportunity to engage all
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students, including students who are otherwise
timid or reluctant to participate. The instructor
should refrain from validating or discrediting a
student’s predictions. The student is then asked
to hold the assigned pattern up to the webcam
to reveal the Fourier features. After the
experiment, the student is asked to reevaluate
the prediction. If the prediction was correct, the
concept is further reinforced; if the prediction
was incorrect, the instructor may take the
opportunity to clarify key misconceptions. For
instance, a common misconception is that
students fail to predict the inverse relationship
between real and reciprocal space. Once the
students have observed the patterns, the
instructor may also use the opportunity to
describe the analogies of certain patterns to
the class, such as the DNA helix analog shown
in Figure 3.

Finally, as a mastery component of the
lesson, students can be given blank sheets of
paper and asked to create a new pattern and
predict the FT features. During this portion of
the lecture, students are encouraged to work in
small groups, where they can discuss the
concepts and create the patterns that give rise
to interesting FT features. Students can make
simple modifications to the existing cards, such
as drawing one pattern over another or
drawing entirely unique patterns. Because FTs
are linear transformations when two patterns
are superimposed in real space, in general, an
overlay of the two individual FT patterns is
observed in reciprocal space. Note that the
modulus of the complex FT function is dis-
played in the program for ease of visualization;
artifacts may therefore be present as a result of
not displaying the real and imaginary compo-
nents separately.

The entire lesson should last approximately
one class period, about 45 min. The described
lesson is ideal for a class size of 10-15 students.
In larger classes, students may work together in
groups of two or more. This pedagogical tool
addresses learning outcomes across all levels of
the cognitive spectrum—Remembering, Under-
standing, Applying, Analyzing, Evaluating, and
Creating—ensuring that students achieve full
competency in this topic.

Mastery of the material can be tested in
exams or homework by designing exercises
that require students to match a real-space
pattern with the corresponding Fourier pattern
or to predict the effect of a Fourier filter in the
reconstructed image. For example, a student
may be given an image with a superimposed
periodic pattern and asked to explain how FTs
can be used to suppress the pattern and
recover the original image. Students are asked
to explain their thought processes for a more
in-depth evaluation of their conceptual under-
standing.

IV. RESULTS

The lesson plan described here has been
implemented in the curriculum of two courses
at the University of Texas at Austin, an upper-
level undergraduate course in Biophysics, and a
graduate-level course in time-dependent quan-
tum mechanics and spectroscopy. Students
have been responsive to the lesson, and
together with a traditional lecture on FTs, this
interactive activity has been successful for
communicating the concept of FTs beyond
the traditional mathematical approach that is
commonly used. The activity is compatible with
student-centered pedagogical approaches such
as flipped classroom environments. In addition
to the material covered, group work, advanced
hands-on predictions, and teamwork are im-
portant elements of the lesson that are difficult
to address using a more traditional approach.

V. CONCLUSION

| have presented an interactive lesson plan
developed around a real-time FT program to
develop competency and intuition among
upper-level undergraduate and graduate stu-
dents. The lesson illustrates the use of con-
sumer technology to perform experiments in
the classroom and bridge the gap between the
digital and physical worlds. Instructors may
adopt the lesson across different courses in the
physical sciences. Previous experience shows
that students are not only responsive to this
approach but find the lesson instructive and
enjoyable.
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SUPPLEMENTAL MATERIAL

Supplemental input patterns for Materials and Methods are
available at: https://doi.org/10.35459/tbp.2019.000102.
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