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by saturation functions.5 Nested saturation for navigation and control of UAVs has been studied in other works.7-9 In the

work of Teel,10 it is shown that a chain of multiple integrators can be globally stabilized using nested saturation functions.

Considering a multiloop control architecture, this paper develops a sampled-data (SD) framework for navigation and

control of autonomous systems. Such approach allows to analyze continuous-time physical processes that interact with

digital controllers through sensors/actuators and communication links that can possibly have different sampling rates.11

The SD control designs are mainly based on the controller emulation methods, where an SD controller is developed

in two stages: first, a continuous-time controller is designed that satisfies certain performance/robustness requirements;

next, a discrete-time controller is obtained for digital implementation using an approximation technique.12-14 In theworks

of Khalil,15 Ahrens et al,16 and Ahmed Ali,17 the problem of SD output-feedback control was addressed by introducing

high-gain observers to estimate the unmeasured states. Output-feedback stabilization of nonlinear systems with SD con-

trollers has been studied in the works of Shim and Teel18 and Lam.19 Other authors13,14,20-23 have addressed the problem

of SD output-feedback control for systems with uncertainties and disturbances for a class of single-input–single-output

nonlinear systems under a lower-triangular linear growth condition. In the works of Lin and Wei,13,23 nonminimum

phase nonlinear systems were considered. Nonlinear SD systems with full state-feedback were addressed in the works of

Guillaume et al,24 Wu and Ding,25 and Laila et al.26

We notice that the analysis of control systems in the SD framework has also important cyber-physical security impli-

cations. The SD nature of controller implementation in autonomous systems can generate additional vulnerability to

stealthy attacks due to the sampling zeros in the SD system.27,28 For example, a zero-dynamics attack can be implemented

in the cyber space as an additive disturbance such that an unbounded signal can blow up the states of the physical system,

while the observed output and control command dictate normal behavior. To deal with this problem, a multirate scheme

is applied since it allows the attack to be detected by ensuring that there are no relevant unstable zeros in the lifted sys-

tem. As shown in the work of Naghnaeian et al,28 unbounded zero-dynamics attacks can be detected if the control system

is designed in the dual rate SD framework.

In this paper, the navigation and control problem for autonomous systems is formulated using a multirate SD control

approach. The control structure consists of a high-level (outer-loop) control for reference command generation and a

low-level (inner-loop) adaptive control for reference tracking, as shown in Figure 1. The high-level controller is limited

by saturation bounds to maintain the closed-loop system within a safety operational envelope. The low-level controller

is a multirate 1 adaptive controller for tracking the generated reference command by compensating for uncertainties

and disturbances. 1 adaptive controller is a robust control technique with quantifiable performance bounds and robust-

ness margins,29-31 which has been successfully implemented on manned and unmanned aircraft32-34 and simulation

models.35-39 In this paper, the 1 adaptive control theory is extended to the multirate SD framework, while maintaining

the key benefits of a continuous-time1 adaptive controller.29-31,40 The low-level controller compensates for disturbances

within the bandwidth of a low-pass filter, similar to other 1 adaptive controllers. Conditions are derived, under which

the SD controller uniformly recovers the performance of the underlying continuous-time reference system as the sam-

pling time tends to zero. The related preliminary results by authors can be found in the works Jafarnejadsani et al.41,42

This paper extends the previous results, by considering the output-feedback control problem for a class nested uncer-

tain MIMO systems subject to reference command saturation, with possibly nonminimum phase zeros. The unknown

nonlinearities are assumed to be locally Lipschitz. The multirate SD framework of this paper addresses the digital imple-

mentation of the control law on computers, where the control inputs and the measurements are available at discrete time

instances with different sampling rates. In addition, the multilevel structure of the problem formulation allows for design

of the feedback loops for the high-level/low-level subsystems with their respective control objectives, while the stabil-

ity and robustness of the overall nested system subject to command saturation are taken into account. The effectiveness

of the proposed approach is evaluated using the simulation study of a fixed-wing UAV in the presence of uncertainties,

zero-dynamics attack, and mechanical failure. In this example, the multilevel SD control strategy is leveraged for naviga-

tion and control of the UAV model, where the theoretical conditions for the control design are verified. The simulation

environment is based on both linearized model and high-fidelity nonlinear model.

FIGURE 1 Structure of the proposed

multilevel multirate sampled-data

controller for navigation and control of

autonomous systems [Colour figure can be

viewed at wileyonlinelibrary.com]
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The rest of this paper is organized as follows. A few notations and definitions are introduced in Section 2. Section 3

presents the problem formulation and the control design objectives. In Section 4, the structure of the proposed multilevel

multirate controller is presented. The closed-loop SD system is analyzed in Section 5. Section 6 presents the simulation

results. Finally, Section 7 concludes this paper.

2 PRELIMINARIES

Throughout this paper, ||x𝜏 ||∞
denotes the ∞ norm of the truncated signal x𝜏(t) for the original x(t) ∈ ℝn, given as

x𝜏(t) = x(t), ∀t ≤ 𝜏,

x𝜏(t) = 0n×1, otherwise.

The notation || · ||p represents vector or matrix p-norms with 1 ≤ p ≤ ∞. The right pseudoinverse of a full row-rank

matrix A ∈ ℝq×n is denoted by A† , and can be computed as A† = A⊤
(
AA⊤

)−1
such that AA† = 𝕀q. In addition, s is used

for the Laplace transform. For a vector v ∈ ℝq, the notation sat{v} represents the saturation function defined by

sat{v} =

[
sgn{v1}min{|v1|, 1}

⋮

sgn{vq}min{|vq|, 1}

]
, (1)

where sgn{·} is the standard sign function, and vi's are the elements of the vector v.

Consider a continuous-time LTI plant Pc, and the corresponding discrete-time LTI plant Pd = Pc, which is defined

with the standard zero-order hold and sample operators and , respectively. The relationship between Pc and Pd follows
from the following definition.

Definition 1. For an LTI system Pc with the minimal realization (Ac, Bc, Cc, Dc), the equivalent step-invariant

discrete-time system Pd can be defined by the following state-space matrices

Ad = eAcTs , Bd = ∫
Ts

0

eAc𝜏Bcd𝜏, Cd = Cc, Dd = Dc, (2)

where Ts > 0 is the sampling period.

Definition 2 (Zero-dynamics attack). Assume the system Pd with the state-space matrices in (2) has an unstable

transmission zero at a0 ∈ ℂ. Then, the unbounded actuator attack signal of the form d[k] = 𝜖a0k, which implemented

as an additive input disturbance, can cause the states of the system expand exponentially, while remaining undetected

for small enough 𝜖 at the sampled output.28

3 PROBLEM FORMULATION

As depicted in Figure 1, consider the following multilevel model for an autonomous system subject to uncertainties,

disturbances, physical faults, and attack signals, comprised of a low-level (inner-loop) subsystem

.
x(t) = Axx(t) + Bx(u(t) + 𝑓 (t, x(t)) + d(t)), x(0) = x0,

𝑦(t) = Cxx(t),
(3)

and a high-level (outer-loop) subsystem

.
z(t) = Azz(t) + Bz𝑦(t) + g(t, x(t)), z(0) = z0, (4)

where x(t) ∈ ℝn and z(t) ∈ ℝp are the state vectors, u(t) ∈ ℝq is the input signal, and 𝑦(t) ∈ ℝq is the system output

vector. In addition, {Ax ∈ ℝn×n,Bx ∈ ℝn×q,Cx ∈ ℝq×n} is an observable-controllable triple and {Az ∈ ℝp×p,Bz ∈ ℝp×q}



1074 JAFARNEJADSANI ET AL.

is a controllable pair. The unknown initial condition x0 ∈ ℝn is assumed to be inside an arbitrarily large set, so that

||x0||∞ ≤ 𝜌0 < ∞ for some known 𝜌0 > 0, and z0 ∈ ℝp is a known initial condition. Let d(t) ∈ ℝq be an exogenous

additive disturbance on the control input, which can represent a CPS attack (eg, stealthy zero-dynamics attack signal)

or failure. In addition, let 𝑓 (t, x(t)) ∈ ℝq and g(t, x(t)) ∈ ℝp represent the time-varying uncertainties and disturbances,

subject to the following assumption.

Assumption 1. There exist K𝛿 > 0 and G𝛿 > 0 for arbitrary 𝛿 > 0, and constants L0 > 0 and L1 > 0 such that

||𝑓 (t, x2) − 𝑓 (t, x1)||∞ ≤ K𝛿||x2 − x1||∞, ||𝑓 (t, 0)||∞ ≤ L0, ||d(t)||∞ ≤ L1, ||g(t, x1)||∞ ≤ G𝛿

hold for all ||xi||∞ ≤ 𝛿, i ∈ {1, 2}, uniformly in t ≥ 0.

Using a multirate SD control approach, the control input and the measurements are available at discrete time instances

with different sampling periods. The control input, which is implemented via a zero-order hold mechanism with time

period of Ts > 0, is given by

u(t) = ud[i], t ∈ [iTs, (i + 1)Ts), i ∈ ℤ≥0, (5)

where ud[i] is a discrete-time control input signal. The output of the low-level subsystem y(t) is sampled N ∈ ℕ times

faster with the sampling time of Ts∕N, such that the discrete-time output signal yd[ j] is given by

𝑦d[𝑗] = 𝑦

(
𝑗
Ts
N

)
, t ∈

[
𝑗
Ts
N
, ( 𝑗 + 1)

Ts
N

)
, 𝑗 ∈ ℤ≥0, (6)

and the high-level subsystem state z(t) is sampledM ∈ ℕ times slower with the period ofMTs such that

zd[k] = z (kMTs) , t ∈
[
kMTs, (k + 1)MTs

)
, k ∈ ℤ≥0. (7)

For M = N = 1, the SD controller will have a uniform rate. In the more general case where the inputs and outputs are

available at different rates, N, M ∈ ℕ can be selected as desired for the control structure accordingly.

Remark 1. The proposedmultirate control structure ismotivated by real-world applications. In navigation and control

of autonomous UAVs as an example, the attitude angles for inner-loop dynamics are measured at the rate of 50Hz or

faster using inertial measurement unit (IMU) sensor, while the position measurement for the outer-loop dynamics

is available at the slower sampling rate of about 10Hz using global positioning system (GPS) sensor. In addition, the

multirate sampling approach has the advantage of improving the detectability of zero-dynamics attacks.28

Assumption 2. The desired dynamics for the low-level subsystem in (3) is defined by

Pm(s) = Cm
(
s𝕀nm − Am

)−1
Bm, (8)

where the triple {Am ∈ ℝnm×nm ,Bm ∈ ℝnm×q,Cm ∈ ℝq×nm} is a minimal state-space realization of Pm(s), with Am

being Hurwitz, and (CmBm) is nonsingular. In addition, Pm(s) does not have any unstable transmission zeros.

The desired response ym(t) is given by the Laplace transform ym(s) = Pm(s)Kgr(s), where

Kg
Δ
=−

(
CmA

−1
m Bm

)−1
,

and r(s) is the Laplace transform of r(t) given by

r(t) = rd[k], t ∈
[
kMTs, (k + 1)MTs

)
, k ∈ ℤ≥0, (9)

where rd[k] is a discrete-time reference command.

Assumption 3. The reference command is constrained to a convex polytope as a safe operation region, defined by

the set

 =
{
r ∈ ℝ

q|‖Wr‖∞ ≤ 1
}
, (10)
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where W = diag{r−1max1 , … , r−1maxq}, and the positive constants rmaxi 's are the saturation bounds on control inputs.

Then, the weighted reference command is bounded by

||Wrd[k]||∞ ≤ 1, k ∈ ℤ≥0.

Remark 2. For large uncertainties outside normal conditions, the low-level control inputs can saturate or drive the

system to unsafe states. By restricting the reference commands (generated by high-level control) to a safe operational

envelope, as defined in Assumption 3, the safety of the autonomous system can be improved.

Assumption 4. The desired system for the high-level subsystem in (4) is defined by

.
zm(t) = Azzm(t) + Bzrm(t), zm(0) = z0, (11)

where zm(t) ∈ ℝp is the desired state for the high-level subsystem, and

rm(t) = rmd
[k], t ∈

[
kMTs, (k + 1)MTs

)
, k ∈ ℤ≥0 (12)

is the precalculated reference command for the desired system. It is assumed that

‖‖Wrmd
[k]‖‖∞ ≤ 𝛼, k ∈ ℤ≥0, (13)

where 𝛼 ∈ (0, 1) is a given constant, andW is defined in (10). In addition, we assume that rmd
[0] = 0, and

1

MTs
‖‖rmd

[k + 1] − rmd
[k]‖‖∞ ≤ 𝛿rm , k ∈ ℤ≥0, (14)

where 𝛿rm > 0 is the bound on the rate of change of the reference command.

In the following, a multilevel multirate adaptive controller is formulated to:

• compensate for physical failures, uncertainties, and disturbances, such that the low-level system in (3) is stable and

the output y(t) closely tracks the desired response ym(t);

• maintain the reference command r(t) within the safe operation envelope defined in (10);

• bound the error between the states of the high-level subsystem, z(t), and the desired trajectory zm(t) given in (11);

• detect sensor/actuator attacks (including stealthy zero-dynamics attacks), and recover stability of the perturbed

system.

4 PROPOSED MULTILEVEL MULTIRATE CONTROLLER

In this section, the proposedmultilevelmultirate controller is presented. The conditions for selection of the control param-

eters and the detailed analysis of the closed-loop system are provided in Section 5. First, the elements of the multirate

output-feedback 1 adaptive controller that generates the input u(t) to the low-level subsystem in (3) are given.

Let Ts > 0 be the sampling time of the control input. Consider a strictly proper stable transfer function C(s) such that

C(0) = 𝕀q. In the 1 adaptive control structure, C(s) represents the low-pass filter at the control input.30 In addition,

define O(s)
Δ
=C(s)P−1m (s)Cm

(
s𝕀nm − Am

)−1
, and let {Ao ∈ ℝv×v, Bo ∈ ℝv×q, Co ∈ ℝq×v} be a minimal state-space realization

such that

Co(s𝕀v − Ao)
−1Bo = O(s). (15)
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The control laws are given by

xu[𝑗 + 1] = eAo
Ts
N xu[𝑗] + A−1

o

(
eAo

Ts
N − 𝕀v

)
Boe

−Am
Ts
N 𝜎̂d[𝑗], xu[0] = 0, 𝑗 ∈ ℤ≥0,

uNd
[𝑗] = −Coxu[𝑗],

uN(t) = uNd
[𝑗], t ∈

[
𝑗
Ts
N
, ( 𝑗 + 1)

Ts
N

)
,

ud[i] = uN(iTs) + Kgr(iTs), i ∈ ℤ≥0,

(16)

where 𝜎̂d[·] ∈ ℝn is provided by the adaptation law in (22). In addition, the reference command r(·) ∈ ℝq is given by (9)

and the high-level controller in (24).

The construction of 𝜎̂d[·] is based on an output predictor that follows. The output predictor is given by

x̂d[𝑗 + 1] = eAm
Ts
N x̂d[𝑗] + A−1

m

(
eAm

Ts
N − 𝕀nm

)
(BmuP[𝑗] + 𝜎̂d[𝑗]) , x̂d[0] = C†

m𝑦0, 𝑗 ∈ ℤ≥0,
𝑦̂d[𝑗] = Cmx̂d[𝑗].

(17)

The predictor control input uP[ j] is defined by

uP[𝑗] = u

(
𝑗
Ts
N

)
, 𝑗 ∈ ℤ≥0, (18)

where u(t) is defined by (5) and (16).

Given that Am ∈ ℝnm×nm is Hurwitz, there exists a positive definite matrix P ∈ ℝnm×nm solving A⊤
mP + PAm = −Q for a

given positive definite matrix Q ∈ ℝnm×nm . Define

Λ
Δ
=

[
Cm
D
√
P

]
, (19)

where
√
P satisfies P =

√
P
⊤√

P, and D ∈ ℝ(nm−q)×nm is a matrix that is in the null space of Cm(
√
P)−1, ie,

D

(
Cm

(√
P
)−1

)⊤

= 0 . (20)

Furthermore, let Φ(·) be the nm × nm matrix

Φ (Ts)
Δ
=∫

Ts
N

0

e
ΛAmΛ

−1
(
Ts
N
−𝜏

)
Λd𝜏. (21)

The adaptation law is governed by the following equation:

𝜎̂d[𝑗] = −Φ−1 (Ts) e
ΛAmΛ

−1 Ts
N 1nmq𝑦̃d[𝑗], 𝑗 ∈ ℤ≥0, (22)

where 𝑦̃d[𝑗] = 𝑦̂d[𝑗] − 𝑦d[𝑗], and 1nmq ∈ ℝnm×q is given by

1nmq
Δ
=

[
𝕀q

0(nm−q)×q

]
. (23)

Finally, the reference command rd[k], which is generated by the high-level control law, is given by

rd[k] = rmd
[k] + (1 − 𝛼)W−1sat

{
1

1 − 𝛼
WFz

(
zmd

[k] − zd[k]
)}

, k ∈ ℤ≥0, (24)
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where rmd
[k] is the desired reference command introduced in Assumption 4, and Fz ∈ ℝq×p is the state-feedback gain,

while 𝛼 is introduced in Assumption 4. In addition, zd[k] is the measured high-level state given by (4) and (7). Using (11),

the desired high-level state zmd
[k] is obtained by

zmd
[0] = z0,

zmd
[k] = eAz(kMTs)z0 +

k−1∑
l=0

(
∫

MTs

0

eAz((k−l)MTs−𝜏)Bzd𝜏

)
rmd

[l], k ∈ ℤ>0.
(25)

Notice that the saturation function in (24) ensures that the reference command always remains within the safety envelope

 defined in (10). In the ideal case where the outer-loop state z(t) precisely tracks the desired state zm(t), the reference

command law in (24) implies that r(t) = rm(t). While r(t) represents the command that is sent to the inner-loop subsystem,

rm(t) is the precalculated reference command for the desired system in (11) with no uncertainty.

5 ANALYSIS OF THE CLOSED-LOOP MULTIRATE SYSTEM

This section provides the analysis of stability and performance of the closed-loop SD systemwith the proposed controller.

In addition, the conditions for selection of the control parametersTs,C(s), andFz are provided. The analysis is summarized

in Theorems 1 and 2 at the end of this section. Toward this goal, we need to define a few variables of interest and design

constraints. Let

P(s)
Δ
=Cx(s𝕀n − Ax + BxFx)

−1Bx,

H0(s)
Δ
= (s𝕀n − Ax + BxFx)

−1Bx,

H1(s)
Δ
=
(
𝕀q +

(
P−1m (s)P(s) − 𝕀q

)
C(s)

)−1
,

H2(s)
Δ
=H0(s) −H0(s)C(s)H1(s)

(
P−1m (s)P(s) − 𝕀q

)
,

H3(s)
Δ
=H1(s)P

−1
m (s)P(s),

H4(s)
Δ
=H1(s)

(
P−1m (s)P(s) − 𝕀q

)
,

H5(s)
Δ
=H0(s)C(s)H1(s)P

−1
m (s),

G(s)
Δ
=H0(s) −H5(s)P(s),

(26)

where Fx ∈ ℝq×n is selected such thatAx−BxFx is Hurwitz. Let 𝑦0
Δ
=Cxx0 be the known initial output. Define the auxiliary

system
.
xa(t) = Amxa(t) + Bm (u(t) + 𝜎(t)) , xa(0) = C†

m𝑦0,

𝑦(t) = Cmxa(t),
(27)

with the same input u(t) to output y(t)mapping as the system in (3), where xa(t) ∈ ℝnm is the state vector, and the Laplace

transform of 𝜎(t) is given by

𝜎(s) = P−1m (s) ((P(s) − Pm(s))u(s) + P(s)w(s) +Hin(s)x0) ,

where

Hin(s)
Δ
=Cx(s𝕀n − Ax + BxFx)

−1 − Cm
(
s𝕀nm − Am

)−1
C†
mCx,

and w(s) is the Laplace transform of w(t) given by

w(t)
Δ
=Fxx(t) + 𝑓 (t, x(t)) + d(t). (28)

The term 𝜎(t) in (27), which appears as amatched signal in the input channel, lumps together the uncertainties originated

from (i) themodelmismatch between the given and desired systemdynamics, (ii) uncertainty terms f (t, x(t)) and d(t), and

(iii) unknown initial condition. The design objective is to recover the desired system response by partially compensating
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for 𝜎(t) using the control input u(t). In practice, complete cancelation of the uncertainty 𝜎(t) can be achieved only in the

expense of losing robustness. For a robust design, the controller compensates for 𝜎(t)within the bandwidth of a low-pass

filter in this paper.

Remark 3. Assumption 2 implies that 1
s
P−1m (s) is a proper transfer function. Given that Pm(s) does not have an unstable

transmission zero, P−1m (s)P(s) is proper and stable, and P−1m (s)Hin(s) is strictly proper and stable (Hin(s) has total relative

degree of two or higher). Therefore, 𝜎(t) in (27) is a causal signal. In addition, Assumption 1 states that the signals

f(t, x(t)) and d(t) are uniformly bounded with respect to time and f(t, x(t)) is locally Lipschitz continuous with respect

to x(t). Therefore, the Laplace transform of w(t) in (28) exists.

Furthermore, for every 𝛿 > 0, let

L𝛿
Δ
=
𝛾̄1 + 𝛿

𝛿

(
K(𝛾̄1+𝛿) + ‖Fx‖∞

)
, (29)

whereK𝛿 is introduced in Assumption 1, and 𝛾̄1 is an arbitrarily small positive constant. It can be shown that the following

bound on w(t) holds:

||wt||∞
≤ L𝛿||xt||∞

+ L2, (30)

where L2
Δ
=L0 + L1. In addition, define

Mr
Δ
=max

{
rmax1 , … , rmaxq

}
, (31)

where rmaxi 's are introduced in (10). The design of the controller proceeds by finding a low-pass filter C(s) such that

C(0) = 𝕀q. The selection of C(s)must ensure that

H1(s) is stable, (32)

where H1(s) is defined in (26), and for a given 𝜌0, there exists 𝜌r > 𝜌0 such that the following 1-norm condition holds:

||G(s)||1
<

𝜌r − 𝜌1 − 𝜌2

L𝜌r𝜌r + L2
, (33)

where

𝜌1
Δ
= ‖‖s(s𝕀n − Ax + BxFx)

−1 − sH5(s)Hin(s)‖‖1
𝜌0, 𝜌2

Δ
= ‖‖H2(s)Kg‖‖1

Mr. (34)

Remark 4. Selection of the filter C(s) provides a trade-off between performance in terms of disturbance compensa-

tion and robustness in terms of input-delay margin. A mixed-norm optimization of the filter for 1 adaptive control

structure can be found in the work of Jafarnejadsani et al.38

In the following, we define a few more variables required to obtain the conditions for selection of the sampling time Ts
for the digital controller. Let P1 ∈ ℝq×q and P2 ∈ ℝ(nm−q)×(nm−q) be positive definite matrices given by

P1
Δ
=

(
Cm

√
P
−1√

P
−⊤

C⊤
m

)−1

, P2
Δ
= (DD⊤)−1. (35)

Define [
𝜂⊤1 (t) 𝜂⊤2 (t)

] Δ
= 1⊤nmqe

ΛAmΛ
−1t, (36)

where 𝜂1(t) ∈ ℝq×q and 𝜂2(t) ∈ ℝ(nm−q)×q, and

𝜅(Ts)
Δ
=∫

Ts
N

0

‖‖‖‖1
⊤
nmq

e
ΛAmΛ

−1
(
Ts
N
−𝜏

)
ΛBm

‖‖‖‖2d𝜏. (37)

Define the function

Γ (Ts)
Δ
= 𝛼1(Ts)

‖‖‖(s𝕀v − Ao)
−1Bo

‖‖‖1

+ 𝛼2(Ts), (38)

where the system matrices (Ao, Bo, Co) satisfy (15), and

𝛼1(Ts)
Δ
= max

t∈
[
0,

Ts
N

]
‖‖‖Co

(
eAot − 𝕀v

)‖‖‖∞, 𝛼2(Ts)
Δ
= max

t∈
[
0,

Ts
N

]∫
t

0

‖‖‖Coe
Ao(t−𝜏)Bo

‖‖‖∞d𝜏.
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Let

Υ(Ts) =
‖‖‖e

−Am
Ts
N Φ−1 (Ts) e

ΛAmΛ
−1 Ts

N 1nmq
‖‖‖∞,

Ψ (Ts) =
‖‖‖‖H5(s)Cm

(
s𝕀nm − Am

)−1 (
eAm

Ts
N − 𝕀nm

)‖‖‖‖1

,

Ω1(Ts) =
(
1 − ||G(s)||1

L𝜌r
)−1‖‖H2(s)C(s)P

−1
m (s)‖‖1

+ ‖H2(s)‖1

(
1 − ||G(s)||1

L𝜌r
)−1

(NΓ (Ts) + Ψ (Ts)) Υ (Ts) ,

𝜌Δ = ‖H3(s)‖1

(
L𝜌r𝜌r + L2

)
+ ‖‖H4(s)Kg‖‖1

Mr + ‖‖sH1(s)P
−1
m (s)Hin(s)‖‖1

𝜌0,

(39)

where Hi(·)'s are defined in (26). Next, we introduce the functions

𝛽1(Ts)
Δ
= max

t∈
[
0,

Ts
N

] ||𝜂1(t)||2, 𝛽2(Ts)
Δ
= max

t∈
[
0,

Ts
N

] ||𝜂2(t)||2, (40)

where 𝜂1(t) and 𝜂2(t) are given in (36). In addition,

𝛽3(Ts)
Δ
= max

t∈
[
0,

Ts
N

] 𝜂3(t,Ts), 𝛽4(Ts)
Δ
= max

t∈
[
0,

Ts
N

] 𝜂4(t), (41)

where

𝜂3(t,Ts)
Δ
=∫

t

0

‖‖‖1
⊤
nmq

eΛAmΛ
−1(t−𝜏)ΛΦ−1 (Ts) e

ΛAmΛ
−1 Ts

N 1nmq
‖‖‖2d𝜏, 𝜂4(t)

Δ
=∫

t

0

‖‖‖1
⊤
nmq

eΛAmΛ
−1(t−𝜏)ΛBm

‖‖‖2d𝜏. (42)

For 𝛾̄0 > 0, let

Δ1(𝛾̄0)
Δ
= 𝜌Δ +

(
‖H3(s)‖1

L𝜌rΩ1(Ts) + ‖‖H4(s)C(s)P
−1
m (s)‖‖1

+ ‖H4(s)‖1
(NΓ (Ts) + Ψ (Ts)) Υ (Ts)

)
𝛾̄0,

Δ2(𝛾̄0)
Δ
= 𝜆max

(
Λ−⊤PΛ−1

)(2
√
qΔ1(𝛾̄0)‖‖Λ−⊤PBm‖‖2
𝜆min

(
Λ−⊤QΛ−1

)
)2

,

(43)

where 𝜌Δ is defined in (39). In addition, let

𝜍(𝛾̄0,Ts)
Δ
=
‖‖‖‖‖
𝜂2

(
Ts
N

)‖‖‖‖‖2

√
Δ2(𝛾̄0)

𝜆max(P2)
+

√
q𝜅(Ts)Δ1(𝛾̄0), (44)

where 𝜂2(·) is defined in (36) and 𝜅(·) is given in (37). Let

𝛾0(𝛾̄0,Ts)
Δ
= 𝛽1(Ts)𝜍(𝛾̄0,Ts) + 𝛽2(Ts)

√
Δ2(𝛾̄0)

𝜆max(P2)
+ 𝛽3(Ts)𝜍(𝛾̄0,Ts) +

√
q𝛽4(Ts)Δ1(𝛾̄0). (45)

Let 𝜇 be a positive constant, and Tsmax > 0 be a given upper bound on the sampling time Ts. For Fz ∈ ℝq×p, define

Δs(𝜇, Fz)
Δ
=

‖Bz‖∞
𝜇

Mr‖WFz‖∞𝜈1,

Δ (𝜇, Fz)
Δ
= ‖Bz‖∞‖‖Pm(s)(𝕀q − C(s))‖‖1

𝜌Δ + ‖Bz‖∞‖Cx‖∞𝛾̄1 + 𝛾̄r + G𝜌r+𝛾̄1 + ‖Bz‖∞
‖‖‖‖

𝜇

s + 𝜇
𝕀q − Pm(s)Kg

‖‖‖‖1

Mr

+ ‖Bz‖∞‖‖‖sCm
(
s𝕀q − Am

)−1
C†
mCm

‖‖‖1

𝜌0 +
‖Bz‖∞

𝜇

(
𝛿rm +Mr‖WFz‖∞G𝜌r+𝛾̄1𝜈2

)

+
Mr

𝜇
‖Bz‖2∞ ‖WFz‖∞ (𝛼Mr + ‖Cx‖∞(𝜌r + 𝛾̄1)) 𝜈2,

(46)
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where 𝛾̄r is an arbitrarily small positive constant, and

𝜈1
Δ
= sup

t∈(0,MTsmax ]

1

t
‖‖eAzt − 𝕀p

‖‖∞, 𝜈2
Δ
= sup

t∈(0,MTsmax ]

1

t ∫
t

0

‖‖‖e
Az(t−𝜏)‖‖‖∞d𝜏. (47)

Following a notation similar to the work of Fang et al,43 let  be the set of q × q diagonal matrices whose diagonal

elements are either 1 or 0. There are 2q elements in , and we denote its elements as Di, i ∈ {1, … , 2q}. Denote D−
i
=

𝕀q − Di. It is easy to see that D−
i
∈ . Let the positive definite matrix S ∈ ℝp×p be given. Next, the high-level controller

design proceeds by considering Fz, Hz ∈ ℝq×p, a positive definite R ∈ ℝp×p, and a constant 𝜇 > 0 such that

(
Az − Bz

(
DiFz + D−

i Hz

))⊤
R + R

(
Az − Bz

(
DiFz + D−

i Hz

))
+ S ≺ 0p×p, ∀i ∈ {1, … , 2q}, (48)

and

‖WHz‖∞ ≤ (1 − 𝛼)𝜌−1z , (49)

where 𝛼 is introduced in Assumption 4, and

𝜌z =

(
1 −

2
√
p‖R‖2Δs(𝜇, Fz)

𝜆min(S)

)−1
2
√
p‖R‖2Δ (𝜇, Fz)

𝜆min(S)
, (50)

with Δs(𝜇, Fz) and Δ (𝜇, Fz) defined in (46).
Finally, define

𝛾z(𝛾̄0, Ts)
Δ
= 𝛼3(Ts)𝜌z + 𝛼4(Ts)

(‖Bz‖∞ (𝛼Mr + ‖Cx‖∞(𝜌r + Ω1(Ts)𝛾̄0)) + G𝜌r+𝛾̄1

)
,

𝛾r(𝛾̄0, Ts)
Δ
= ‖Bz‖∞Mr

(
2(1 − e−𝜇MTs ) + ‖WFz‖∞𝛾z(𝛾̄0, Ts)

)
,

(51)

where

𝛼3(Ts)
Δ
= max

t∈[0,MTs]
‖‖eAzt − 𝕀p

‖‖∞, 𝛼4(Ts)
Δ
= max

t∈[0,MTs]∫
t

0

‖‖‖e
Az(t−𝜏)‖‖‖∞d𝜏. (52)

Lemma 1. For all 𝛾̄0 > 0, the following relationships hold:

lim
Ts→0

𝛾0(𝛾̄0,Ts) = 0, lim
Ts→0

𝛾r(𝛾̄0,Ts) = 0, (53)

where 𝛾0(·, ·) and 𝛾z(·, ·) are given in (45) and (51), respectively.

Proof. The proof is similar to the proof of Lemma 3.3.1 in the work of Hovakimyan and Cao30 and hence is

omitted here.

Lemma 2. There exist Ts > 0 and an arbitrarily small positive constant 𝛾̄0, such that

𝛾0(𝛾̄0, Ts) < 𝛾̄0, Ω1(Ts)𝛾̄0 < 𝛾̄1, 𝛾r(𝛾̄0, Ts) < 𝛾̄r, (54)

where 𝛾̄1 and 𝛾̄r are introduced in (29) and (46). In addition,Ω1(·), 𝛾0(·, ·), and 𝛾r(·, ·) are defined in (39), (45), and (51),

respectively.

Proof. It is straightforward to verify thatΩ1(Ts) is a bounded function as Ts tends to zero. In addition, Lemma 1 shows

that 𝛾0(𝛾̄0,Ts) and 𝛾z(𝛾̄0,Ts) both approach arbitrarily close to zero for all 𝛾̄0 with sufficiently small Ts. Therefore, there

always exist constants Ts and 𝛾̄0 that satisfy the inequalities in (54).

The sampling time Ts of the digital controller is selected such that Ts ≤ Tsmax , and the inequalities in (54) hold.
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Lemma 3. For arbitrary 𝜉 =

[
𝑦1
𝑦2

]
∈ ℝnm , where 𝑦1 ∈ ℝq and 𝑦2 ∈ ℝ(nm−q), there exist positive definite P1 ∈ ℝq×q and

P2 ∈ ℝ(nm−q)×(nm−q) such that

𝜉⊤(Λ−1)⊤PΛ−1𝜉 = 𝑦⊤1 P1𝑦1 + 𝑦⊤2 P2𝑦2, (55)

where Λ is given in (19). In addition, P1 and P2 are defined in (35).

Proof. The proof of Lemma 3 can be found in the work of Hovakimyan and Cao.30

Consider the following closed-loop reference system:

.
xref(t) = Axxref(t) + Bx (uref(t) + 𝑓 (t, xref(t)) + d(t)) ,

uref(s) = Kgr(s) − C(s)𝜎ref(s),

𝑦ref(t) = Cxxref(t), xref(0) = x0,

(56)

where

𝜎ref(s) = [(P(s) − Pm(s))C(s) + Pm(s)]
−1 (P(s) − Pm(s))Kgr(s) + [(P(s) − Pm(s))C(s) + Pm(s)]

−1 (P(s)w ref(s) +Hin(s)x0) ,

(57)

and wref(s) is the Laplace transform of wref(t) given by

wref(t) = Fxxref(t) + 𝑓 (t, xref(t)) + d(t). (58)

The reference system can be rewritten as

𝑦ref(s) = Pm(s)Kgr(s) + Pm(s)
(
𝕀q − C(s)

)
𝜎ref(s) + Cm

(
s𝕀nm − Am

)−1
C†
m𝑦0. (59)

From (59), we notice that the unknown uncertainty 𝜎ref(t), given by the Laplace transform in (57), is mitigated within

the bandwidth of C(s), and the desired response (in Assumption 2) is recovered. The reference system in (56) defines the

achievable performance by the closed-loop multirate system given in (3), (16)-(22), as the sampling time Ts of the digital

controller tends to zero. In the following, we first prove that 𝜎ref(t) is bounded, and the reference system in (56) is stable.

Then, we establish uniform bounds between the closed-loop system defined by (3), (16)-(22) and the reference system.

Lemma 4. For the closed-loop reference system in (56), subject to the 1-norm condition (33), if ‖x0‖∞ ≤ 𝜌0, then

‖xref‖∞
< 𝜌r, (60)

‖uref‖∞
< 𝜌ur, (61)

where 𝜌r is introduced in (33), and

𝜌ur
Δ
= ‖C(s)H3(s)‖1

(
L𝜌r𝜌r + L2

)
+ ‖‖sC(s)H1(s)P

−1
m (s)Hin(s)‖‖1

𝜌0 +
‖‖‖
(
𝕀q − C(s)H4(s)

)
Kg

‖‖‖1

Mr. (62)

Proof. See Appendix A.1 for the proof.

Remark 5. Lemma 4 implies that 𝜎ref(t) with Laplace transform defined in (57) is bounded, such that

‖𝜎ref‖∞
≤ 𝜌Δ, (63)

where 𝜌Δ is defined in (39).

We consider an equivalent state-space model of the predictor dynamics in (17) given by

.
x̂(t) = Amx̂(t) + Bmu(t) + 𝜎̂(t), x̂(0) = C†

m𝑦0

𝑦̂(t) = Cmx̂(t),
(64)
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where

𝜎̂(t) = 𝜎̂d[𝑗], t ∈

[
𝑗
Ts
N
, ( 𝑗 + 1)

Ts
N

)
, 𝑗 ∈ ℤ≥0, (65)

and u(t) is given by (5) and (16). Since 𝜎̂(t) and u(t) are piecewise constants in (64), from (17), we have

𝑦̂

(
𝑗
Ts
N

)
= 𝑦̂d[𝑗], 𝑗 ∈ ℤ≥0. (66)

Let x̃(t) = x̂(t)−xa(t), where xa(t) is defined in (27). Then, the prediction error dynamics between (27) and (64) are given by

.
x̃(t) = Amx̃(t) + 𝜎̂(t) − Bm𝜎(t), x̃(0) = 0nm×1,

𝑦̃(t) = Cmx̃(t),
(67)

where 𝜎̂(t) is defined in (65).

Lemma 5. Consider the closed-loop system defined by (3), (16)-(22), and the closed-loop reference system in (56). The

following upper bound holds:
‖‖(xref − x)t‖‖∞

≤ Ω1(Ts)‖𝑦̃t‖∞
,

where Ω1(·) is given in (39), and 𝑦̃(t) is the prediction error defined in (67).

Proof. See Appendix A.2 for the proof.

Theorem 1. Consider the system in (3) and the controller in (16)-(22) subject to conditions in (32) and (33). Let 𝛾̄0 > 0

be a given arbitrarily small constant. Assume that Ts ≤ Tsmax is selected sufficiently small such that the inequalities in (54)

hold. If ‖x0‖∞ ≤ 𝜌0, then

‖𝑦̃‖∞
< 𝛾̄0, (68)

||xref − x||∞
< Ω1(Ts)𝛾̄0, ||uref − u||∞

< Ω2(Ts)𝛾̄0, (69)

where 𝑦̃(t) is the prediction error defined in (67). In addition, Ω1(Ts) is defined in (39) and

Ω2(Ts)
Δ
= ‖‖C(s)P−1m (s)‖‖1

+ ‖C(s)‖1
L𝜌rΩ1(Ts) + (NΓ (Ts) + Ψ (Ts)) Υ (Ts) . (70)

Proof. See Appendix A.3 for the proof.

Remark 6. Lemmas 1 and 2 indicate that an arbitrarily small bound on the prediction error, 𝛾̄0, can be achieved as

Ts goes to zero. We can show also that Ω1(Ts) and Ω2(Ts) are bounded as Ts tends to zero. Therefore, the bounds

in (69) can be made arbitrarily small. This implies that the closed-loop SD system recovers the performance of the

continuous-time reference system in (56) as the sampling time goes to zero.

Lemma 6. Let u, v ∈ ℝq with u = [u1, … , uq]⊤ and v = [v1, … , vq]⊤. Suppose that |vj| ≤ 1 for all j ∈ [1, … , q].

Then, sat{u} ∈ co{Diu + D−
i
v ∶ i ∈ [1, … , 2q]}, where co{·} denotes the convex hull.

Proof. See the work of Hu and Lin44 for the proof.

Theorem2. Consider the high-level subsystem in (4), the desired system in (11), and the reference command law given in

(24). Let the positive definite matrix S ∈ ℝp×p be given. Then, if there exist Fz, Hz ∈ ℝq×p and a positive definite R ∈ ℝp×p

such that the conditions in (48) and (49) hold, then the error ez(t) = zm(t) − z(t) is uniformly bounded such that

‖ez‖∞
< 𝜌z, (71)

where 𝜌z is given in (50).

Proof. See Appendix A.4 for the proof.
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Remark 7. While the error bound 𝜌z in (71) remains bounded as the sampling time Ts tends to zero, it cannot bemade

arbitrarily small. To obtain sufficiently small 𝜌z as desired, larger saturation limits (entries ofW in (10)) can be chosen,

and Fz, Hz, S, and R selected accordingly such that (48)-(49) are satisfied.

6 UAV SIMULATION EXAMPLE

A high-fidelity simulation environment of an UAV is used to verify the effectiveness and advantages of the proposed con-

trol framework. To substantiate the existence of a feasible controller that satisfies the theoretical conditions, a multilevel

altitude tracking controller is designed for linearizedUAV longitudinal dynamics.We then apply themultilevel SD control

framework to a high-fidelity UAV simulation platform and compare the multilevel controllers with and without bounded

reference signals. At the end, a zero-dynamics attack on altitude measurement is simulated to show the advantages of

multirate framework in detecting stealthy attacks.

6.1 Linearized longitudinal dynamics

A multilevel SD controller is designed for linearized UAV longitudinal dynamics with criteria (33), (48), (49), and (54)

fulfilled. Consider the following trim condition within the desired flight operating envelop of an Ultra StickTM25emodel

UAV45: inertial frame position of [0, 0,−100]m, body frame velocities of [17, 0, 0.369]m/s, Euler orientation (roll, pitch,

and yaw) of [−0.0983, 3.0947, 0] deg, surface of elevator at −5.518 deg, aileron and rudder at zero position, throttle at

55.9%, and engine speed at 7897 rpm. Define the state vector x = (u,w, q, 𝜃)⊤ ∈ ℝ, where u, w, q, and 𝜃 respectively

denote the changes of forward velocity, vertical velocity, pitch rate, and pitch angle deviated from the trim condition.

With the high-fidelity UAV simulation software developed by theUniversity ofMinnesota,45 the following linearizedUAV

longitudinal dynamics is considered for the inner-loop dynamics:

.
x(t) = Axx(t) + Bx𝛿e(t), 𝑦(t) = 𝜃(t), (72)

where

Ax =

⎛⎜⎜⎜⎝

−0.5961 0.8011 −0.871 −9.791
−0.7454 −7.581 15.72 −0.5272
1.042 −7.427 −15.85 0
0 0 1 0

⎞⎟⎟⎟⎠
,

Bx = (0.4681 − 2.711 − 134.1 0)⊤,

Cx = (0 0 0 1),

with 𝛿e, the deviation of elevator surface from the trim condition, being the control input, and the pitch angle 𝜃 is chosen

as the output for feedback. The outer-loop dynamics from the pitch angle 𝜃 to the UAV altitude h takes the form of (73)

after linearization
.
h(t) = 17 · 𝜃(t). (73)

The models in (72)-(73) represent the nominal linear dynamics. To account for uncertainties in these linear models,

we design the controller considering the upper bounds on the additive terms f(t, x(t)) and g(t, x(t)) as defined in (3)-(4).

Subject to the dynamical models given in (72) and (73), a multilevel SD controller is designed with the following design

parameters: 𝜌0 = 0.01, 𝜌r = 8.1, 𝛼 = 0.1, 𝛾̄1 = 0.015, 𝛿 = 0.01, 𝛾̄z = 0.01, 𝜇 = 9.4,M = 1, 𝛾̄0 = 6.5 × 10−11, G𝜌r+𝛾̄1 = 0.01,

Hz = 1.177 × 10−3, K(𝛾̄1+𝛿) = 0.01, L0 = 0.01, L1 = 0.01, Mr = 0.4363, N = 5, Q = I2, R = 1, S = 0.04, Ts = 10−15,

and Tsmax = 0.01. For the outer-loop controller given by (24), we choose the feedback gain Fz = 0.008 and the weight

W = 1∕Mr. The inner-loop multirate 1 adaptive controller is designed with the desired model

Pm(s) =
−1.339 × 10−3s − 133.9

s2 + 134.5s + 1193
, (74)

and the low-pass filter

C(s) =
15 000

s + 15 000
. (75)
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With the preceding parameters, conditions (33), (48), (49), and (54) are fulfilled, with ||G(s)||1
= 1.819×10−2 < (𝜌r−𝜌1−

𝜌2)∕(L𝜌r𝜌r+L2) = 1.826×10−2 in (33), ||WHz||∞ = 2.698×10−3 < (1−𝛼)𝜌−1z = 2.702×10−3 in (49), and 𝛾0(𝛾̄0, Ts) = 6.369×

10−11 < 𝛾̄0 = 6.5×10−11,Ω1(Ts)𝛾̄0 = 1.468×10−2 < 𝛾̄1 = 1.5×10−2, and 𝛾r(𝛾̄0, Ts) = 1.589×10−13 < 𝛾̄r = 1.0×10−2 in (54).

In order to satisfy these criteria, the parameters given above are, in some sense, conservative, which can be observed from

the following simulation.

With the multilevel SD controller, the UAV to tracks the following reference altitude (height) signal:

hr(t) = 10 ·

(
−0.5

1 + et∕5−10
+

1

1 + et∕5−40
− 0.5

)
+ 100. (76)

The reference altitude signal hr(t) and the UAV altitude h(t) are given in Figure 2. Due to the conservativeness of design

parameters, certain amount of tracking error exists in Figure 2, which can be efficiently reduced by increasing the pro-

portional gain Fz in outer-loop controller. Figure 3 shows the commanded pitch angle hr(t) generated by the outer-loop

controller, UAV pitch angle 𝜃(t), and the deviation of the elevator surface 𝛿e(t). From the result, one can see that the ref-

erence signal r(t) is within the boundMr = 0.4363rad ≈ 25◦; the UAV pitch angle 𝜃(t) tracks the reference pitch angle r(t)

precisely with themultirate1 inner-loop controller, and the deviation of the elevator is also within the saturation bound.

FIGURE 2 The unmanned aerial vehicle tracks the desired

altitude [Colour figure can be viewed at wileyonlinelibrary.com] Time (s)
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FIGURE 3 Pitch angle 𝜃(t) and elevator deviation 𝛿e [Colour

figure can be viewed at wileyonlinelibrary.com] Time (s)
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FIGURE 4 Altitudes and tracking errors under the motor failure

scenario [Colour figure can be viewed at wileyonlinelibrary.com]

6.2 Nonlinear model with motor failures

After we showed the existence of a feasible controller with the linearized UAV longitudinal dynamics, we then test this

multilevel SD control framework in a high-fidelity UAV simulation environment.45 Assume that the lateral dynamics

is stabilized by some existing controller along the roll and yaw channels and consider a scenario when the propulsion

level of UAV decreases by 80% for two minutes (as a large unplanned uncertainty), while the UAV still tries to track a

commanded altitude signal at hr(t) = 100. The saturation limits of UAV elevator are ±25◦. Some design parameters are

adjusted to adapt to the high-fidelity UAV dynamics and environmental factors. The desired dynamics is selected as

Pm(s) =
−0.2067s − 20.67

s2 + 2.9s + 3.793
, (77)

with the low-pass filter

C(s) =
4

s + 4
. (78)

The sampling period is Ts = 0.02, and all the other parameters are unaltered. We compare a multilevel controller with

reference pitch angle rw(t) constrained by saturation bounds within [−11◦, 11◦] and a multilevel controller with uncon-

strained reference signal rw/o(t). This constraint does not limit the maneuverability of the UAV since the safety constraint

is on the generated command signal, not on the actuators.

In the following simulation, we use subscript “w” to denote the results of control scheme with bounded reference

signal, while subscript “w/o” is used to denote the results of control scheme with unconstrained reference signal. The

reference altitude signal hr(t), UAV altitudes hw(t) and hw/o(t), and the tracking errors ew(t) and ew/o(t) are shown in

Figure 4. The reference pitch angles rw(t) and rw/o(t), UAV pitch angles 𝜃w(t) and 𝜃w/o(t), angles of attack 𝛼w(t) and 𝛼w/o(t),

and the deviations of elevator 𝛿e,w(t) and 𝛿e,w/o(t) are given in Figure 5. It can be observed that although the reference pitch

angle is confined inside an envelope, the difference between altitudes hw(t) and hw/o(t) is small. Meanwhile, the bounded

reference pitch angle rw(t) prevents the elevator from saturation and keeps the pitch angle 𝜃w(t) and the angle of attack

𝛼w(t) inside a relatively safer envelope, in which the UAV is less likely to crash or stall. It is clear that the multilevel SD

control frameworkwith bounded reference signal ensures safety of the autonomousUAV in the presence of uncertainties.

6.3 Full-state dynamics under zero-dynamics attacks

The multirate control scheme is also able to detect the stealthy zero-dynamics attacks. In this last example, we show

a zero-dynamics attack on a full-state UAV trim model via GPS or altimeter spoofing. With the same trim condition,

when the sampling period of digital control system is Ts = 5T = 0.1 seconds, while the faster output sampling period

is T = 0.02 seconds, discretizing the continuous transfer function from the elevator 𝛿e to the UAV altitude h(t) with the

sampling period Ts generates a nonminimum-phase zero at z = −6.0108, which can be used for stealthy attack. The attack

signal is generated by adding the following zero-dynamics attack signal

ha(t) = had[i], t ∈ [iTs, (i + 1)Ts), had[i] = 𝜖(−6.0108)iTs , i ∈ ℤ≥0 (79)
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FIGURE 5 Pitch angles and elevator deviations under the motor

failure scenario [Colour figure can be viewed at wileyonlinelibrary.com] Time (s)
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FIGURE 6 Pitch angle 𝜃 with the linearized unmanned aerial

vehicle model under the zero-dynamics attack [Colour figure can be

viewed at wileyonlinelibrary.com] Time (s)
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into the normal altitude measurement signal h(t), where 𝜖 = 10−5. Under the zero-dynamics attack and in the presence

of measurement noise, Figure 6 shows the zero-dynamics attack signal ha(t), altitude measurements from a single-rate

controller hs(t), and the altitudemeasurement from amultirate adaptive controller hm(t). It is apparent that the single rate

controller is not able to detect the drastic changes of UAV height caused by the zero-dynamics attack, while the multirate

1 controller can detect this anomaly at a relative earlier stage despite the contamination of measurement noise.

Remark 8. After detection, zero-dynamics attack can be removed by considering a secure software/hardware archi-

tecture (simplex design46,47). In such structure, a backup controller will operate the system, when the normal mode

controller is compromised due to a cyber attack. By switching from the normal mode to a secured backup controller,

the unbounded stealthy attack can be removed (from the cyber space). Then, the backup controller can recover the

stability of the perturbed system. For successful recovery, early detection is critical. Reader can see the works of

Jafarnejadsani et al42,48 for more details.

Remark 9. As shown in the numerical example of Section 6.1, while the sufficient theoretical stability conditions

are conservative, one can find a set of design parameters that satisfy all of the theoretical conditions (feasibility). As

demonstrated in the nonlinear high-fidelity UAV example of Section 6.2, the proposed control structure effectively

allows for design of the control parameters to practically balance the trade-offs between performance and robustness,

without the requirement to satisfy the sufficient stability conditions. On the other hand, the assumptions made in

this paper are not conservative. We consider a class of uncertain MIMO systems subject to nested saturation, where
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only some of the states are available for measurement. A less-restrictive assumption of locally Lipschitz continuity

is employed for unknown nonlinear terms, and the dynamics of the system can be nonminimum-phase. This paper

introduces a challenging problem in output-feedback control for SD systems which has only been dealt with in very

few study.

7 CONCLUSION

For safe and secure control of autonomous systems in the presence of uncertainties, physical failures, and cyber attacks,

a multilevel SD control structure is proposed. For this purpose, a class of nested uncertain MIMO systems subject to

reference command saturation, possibly with nonminimum phase zeros, is considered. Themultirate SD approach of this

paper facilitates the implementation of controller on digital computers, where the input/output signals are available at

discrete-time instances with different sampling rates. In addition, the stealthy zero-dynamics attacks become detectable

by considering a multirate formulation.
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APPENDIX A

A.1 Proof of Lemma 4

It follows from (56) and the definition of H0(s), H5(s), P(s), and G(s) in (26) that

xref(s) = [H0(s) −H5(s) (P(s) − Pm(s))]Kgr(s) − G(s)wref(s) −H5(s)Hin(s)x0 + (s𝕀n − Ax + BxFx)
−1x0.

Then, the following upper bound can be established for 𝜏 > 0

||xref𝜏 ||∞
≤ ||G(s)||1

||wref𝜏 ||∞
+ ||H2(s)Kg||1

||r||∞
+

‖‖‖s(s𝕀n − Ax + BxFx)
−1 − sH5(s)Hin(s)

‖‖‖1

‖‖‖‖
1

s
x0
‖‖‖‖∞

. (A1)

We have ||xref(0)||∞ = ||x0||∞ < 𝜌r. In addition, xref(t) is continuous. Therefore, if the bound in (60) is not true, there exists

a time 𝜏1 > 0 such that

||xref(t)||∞ < 𝜌r, ∀t ∈ [0, 𝜏1), ||xref(𝜏1)||∞ = 𝜌r,

which implies that ||xref𝜏1 ||∞
= 𝜌r. Then, it follows from Assumption 1 and the redefinition in (29) that

||wref𝜏1
||∞

≤ L𝜌r ||xref𝜏1 ||∞
+ L2. (A2)

The bound in (A2), together with the upper bound in (A1), leads to

||xref𝜏1 ||∞
≤ ||G(s)||1

L2 + 𝜌1 + 𝜌2

1 − ||G(s)||1
L𝜌r

.

The condition in (33) can be solved for 𝜌r to obtain the bound

𝜌r >
||G(s)||1

L2 + 𝜌1 + 𝜌2

1 − ||G(s)||1
L𝜌r

,

which leads to ||xref𝜏1 ||∞
< 𝜌r. This contradicts ||xref𝜏1 ||∞

= 𝜌r, thus proving the bound in (60). This further implies that

the upper bound in (A2) holds for all 𝜏1 > 0 with strict inequality, which in turn implies that

||wref||∞
< L𝜌r𝜌r + L2. (A3)

The bound on uref(t) follows from (56), (57), and (A3), which proves (61).

A.2 Proof of Lemma 5

Let

uC(s) = Kgr(s) − C(s)P−1m (s)Cm
(
s𝕀nm − Am

)−1
𝜎̂(s), (A4)

uM(s) = Kgr(s) − C(s)P−1m (s)Cm
(
s𝕀nm − Am

)−1
e−Am

Ts
N 𝜎̂(s). (A5)

It follows from (67) that

𝑦̃(s) = −Pm(s)𝜎(s) + Cm
(
s𝕀nm − Am

)−1
𝜎̂(s). (A6)

Letting e(t)
Δ
= xref(t) − x(t) and denoting by de(s) the Laplace transform of

de(t)
Δ
=wref(t) − w(t), (A7)

from (3), (28), (16), (56), (A4), (A5), and (A6), it follows

e(s) = H0(s)C(s)P
−1
m (s)𝑦̃(s) +H0(s)de(s) +H0(s) (uC(s) − uM(s)) +H0(s) (uM(s) − u(s)) −H0(s)C(s) (𝜎ref(s) − 𝜎(s)) , (A8)
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where H0(s) is defined in (26). Furthermore,

H0(s)C(s) (𝜎ref(s) − 𝜎(s)) = H5(s)P(s)de(s) −H5(s) (P(s) − Pm(s)) (uC(s) − uM(s)) −H5(s) (P(s) − Pm(s)) (uM(s) − u(s))

+H5(s) (P(s) − Pm(s))C(s)P
−1
m (s)𝑦̃(s).

(A9)

From (A8) and (A9), one can obtain

e(s) = (H0(s) −H5(s) (P(s) − Pm(s)))C(s)P
−1
m (s)𝑦̃(s) + (H0(s) −H5(s) (P(s) − Pm(s))) (uC(s) − uM(s))

+ (H0(s) −H5(s) (P(s) − Pm(s))) (uM(s) − u(s)) + (H0(s) −H5(s)P(s)) de(s).
(A10)

Then, the upper bound is given by

‖et‖∞
≤ ‖‖(H0(s) −H5(s) (P(s) − Pm(s)))C(s)P

−1
m (s)‖‖1

‖𝑦̃t‖∞
+ ‖(H0(s) −H5(s) (P(s) − Pm(s)))‖1

‖(uC − uM)t‖∞

+ ‖(H0(s) −H5(s) (P(s) − Pm(s)))‖1
‖(uM − u)t‖∞

+ ‖G(s)‖1
L𝜌r‖et‖∞

.

(A11)

From (66), we have

𝑦̃

(
𝑗
Ts
N

)
= 𝑦̃d[𝑗], 𝑗 ∈ ℤ≥0. (A12)

From (22), (65), and (A12), the following relation holds:

‖‖‖e
−Am

Ts
N 𝜎̂t

‖‖‖∞

≤ Υ (Ts) ‖𝑦̃t‖∞
, (A13)

whereΥ(·) is defined in (39). Notice that ud[i] given in (16) is a step-invariant discrete-time approximation of uM(s), given

in (A5). Therefore, the discretization error bound between (5) and (A5) is given by

‖(uM − u)t‖∞
≤ NΓ (Ts) Υ (Ts) ‖𝑦̃t‖∞

, (A14)

where Γ(·) is introduced in (38). Moreover, from (A4), (A5), and (A13), one can obtain

‖(uC − uM)t‖∞
≤ Ψ (Ts) Υ (Ts) ‖𝑦̃t‖∞

, (A15)

where Ψ(·) is defined in (39). From (A11), (A14), and (A15), the following upper bound holds:

‖et‖∞
≤ Ω1(Ts)‖𝑦̃t‖∞

. (A16)

This concludes the proof.

A.3 Proof of Theorem 1

Let 𝛾̄0 be a constant satisfying (54). First, we prove the bound in (68) by a contradiction argument. Since 𝑦̃(0) = 0, and 𝑦̃(t)

is continuous, then assuming the opposite implies that there exists 𝜏1 such that

‖𝑦̃(t)‖∞ < 𝛾̄0, ∀0 ≤ t < 𝜏1,

‖𝑦̃(𝜏1)‖∞ = 𝛾̄0,
(A17)

which leads to
‖‖𝑦̃𝜏1‖‖∞

= 𝛾̄0. (A18)

Let e(t)
Δ
= xref(t) − x(t). The sampling time Ts is selected such that the inequities in (54) hold. Then, the bound in (54),

Lemma 5, and the upper bound in (60) can be used to derive the following bound

||x𝜏1 ||∞
≤ ‖‖‖xref𝜏1

‖‖‖∞

+ ||e𝜏1 ||∞
< 𝜌r + 𝛾̄1, (A19)
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which implies

||w𝜏1
||∞

≤ L𝜌r𝜌r + L2. (A20)

One can obtain from (57) that ‖‖‖𝜎ref𝜏1
‖‖‖∞

≤ 𝜌Δ, (A21)

where 𝜌Δ is defined in (39). In addition, we have

𝜎ref(s) − 𝜎(s) = H3(s)de(s) −H4(s) (uM(s) − u(s)) −H4(s) (uC(s) − uM(s)) +H4(s)C(s)P
−1
m (s)𝑦̃(s), (A22)

which along with (A21) implies

||𝜎𝜏1 ||∞
≤ Δ1(𝛾̄0), (A23)

where Δ(·) is defined in (43).

Now, consider the state transformation

𝜉 = Λx̃, (A24)

where Λ is defined in (19), and x̃(t) = x̂(t) − xa(t). From (67) and (A24), it follows

.
𝜉(t) = ΛAmΛ

−1𝜉(t) + Λ𝜎̂(t) − ΛBm𝜎(t),

𝑦̃(t) = 1nmq𝜉(t), 𝜉(0) = 0nm×1.
(A25)

From (A25), we have

𝜉

(
𝑗
Ts
N

+ t

)
= eΛAmΛ

−1t𝜉

(
𝑗
Ts
N

)
+ ∫

t

0

eΛAmΛ
−1(t−𝜏)Λ

(
𝜎̂

(
𝑗
Ts
N

)
− Bm𝜎

(
𝑗
Ts
N

+ 𝜏

))
d𝜏. (A26)

Since

𝜉

(
𝑗
Ts
N

+ t

)
=

[
𝑦̃

(
𝑗
Ts
N
+ t

)

0(nm−q)×1

]
+

[
0q×1

z̃
(
𝑗
Ts
N
+ t

)
]
,

where z̃(t) =
[
𝜉q+1(t), … , 𝜉nm (t)

]⊤
, 𝜉( 𝑗

Ts
N
+ t) can be decomposed as

𝜉

(
𝑗
Ts
N

+ t

)
= 𝜒

(
𝑗
Ts
N

+ t

)
+ 𝜁

(
𝑗
Ts
N

+ t

)
, (A27)

such that

𝜒

(
𝑗
Ts
N

+ t

)
= eΛAmΛ

−1t

[
𝑦̃

(
𝑗
Ts
N

)

0(nm−q)×1

]
+ ∫

t

0

eΛAmΛ
−1(t−𝜏)Λ𝜎̂

(
𝑗
Ts
N

)
d𝜏, (A28)

𝜁

(
𝑗
Ts
N

+ t

)
= eΛAmΛ

−1t

[
0q×1

z̃
(
𝑗
Ts
N

)
]
− ∫

t

0

eΛAmΛ
−1(t−𝜏)ΛBm𝜎

(
𝑗
Ts
N

+ 𝜏

)
d𝜏. (A29)

Next, we prove that

‖‖‖‖‖
𝑦̃

(
𝑗
Ts
N

)‖‖‖‖‖2
≤ 𝜍(𝛾̄0,Ts), z̃⊤

(
𝑗
Ts
N

)
P2z̃

(
𝑗
Ts
N

)
≤ Δ2(𝛾̄0), ∀𝑗

Ts
N

≤ 𝜏1, (A30)

where Δ(·) and 𝜍(·, ·) are defined in (43) and (44), respectively. It is straightforward to show that ‖𝑦̃(0)‖2 ≤ 𝜍(𝛾̄0,Ts),

z̃⊤(0)P2z̃(0) ≤ Δ2(𝛾̄0). Next, for arbitrary k ∈ ℤ≥0 such that (k + 1)
Ts
N

≤ 𝜏1, we prove that if

‖‖‖‖‖
𝑦̃

(
k
Ts
N

)‖‖‖‖‖2
≤ 𝜍(𝛾̄0,Ts), (A31)

z̃⊤
(
k
Ts
N

)
P2z̃

(
k
Ts
N

)
≤ Δ2(𝛾̄0), (A32)
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then the inequalities in (A31)-(A32) hold for k+ 1 as well, which would imply that the bounds in (A31)-(A32) hold for all

k ∈ ℤ≥0 such that k TsN ≤ 𝜏1. To this end, suppose that (A31) and (A32) hold for k ∈ ℤ≥0, and in addition that (k+1)TsN ≤ 𝜏1.

Then, it follows from (A27) that

𝜉

(
(k + 1)

Ts
N

)
= 𝜒

(
(k + 1)

Ts
N

)
+ 𝜁

(
(k + 1)

Ts
N

)
, (A33)

where

𝜒

(
(k + 1)

Ts
N

)
= eΛAmΛ

−1 Ts
N

[
𝑦̃

(
k
Ts
N

)

0(nm−q)×1

]
+ ∫

Ts
N

0

e
ΛAmΛ

−1
(
Ts
N
−𝜏

)
Λ𝜎̂

(
k
Ts
N

)
d𝜏, (A34)

𝜁

(
(k + 1)

Ts
N

)
= eΛAmΛ

−1 Ts
N

[
0q×1

z̃
(
k
Ts
N

)
]
− ∫

Ts
N

0

e
ΛAmΛ

−1
(
Ts
N
−𝜏

)
ΛBm𝜎

(
k
Ts
N

+ 𝜏

)
d𝜏. (A35)

Using (A12) and substituting the adaptive law from (22) and (65) for 𝜎̂
(
k
Ts
N

)
in (A34), we have

𝜒

(
(k + 1)

Ts
N

)
= 0. (A36)

From (A29), it follows that 𝜁 (t) is the solution of the system:

.
𝜁 (t) = ΛAmΛ

−1𝜁 (t) − ΛBm𝜎(t),

𝜁

(
k
Ts
N

)
=

[ 0(nm−q)×1
z̃
(
k
Ts
N

)
]
, t ∈

[
k
Ts
N
, (k + 1)

Ts
N

)
.

(A37)

Let

V(t) = 𝜁⊤(t)Λ−⊤PΛ−1𝜁 (t), ∀t ∈

[
k
Ts
N
, (k + 1)

Ts
N

)
.

SinceΛ is nonsingular andP is positive definite,Λ−⊤PΛ−1 is positive definite, andhence,V(t) is a positive-definite function.

Using Lemma 3 and Equation (A37), it follows

V

(
𝜁

(
k
Ts
N

))
= z̃⊤

(
k
Ts
N

)
Λ−⊤PΛ−1z̃

(
k
Ts
N

)
,

which, along with the upper bound in (A32), yields

V

(
𝜁

(
k
Ts
N

))
≤ Δ2(𝛾̄0). (A38)

From (A37), it follows that, for all t ∈ [k
Ts
N
, (k + 1)

Ts
N
),

.
V(t) = 𝜁⊤(t)Λ−⊤PΛ−1ΛAmΛ

−1𝜁 (t) + 𝜁⊤(t)Λ−⊤A⊤
mΛ

⊤Λ−⊤P⊤Λ−1𝜁 (t) − 2𝜁⊤(t)Λ−⊤PΛ−1ΛBm𝜎(t)

= −𝜁⊤(t)Λ−⊤QΛ−1𝜁 (t) − 2𝜁⊤(t)Λ−⊤PΛ−1ΛBm𝜎(t).

Using the upper bound from (A23), for all t ∈
[
k
Ts
N
, (k + 1)

Ts
N

)
, one can derive

.
V(t) ≤ −𝜆min(Λ

−⊤QΛ−1) ‖𝜁 (t)‖22 + 2‖𝜁 (t)‖2||Λ−⊤PBm||2√qΔ1(𝛾̄0). (A39)

Notice that if

V(t) > Δ2(𝛾̄0), ∀t ∈

[
k
Ts
N
, (k + 1)

Ts
N

)
, (A40)
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the following holds:

‖𝜁 (t)‖2 >
√

Δ2(𝛾̄0)

𝜆max
(
Λ−⊤PΛ−1

) =
2
√
qΔ1(𝛾̄0)‖‖Λ−⊤PBm‖‖2
𝜆min

(
Λ−⊤QΛ−1

) .

Moreover, the upper bound in (A39) yields
.
V(t) < 0. (A41)

From (A38), (A40), and (A41), it follows

V(t) ≤ Δ2(𝛾̄0), ∀t ∈

[
k
Ts
N
, (k + 1)

Ts
N

)
,

and therefore

𝜁⊤
(
(k + 1)

Ts
N

)
Λ−⊤PΛ−1𝜁

(
(k + 1)

Ts
N

)
≤ Δ2(𝛾̄0). (A42)

Then, (A33), (A36), and the upper bound in (A42) lead to the following inequality:

𝜉⊤
(
(k + 1)

Ts
N

)
Λ−⊤PΛ−1𝜉

(
(k + 1)

Ts
N

)
≤ Δ2(𝛾̄0).

Using the result of Lemma 3, one can derive

z̃⊤
(
(k + 1)

Ts
N

)
P2z̃

(
(k + 1)

Ts
N

)
≤ 𝜉⊤

(
(k + 1)

Ts
N

)
Λ−⊤PΛ−1𝜉

(
(k + 1)

Ts
N

)
≤ Δ2(𝛾̄0),

which implies that the upper bound in (A32) holds for k + 1.

Next, from (A25), (A33), and (A36), it follows

𝑦̃

(
(k + 1)

Ts
N

)
= 1⊤nmq𝜁

(
(k + 1)

Ts
N

)
,

and the definition of 𝜁
(
(k + 1)

Ts
N

)
in (A35) leads to the following expression:

𝑦̃

(
(k + 1)

Ts
N

)
= 1⊤nmqe

ΛAmΛ
−1 Ts

N

[
0q×1

z̃
(
k
Ts
N

)
]
− 1⊤nmq ∫

Ts
N

0

e
ΛAmΛ

−1
(
Ts
N
−𝜏

)
ΛBm𝜎

(
k
Ts
N

+ 𝜏

)
d𝜏.

The upper bounds in (A23) and (A32) yield the following upper bound:

‖‖‖‖‖
𝑦̃

(
(k + 1)

Ts
N

)‖‖‖‖‖2
≤ ‖‖‖‖‖

𝜂2

(
Ts
N

)‖‖‖‖‖2
‖‖‖‖‖
z̃

(
k
Ts
N

)‖‖‖‖‖2
+ ∫

Ts
N

0

‖‖‖‖1
⊤
nmq

e
ΛAmΛ

−1
(
Ts
N
−𝜏

)
ΛBm

‖‖‖‖2
‖‖‖‖‖
𝜎

(
k
Ts
N

+ 𝜏

)‖‖‖‖‖2
d𝜏 ≤ 𝜍(𝛾̄0,Ts),

where 𝜂2(·), 𝜅(·), and 𝜍(·, ·) are defined in (36), (37), and (44), respectively. This confirms the upper bound in (A31) for

k + 1. Hence, Equation (A30) holds for all 𝑗
Ts
N

≤ 𝜏1.

For all 𝑗
Ts
N
+ t ≤ 𝜏1, and t ∈

[
0,

Ts
N

]
, using the expression from (A26), we obtain

𝑦̃

(
𝑗
Ts
N

+ t

)
= 1⊤nmqe

ΛAmΛ
−1t𝜉

(
𝑗
Ts
N

)
+ 1⊤nmq ∫

t

0

eΛAmΛ
−1(t−𝜏)Λ𝜎̂

(
𝑗
Ts
N

)
d𝜏 − 1⊤nmq ∫

t

0

eΛAmΛ
−1(t−𝜏)ΛBm𝜎

(
𝑗
Ts
N

+ 𝜏

)
d𝜏.

The upper bound in (A23) and the expressions of 𝜂1(·), 𝜂2(·), 𝜂3(·, ·), and 𝜂4(·, ·), given in (36) and (42), lead to

‖‖‖‖‖
𝑦̃

(
𝑗
Ts
N

+ t

)‖‖‖‖‖2
≤ ‖𝜂1(t)‖2

‖‖‖‖‖
𝑦̃

(
𝑗
Ts
N

)‖‖‖‖‖2
+ ‖𝜂2(t)‖2

‖‖‖‖‖
z̃

(
𝑗
Ts
N

)‖‖‖‖‖2
+ 𝜂3 (t,Ts)

‖‖‖‖‖
𝑦̃

(
𝑗
Ts
N

)‖‖‖‖‖2
+ 𝜂4(t)

√
qΔ1(𝛾̄0).



1094 JAFARNEJADSANI ET AL.

Consider (A30) and 𝛽1(·), 𝛽2(·), 𝛽3(·), 𝛽4(·) defined in (40)-(41). For arbitrary nonnegative integer j subject to 𝑗
Ts
N
+ t ≤ 𝜏1

and for all t ∈
[
0,

Ts
N

]
, we have

‖‖‖‖‖
𝑦̃

(
𝑗
Ts
N

+ t

)‖‖‖‖‖2
≤ 𝛽1 (Ts) 𝜍(𝛾̄0,Ts) + 𝛽2 (Ts)

√
Δ2(𝛾̄0)

𝜆max (P2)
+ 𝛽3 (Ts) 𝜍(𝛾̄0,Ts) +

√
q𝛽4 (Ts) Δ1(𝛾̄0).

Since the right-hand side coincides with the definition of 𝛾0(𝛾̄0,Ts) in (45), we have the bound

‖𝑦̃(t)‖2 ≤ 𝛾0(Ts, 𝜖), ∀t ∈ [0, 𝜏1],

which, along with the design constraint on Ts introduced in (54), yields

‖‖𝑦̃𝜏1‖‖∞
< 𝛾̄0.

This clearly contradicts the statement in (A18). Therefore, ‖𝑦̃‖∞
< 𝛾̄0, which proves (68). Furthermore, it follows from

Lemma 5 that

‖et‖∞
< Ω1(Ts)𝛾̄0,

which holds uniformly for all t ≥ 0 and therefore leads to the first upper bound in (69).

To prove the second bound in (69), from (3), (16), (56), (A4), (A5), and (A6), it follows

uref(s) − u(s) = C(s)P−1m (s)𝑦̃(s) − C(s)de(s) + (u C(s) − uM(s)) + (uM(s) − u(s)) , (A43)

where de(s) is the Laplace transform of de(t) defined in (A7). In addition, uC and uM are defined in (A4) and (A5). Then,

it leads to

‖uref(s) − u(s)‖∞
≤ ‖‖C(s)P−1m (s)‖‖1

‖𝑦̃‖∞
+ ‖uC(s) − uM(s)‖∞

+ ‖uM(s) − u(s)‖∞
+ ‖C(s)‖1

L𝜌r‖e‖∞
. (A44)

Combining (A14), (A15), (68), (69), and (A44) leads to

‖uref(s) − u(s)‖∞
< Ω2(Ts)𝛾̄0. (A45)

This concludes the proof.

A.4 Proof of Theorem 2

Using (4) and (11), the error ez(t) is governed by

ėz(t) = Azez(t) + Bz (rm(t) − 𝑦(t)) − g(x(t), t), ez(0) = 0. (A46)

Then, we can rewrite (A46) as

ėz(t) = Azez(t) − (1 − 𝛼)BzW
−1sat

{
1

1 − 𝛼
WFzez(t)

}
+ Bz (𝑦ref(t) − 𝑦(t)) + Bz (rF(t) − 𝑦ref(t))

+ Bz
(
rm(t) − r(t) + (1 − 𝛼)W−1sat

{
1

1 − 𝛼
WFzez(t)

})
− g(x(t), t) + Bz (r(t) − rF(t)) .

(A47)

where the Laplace transforms of rF(t) is given by

rF(s) =
𝜇

s + 𝜇
r(s). (A48)
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Let

 (t) = Bz (𝑦ref(t) − 𝑦(t)) + Bz (rF(t) − 𝑦ref(t)) + Bz (rm(t) − r(t)) − g(x(t), t) + (1 − 𝛼)BzW
−1sat

{
1

1 − 𝛼
WFzez(t)

}

+ Bz (r(t) − rF(t)) .
(A49)

Then, the equation in (A47) can be rewritten as

ėz(t) = Azez(t) − (1 − 𝛼)BzW
−1sat

{
1

1 − 𝛼
WFzez(t)

}
+  (t). (A50)

Select Vz(t) = e⊤z (t)Rez(t) as the Lyapunov function for the closed-loop error dynamics in (A50). Then, the derivative of Vz
can be obtained as

.
V z(t) = 2e⊤z (t)R (Azez(t) +  (t)) − 2e⊤z (t)RBz(1 − 𝛼)W−1sat

{
1

1 − 𝛼
WFzez(t)

}
. (A51)

We have ||ez(0)||∞ = 0 < 𝜌z. In addition, ez(t) is continuous. Therefore, if the bound in (60) is not true, there exists a time

𝜏1 > 0 such that

‖ez(t)‖∞ < 𝜌z, ∀t ∈ [0, 𝜏1), ‖ez(𝜏1)‖∞ = 𝜌z,

which implies that ||ez𝜏1 ||∞
= 𝜌z. Then, by Lemma 6 and the condition in (49), we have for ∀t ∈ [0, 𝜏1] that

.
V z(t) ≤ max

i∈{1,… ,2q}

{
2e⊤z (t)R

(
Azez(t) − Bz

(
DiFz + D−

i Hz

)
ez(t) +  (t)

)}
. (A52)

Furthermore, from the condition in (48), we obtain

.
V z(t) ≤ −e⊤z (t)Sez(t) + 2e⊤z (t)R (t). (A53)

Using the upper bound from (A53), for t ∈ [0, 𝜏1], one can derive

.
V z(t) ≤ −𝜆min(S) ‖ez(t)‖22 + 2

√
p‖ez(t)‖2‖R‖2‖‖𝜏1

‖‖∞
. (A54)

Notice that if

Vz(t) > 𝜆max(R)

(
2
√
p‖R‖2‖‖𝜏1

‖‖∞

𝜆min(S)

)2

, (A55)

the following holds:

‖ez(t)‖2 >
2
√
p‖R‖2‖‖𝜏1

‖‖∞

𝜆min(S)
. (A56)

Moreover, the upper bound in (A54) yields
.
V z(t) < 0. (A57)

From (A55)-(A57), it follows

Vz(t) ≤ 𝜆max(R)

(
2
√
p‖R‖2‖‖𝜏1

‖‖∞

𝜆min(S)

)2

, (A58)

and therefore

‖‖‖ez𝜏1
‖‖‖∞

≤ 2
√
p‖R‖2‖‖𝜏1

‖‖∞

𝜆min(S)
. (A59)

In the following, we obtain the bound on  (t) for t ∈ [0, 𝜏1]. Using the result of the Theorem 1, it follows ‖x‖∞
< 𝜌r+ 𝛾̄1.

Then, Assumption 1 implies that

‖g(x(t), t)‖∞
≤ G𝜌r+𝛾̄1 . (A60)

Moreover, from Theorem 1, one can obtain

‖𝑦 − 𝑦ref‖∞
< ‖Cx‖∞Ω1(Ts)𝛾̄0. (A61)
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In addition, from (59) and (A48), we have

rF(s) − 𝑦ref(s) =

(
𝜇

s + 𝜇
𝕀q − Pm(s)Kg

)
r(s) − Cm

(
s𝕀q − Am

)−1
C†
m𝑦0 − Pm(s)

(
𝕀q − C(s)

)
𝜎ref(s). (A62)

It follows

‖rF − 𝑦ref‖∞
≤ ‖‖‖‖

𝜇

s + 𝜇
𝕀q − Pm(s)Kg

‖‖‖‖1

Mr +
‖‖‖sCm

(
s𝕀q − Am

)−1
C†
mCm

‖‖‖∞

𝜌0 +
‖‖‖Pm(s)

(
𝕀q − C(s)

)‖‖‖1

𝜌Δ. (A63)

For all t ∈
[
kMTs, (k + 1)MTs) ∩ [0, 𝜏1], k ∈ ℤ≥0, we obtain from (24) that

‖‖‖‖rm(t) − r(t) + (1 − 𝛼)W−1sat
{

1

1 − 𝛼
WFez(t)

}‖‖‖‖∞ ≤ ‖‖‖‖(1 − 𝛼)W−1
(
sat

{WFz
1 − 𝛼

ez(t)
}
− sat

{WFz
1 − 𝛼

ez(kMTs)
})‖‖‖‖∞

≤ Mr‖WFz (ez(t) − ez(kMTs))‖∞
≤ Mr‖WFz‖∞‖(ez(t) − ez(kMTs))‖∞.

(A64)

From (A46), one can obtain

ez(t) = eAz(t−kMTs)ez(kMTs) + ∫
t

kMTs

eAz(t−𝜏) (Bz (rm(𝜏) − 𝑦(𝜏)) − g(x(𝜏), 𝜏)) d𝜏. (A65)

Using Theorem 1, Lemma 4, and the bounds defined in (52), from (A60) and (A65), it follows

‖ez(t) − ez(kMTs))‖∞ ≤ 𝛾z(𝛾̄0, Ts), (A66)

where 𝛾z(·, ·) is defined in (51). Let

rFd[k] = rF(kMTs), t ∈
[
kMTs, (k + 1)MTs

)
, k ∈ ℤ≥0. (A67)

Then, from (A48) and (A67), we have

rFd[k] =

k∑
l=0

e−𝜇lMTs (1 − e−𝜇MTs )r d[k − l]. (A68)

Using summation by part, it follows from (A68) that

rFd[k] = rd[k] +

k∑
l=0

e−𝜇(l+1)MTs (r d[k + 1 − l] − rd[k − l]). (A69)

Then, one can obtain

‖‖rFd[k] − rd[k]‖‖∞ ≤
k∑
l=0

e−𝜇(l+1)MTs‖r d[k + 1 − l] − rd[k − l]‖∞. (A70)

From (14), (24), (A64), and (A66), for any k ∈ ℤ≥0, we have

‖rd[k + 1] − rd[k]‖∞ ≤ Mr‖WFz‖∞𝛾z(𝛾̄0, Ts) +MTs𝛿rm . (A71)

From (A70) and (A71), it follows

‖‖rFd[k] − rd[k]‖‖∞ ≤ e−𝜇MTs

1 − e−𝜇MTs

(
Mr‖WFz‖∞𝛾z(𝛾̄0, Ts) +MTs𝛿rm

)
. (A72)



JAFARNEJADSANI ET AL. 1097

Taking the discretization error into account, we have

‖rF − r‖∞
≤ e−𝜇MTs

1 − e−𝜇MTs

(
Mr‖WFz‖∞𝛾z(𝛾̄0, Ts) +MTs𝛿rm

)
+ 2

(
1 − e−𝜇MTs

)
Mr. (A73)

Then, from (A60)-(A73), it follows

‖‖∞
≤ ‖Bz‖∞‖‖Pm(s)(𝕀q − C(s))‖‖1

𝜌Δ + ‖Bz‖∞‖Cx‖∞Ω1(Ts)𝛾̄0 + 𝛾r(𝛾̄0, Ts) + G𝜌r+𝛾̄1

+ ‖Bz‖∞
‖‖‖‖

𝜇

s + 𝜇
𝕀q − Pm(s)Kg

‖‖‖‖1

Mr + ‖Bz‖∞‖‖‖sCm
(
s𝕀q − Am

)−1
C†
mCm

‖‖‖1

𝜌0

+
1

𝜇
‖Bz‖∞

(
1

MTs
Mr‖WFz‖∞𝛾z(𝛾̄0, Ts) + 𝛿rm

)
.

(A74)

Since Ts ≤ Tsmax is selected such that the inequalities in (54) hold, we have 𝛾r(𝛾̄0, Ts) < 𝛾̄r. Therefore,

‖‖𝜏1
‖‖∞

<

(
1 −

2
√
p‖R‖2Δs(𝜇, Fz)

𝜆min(S)

)−1

Δ (𝜇, Fz), (A75)

where Δs(𝜇, Fz) and Δ (𝜇, Fz) are defined in (46). From (A59) and (A75), it follows

‖‖‖ez𝜏1
‖‖‖∞

< 𝜌z, (A76)

which contradicts with ‖‖ez𝜏1‖‖∞
= 𝜌z. Hence, the inequality in (71) is true.
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