
On the Estimation of Signal Attacks: A Dual Rate SD Control Framework

Nabil H. Hirzallah, Petros G. Voulgaris and Naira Hovakimyan

Abstract— We consider the problem of estimating signal
attacks injected into the actuators or sensors of control systems,
assuming the attack is detectable, i.e., it can be seen at the
output. We show that there exists a trade-off between attack
rejection and control, and that the estimator design depends
on the controller used. We use dual rate sampling to enhance
detectability of the attacks and we provide different methods
to design the estimator. The first method is by solving a model
matching problem subject to causality constraints. The second
method exploits dual rate sampling to accurately reconstruct
the unknown input. The third method is using a dual rate
unknown input observer. We provide conditions on the existence
of these estimators, and show that dual rate unknown input
observers always exist if the multirate system does not have a
zero at 1.

I. INTRODUCTION

The problem of security of control systems under sig-

nal attacks has caught a lot of attention lately after the

several attacks on critical infrastructure world wide [1]. In

our previous work [2] we presented the conditions for the

existence of unbounded stealthy attacks in terms of system

structure and zero/pole locations. We showed that studying

the problem in a sampled-data (SD) framework is important

because sampling may introduce additional unstable zeros

that render the system vulnerable. We also showed that dual

rate control removes unstable zeros and can detect stealthy

actuator attacks. In [3] we showed that the computation of

stealthy worst attacks is a convex maximization problem,

which can be converted to a series of LP problems if the

attack is bounded in time. We also presented an iterative

controller design method to reduce the effect of worst attacks.

In this paper, we consider the problem of estimating signal

attacks on actuators and/or sensors of control systems using

the available measurements. The estimated attack signal will

help the operator decide whether it is a persistent intelligent

attack or just a nominal disturbance. First, we show that there

is a coupling between attack estimation and rejection, and

that a trade-off exists between their individual performances.

The quality of the estimate depends on the performance of

the attack rejection controller. In particular, the faster and

better we reject the attack, the worse is the attack estimate.

This is of course assuming the attack can be detected or seen

from the outputs used for estimation.
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Next we consider multirate (MR) sampling to estimate the

injected attack d. In particular, we consider the case where

we have two sets of sensors measuring the output. The first

set is sampled at the same rate of the hold device, and is used

to provide input for the feedback controller creating a single

rate control system. The second set is secure and is sampled

at a higher frequency, and is used for attack detection and

estimation. This architecture is practical for different appli-

cations such as wireless networked control systems, where

the sensor measurements are sent over wireless (unsecured)

networks to the control center, and the control signals are sent

back to the physical plant again over wireless networks. A

local estimator that has access to some of the measurements

over hard-wired secure lines can be built to generate the

attack estimates in this kind of scenario. The faster sampling

loop is needed so that all unbounded attacks are detectable

(i.e. removes the unstable zeros) [2], and to allow for the

design of a certain class of observers as will be discussed

later. Furthermore, we want to estimate the attack at a faster

rate than control so that we can isolate the attack and limit

the damage as fast as possible. In addition to detecting

unbounded attacks, removing the unstable zeros is essential

because they limit the achievable estimation performance.

The attack estimation problem is similar to the unknown

input observer (UIO) problem discussed in [4], [5], [6], [7],

[8], [9] in which such an observer exists if and only if the

system is strongly detectable, i.e., all zeros are strictly stable.

Multirate sampling guarantees that the system has at most

one non-minimum phase zero and is located at λ = 1, and

under specific conditions, multrirate sampling can remove

all zeros in the lifted domain. Conditions when a zero at

λ = 1 exists in the MR scheme can be found in [2].

After introducing dual rate sampling for attack estimation,

we introduce a few estimator design methods utilizing the

dual rate property. In particular, we show that UIOs always

exist if the dual rate system does not have a zero at λ = 1. In

addition, the observer provides an estimate of the attack with

a delay of a single time-step only. This result is significant

because single rate observers do not exist most of the time

due to the hard conditions for their existence [7], or they

may exist but estimation is delayed (system must be strongly

detectable) [4].

Some standard notation we use is as follows: For a

sequence of real n × m dimensional real matrices G =
{Gk}k∈Z+

we denote its λ-transform G(λ) :=
∑

∞

k=0 Gkλ
k.

For a λ-transform x(λ) of a sequence x of n-dimensional

vectors ||x(λ)|| = ||x||. Finally, we will call system G “tall”

when y = Gu and the dimension of the output vector y is

at least equal to the dimension of the input u; otherwise we
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Fig. 1: A dual rate SD system.

will call G “fat”. We will also be using the standard notions

for zeros of a LTI system G (e.g., [10].)

II. PRELIMINARIES

This section reviews the results in our previous work [2]

needed for the work in this paper. We consider the physical,

continuous-time, LTI plant Pc = [Ac, Bc, Cc, Dc] of Figure

1 that is controlled by a digital controller K using the

standard zero order hold and sampling devices H and S
respectively. In the sampled-data (SD) scheme of Figure 1

(temporarily without any disturbances) the digital controller

input u = {u(k)} converts to the continuous time input

uc(t) = (Hu)(t) = u(k) for kT ≤ t < (k + 1)T where

T is the hold period. The output is sampled with period

T/m where m is a sufficiently large integer, i.e., y(k) =
(Smyc)(t) := yc(kT/m). To this end, let the corresponding

discrete-time system mapping u to y be

G = SmPcH.

For this MR discrete system we have that

ΛmG = GΛ,

where Λ is the 1-step right shift operator on discrete se-

quences {x(k)}, i.e., (Λx)(k+1) = x(k) with (Λx)(0) = 0.

Using standard lifting techniques (e.g., [11]) one can obtain a

shift invariant (LTI) description G̃ of the discrete dynamics

by grouping the plant input and output signals as ũ(k) =
u(k) and ỹ(k) = [y′c(kT/m) y′c((k+1)T/m) . . . y′c((k+m−
1)T/m)]′ (similarly for d̃a and d̃s.) A state space description

for G̃ can be obtained from the original system.

Define state space matrices

A := eAcT/m ∈ R
n×n, B :=

∫ T/m

0

eAcτBcdτ ∈ R
n×nu ,

C := Cc ∈ R
ny×n, D := Dc ∈ R

ny×nu .

And assume that |CB| 6= 0, then

G̃ =

[

Ã B̃

C̃ D̃

]

, (1)

where

Ã = Am ∈ R
n×n, B̃ =

m−1∑

k=0

AkB ∈ R
n×nu ,

C̃ =







C
CA

...

CAm−1






, D̃ =






D
CB +D

...

C
∑m−2

k=0 AkB +D




 ,

Fig. 2: The lifted system.

such that C̃ ∈ R
mny×n and D̃ ∈ R

mny×nu . We consider

now the closed loop in the lifted domain in Figure 2 where

the controller is K̃. To this end, the integer m is chosen such

that the following assumptions are satisfied.

Assumption 1. The matrix B is full column rank.

Assumption 2. The matrix O : =








C
CA

...

CAm−2








is full column

rank.

The first assumption is standard and holds generically

if Bc is full column rank in the continuous system. The

second assumption holds for large enough m, in particular

m = n + 1, if the pair (A,C) is observable. It can also

hold however, even with a small m generically. Also, if

Assumption 2 holds, G̃ is a tall system. Then the following

lemma from [2] characterizes the zeros of G̃.

Lemma 3. Consider the lifted system G̃ as in (1) together

with Assumptions (1) and (2). Then G̃ has at most one non-

minimum phase zero and is located at λ = 1.

In [2] we showed that if G̃ has a non-minimum phase

zero, then this zero is located at λ = 1, and its multiplicity

is 1. As a result, dual rate control renders the system secure

against unbounded stealthy actuator attacks. This applies to

any Pc of any structure. For the case when Pc is tall and has

no zeros at the origin, [12] (Theorem 1) states that G̃ has no

zeros at all for almost all m ∈ R such that m > 1. In our

MR scheme in [2] and in this paper, we only consider m to

be an integer.

III. ATTACK ESTIMATION-REJECTION TRADE-OFF

In the absence of zero dynamics attack possibilities, and

for single rate systems, we investigate the trade-off between

the ability to control the damage that an attack d inflicts

versus the ability to estimate d. In other words, we would

like to investigate whether one can trade control performance

for extra ability to estimate the attack signal d. A relevant

problem to study how to design a controller K jointly with

a filter F to reject as well as estimate d can be cast as

min
K,F

‖d 7→ z‖ , z =

[
z1
z2

]

,

where z1 relates to performance in terms of disturbance

rejection, e.g., z1 =

[
W1y
u

]

and z2 relates to attack es-

timation, i.e., z2 = W2(d − d̂), where d̂ is the estimated
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y
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d

Fig. 3: General block diagram to reject and estimate d.

attack and W1,2 are weights, as seen in the general block

diagram in Figure 3, where G is a general discrete LTI

system. This type of problem is convex in any norm when

the Youla parametrization of all stabilizing controllers [13]

is employed. The input-output map of the system in Figure

3 can be described as:




z1
z2
y



 =





G11 G12 G13

G21 G22 G23

G31 G32 G33









d
u

d̂



 ,

where G32 is the open loop discrete time LTI plant. For z2
defined as z2 = W (d− d̂) and z1 does not depend on d̂, we

have G13 = G22 = G33 = 0, G21 = W, G23 = −W . For

actuator-only attacks, we have

G31 = G32,

while for sensor-only attacks

G31 = I.

The remaining maps G11 and G12 depend on how z1 is

defined. The input-output map is now more sparse and can

be described by:




z1
z2
y



 =





G11 G12 0
W 0 −W
G31 G32 0









d
u

d̂



 .

The closed loop map Tzd can then be found and is
[
Tz1d

Tz2d

]

=

[
G11

W

]

+

[
G12 0
0 −W

][
K
F

](

I -
[
G32 0

]
[
K
F

] )

−1G31

=

[
G11 +G12K(I −G32K)−1G31

W −WF (I −G32K)−1G31

]

.

It is easy to see that minimizing ‖Tz1d‖ depends only

on finding the optimal K and can be solved as a model

matching problem. On the other hand, minimizing ‖Tz2d‖
depends on finding the optimal K and F simultaneously. By

inspecting Tzd, keeping ‖Tz2d‖ small is achieved by making

|F (I −G32K)−1G31| ≈ I for all frequencies. On the other

hand, it is well known that |K| has to be large for good

disturbance rejection [14]. As a result, a trade-off between

good estimation and good disturbance rejection exists. An

example can be found in [15].

IV. ESTIMATION VIA MULTIRATE SAMPLING

A. Motivation and Control Loop Architecture

Next we consider multirate (MR) sampling to estimate

the injected attack d. In particular, we consider the case

where we have two sets of sensors measuring the output.

G

K STH

yc2
ST/m

yc1
F

yT/m

d̂

u yT

d

Fig. 4: General block diagram to reject and estimate d with

secured sensors.

The first set is sampled at the same rate of the hold device,

and is used to provide input for the feedback controller

creating a single rate control system. The second set is

secure and is sampled at a higher frequency, and is used for

attack detection and estimation as seen in Figure 4, where G
is the continuous-time LTI general input-output map. This

architecture is practical for different applications such as

wireless networked control systems. A local estimator that

has access to some of the measurements over hard-wired

secure lines can be built to generate the attack estimates in

this kind of scenario. Higher sampling rate for the detection

loop is necessary to detect stealthy unbounded attacks [2],

and to make it harder for attackers to design stealthy bounded

attacks [3]. In addition, MR sampling removes unstable zeros

(except for possibly one zero at λ = 1) in the map from the

attack signal d to the monitored signals (y and possibly u).

Remark 4. The control loop in the architecture in Figure

4 can also be dual rate. What is important is to have the

output feeding the estimation loop sampled at a sufficiently

higher rate than that at which the attack is injected into the

system.

B. Estimator Design

In this section we present a few control methods for the

design of the estimator F for a fixed controller K, for the

architecture in Figure 4.

1) Model Matching

First we find the mapping from d to the measurements
[

ỹ

yT

]

= Gd

[

d

u

]

=

[

LST/mG11H LST/mG12H

LSTG21H LSTG22H

][

d

u

]

,

where ỹ(k) = [y′c1(kT/m) y′c1((k + 1)T/m) . . . y′c1((k +
m− 1)T/m)]′, yT (k) = yc2(kT ), G11 is the mapping from

d to yc1, G12 is the mapping from u to yc1 and G21 is the

mapping from d to yc2, G22 is the mapping from u to yc2,

yc1 and yc2 are the continuous-time measurements feeding

ST /m and ST respectively, and L is the lifting operator. G11

may represent actuator attacks or sensor attacks as explained

in section III. In view of the above, let G be controllable,

observable and have the following representation:

G =





A B1 B2

C1 D11 D12

C2 D21 0



, (2)

then

Gd =






Ad B1d B2d

C̃1 D̃11 D̃12

C2 D21 0




,
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P̃

n

F̃
ỹ d̂

d

Fig. 5: Block diagram for estimator design in the lifted

domain. P̃ is dual rate, lifted and augmented with a controller

for stabilization.

where

C̃1 =








C1

C1Af

...

C1A
m−1
f







, D̃11 =








D11

D11 + C1B1f

...

D11 + C1

∑m−2
k=0 Ak

fB1f







,

D̃12 =











D12

D12 + C1B2f

...

D12 + C1

∑m−2
k=0 Ak

fB2f











,

and

Ad := eAT , Af := eAT/m,

B1d :=

∫ T

0

eAτB1dτ, B2d :=

∫ T

0

eAτB2dτ,

B1f :=

∫ T/m

0

eAτB1dτ, B2f :=

∫ T/m

0

eAτB2dτ

Now for a given controller K with state space

K =

[
AK BK

CK DK

]

,

the input-output map from d to yT/m is described as

P̃ =








Ad +B2dDKC2 B2dCK B1d +B2dDKD21

BKC2 AK BKD21

C̃1 + D̃12DKC2 D̃12CK D̃11 + D̃12DKD21







, (3)

as seen in Figure 5, where n is sensor noise. The problem

of finding the best d̂ (in some sense) can now be cast as

min
F

∥
∥
∥W −WF̃P̃

∥
∥
∥ ,

or in the case of noisy measurements

min
F

∥
∥
∥W (I 0)−WF̃ (P̃ I)

∥
∥
∥

such that F is stable (to minimize noise amplification) and

causal. Since we are solving the problem in the lifted domain,

the causality of F is guaranteed by enforcing the constraint

that F (0) is block lower triangular. Several methods to solve

this synthesis problem can found in the literature such as in

[16], [17].

2) Unknown Input Reconstruction

In this section we seek to exploit dual rate sampling to

accurately reconstruct the unknown input (attack) d injected

in the system in Figures 4 and 5, as well as the initial

condition x(0). In particular, we consider the relationship

between the states and input from one end and the output

of the system from another end. This relationship has been

studied for single rate systems in the context of strong

observability in the literature [5], [9], [8]. We consider the

state space description P̃ in (3). We assume for now without

loss of generality that K = 0; we also assume that the

measurements are noise free, as a result P̃ reduces to

P̃ =

[

Ad B1d

C̃1 D̃11

]

. (4)

The lifted output of P̃ can be described as












y(0)

y(T/m)

y(2T/m)
...

y( (m−1)T
m )












=












C1

C1Af

C1A
2
f

...

C1A
m−1
f












︸ ︷︷ ︸

C̃1

x(0) +












D11

D11 + C1B1f

D11 + C1B1f + C1AfB1f

...

D11 + C1

∑m−2
k=0 Ak

fB1f












︸ ︷︷ ︸

D̃11

d(0).

(5)

From the above equation, we can deduce that x(0) and d(0)
can be recovered without delay with respect to the original

single rate system if and only if
[

C̃1 D̃11

]

(6)

is full column rank. A necessary condition for (6) to have

full column rank is that P̃ be strongly observable, i.e., have

no invariant zeros [5], [9].

Strong observability of P̃ is guaranteed if G11 is tall and

does not have a zero at the origin for a sufficiently large

m (Theorem 1 in [12]), given that (Af , C1) is observable.

Choosing m to satisfy Assumptions 1 and 2 of section II

is one choice. Strong observability of P̃ alone does not

imply that (6) is full column rank; however, (6) can be made

to have full column rank by choosing m sufficiently large

[18]. The idea is to add more linearly independent rows to

(6) by sampling faster until (6) is tall. The added rows are

linearly independent because m satisfies Assumptions 1 and

2, assuming |C1B1d| 6= 0 as mentioned in section II.

Remark 5. The attack and the states are reconstructed with

no delay with respect to original single rate period T . Still,

m samples are needed within T , so in actual continuous-time

the delay is T sec (or one sample period of the original single

rate). In contrast, for single rate systems the delay can be

up to nT sec where n is the dimension of Ad (assuming the

observer does exist using single rate control, i.e., the single

rate system is strongly observable).

Remark 6. As long as we choose m to make P̃ strongly

observable, then we can still reconstruct d using delayed

measurements (i.e., ỹ(0), ỹ(1), . . . , ỹ(n), where n is the

dimension of Ad) even if (6) is not full column rank. Details
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about this scheme for single rate systems can be found in

[5].

a) Example - Automatic Voltage Regulator (AVR)

The open loop state space representation of a linearized

single rate system AVR after discretization at a sample rate

T = 0.5 sec is

Ad =









0.0105 0.3949 3.86 2.869

−0.0057 −0.1817 −1.369 −0.587

0.00117 0.03359 0.1793 −0.4597

0.00092 0.03197 0.3163 0.8918









, Bd =









−0.005738

0.001174

0.0009193

0.0002165









,

Cd =
[

0 0 0 5000
]

, Dd =
[

0
]

,

(7)

which has an unstable zero at λ = −0.7045. Assume we

want to estimate an actuator attack d. Since the system has

an unstable zero, we know that we cannot reconstruct attacks

even if we use an arbitrary large number of measurements.

Choosing m = 2 resulting in T/m = 0.25 sec removes

the unstable zero when viewed from the lifted domain. The

resulting open loop state space representation after lifting is

Ã = Ad, B̃ = Bd,

C̃ =

[

0 0 0 5000

2.185 86.13 1092 4902

]

, D̃ =

[

0

0.196

]

.
(8)

Although the open loop system is strongly observable using

m = 2, [C̃ D̃] is not full column rank, and we cannot

reconstruct d without delay. Next if we select m = 5, the

resulting C̃ and D̃ matrices become

C̃ =












0 0 0 5000

0.38 21.38 491.24 4994.4

1.53 64.35 917.65 4948.5

2.80 106.05 1238.6 4839.5

3.86 138.22 1454.3e 4671.5












, D̃ =












0

0.011

0.10

0.32

0.66












.

Now [C̃ D̃] is full column rank and the attack along with

x(0) can be reconstructed without delay.

This concludes how to reconstruct d using dual rate

sampling. The case where K is augmented in P̃ as in (3)

can be handled similarly as long as K does not introduce a

zero at λ = 1 in the closed loop map from d to yT/m.

3) Unknown Input Observer

In the previous section we saw how to reconstruct d and

x(0) given that P̃ is sampled faster than the rate at which the

input is feeding the system. However, the method involved

inverting a matrix with high dimensions, which might be

computationally expensive. A cheaper alternative is to design

a dual rate unknown input observer that estimates the states

of the system asymptotically, and then estimates the attack d
using the state estimates. The theory for single rate unknown

input observers is well studied and can be found in [5], [4],

[6], [7] and the references therein. In this section, we will

extend the theory to design a dual rate observer to estimate

the attack in Figure 4. Dual rate unknown input observers

were briefly mentioned in [12], however, the authors assumed

D11 and D12 to be equal to zero in (2), which changes the

analysis and the conditions for existence of the observer and

how the attack is estimated. We consider the state space

description P̃ in (3), assuming without loss of generality

that K = 0 and that the measurements are noise free. P̃ is

then represented by

x(k + 1) = Adx(k) +B1dd(k)

ỹ(k) = C̃1x(k) + D̃11d(k).
(9)

We consider an observer of the form

x̂(k + 1) = Ex̂(k) + Lỹ(k), (10)

where E and L are matrices to be designed.

Definition 7. The system (10) is said to be an unknown input

dual rate observer with rate T/m if x̂(k) − x(k) → 0 as

k → ∞, regardless of the input.

We note that the observer in (10) does not depend on the

input to the system (9). To choose the observer matrices E
and L, we examine the estimation error

e(k + 1) = x̂(k + 1)− x(k + 1)

= Ex̂(k) + Lỹ(k)−Adx(k)−B1dd(k)

= Ee(k) + (E −Ad + LC̃1)x(k)

+ (LD̃11 −B1d)d(k).

In order to force the error to go to zero, regardless of the

values of x(k) and d(k), E and L must simultaneously

satisfy

LD̃11 = B1d (11)

E = Ad − LC̃1 (12)

such that E is stable. There exists a matrix L that satisfies

(11) if and only if B1d is in the space spanned by the rows

of D̃11, which is equivalent to

rank

([

B1d

D̃11

])

= rank(D̃11). (13)

Necessary and sufficient conditions for the existence of E
and L that satisfy (11) and (12) are that P̃ is strongly

detectable (i.e., all zeros of P̃ are strictly stable), and that

(13) holds.

The strong detectability condition is inherited from the

conditions of existence of UIO for single rate systems. We

know that using dual rate sampling guarantees that at most

one zero exists and is at λ = 1; therefore, checking P̃ for

this zero is sufficient to check for the strong detectability of

P̃ , as long as Assumptions 1 and 2 are met. Furthermore,

strong observability of P̃ , which is a more strict property,

is guaranteed if G11 is tall and does not have a zero at the

origin, as long as Assumptions 1 and 2 are met. Now to

ensure the solvability of (11), m is chosen large enough until

(13) holds.

Once a state observer is constructed, we can obtain an

estimate of the attack by first rearranging (9) as

[

x(k + 1)−Adx(k)

ỹ(k)− C̃1x(k)

]

=

[

B1d

D̃11

]

d(k). (14)
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Since both Assumption 1 and (13) hold, then

[

B1d

D̃11

]

is full

column rank, and there exists a matrix R such that

R

[
B1d

D̃11

]

= I,

where I has the appropriate dimension. Left multiplying (14)

by R and using x̂(k) instead of x(k), we find the estimate

of the attack to be

d̂(k) = R
[
x̂(k + 1)−Adx̂(k)

ỹ(k)− C̃1x̂(k)

]

.

Since

e(k) → 0 as k → ∞,

d̂(k) will asymptotically approach d(k). (one sample period

of the original single rate) Note that there is a single time-

step delay (one T ) in computing the attack estimate. In case

of single rate sampling, there will be at most n+1 time-steps

delay ((n + 1)T ) where n is the dimension of the vector x
in (9), if the observer exists (i.e. if the single rate system is

strongly detectable) [5].

a) Example - Automatic Voltage Regulator (AVR)

We revisit the AVR example in section IV-B.2.a. Since

the system has an unstable zero, we know that we cannot

construct a single rate unknown input observer to estimate

actuator attacks even if we use an arbitrary large number of

measurements. Next we know from the previous section that

dual rate sampling at a rate of T/m = 0.25 sec removes

the unstable zero when viewed from the lifted domain. The

resulting open loop state space representation after lifting

is presented in (8), and we can see that the condition

rank

([
Bd

D̃

])

= rank(D̃) is satisfied. We construct a dual

rate unknown input observer of the form (10), i.e.,

x̂(k + 1) = Ex̂(k) + Lỹ(k),

where E and L satisfy (11), (12) and (8). Using MATLAB

solver, we find E and L to be

E =







0.074 2.91 35.70 −3413.41

−0.013 −0.47 −5.00 9003.32

0.013 0.51 6.21 −734.21

0.0063 0.25 3.02 −5.42






, L =







0.7118 −0.0292

−1.8040 0.0033

0.1522 −0.0055

0.0037 −0.0025






.

We note that for the above AVR example, sampling faster

using m = 2 was sufficient to estimate the states and the

attack asymptotically, while in section IV-B.2.a, we saw that

m = 5 was needed to accurately reconstruct the states and

the attack in each period T . This observation makes sense

as it means more measurements are needed for accurate

estimation in each period T versus asymptotic estimation.

V. CONCLUSION

We posed the problem of estimating signal attacks injected

into the actuators or sensors of control systems. We showed

that there exists a trade-off between attack rejection and

estimation, and that the estimator design depends on the

controller used. We used dual rate sampling to enhance the

detectability of the attack and we provided three methods

to design the estimator. Method 1 solves a model matching

problem subject to causality constraints. Method 2 exploits

dual rate sampling to accurately reconstruct the unknown

input. Method 3 uses a dual rate unknown input observer.

Using dual rate sampling, necessary and sufficient rank

and zero location conditions to check the existence of the

observers in methods 2 and 3 were provided. Once these

conditions are satisfied, then the attack can be estimated

with at most a single time-step delay. This work shows again

the importance of studying the security problem in the SD

framework, and the power of using dual rate sampling to

defend against signal attacks. A future research direction is

to study dual rate unknown input observers when noise is

present in the measurements. Optimal single rate delayed

UIOs were discussed in [6] (minimizing mean square error),

but to our knowledge no results exist for the dual rate UIOs.
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