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On the Estimation of Signal Attacks: A Dual Rate SD Control Framework
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Abstract— We consider the problem of estimating signal
attacks injected into the actuators or sensors of control systems,
assuming the attack is detectable, i.e., it can be seen at the
output. We show that there exists a trade-off between attack
rejection and control, and that the estimator design depends
on the controller used. We use dual rate sampling to enhance
detectability of the attacks and we provide different methods
to design the estimator. The first method is by solving a model
matching problem subject to causality constraints. The second
method exploits dual rate sampling to accurately reconstruct
the unknown input. The third method is using a dual rate
unknown input observer. We provide conditions on the existence
of these estimators, and show that dual rate unknown input
observers always exist if the multirate system does not have a
zero at 1.

I. INTRODUCTION

The problem of security of control systems under sig-
nal attacks has caught a lot of attention lately after the
several attacks on critical infrastructure world wide [1]. In
our previous work [2] we presented the conditions for the
existence of unbounded stealthy attacks in terms of system
structure and zero/pole locations. We showed that studying
the problem in a sampled-data (SD) framework is important
because sampling may introduce additional unstable zeros
that render the system vulnerable. We also showed that dual
rate control removes unstable zeros and can detect stealthy
actuator attacks. In [3] we showed that the computation of
stealthy worst attacks is a convex maximization problem,
which can be converted to a series of LP problems if the
attack is bounded in time. We also presented an iterative
controller design method to reduce the effect of worst attacks.

In this paper, we consider the problem of estimating signal
attacks on actuators and/or sensors of control systems using
the available measurements. The estimated attack signal will
help the operator decide whether it is a persistent intelligent
attack or just a nominal disturbance. First, we show that there
is a coupling between attack estimation and rejection, and
that a trade-off exists between their individual performances.
The quality of the estimate depends on the performance of
the attack rejection controller. In particular, the faster and
better we reject the attack, the worse is the attack estimate.
This is of course assuming the attack can be detected or seen
from the outputs used for estimation.
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Next we consider multirate (MR) sampling to estimate the
injected attack d. In particular, we consider the case where
we have two sets of sensors measuring the output. The first
set is sampled at the same rate of the hold device, and is used
to provide input for the feedback controller creating a single
rate control system. The second set is secure and is sampled
at a higher frequency, and is used for attack detection and
estimation. This architecture is practical for different appli-
cations such as wireless networked control systems, where
the sensor measurements are sent over wireless (unsecured)
networks to the control center, and the control signals are sent
back to the physical plant again over wireless networks. A
local estimator that has access to some of the measurements
over hard-wired secure lines can be built to generate the
attack estimates in this kind of scenario. The faster sampling
loop is needed so that all unbounded attacks are detectable
(i.e. removes the unstable zeros) [2], and to allow for the
design of a certain class of observers as will be discussed
later. Furthermore, we want to estimate the attack at a faster
rate than control so that we can isolate the attack and limit
the damage as fast as possible. In addition to detecting
unbounded attacks, removing the unstable zeros is essential
because they limit the achievable estimation performance.
The attack estimation problem is similar to the unknown
input observer (UIO) problem discussed in [4], [5], [6], [7],
[8], [9] in which such an observer exists if and only if the
system is strongly detectable, i.e., all zeros are strictly stable.
Multirate sampling guarantees that the system has at most
one non-minimum phase zero and is located at A = 1, and
under specific conditions, multrirate sampling can remove
all zeros in the lifted domain. Conditions when a zero at
A = 1 exists in the MR scheme can be found in [2].
After introducing dual rate sampling for attack estimation,
we introduce a few estimator design methods utilizing the
dual rate property. In particular, we show that UIOs always
exist if the dual rate system does not have a zero at A = 1. In
addition, the observer provides an estimate of the attack with
a delay of a single time-step only. This result is significant
because single rate observers do not exist most of the time
due to the hard conditions for their existence [7], or they
may exist but estimation is delayed (system must be strongly
detectable) [4].

Some standard notation we use is as follows: For a
sequence of real n x m dimensional real matrices G =
{Gr}rez, we denote its A-transform G(X) := > "1 ) GpA*.
For a A-transform z(\) of a sequence x of n-dimensional
vectors ||z (A)|| = ||x||. Finally, we will call system G “tall”
when y = Gu and the dimension of the output vector y is
at least equal to the dimension of the input u; otherwise we
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Fig. 1: A dual rate SD system.

will call G “fat”. We will also be using the standard notions
for zeros of a LTI system G (e.g., [10].)

II. PRELIMINARIES

This section reviews the results in our previous work [2]
needed for the work in this paper. We consider the physical,
continuous-time, LTI plant P, = [A., B., C., D] of Figure
1 that is controlled by a digital controller K using the
standard zero order hold and sampling devices H and S
respectively. In the sampled-data (SD) scheme of Figure 1
(temporarily without any disturbances) the digital controller
input v = {u(k)} converts to the continuous time input
uc(t) = (Hu)(t) = u(k) for kT < ¢t < (k+ 1)T where
T is the hold period. The output is sampled with period
T/m where m is a sufficiently large integer, i.e., y(k) =
(Smye)(t) := y.(kT/m). To this end, let the corresponding
discrete-time system mapping u to y be

G=5,FPH.
For this MR discrete system we have that

A™G = GA,
where A is the 1-step right shift operator on discrete se-
quences {x(k)}, i.e., (Az)(k+1) = z(k) with (Az)(0) = 0.
Using standard lifting techniques (e.g., [11]) one can obtain a
shift invariant (LTI) description GG of the discrete dynamics
by grouping the plant input and output signals as u(k) =
u(k) and (k) = [yL(KT/m) yL((k+1)T/m) ... yl((k+m—
1)T/m)]" (similarly for d, and d;.) A state space description

for G can be obtained from the original system.
Define state space matrices

T/m
A= eAT/m e RV B = / ee™ B, dr € R™*™
0

C:=C.eR™ ", D:=D,eRw"™,
And assume that |C'B| # 0, then

Fig. 2: The lifted system.

such that C' € R"™™*" and D € R™™*"« We consider
now the closed loop in the lifted domain in Figure 2 where
the controller is K. To this end, the integer m is chosen such
that the following assumptions are satisfied.

Assumption 1. The matrix B is full column rank.

c

CA

Assumption 2. The matrix O : = is full column

044771,—2
rank.

The first assumption is standard and holds generically
if B, is full column rank in the continuous system. The
second assumption holds for large enough m, in particular
m = n + 1, if the pair (A, C) is observable. It can also
hold however, even with a small m generically. Also, if
Assumption 2 holds, G is a tall system. Then the following
lemma from [2] characterizes the zeros of G.

Lemma 3. Consider the lifted system G as in (1) together
with Assumptions (1) and (2). Then G has at most one non-
minimum phase zero and is located at A\ = 1.

In [2] we showed that if G has a non-minimum phase
zero, then this zero is located at A = 1, and its multiplicity
is 1. As a result, dual rate control renders the system secure
against unbounded stealthy actuator attacks. This applies to
any P. of any structure. For the case when P, is tall and has
no zeros at the origin, [12] (Theorem 1) states that G has no
zeros at all for almost all m € R such that m > 1. In our
MR scheme in [2] and in this paper, we only consider m to
be an integer.

III. ATTACK ESTIMATION-REJECTION TRADE-OFF

In the absence of zero dynamics attack possibilities, and
for single rate systems, we investigate the trade-off between
the ability to control the damage that an attack d inflicts
versus the ability to estimate d. In other words, we would
like to investigate whether one can trade control performance

. A| B
G= %‘f , (1) for extra ability to estimate the attack signal d. A relevant
¢|D problem to study how to design a controller K jointly with
where a filter F' to reject as well as estimate d can be cast as
m—1
A=A eRV™MB=) A'BER™™, min[ld 2], == H :
K,F V)
k=0 '
C D where z; relates to performance in terms of disturbance
~ CA - CB+D L. Wiy
C = : , D= : , rejection, e.g., z1 = u and zo relates to attack es-
CAm—1 CY Tl A*B+ D timation, i.e., zo = Wa(d — CZ), where d is the estimated
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Fig. 3: General block diagram to reject and estimate d.

attack and W , are weights, as seen in the general block
diagram in Figure 3, where G is a general discrete LTI
system. This type of problem is convex in any norm when
the Youla parametrization of all stabilizing controllers [13]
is employed. The input-output map of the system in Figure
3 can be described as:

21 Gi1 | Gi2 G d
zo| = | Goi1 | Gag Gag | |u|,
Yy Ga |Gz Gaz | |d

where (G3o is the open loop discrete time LTI plant. For zo
defined as zo = W (d — d) and z; does not depend on d, we
have G13 = G22 = G33 = O, G21 = VV, G23 = —W. For
actuator-only attacks, we have

G31 = Gz,
while for sensor-only attacks
Gs1 = 1.

The remaining maps Gp; and G2 depend on how z; is
defined. The input-output map is now more sparse and can
be described by:

EN G11 | Gio 0 d
Z2| = W 0 W u
Yy Gs1|Gs2 0 d

The closed loop map T4 can then be found and is

- [ S afs] )
_ G+ G12K(I — G32K)_1G31
T | W—=WF(I - G3K) tGs

It is easy to see that minimizing ||7.,4|| depends only
on finding the optimal K and can be solved as a model
matching problem. On the other hand, minimizing ||7.,4||
depends on finding the optimal K and F' simultaneously. By
inspecting T4, keeping ||T.,4| small is achieved by making
|F(I — G32K)~tG31| ~ I for all frequencies. On the other
hand, it is well known that |K| has to be large for good
disturbance rejection [14]. As a result, a trade-off between
good estimation and good disturbance rejection exists. An
example can be found in [15].

S Yr/m

T/m

Ye1
d G F
Ye2
d

Fig. 4: General block diagram to reject and estimate d with
secured sensors.

The first set is sampled at the same rate of the hold device,
and is used to provide input for the feedback controller
creating a single rate control system. The second set is
secure and is sampled at a higher frequency, and is used for
attack detection and estimation as seen in Figure 4, where G
is the continuous-time LTI general input-output map. This
architecture is practical for different applications such as
wireless networked control systems. A local estimator that
has access to some of the measurements over hard-wired
secure lines can be built to generate the attack estimates in
this kind of scenario. Higher sampling rate for the detection
loop is necessary to detect stealthy unbounded attacks [2],
and to make it harder for attackers to design stealthy bounded
attacks [3]. In addition, MR sampling removes unstable zeros
(except for possibly one zero at A = 1) in the map from the
attack signal d to the monitored signals (y and possibly u).

Remark 4. The control loop in the architecture in Figure
4 can also be dual rate. What is important is to have the
output feeding the estimation loop sampled at a sufficiently
higher rate than that at which the attack is injected into the
system.

B. Estimator Design

In this section we present a few control methods for the
design of the estimator F' for a fixed controller K, for the
architecture in Figure 4.

1) Model Matching

First we find the mapping from d to the measurements

g d LST/mGHH LST/mGuH d
yr u LSTG21H LSTGQQH (3 ’

where §(k) = [ye (KT/m) yo, (K + 1)T/m)...y. ((k +
m—1)T/m)], yr(k) = ye2(kT), G11 is the mapping from
d to yc1, Gpo is the mapping from u to y.; and G is the
mapping from d to y.2, Gz is the mapping from u to .2,
ye1 and y.o are the continuous-time measurements feeding
Sr/m and St respectively, and L is the lifting operator. G11
may represent actuator attacks or sensor attacks as explained
in section III. In view of the above, let G be controllable,
observable and have the following representation:

=Gy

A | BT B
IV. ESTIMATION VIA MULTIRATE SAMPLING G = gl g“ D012 ’ )
2 21
A. Motivation and Control Loop Architecture th
en
Next we consider multirate (MR) sampling to estimate Big Bag
the injected attack d. In particular, we consider the case Gaq=| Ci | Dy Dy |,
where we have two sets of sensors measuring the output. Co | Dy O
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Fig. 5: Block diagram for estimator design in the lifted
domain. P is dual rate, lifted and augmented with a controller
for stabilization.

d P

where
Cy Dy,
~ C1Af ~ Dy + C1Byy
1= . , D= :
CrA} Duy + Cy Y0y Ak By
Dys
~ D12 +ClB2f
Dy = .
Do+ Cy Y1) ALByy
and
AT AT
Ag:=e", Af:=e /m

T T
Big ::/ A7 Bydr, By ::/ A7 Bodr,
0 0

T/m T/m
Blf = / t?ATBldT7 Bgf ZZ/ eATBng
0 0

Now for a given controller K with state space

| Ax | Bg
o= [ o]

the input-output map from d to yr,,, is described as

Ag + B2gDgCo  B3qCr | Big+ BagDr Doy
BrCy Ak By Doy
Ci + D12DgCy  DioCr ‘ Dy1 + D12Dg Doy

F):

)

as seen in Figure 5, where n is sensor noise. The problem
of finding the best d (in some sense) can now be cast as

mﬁin HW — Wﬁp’

or in the case of noisy measurements
min HW(I 0) - WE(P I)H

such that F' is stable (to minimize noise amplification) and
causal. Since we are solving the problem in the lifted domain,
the causality of F' is guaranteed by enforcing the constraint
that F'(0) is block lower triangular. Several methods to solve
this synthesis problem can found in the literature such as in
[16], [17].

2) Unknown Input Reconstruction

In this section we seek to exploit dual rate sampling to
accurately reconstruct the unknown input (attack) d injected
in the system in Figures 4 and 5, as well as the initial
condition z(0). In particular, we consider the relationship
between the states and input from one end and the output
of the system from another end. This relationship has been
studied for single rate systems in the context of strong
observability in the literature [5], [9], [8]. We consider the
state space description P in (3). We assume for now without
loss of generality that K = 0; we also assume that the
measurements are noise free, as a result P reduces to

Aq | Bia
Cl -Dll

: “4)

The lifted output of P can be described as

y(0) G Dy
y(T/m) C1Ay D11 + C1 By
y(2T/m) |=| CiA% | 2(0)+ | Du+CiBis+CiAsBis | d(0).
wein] | oy Dt + O By
él Dll

&)
From the above equation, we can deduce that x(0) and d(0)
can be recovered without delay with respect to the original
single rate system if and only if

[él Dll] 6)

is full column rank. A necessary condition for (6) to have
full column rank is that P be strongly observable, i.e., have
no invariant zeros [5], [9].

Strong observability of Pis guaranteed if G1; is tall and
does not have a zero at the origin for a sufficiently large
m (Theorem 1 in [12]), given that (Ay,C4) is observable.
Choosing m to satisfy Assumptions 1 and 2 of section II
is one choice. Strong observability of P alone does not
imply that (6) is full column rank; however, (6) can be made
to have full column rank by choosing m sufficiently large
[18]. The idea is to add more linearly independent rows to
(6) by sampling faster until (6) is tall. The added rows are
linearly independent because m satisfies Assumptions 1 and
2, assuming |C71B14| # 0 as mentioned in section II.

Remark 5. The attack and the states are reconstructed with
no delay with respect to original single rate period T. Still,
m samples are needed within T, so in actual continuous-time
the delay is 'T' sec (or one sample period of the original single
rate). In contrast, for single rate systems the delay can be
up to nT sec where n is the dimension of A, (assuming the
observer does exist using single rate control, i.e., the single
rate system is strongly observable).

Remark 6. As long as we choose m to make P strongly
observable, then we can still reconstruct d using delayed
measurements (i.e., §(0),9(1),...,9(n), where n is the

dimension of Ag) even if (6) is not full column rank. Details
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about this scheme for single rate systems can be found in

[5].

a) Example - Automatic Voltage Regulator (AVR)
The open loop state space representation of a linearized
single rate system AVR after discretization at a sample rate
T = 0.5 sec is

0.0105  0.3949  3.86  2.869 —0.005738
| -0.0057 —0.1817 -1.369 —0.587 | 0.001174
0.00117 0.03359 01793 —0.4597| " * | 0.0000193 | (7)
0.00092 0.03197 0.3163  0.8918 0.0002165
Ca=0 0 0 5000],Ds= o],
which has an unstable zero at A = —0.7045. Assume we

want to estimate an actuator attack d. Since the system has
an unstable zero, we know that we cannot reconstruct attacks
even if we use an arbitrary large number of measurements.
Choosing m = 2 resulting in T/m = 0.25 sec removes
the unstable zero when viewed from the lifted domain. The
resulting open loop state space representation after lifting is

A= Ad7 B = By,
G 0 0 0 5000
2.185 86.13 1092 4902

®)

- | o
’ 0.196

Although the open loop system is strongly observable using
m = 2, [C D] is not full column rank, and we cannot
reconstruct d without delay. Next if we select m = 5, the
resulting C and D matrices become

0 0 0 5000 0
0.38 21.38 491.24 49944 0.011
C= (153 6435 917.65 4948.5|,D= |0.10 .
2.80 106.05 1238.6 4839.5 0.32
3.86 138.22 1454.3e¢ 4671.5 0.66

Now [C' D] is full column rank and the attack along with
x(0) can be reconstructed without delay.

This concludes how to reconstruct d using dual rate
sampling. The case where K is augmented in P as in (3)
can be handled similarly as long as K does not introduce a
zero at A = 1 in the closed loop map from d t0 yr /.

3) Unknown Input Observer

In the previous section we saw how to reconstruct d and
#(0) given that P is sampled faster than the rate at which the
input is feeding the system. However, the method involved
inverting a matrix with high dimensions, which might be
computationally expensive. A cheaper alternative is to design
a dual rate unknown input observer that estimates the states
of the system asymptotically, and then estimates the attack d
using the state estimates. The theory for single rate unknown
input observers is well studied and can be found in [5], [4],
[6], [7] and the references therein. In this section, we will
extend the theory to design a dual rate observer to estimate
the attack in Figure 4. Dual rate unknown input observers
were briefly mentioned in [12], however, the authors assumed
D11 and D14 to be equal to zero in (2), which changes the
analysis and the conditions for existence of the observer and
how the attack is estimated. We consider the state space
description P in (3), assuming without loss of generality

that K = 0 and that the measurements are noise free. P is
then represented by

z(k +1) = Agx(k) + Biad(k)

_ ~ ~ 9
We consider an observer of the form
#(k+1) = Ez(k) + Ly(k), (10)

where E and L are matrices to be designed.

Definition 7. The system (10) is said to be an unknown input
dual rate observer with rate T/m if &(k) — xz(k) — 0 as
k — oo, regardless of the input.

We note that the observer in (10) does not depend on the
input to the system (9). To choose the observer matrices E
and L, we examine the estimation error

e(k+1)

P(k+1)—2(k+1)
Ei(k) + Ly(k) — Agz(k) — Brad(k)

= Ee(k) + (E — Aq + LCy)x(k)

+ (LDyy — Bia)d(k).

In order to force the error to go to zero, regardless of the
values of x(k) and d(k), E and L must simultaneously
satisfy

LDy = B (11)

E=A,-LC; (12)

such that F' is stable. There exists a matrix L that satisfies
(11) if and only if B4 is in the space spanned by the rows
of D11, which is equivalent to

Bia|\ _ =
rank ( {ﬁu} ) = rank(D11).

Necessary and sufficient conditions for the existence of E
and L that satisfy (11) and (12) are that P is strongly
detectable (i.e., all zeros of P are strictly stable), and that
(13) holds.

The strong detectability condition is inherited from the
conditions of existence of UIO for single rate systems. We
know that using dual rate sampling guarantees that at most
one zero exists and is at A = 1; therefore, checking P for
this zero is sufficient to check for the strong detectability of
]5, as long as Assumptions 1 and 2 are met. Furthermore,
strong observability of P, which is a more strict property,
is guaranteed if (GG1; is tall and does not have a zero at the
origin, as long as Assumptions 1 and 2 are met. Now to
ensure the solvability of (11), m is chosen large enough until
(13) holds.

Once a state observer is constructed, we can obtain an
estimate of the attack by first rearranging (9) as

13)

(14)

w(k+1) - Adazuﬂ)} _ {B} a(k),
y(k) — Cra(k) D1
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Bia

Since both Assumption 1 and (13) hold, then | - } is full

11
column rank, and there exists a matrix R such that

lgld]
R|2M| =1,
{Dn

where I has the appropriate dimension. Left multiplying (14)
by R and using #(k) instead of z(k), we find the estimate
of the attack to be
Q) = R :i-(k-i—l)—NAd:i'(k)}
(k) { (k) — Cr2(k)
Since
e(k) > 0as k — oo,

d(k) will asymptotically approach d(k). (one sample period
of the original single rate) Note that there is a single time-
step delay (one 7') in computing the attack estimate. In case
of single rate sampling, there will be at most n+1 time-steps
delay ((n + 1)T") where n is the dimension of the vector x
in (9), if the observer exists (i.e. if the single rate system is
strongly detectable) [5].
a) Example - Automatic Voltage Regulator (AVR)

We revisit the AVR example in section IV-B.2.a. Since
the system has an unstable zero, we know that we cannot
construct a single rate unknown input observer to estimate
actuator attacks even if we use an arbitrary large number of
measurements. Next we know from the previous section that
dual rate sampling at a rate of 7'/m = 0.25 sec removes
the unstable zero when viewed from the lifted domain. The
resulting open loop state space representation after lifting
is presented in (8), and we can see that the condition

rank {%ﬂ = rank(D) is satisfied. We construct a dual
rate unknown input observer of the form (10), i.e.,
#(k+1) = Ez(k) + Ly(k),

where F and L satisfy (11), (12) and (8). Using MATLAB
solver, we find E and L to be

0.074 291 3570 —3413.41 0.7118  —0.0292
o —0.013 —0.47 —5.00 9003.32 I - —1.8040  0.0033
0.013  0.51  6.21 —734.21 |’ 0.1522  —0.0055
0.0063 025  3.02 —5.42 0.0037  —0.0025

We note that for the above AVR example, sampling faster
using m = 2 was sufficient to estimate the states and the
attack asymptotically, while in section IV-B.2.a, we saw that
m = 5 was needed to accurately reconstruct the states and
the attack in each period T'. This observation makes sense
as it means more measurements are needed for accurate
estimation in each period T versus asymptotic estimation.

V. CONCLUSION

We posed the problem of estimating signal attacks injected
into the actuators or sensors of control systems. We showed
that there exists a trade-off between attack rejection and
estimation, and that the estimator design depends on the
controller used. We used dual rate sampling to enhance the
detectability of the attack and we provided three methods

to design the estimator. Method 1 solves a model matching
problem subject to causality constraints. Method 2 exploits
dual rate sampling to accurately reconstruct the unknown
input. Method 3 uses a dual rate unknown input observer.
Using dual rate sampling, necessary and sufficient rank
and zero location conditions to check the existence of the
observers in methods 2 and 3 were provided. Once these
conditions are satisfied, then the attack can be estimated
with at most a single time-step delay. This work shows again
the importance of studying the security problem in the SD
framework, and the power of using dual rate sampling to
defend against signal attacks. A future research direction is
to study dual rate unknown input observers when noise is
present in the measurements. Optimal single rate delayed
UIOs were discussed in [6] (minimizing mean square error),
but to our knowledge no results exist for the dual rate UIOs.
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