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Summary

Autonomous systems are rapidly becoming an integrated part of the mod-
ern life. Safe and secure navigation and control of these systems present
significant challenges in the presence of uncertainties, physical failures, and
cyber attacks. In this paper, we formulate a navigation and control problem
for autonomous systems using a multilevel control structure, in which the
high-level reference commands are limited by a saturation function, whereas
the low-level controller tracks the reference by compensating for disturbances
and uncertainties. For this purpose, we consider a class of nested, uncertain,
multiple-input-multiple-output systems subject to reference command satura-
tion, possibly with nonminimum phase zeros. A multirate output-feedback £
adaptive controller is developed as the low-level controller. The sampled-data
(SD) design of this controller facilitates the direct implementation on digi-
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tal computers, where the input/output signals are available at discrete time
instances with different sampling rates. In addition, stealthy zero-dynamics
attacks become detectable by considering a multirate SD formulation. Robust
stability and performance of the overall closed-loop system with command satu-
ration and multirate £; adaptive control are analyzed. Simulation scenarios for
navigation and control of a fixed-wing drone under failures/attacks are provided
to validate the theoretical findings.
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1 | INTRODUCTION

The last two decades have witnessed significant progress in development of autonomous systems, including indus-
trial/medical robots, unmanned aerial vehicles (UAVs), and self-driving cars, to name just a few. The control structures in
these complex systems are often nested with multiple levels such as mission management, guidance/steering/navigation,
and low-level controllers. These control loops are subject to contingencies, uncertainties, and cyber attacks from
vulnerable operational environments, making it challenging to achieve trustable autonomy.

Multilevel control architectures, where a high-level controller provides reference commands to a low-level controller,
are widely used for navigation and control of autonomous systems in aerospace, robotics, and many other applications.'*
The main objective of multilevel control architectures is the decoupling between the outer loop and the inner loop for
reliable implementation and to satisfy input/state constraints.>® In such systems, it is desirable to limit the commands
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by saturation functions.> Nested saturation for navigation and control of UAVs has been studied in other works.”® In the
work of Teel,'° it is shown that a chain of multiple integrators can be globally stabilized using nested saturation functions.
Considering a multiloop control architecture, this paper develops a sampled-data (SD) framework for navigation and
control of autonomous systems. Such approach allows to analyze continuous-time physical processes that interact with
digital controllers through sensors/actuators and communication links that can possibly have different sampling rates.!!

The SD control designs are mainly based on the controller emulation methods, where an SD controller is developed
in two stages: first, a continuous-time controller is designed that satisfies certain performance/robustness requirements;
next, a discrete-time controller is obtained for digital implementation using an approximation technique.'?* In the works
of Khalil,’> Ahrens et al,'® and Ahmed Ali,'” the problem of SD output-feedback control was addressed by introducing
high-gain observers to estimate the unmeasured states. Output-feedback stabilization of nonlinear systems with SD con-
trollers has been studied in the works of Shim and Teel'® and Lam.!® Other authors!3'420-23 have addressed the problem
of SD output-feedback control for systems with uncertainties and disturbances for a class of single-input-single-output
nonlinear systems under a lower-triangular linear growth condition. In the works of Lin and Wei,!**3 nonminimum
phase nonlinear systems were considered. Nonlinear SD systems with full state-feedback were addressed in the works of
Guillaume et al,?* Wu and Ding,? and Laila et al.?®

We notice that the analysis of control systems in the SD framework has also important cyber-physical security impli-
cations. The SD nature of controller implementation in autonomous systems can generate additional vulnerability to
stealthy attacks due to the sampling zeros in the SD system.?”-?® For example, a zero-dynamics attack can be implemented
in the cyber space as an additive disturbance such that an unbounded signal can blow up the states of the physical system,
while the observed output and control command dictate normal behavior. To deal with this problem, a multirate scheme
is applied since it allows the attack to be detected by ensuring that there are no relevant unstable zeros in the lifted sys-
tem. As shown in the work of Naghnaeian et al,® unbounded zero-dynamics attacks can be detected if the control system
is designed in the dual rate SD framework.

In this paper, the navigation and control problem for autonomous systems is formulated using a multirate SD control
approach. The control structure consists of a high-level (outer-loop) control for reference command generation and a
low-level (inner-loop) adaptive control for reference tracking, as shown in Figure 1. The high-level controller is limited
by saturation bounds to maintain the closed-loop system within a safety operational envelope. The low-level controller
is a multirate £, adaptive controller for tracking the generated reference command by compensating for uncertainties
and disturbances. £, adaptive controller is a robust control technique with quantifiable performance bounds and robust-
ness margins,?>3! which has been successfully implemented on manned and unmanned aircraft3>34 and simulation
models.>>3° In this paper, the £, adaptive control theory is extended to the multirate SD framework, while maintaining
the key benefits of a continuous-time £, adaptive controller.?°314° The low-level controller compensates for disturbances
within the bandwidth of a low-pass filter, similar to other £, adaptive controllers. Conditions are derived, under which
the SD controller uniformly recovers the performance of the underlying continuous-time reference system as the sam-
pling time tends to zero. The related preliminary results by authors can be found in the works Jafarnejadsani et al.*!42
This paper extends the previous results, by considering the output-feedback control problem for a class nested uncer-
tain MIMO systems subject to reference command saturation, with possibly nonminimum phase zeros. The unknown
nonlinearities are assumed to be locally Lipschitz. The multirate SD framework of this paper addresses the digital imple-
mentation of the control law on computers, where the control inputs and the measurements are available at discrete time
instances with different sampling rates. In addition, the multilevel structure of the problem formulation allows for design
of the feedback loops for the high-level/low-level subsystems with their respective control objectives, while the stabil-
ity and robustness of the overall nested system subject to command saturation are taken into account. The effectiveness
of the proposed approach is evaluated using the simulation study of a fixed-wing UAV in the presence of uncertainties,
zero-dynamics attack, and mechanical failure. In this example, the multilevel SD control strategy is leveraged for naviga-
tion and control of the UAV model, where the theoretical conditions for the control design are verified. The simulation
environment is based on both linearized model and high-fidelity nonlinear model.
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The rest of this paper is organized as follows. A few notations and definitions are introduced in Section 2. Section 3
presents the problem formulation and the control design objectives. In Section 4, the structure of the proposed multilevel
multirate controller is presented. The closed-loop SD system is analyzed in Section 5. Section 6 presents the simulation
results. Finally, Section 7 concludes this paper.

2 | PRELIMINARIES

Throughout this paper, ||x;||c_ denotes the £, norm of the truncated signal x.(¢) for the original x(t) € R", given as

x:(t) =x(t), Vi<,

X (t) = 0,51, otherwise.

The notation || - ||, represents vector or matrix p-norms with 1 < p < oo. The right pseudoinverse of a full row-rank

matrix A € R?" is denoted by A" , and can be computed as A" = AT (AAT)_1 such that AA™ = [,. In addition, s is used
for the Laplace transform. For a vector v € RY, the notation sat{v} represents the saturation function defined by

(€]

lsgn{vl} min{lvll,l}]
sat{v} = : ,

sgn{vy} min{ vy, 1)
where sgn{-} is the standard sign function, and v;'s are the elements of the vector v.
Consider a continuous-time LTI plant P., and the corresponding discrete-time LTI plant P4 = SP.H, which is defined

with the standard zero-order hold and sample operators H and S, respectively. The relationship between P, and P4 follows
from the following definition.

Definition 1. For an LTI system P, with the minimal realization (A., B, C¢, D.), the equivalent step-invariant
discrete-time system P4 can be defined by the following state-space matrices

TS
Ad = eACTS3 Bd = / eACTBCdT’ Cd = CC, Dd = DC’ (2)
0

where T > 0 is the sampling period.
Definition 2 (Zero-dynamics attack). Assume the system P4 with the state-space matrices in (2) has an unstable
transmission zero at ay € C. Then, the unbounded actuator attack signal of the form d[k] = ea,¥, which implemented

as an additive input disturbance, can cause the states of the system expand exponentially, while remaining undetected
for small enough ¢ at the sampled output.?

3 | PROBLEM FORMULATION

As depicted in Figure 1, consider the following multilevel model for an autonomous system subject to uncertainties,
disturbances, physical faults, and attack signals, comprised of a low-level (inner-loop) subsystem

x(t) = Axx(t) + By(u(t) + (&, x(1)) + d(1)), x(0) = X,

3
y(1) = Cx(), ®

and a high-level (outer-loop) subsystem
2(t) = Az2(t) + B.y() + g(t, x(1)),  2(0) = 2o, )

where x(t) € R" and z(t) € RP are the state vectors, u(t) € R? is the input signal, and y(f) € R? is the system output
vector. In addition, {Ay € R™" B, € R™4, Cy € R?"} is an observable-controllable triple and {A, € RP*P B, € RP*1}
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is a controllable pair. The unknown initial condition x, € R”" is assumed to be inside an arbitrarily large set, so that
%]l < pg < oo for some known p, > 0, and zo € RP is a known initial condition. Let d(f) € R? be an exogenous
additive disturbance on the control input, which can represent a CPS attack (eg, stealthy zero-dynamics attack signal)
or failure. In addition, let f(t,x(¢)) € RY and g(t,x(t)) € RP represent the time-varying uncertainties and disturbances,

subject to the following assumption.

Assumption 1. There exist K; > 0 and G5 > 0 for arbitrary § > 0, and constants Ly > 0 and L; > 0 such that

1/ (t.x2) = f(t.xD)[e0 S K5l = Xilleos /(0o < Lo, Nld(®)lleo < L1, I8t X1)lle0 < G5

hold for all ||x;||, < 8, i € {1, 2}, uniformly in ¢t > 0.

Using a multirate SD control approach, the control input and the measurements are available at discrete time instances
with different sampling periods. The control input, which is implemented via a zero-order hold mechanism with time
period of T > 0, is given by

u(t) = uglil, telils,(i+1DTs), i€ Zyo, (5)

where ugq[i] is a discrete-time control input signal. The output of the low-level subsystem y(¢) is sampled N € N times
faster with the sampling time of T, /N, such that the discrete-time output signal y4[ j] is given by

T, T, T
=y (1) re|iEusng). sz ©

and the high-level subsystem state z(¢) is sampled M € N times slower with the period of MT; such that
zalk] =z (kMTy), te€ [kMTs, (k+DMTs), k€ Zso. (7
For M = N = 1, the SD controller will have a uniform rate. In the more general case where the inputs and outputs are

available at different rates, N, M € N can be selected as desired for the control structure accordingly.

Remark 1. The proposed multirate control structure is motivated by real-world applications. In navigation and control
of autonomous UAVs as an example, the attitude angles for inner-loop dynamics are measured at the rate of 50 Hz or
faster using inertial measurement unit (IMU) sensor, while the position measurement for the outer-loop dynamics
is available at the slower sampling rate of about 10 Hz using global positioning system (GPS) sensor. In addition, the
multirate sampling approach has the advantage of improving the detectability of zero-dynamics attacks.?

Assumption 2. The desired dynamics for the low-level subsystem in (3) is defined by

Pin(s) = Cin(shy, — Am) ' B, (8)

m

where the triple {A;,, € R™ "™ B, € R™*4 C,, € R%"n} is a minimal state-space realization of Py(s), with A,
being Hurwitz, and (Cy,Bp) is nonsingular. In addition, Py, (s) does not have any unstable transmission zeros.
The desired response y,,,(¢) is given by the Laplace transform y,,,(s) = P (s)Kgr(s), where

Ky=—(CnAm'Bn) ",

and r(s) is the Laplace transform of r(t) given by

r(t) =ralkl, t€ [kMTs, (k+1)MTs), k€ Zs,, 9
where r4[k] is a discrete-time reference command.
Assumption 3. The reference command is constrained to a convex polytope as a safe operation region, defined by

the set
R ={reRY|Wr|, <1}, (10)
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4

where W = diag{r;lgxl, e rr;}mq }, and the positive constants ryay,'s are the saturation bounds on control inputs.
Then, the weighted reference command is bounded by

Wralklll <1, k€ Z5o.

Remark 2. For large uncertainties outside normal conditions, the low-level control inputs can saturate or drive the
system to unsafe states. By restricting the reference commands (generated by high-level control) to a safe operational
envelope, as defined in Assumption 3, the safety of the autonomous system can be improved.

Assumption 4. The desired system for the high-level subsystem in (4) is defined by
Zm(t) = AzZm(t) + Bzrm(),  Zm(0) = Zo, (1)
where zn () € RP is the desired state for the high-level subsystem, and
Fm(t) = rm,[kl, t€ [kMT,(k+DMT), k€ Zs (12)
is the precalculated reference command for the desired system. It is assumed that
|[Wrm, K|, <a. k€ Zs, 13)

where a € (0, 1) is a given constant, and W is defined in (10). In addition, we assume that ry, ,[0] =0, and
1
oz e+ 11 = K, <6, k€ Zan, (4)

where 6, > 0 is the bound on the rate of change of the reference command.

In the following, a multilevel multirate adaptive controller is formulated to:

compensate for physical failures, uncertainties, and disturbances, such that the low-level system in (3) is stable and
the output y(¢) closely tracks the desired response y,,(f);

maintain the reference command r(t) within the safe operation envelope R defined in (10);
bound the error between the states of the high-level subsystem, z(t), and the desired trajectory zm(f) given in (11);

detect sensor/actuator attacks (including stealthy zero-dynamics attacks), and recover stability of the perturbed
system.

| PROPOSED MULTILEVEL MULTIRATE CONTROLLER

In this section, the proposed multilevel multirate controller is presented. The conditions for selection of the control param-
eters and the detailed analysis of the closed-loop system are provided in Section 5. First, the elements of the multirate
output-feedback £, adaptive controller that generates the input u(¢) to the low-level subsystem in (3) are given.

Let Ts > 0 be the sampling time of the control input. Consider a strictly proper stable transfer function C(s) such that

C(0) = lg. In the £, adaptive control structure, C(s) represents the low-pass filter at the control input.** In addition,

define O(s) 2 C(s)Pr‘nl(s)Cm(SI]nm —Am)_l, and let {4, € R™, B, € R™4, C, € R?"} be a minimal state-space realization
such that

Co(sl, — Ag) 1B, = O(s). (15)
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The control laws are given by

Xulj + 11 = €M7 x,[j] + A3 (e*’oﬁ - ﬂv) Boe ™% 84lj]1, Xul0]1=0, j € Zso,

un, il = =Coxuljl,
(16)

un(® =un,[jl, te

Ty . T
=.(+D= ),

Iy )N>

ualil = un(iTs) + Kgr(iTs), i € Zso,

where 64[-] € R" is provided by the adaptation law in (22). In addition, the reference command r(-) € R is given by (9)
and the high-level controller in (24).
The construction of 64[-] is based on an output predictor that follows. The output predictor is given by

Sal) + 11 = ¥ Salj] + Ag! (&8 =1, ) Buateol1+ GaliD) . %al0) = Chyo, J € Zso, -
Yaljl = CmXaljl.

The predictor control input up| j] is defined by
. T ;
upljl=u iN) J€ 2o, (18)

where u(t) is defined by (5) and (16).
Given that A;,, € R™*" is Hurwitz, there exists a positive definite matrix P € R™*" solving A P + PA;, = —Q for a
given positive definite matrix Q € R™*"=_ Define

a2| om
“Lovel o

.
where /P satisfies P = /P /P, and D € R"»~9*"n is a matrix that is in the null space of Ciy(v/P)71, ie,

D<Cm(\/l_3>_l>T —0. (20)

Furthermore, let ®(-) be the ny, X n, matrix

Ts
T (n
@ (Ts) é / ' eAAmA (N >Ad‘l,'. (21)
0
The adaptation law is governed by the following equation:

1T
8alj] = =@ (Ty) MmN X1, 5aljl,  j € Zso, (22)

where yalj] = Jalj] - yaljl, and 1, ¢ € R"™* is given by

1, 42 [ by ] . 23)

O(nm-q)Xq

Finally, the reference command r4[k], which is generated by the high-level control law, is given by

ralk] = i, [K] + (1 — @)W sat { ﬁWFZ (2m, K1 — zalk]) } . ke Zso, (24)
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where ry [K] is the desired reference command introduced in Assumption 4, and F, € R%® is the state-feedback gain,
while « is introduced in Assumption 4. In addition, z4[k] is the measured high-level state given by (4) and (7). Using (11),
the desired high-level state z, [K] is obtained by

Zmy [0] = zo,

MT;

k-1 A (25)
Zm, [K] = AMT) 7 Z ( / eAz((k—l)MTs—T)BZd»L-) Fm [, k € Zs,.
=0 0

Notice that the saturation function in (24) ensures that the reference command always remains within the safety envelope
R defined in (10). In the ideal case where the outer-loop state z(¢) precisely tracks the desired state zy (), the reference
command law in (24) implies that r(t) = ry,(f). While r(¢f) represents the command that is sent to the inner-loop subsystem,
rm(2) is the precalculated reference command for the desired system in (11) with no uncertainty.

5 | ANALYSIS OF THE CLOSED-LOOP MULTIRATE SYSTEM

This section provides the analysis of stability and performance of the closed-loop SD system with the proposed controller.
In addition, the conditions for selection of the control parameters T, C(s), and F, are provided. The analysis is summarized
in Theorems 1 and 2 at the end of this section. Toward this goal, we need to define a few variables of interest and design
constraints. Let

P(s) = Ci(sly — Ax + BiF) By,
Ho(s) = (s, — Ay + BiF) ™' By,
Hy(s) = (Ig + (PR P(s) — 1) C(s)
Ha(s) = Ho(s) — Ho()C&Hi (5) (Pl ()P(s) — 1) , o)
Hy(s) = Hy ()P (5)P(S),
Ha(s) = Hi(s) (PRl ®)P() — Iy ),
Hs(s) = Ho(s)C()Hy (5)Pg (9),
G(s) = Ho(s) — Hs(s)P(s),

A
where Fy, € R7*" is selected such that Ay — ByFy is Hurwitz. Let yo = CxXo be the known initial output. Define the auxiliary
system
Xa(t) = AmXa() + B (u(t) + 6(1)),  %,(0) = Chyo,
¥(t) = CXa (),

with the same input u(f) to output y(t) mapping as the system in (3), where x,(¢) € R" is the state vector, and the Laplace
transform of o(¢) is given by

(27)

a(s) = P (5) (P(8) = Pm(8) U(s) + P(S)W(S) + Hin(8)%0) ,
where
A -1 -1 4
Hin(s) = Cx(sl, — Ax + BxFx) ™" — Cn (Sl]nm _Am) CmCXs

and w(s) is the Laplace transform of w(¢) given by

w(t) 2 Fox(t) + £(6,x(6)) + d(e). (28)

The term o(¢) in (27), which appears as a matched signal in the input channel, lumps together the uncertainties originated
from (i) the model mismatch between the given and desired system dynamics, (ii) uncertainty terms f(t, x(t)) and d(t), and
(iii) unknown initial condition. The design objective is to recover the desired system response by partially compensating
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for o(¢) using the control input u(t). In practice, complete cancelation of the uncertainty o(f) can be achieved only in the
expense of losing robustness. For a robust design, the controller compensates for o(t) within the bandwidth of a low-pass
filter in this paper.

Remark 3. Assumption 2 implies that %P;ﬂ (s) is a proper transfer function. Given that Py, (s) does not have an unstable
transmission zero, P, (s)P(s) is proper and stable, and P! (s)H;,(s) is strictly proper and stable (H;,(s) has total relative
degree of two or higher). Therefore, o(t) in (27) is a causal signal. In addition, Assumption 1 states that the signals
ft, x(t)) and d(t) are uniformly bounded with respect to time and f{t, x(t)) is locally Lipschitz continuous with respect
to x(t). Therefore, the Laplace transform of w(¢) in (28) exists.

Furthermore, for every 6 > 0, let

Ay +0
Ls= 17 (K45 + IFxll o) » (29)

where K; is introduced in Assumption 1, and 7; is an arbitrarily small positive constant. It can be shown that the following
bound on w(¢) holds:
[lwelle, < Lsllxelle, + Lo, (30)
A
where L, = Lo + L;. In addition, define
A
M, =max {max,» ---» Fmax, | » (31)
where rmay,'s are introduced in (10). The design of the controller proceeds by finding a low-pass filter C(s) such that
C(0) = l4. The selection of C(s) must ensure that
Hi(s) is stable, (32)

where H;(s) is defined in (26), and for a given p,, there exists p, > p, such that the following £;-norm condition holds:

Pr—P1— P2

Lpr/’r + L,

IG®le, <

where
A 1 A
p1=|s(shn — Ax + BF) ™ — sHs(Hin(S)|| ¢ po,  p2=|[Ha(9)Ky|| M. (34)

Remark 4. Selection of the filter C(s) provides a trade-off between performance in terms of disturbance compensa-
tion and robustness in terms of input-delay margin. A mixed-norm optimization of the filter for £, adaptive control
structure can be found in the work of Jafarnejadsani et al.>

In the following, we define a few more variables required to obtain the conditions for selection of the sampling time T
for the digital controller. Let P; € R%4 and P, € R"m~9*("m=9 be positive definite matrices given by

-1
1 T
Pli<cm\/5 VP c;) . P,2DD"). (35)
Define

A -1
0 O] o9
where 71 (t) € R?9 and n,(t) € R ~9%4 and

s ¥
x(Ts) =/
0

A
I'(Ts) = a1 (Ts)

1ImquAmA_l<%‘T>AB dr. (37)

2

m

Define the function
(Sl]v - Ao)_lBo

), (38)

where the system matrices (A,, B,, C,) satisfy (15), and

a1 (Ts) é max
te [o, %]

Co (€M —1,)

C a2 ma [ eston| ax
o0 ] 0 S

o
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Let

Ts —1&
Y(T) = [l ¥ ot (T MM 1,

>
o0

s

c, (39)
QT = (1= 16®)lle,Ly,) " [HOCOPL S|, + IH2l, (1= GO, Ly,) ™ (NT(To) + ¥ (To) Y (Ty),

pa = IHs® Iz, (Ly,pr + L2) + [|Ha©Kg |, Mr + [|sH1()Pr ()Hin(5)]| ., o,

lP(Ts) = ‘

Hs($)C (51, = Am) ™ (¢ = Iy, )

where H;(-)'s are defined in (26). Next, we introduce the functions

A A
p1(Ts) = max mOll2,  Pa(Ts) = max [[72(O]l2, (40)

te [O, FS] te [O, WS]
where #,(¢) and #,(t) are given in (36). In addition,

A A
BT)= max m(ETo. Pu(T)= max m), (1)

te [0, F’] te [0, Fﬁ]
where

t
i Ot A
1] eMnh =D AD (T,) M 1F1"mQ||2dT’ ,74(t)=/
0

A t
n3 (t’ TS) =
0

For 75 > 0, let

llmquAmA_l(t_T)ABmHZdT. (42)

81700 = pa + (IH )2, Lp @2(TY) + [Ha@COPR O, + IHaS) e, (N (T + ¥ (T) Y (T9)) 7o,

2y/a81G0)|ATPBn ], ) @
Amin (A_T QA_1 )

A2(70) = Amax (A" TPATY) <

where p, is defined in (39). In addition, let

_ A
§(70. T) =

Ts Az(}_’o) _
n <ﬁ> 2‘/ gt Vax(T) A7), (44)

where #,() is defined in (36) and «(-) is given in (37). Let

Az (7o)
Amax(PZ)

A
Y0(70. Ts) = pr(Ts)s (Yo, Ts) + fo(Ts) + B3(To)s (70, Ts) + 1/qBa(To) A (7o) (45)

Let u be a positive constant, and Ts__ > 0 be a given upper bound on the sampling time Ts. For F, € R??, define

A ||B; |l
As(p, Fp) = .

M [|WF; || V1,

A - = H
Arp(u, F7)= ”Bz”oo”Pm(S)(l]q - C(S))HclpA + 1Bzl I Cxll 071 + 71 + Gp,+71 + ”BZ”oonl]q = P ($)Kg

M;

b (46)
B2l o

—1 .-
+ 1B, o [sCim (51 = Am) ™ CiCon |, 20+ (8, + MAIWFE, |Gy, 47,v2)
1

M, _
+ 7 1Bl IWF, |l (@M + [|Cll o (pr + 71)) V2,



1080 JAFARNEJADSANI ET AL.
WILEY

where 7; is an arbitrarily small positive constant, and

t
Vi = sup %”eAzt b, v 2 sup % / ”eAz("’) dr. 47)
] . 0 *®

t€(0.MT, t€(0.MT, |

Smax

Following a notation similar to the work of Fang et al,*3 let D be the set of g x g diagonal matrices whose diagonal
elements are either 1 or 0. There are 27 elements in D, and we denote its elements as D;, i € {1, ..., 27}. Denote Di‘ =
lg — D;. It is easy to see that D] € D. Let the positive definite matrix S € RP*? be given. Next, the high-level controller
design proceeds by considering F,, H, € R??, a positive definite R € RP*P, and a constant y > 0 such that

(A, - B, (DiF, + D;H,)) 'R+ R (A, — B, (DiF, + D H,)) + 5 < Opsp, Vi € {1, ..., 29}, (48)

and
IWH, |l <1 —a)p;", (49)

where « is introduced in Assumption 4, and

-1
. 2y/PIIRIL A1, Fr)\ 24/PIRILAF (1, Fy) (50)
p = - s
’ Amin(S) Amin(S)
with As(u, F;) and Ar(u, F,) defined in (46).
Finally, define
A
72(70, Ts) = az3(Ts)ps + aa(Ts) (”BZ”oo (aM; + ”CX“oo(pr + Q1 (Ts)yo)) + Gpr+}71) ) (51)
A
¥r(Yo, Ts) = || Bzl o Mr (2(1 - e_”MTS) + IWF,|| o 72(¥0s Ts)) >
where
A oAt A ' PAut=D)
w2 s 1=l ar)2 ma [ e as (52)
Lemma 1. For all 7y > 0, the following relationships hold:
}:_% Yo(70, Ts) = 0, 11:—% (Yo, Ts) = 0, (53)

where yo(-, -) and y (-, -) are given in (45) and (51), respectively.

Proof. The proof is similar to the proof of Lemma 3.3.1 in the work of Hovakimyan and Cao® and hence is
omitted here. O

Lemma 2. There exist T > 0 and an arbitrarily small positive constant y,, such that

70(70v Ts) < J_/O, QI(TS)770 < 715 }'r(770, Ts) < J_/r, (54)

where 71 and ¥, are introduced in (29) and (46). In addition, Q;(-), y,(:, -), and y (-, -) are defined in (39), (45), and (51),
respectively.

Proof. Itis straightforward to verify that €, (Ts) is a bounded function as T tends to zero. In addition, Lemma 1 shows
that yo(70, Ts) and y,(¥o, Ts) both approach arbitrarily close to zero for all 7, with sufficiently small Ts. Therefore, there
always exist constants T and 7, that satisfy the inequalities in (54). O

The sampling time Ty of the digital controller is selected such that Ts < T _, and the inequalities in (54) hold.
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1

Lemma 3. For arbitrary & = [ y2

] € R™, where y; € R? and y, € RU~9, there exist positive definite P, € R?9 and

P, € RMn=DX(mn=0) gych that
ENATHTPATIE = y[Piyy + ] Poys, (55)
where A is given in (19). In addition, P, and P, are defined in (35).

Proof. The proof of Lemma 3 can be found in the work of Hovakimyan and Cao.* O

Consider the following closed-loop reference system:

)‘Cref(t) = Axxref(t) + By (uref([) + f (L xref(t)) + d(t)) s
Uref(S) = Kgr(s) — C(s)oref(5), (56)
Yref(t) = CxXret(t),  Xref(0) = Xo,

where

Gret(s) = [(P(S) = P (5)) C(S) + Pim($)] ™" (P(5) = P (5)) Kg(s) + [(P(5) — Prn(s)) C(5) + Prn()] ™ (P(S)W 1er(s) + Hin(5)%0) ,

and wyf(s) is the Laplace transform of wy(t) given by 7
Wref(t) = FiXrer(£) + f (£, Xrer(£)) + d(0). (58)

The reference system can be rewritten as
Yref(8) = Pi($)Kgr(s) + P (s) (Iq — C(5)) 0ref(s) + Crm (805, — Am)‘lcjn Yo. (59)

From (59), we notice that the unknown uncertainty o¢(t), given by the Laplace transform in (57), is mitigated within
the bandwidth of C(s), and the desired response (in Assumption 2) is recovered. The reference system in (56) defines the
achievable performance by the closed-loop multirate system given in (3), (16)-(22), as the sampling time T of the digital
controller tends to zero. In the following, we first prove that o.¢(f) is bounded, and the reference system in (56) is stable.
Then, we establish uniform bounds between the closed-loop system defined by (3), (16)-(22) and the reference system.

Lemma 4. For the closed-loop reference system in (56), subject to the L1-norm condition (33), if || 0|l < po, then

eetll e < . (60)
litetllz_ < pur (61)
where p, is introduced in (33), and
pur 2 ICOHO e, (L, pe + La) + [SCOHLOPR OHm(S)] ., 0 + || (g = CoIHu(5)) Ko, M. (62)
Proof. See Appendix A.1 for the proof. O

Remark 5. Lemma 4 implies that o¢(f) with Laplace transform defined in (57) is bounded, such that

”O'refnﬁoo < pa; (63)

where p, is defined in (39).

We consider an equivalent state-space model of the predictor dynamics in (17) given by

X(t) = AnR(t) + Buu(t) + 6(),  %(0) = C\yp

(64)
() = CnX(),
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where

6() =64ljl, te

Ts . T .
—, +1)— ), € Z>o, 65
IN (Jj )N> J >0 (65)

and u(?) is given by (5) and (16). Since 6(t) and u(t) are piecewise constants in (64), from (17), we have

A T . .
)’(JNS>:)’d[J], J € Zxy. (66)

Let X(t) = X(t) —x,(t), where x,(¢) is defined in (27). Then, the prediction error dynamics between (27) and (64) are given by

X(t) = AnX(t) + 6(t) = Bno(t), X(0) = Op_x1,

(67)
¥(t) = CrnX(1),

where 6(t) is defined in (65).

Lemma 5. Consider the closed-loop system defined by (3), (16)-(22), and the closed-loop reference system in (56). The
following upper bound holds:

”(xref_x)tnﬁw < Ql(Ts)”ytllcms
where Q(-) is given in (39), and y(t) is the prediction error defined in (67).

Proof. See Appendix A.2 for the proof. O

Theorem 1. Consider the system in (3) and the controller in (16)-(22) subject to conditions in (32) and (33). Let 7y > 0
be a given arbitrarily small constant. Assume that Ts < Ts__is selected sufficiently small such that the inequalities in (54)
hold. If ||x0|l o < po, then

I5llz < 7o, (68)
[1%ref _XHCW <Q(Toio,  ltrer — u”ﬁm < Q(Ts)7o, (69)

where j(t) is the prediction error defined in (67). In addition, Q:(Ts) is defined in (39) and

Q,(Ty) = [COPR G|, + 1CElz, Ly, 21(Ts) + (NT (T5) + ¥ (Te) Y (T5) - (70)

Proof. See Appendix A.3 for the proof. O

Remark 6. Lemmas 1 and 2 indicate that an arbitrarily small bound on the prediction error, 7y, can be achieved as
Ts goes to zero. We can show also that Q;(T;) and Q,(Ts) are bounded as T tends to zero. Therefore, the bounds
in (69) can be made arbitrarily small. This implies that the closed-loop SD system recovers the performance of the
continuous-time reference system in (56) as the sampling time goes to zero.

Lemma 6. Let u,v € R withu = [uy, ..., uq]T andv = [vq, ..., vq]T. Suppose that [vj| < 1forallj e [1, ..., ql.
Then, sat{u} € co{Diu+D;v : i €[, ..., 29]}, where co{-} denotes the convex hull.
Proof. See the work of Hu and Lin** for the proof. O

Theorem 2. Consider the high-level subsystem in (4), the desired system in (11), and the reference command law given in
(24). Let the positive definite matrix S € RP*P be given. Then, if there exist F,, H, € R?P and a positive definite R € RP*P
such that the conditions in (48) and (49) hold, then the error e,(t) = z,,(t) — z(t) is uniformly bounded such that

lezlle, < pas (71)
where p, is given in (50).

Proof. See Appendix A.4 for the proof. O
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Remark 7. While the error bound p, in (71) remains bounded as the sampling time T tends to zero, it cannot be made
arbitrarily small. To obtain sufficiently small p, as desired, larger saturation limits (entries of Win (10)) can be chosen,
and F,, H,, S, and R selected accordingly such that (48)-(49) are satisfied.

6 | UAVSIMULATION EXAMPLE

A high-fidelity simulation environment of an UAV is used to verify the effectiveness and advantages of the proposed con-
trol framework. To substantiate the existence of a feasible controller that satisfies the theoretical conditions, a multilevel
altitude tracking controller is designed for linearized UAV longitudinal dynamics. We then apply the multilevel SD control
framework to a high-fidelity UAV simulation platform and compare the multilevel controllers with and without bounded
reference signals. At the end, a zero-dynamics attack on altitude measurement is simulated to show the advantages of
multirate framework in detecting stealthy attacks.

6.1 | Linearized longitudinal dynamics

A multilevel SD controller is designed for linearized UAV longitudinal dynamics with criteria (33), (48), (49), and (54)
fulfilled. Consider the following trim condition within the desired flight operating envelop of an Ultra Stick™25e¢ model
UAV*: inertial frame position of [0, 0, —100] m, body frame velocities of [17,0,0.369] m/s, Euler orientation (roll, pitch,
and yaw) of [—0.0983,3.0947,0] deg, surface of elevator at —5.518 deg, aileron and rudder at zero position, throttle at
55.9%, and engine speed at 7897 rpm. Define the state vector x = (u,w,q, 0" € R, where u, w, g, and 0 respectively
denote the changes of forward velocity, vertical velocity, pitch rate, and pitch angle deviated from the trim condition.
With the high-fidelity UAV simulation software developed by the University of Minnesota,* the following linearized UAV
longitudinal dynamics is considered for the inner-loop dynamics:

X(t) = Axx(t) + Bxbe(t),  y(t) = 6(1), (72)
where

—0.5961 0.8011 —0.871 —9.791

—0.7454 -7.581 15.72 —0.5272

1.042 —7.427 —15.85 0 ’
0 0 1 0

Ay =

By = (0.4681 —2.711 — 1341 0)7,
Cy=@0 0 0 1),

with &, the deviation of elevator surface from the trim condition, being the control input, and the pitch angle  is chosen
as the output for feedback. The outer-loop dynamics from the pitch angle 6 to the UAV altitude h takes the form of (73)
after linearization

h(t) = 17 - (). (73)

The models in (72)-(73) represent the nominal linear dynamics. To account for uncertainties in these linear models,
we design the controller considering the upper bounds on the additive terms f{t, x(t)) and g(¢, x(¢)) as defined in (3)-(4).
Subject to the dynamical models given in (72) and (73), a multilevel SD controller is designed with the following design
parameters: p, = 0.01, p, = 8.1, = 0.1, 7; = 0.015,5 = 0.01,7, = 0.01, y =94, M = 1,7 = 6.5x 107!}, G, 17 = 0.01,
H, = 1177 x 1073, K45 = 0.01, Ly = 0.01, L; = 0.01, M; = 04363, N = 5,Q = ,,R = 1,5 = 0.04, Ty = 107%5,
and Ts = 0.01. For the outer-loop controller given by (24), we choose the feedback gain F, = 0.008 and the weight
W = 1/M;. The inner-loop multirate £, adaptive controller is designed with the desired model

—1.339x 10735 — 133.9
P (s) = s 74
m(5) s2 +134.55 + 1193 (74)

and the low-pass filter
C(s) = 13000

= 75
s+ 15000 (75)
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With the preceding parameters, conditions (33), (48), (49), and (54) are fulfilled, with ||G(s)||;, = 1.819 X 1072 < (pr—p1 —
p2)/ (L, pr+L>) = 1.826X1072in (33), [WHy |l = 2.698 X107 < (1—a)p;* = 2.702%x 1073 in (49), and yo (7o, Ts) = 6.369X
107! < 7 = 6.5% 10711, Q1 (Ts)7o = 1.468X 1072 < 7, = 1.5%x 1072, and 7;(Jo, Ts) = 1.589x 10713 < 7, = 1.0x 102 in (54).
In order to satisfy these criteria, the parameters given above are, in some sense, conservative, which can be observed from
the following simulation.

With the multilevel SD controller, the UAV to tracks the following reference altitude (height) signal:

—0.5 1
1+4el/5-10 " 1 4 et/5-40

he(t) = 10 - ( 0.5> + 100. (76)

The reference altitude signal h.(¢) and the UAV altitude h(f) are given in Figure 2. Due to the conservativeness of design
parameters, certain amount of tracking error exists in Figure 2, which can be efficiently reduced by increasing the pro-
portional gain F, in outer-loop controller. Figure 3 shows the commanded pitch angle k,(t) generated by the outer-loop
controller, UAV pitch angle 6(t), and the deviation of the elevator surface 6.(f). From the result, one can see that the ref-
erence signal r(¢) is within the bound M; = 0.4363rad = 25°; the UAV pitch angle 6(¢) tracks the reference pitch angle r(¢)
precisely with the multirate £; inner-loop controller, and the deviation of the elevator is also within the saturation bound.

106 T T T T

104

102

100

Altitude (m)

98

96

9 4 L L 1 L L 1

FIGURE 2 The unmanned aerial vehicle tracks the desired 0 50 100 150 200 250 300 350
Time (s)

altitude [Colour figure can be viewed at wileyonlinelibrary.com|

Pitch angle (deg)

o 50 100 150 200 250 300 350

Elevator (deg)

FIGURE 3 Pitch angle (t) and elevator deviation &, [Colour 0 50 100 150 200 250 300 350
figure can be viewed at wileyonlinelibrary.com] Time (s)
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6.2 | Nonlinear model with motor failures

After we showed the existence of a feasible controller with the linearized UAV longitudinal dynamics, we then test this
multilevel SD control framework in a high-fidelity UAV simulation environment.*> Assume that the lateral dynamics
is stabilized by some existing controller along the roll and yaw channels and consider a scenario when the propulsion
level of UAV decreases by 80% for two minutes (as a large unplanned uncertainty), while the UAV still tries to track a
commanded altitude signal at h.(f) = 100. The saturation limits of UAV elevator are +25°. Some design parameters are
adjusted to adapt to the high-fidelity UAV dynamics and environmental factors. The desired dynamics is selected as

—0.2067s — 20.67

P, = R 77
) = 205+ 3.793 7
with the low-pass filter
4
Cs)=——. 78
© =<7 (78)

The sampling period is Ts = 0.02, and all the other parameters are unaltered. We compare a multilevel controller with
reference pitch angle r(f) constrained by saturation bounds within [-11°,11°] and a multilevel controller with uncon-
strained reference signal ry,,(t). This constraint does not limit the maneuverability of the UAV since the safety constraint
is on the generated command signal, not on the actuators.

In the following simulation, we use subscript “w” to denote the results of control scheme with bounded reference
signal, while subscript “w/0” is used to denote the results of control scheme with unconstrained reference signal. The
reference altitude signal h.(f), UAV altitudes hy(f) and hyo(t), and the tracking errors ey (t) and ey, () are shown in
Figure 4. The reference pitch angles r(¢) and ry/o(f), UAV pitch angles 6y,(f) and Oy, (t), angles of attack ay(f) and ayo(f),
and the deviations of elevator 6. ,,(f) and 8e w/o(f) are given in Figure 5. It can be observed that although the reference pitch
angle is confined inside an envelope, the difference between altitudes hy,(f) and hy,(t) is small. Meanwhile, the bounded
reference pitch angle r,(f) prevents the elevator from saturation and keeps the pitch angle 6,,(¢) and the angle of attack
aw(t) inside a relatively safer envelope, in which the UAV is less likely to crash or stall. It is clear that the multilevel SD
control framework with bounded reference signal ensures safety of the autonomous UAV in the presence of uncertainties.

6.3 | Full-state dynamics under zero-dynamics attacks

The multirate control scheme is also able to detect the stealthy zero-dynamics attacks. In this last example, we show
a zero-dynamics attack on a full-state UAV trim model via GPS or altimeter spoofing. With the same trim condition,
when the sampling period of digital control system is Ts = 5T = 0.1 seconds, while the faster output sampling period
is T = 0.02 seconds, discretizing the continuous transfer function from the elevator 6, to the UAV altitude h(t) with the
sampling period T generates a nonminimum-phase zero at z = —6.0108, which can be used for stealthy attack. The attack
signal is generated by adding the following zero-dynamics attack signal

ha(t) = hy [i],  t € [iTs, (i+ DTs), hy,lil = €(—6.0108)'"s, i€ Zs, (79)
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into the normal altitude measurement signal h(t), where ¢ = 107>. Under the zero-dynamics attack and in the presence
of measurement noise, Figure 6 shows the zero-dynamics attack signal h,(f), altitude measurements from a single-rate
controller h4(f), and the altitude measurement from a multirate adaptive controller hp, (). It is apparent that the single rate
controller is not able to detect the drastic changes of UAV height caused by the zero-dynamics attack, while the multirate
L, controller can detect this anomaly at a relative earlier stage despite the contamination of measurement noise.

Remark 8. After detection, zero-dynamics attack can be removed by considering a secure software/hardware archi-
tecture (simplex design*®+7). In such structure, a backup controller will operate the system, when the normal mode
controller is compromised due to a cyber attack. By switching from the normal mode to a secured backup controller,
the unbounded stealthy attack can be removed (from the cyber space). Then, the backup controller can recover the
stability of the perturbed system. For successful recovery, early detection is critical. Reader can see the works of
Jafarnejadsani et al*>*® for more details.

Remark 9. As shown in the numerical example of Section 6.1, while the sufficient theoretical stability conditions
are conservative, one can find a set of design parameters that satisfy all of the theoretical conditions (feasibility). As
demonstrated in the nonlinear high-fidelity UAV example of Section 6.2, the proposed control structure effectively
allows for design of the control parameters to practically balance the trade-offs between performance and robustness,
without the requirement to satisfy the sufficient stability conditions. On the other hand, the assumptions made in
this paper are not conservative. We consider a class of uncertain MIMO systems subject to nested saturation, where
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only some of the states are available for measurement. A less-restrictive assumption of locally Lipschitz continuity
is employed for unknown nonlinear terms, and the dynamics of the system can be nonminimum-phase. This paper
introduces a challenging problem in output-feedback control for SD systems which has only been dealt with in very
few study.

7 | CONCLUSION

For safe and secure control of autonomous systems in the presence of uncertainties, physical failures, and cyber attacks,
a multilevel SD control structure is proposed. For this purpose, a class of nested uncertain MIMO systems subject to
reference command saturation, possibly with nonminimum phase zeros, is considered. The multirate SD approach of this
paper facilitates the implementation of controller on digital computers, where the input/output signals are available at
discrete-time instances with different sampling rates. In addition, the stealthy zero-dynamics attacks become detectable
by considering a multirate formulation.
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APPENDIX A

A.1 | Proof of Lemma 4
It follows from (56) and the definition of Hy(s), Hs(s), P(s), and G(s) in (26) that

Xref(8) = [Ho(s) — Hs(5) (P(s) = Prn($))] Kgr(s) — G($)Wrer(s) — Hs($)Hin(8)X0 + (s1n — Ax + BuFx) ™' %o

Then, the following upper bound can be established for r > 0

Peetellz, < GO e, Wete e, + IH)Kellz, Irle, + |[stsbs = Ax + BuF) ™ = sHs() Hin(s), ‘ (A1)
1

1
S e

We have ||Xe£(0)]|0 = [|%0]le0 < p;- In addition, x.¢(¢) is continuous. Therefore, if the bound in (60) is not true, there exists
a time 7; > 0 such that

[Ixef(Dllco < pr,  VEE [0, 71),  [IXeet(TD) |0 = Prs

which implies that |[Xet, ||z = pr. Then, it follows from Assumption 1 and the redefinition in (29) that
Wretr, Il 2, < L 1retz, |2, + Lo (A2)
The bound in (A2), together with the upper bound in (A1), leads to

IGS)le, L2 + p1 + p2
1= IG®)le, Ly,

et Il ., <

The condition in (33) can be solved for p, to obtain the bound

IGOle, L2 + p1 + p2
1=11G®)le, Ly,

Pr s

which leads to [[Xiet, ||z, < pr- This contradicts ||Xeet, ||z, = pr, thus proving the bound in (60). This further implies that
the upper bound in (A2) holds for all z; > 0 with strict inequality, which in turn implies that

[IWretll 2, < Ly pr + Lo. (A3)
The bound on u(t) follows from (56), (57), and (A3), which proves (61).

A.2 | Proof of Lemma5

Let
Uc(s) = Kgr(s) — C(S)P7(5)Ci (s1n, — Am) ™ 6(5), (A4)
um(s) = Kgr(s) — C($)P (5)Crn (815, — Am)_le_Am%ds). (A5)
It follows from (67) that
#s) = —Pn(8)6(8) + Crn (sl _Am)_16'(5)~ (A6)

Letting e(t) éxref(t) — x(t) and denoting by d.(s) the Laplace transform of
A
de(£) = Wrer(t) — w(2), (A7)
from (3), (28), (16), (56), (A4), (A5), and (A6), it follows

e(s) = Ho(s)C($)P! (8)3(s) + Ho(8)de(s) + Ho(s) (uc(s) — um(s)) + Ho(s) (um(s) — u(s)) — Ho(s)C(s) (oref(s) — 6(5)),  (A8)
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where Hy(s) is defined in (26). Furthermore,

Ho($)C(s) (oref(s) — 0(s)) = Hs($)P(s)de(s) — Hs(S) (P(S) — Pm(s)) (uc(s) — um(s)) — Hs(s) (P(s) — Pm(s)) (um(s) — u(s))
+ Hs(5) (P(5) — Prn(5)) C(5)Pyy (8)5(5).
(A9)
From (A8) and (A9), one can obtain
e(s) = (Ho(s) — Hs(s) (P(s) — Pm(5))) C($)Py, (8)5(5) + (Ho(s) — Hs(8) (P(s) — Prm(5))) (uc(8) — um(s))

A10
+ (Ho(s) — Hs(s) (P(s) — Pm(s))) (Um(s) — u(s)) + (Ho(s) — Hs()P(s)) de(5). (A10)

Then, the upper bound is given by

llecllz, < [|(Ho(s) = Hs(s) (P(s) = P()) CO)P S| o 1]l .., + [I(Ho(s) = Hs(5) (P(8) = Pm()l, 1t — una)ill o
+ [[(Ho(s) = Hs(8) (P(s) = PmD |z I Cum = w)(llz + 1GO)le, Lp, llexll .-

(A11)
From (66), we have
5 <J%> = Salil. J € Zso. (A12)
From (22), (65), and (A12), the following relation holds:
[V, <Y @5, (A13)

where Y(-) is defined in (39). Notice that uq4[i] given in (16) is a step-invariant discrete-time approximation of uy(s), given
in (A5). Therefore, the discretization error bound between (5) and (A5) is given by

lGuv — Wl S NU(To) Y (To) |32l 2 » (A14)
where I'(+) is introduced in (38). Moreover, from (A4), (A5), and (A13), one can obtain

ltuc —un)elle, < (T) Y (To) 13ll e » (A15)

where W(-) is defined in (39). From (A11), (A14), and (A15), the following upper bound holds:

ledlle. < QuTNFlc - (A16)
This concludes the proof.

A.3 | Proofof Theorem 1

Let ¥, be a constant satisfying (54). First, we prove the bound in (68) by a contradiction argument. Since j(0) = 0, and j(t)
is continuous, then assuming the opposite implies that there exists z; such that

POl < ¥o, VOLE< T, (A17)
17(zD)l o = os

which leads to
721l = 7o- (A18)

Let e(t) éxref(t) — x(t). The sampling time T is selected such that the inequities in (54) hold. Then, the bound in (54),
Lemma 5, and the upper bound in (60) can be used to derive the following bound

”le”Em < xrefr1

|, +lealle, <pt7, (A19)
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which implies
”WTI ”Ew <L, pr+La.

One can obtain from (57) that

< pa,

Otef,, | ¢

where p, is defined in (39). In addition, we have

Oret(s) — 0(5) = H3(5)de(s) — Ha(s) (unm(s) — u(s)) — Ha(s) (Uc(s) — um(s)) + Ha(s)C(S)P (9)7(5),

which along with (A21) implies
lloz e, < A1),
where A(:) is defined in (43).
Now, consider the state transformation
&= A%,
where A is defined in (19), and X(t) = X(t) — x,(¢t). From (67) and (A24), it follows

E(t) = AMAn AT E(t) + AG(t) — ABmol(t),
y(t) = lnmqg(t)e E(O) = Onmxl-

From (A25), we have

~ T. s T t -1 . T T
§<jﬁs+t>:eAAmA1t§<jNS>+/0 M (r—r)A<6<Jﬁs>—Bma<1ﬁ+r>>dr.

Since

- (5L Ogx1
5<jg+t>= () 4] T :
N O, -gx1 Z<1F+t)

where 2(t) = [Eg1(D), .., E,,m(t)]T, &( j% + t) can be decomposed as
- T Ty T
Syt) =g (i +t =S4t
(% +1) =2 (75 o) v (%)
(.1, ¢ 1
;(<j%+t> = MnA7 ly(fﬁ> ] +/0 MuAT DA <J%> dr,

O(n,,—g)x1

T AA A Og faa AL (=7) T
Cl\j—=+t) =e¥m L .T - e™m ABno | j— + 1 ) dr.
N Z(J;) 0
. Ts
y JN

such that

z

Next, we prove that

T T. T,
<¢(o,Ts), Z' <j—s> Pz <j—s> < Ay(Fo), V= <1y,
5 N N N

WILEY— 22

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

where A(-) and ¢(-, -) are defined in (43) and (44), respectively. It is straightforward to show that ||7(0)|l, < ¢(¥o, Ts),

ZT(0)P,Z(0) < Ax(¥o). Next, for arbitrary k € Z such that (k + 1)% < 11, we prove that if
. T _
Hy (kﬁ) <60, Ts)s
2
T, T,
2T (k= )Pz (k=) < AL
Z ( N ) PR kg ) < 2(¥0),

(A31)

(A32)
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then the inequalities in (A31)-(A32) hold for k+ 1 as well, which would imply that the bounds in (A31)-(A32) hold for all
k € Zsq such that k% < 11. To this end, suppose that (A31) and (A32) hold for k € Z,, and in addition that (k+ 1)% <.

Then, it follows from (A27) that

. I _ T T
§<(k+1)ﬁ> —)(((k+1)N> +C<(k+1)N>,
where

¥ <(k+ 1)5> = MnhT T y(kw) +/ Mod” (57) s <k5> dr,
N O(n,y—g)x1 0 N

0 Is
B g [ 00 ] 8 () (I
C((k+1)N>—e lz(k£>] /0 e ABno kN+T dr.

N

Using (A12) and substituting the adaptive law from (22) and (65) for & <k%> in (A34), we have

T,\ _

From (A29), it follows that {(f) is the solution of the system:

£() = AAnATIE () — ABpo(t),
0
T, 3 (nm—q)x1
C<kﬁ>—lz<k%>], te

V() = TOATTPATIC(®), Vte

T. T.
K= k+1D= ).
N(+>N>

Let

T, T
K= k+1D= ).
N(+)N>

(A33)

(A34)

(A35)

(A36)

(A37)

Since A isnonsingular and Pis positive definite, A=T PA~! is positive definite, and hence, V(t) is a positive-definite function.

Using Lemma 3 and Equation (A37), it follows

(65) - () mee),

which, along with the upper bound in (A32), yields

v <c (k%)) < A7),

From (A37), it follows that, for all t € [k%, (k + 1)%),

V(t) = ETOATPATIAARATIE®) + ETOATALATATTPTATIE () — 28T (A" TPA T ABo(t)

= —¢TOATQATIEW) — 26 T(OA"TPAT ABmo ().
Using the upper bound from (A23), for all t € [ % (k+ 1)% ) one can derive

V() £ = Amin(A"TQA™) [IEO1I5 + 20O IIA™ T PBamll2/qA1 (o).

Notice that if
V(t) > Ay(¥o), Vte

T T,
k=, (k+ 1=
N,( + )N>,

(A38)

(A39)

(A40)
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the following holds:
€@, > Ax(¥o) _ 2\/6A1(770)”A_TPBH1”2.
Amax (A-TPA-1) Amin (A"TQAL)
Moreover, the upper bound in (A39) yields
V() <o0. (A41)

From (A38), (A40), and (A41), it follows
T, T,
V() < Ax(fo), VieE k=, (k+1)= ),
(®) < Ax(¥0) [N(+)N>

and therefore
T <(k + 1)%) ATTPATI¢ ((k + 1)%) < Ay(%p). (A42)

Then, (A33), (A36), and the upper bound in (A42) lead to the following inequality:
ET [ (k+ 1)5 ATTPATIE( (k+ 1)5 < A7)
N N ) = oRr
Using the result of Lemma 3, one can derive
zZ <(k+1)N Pz (k+1)N <¢ (k+1)N AT PATE (k+1)N < Ax(¥o)s

which implies that the upper bound in (A32) holds for k + 1.
Next, from (A25), (A33), and (A36), it follows

) T\ _ .1 T,
y <(k+ 1)ﬁ> - lnmqg <(k+ 1)N> >

and the definition of ¢ ((k + 1)%) in (A35) leads to the following expression:

. T AA A S O‘ZXI % AAL AT %—r Ts
y<(k+1)ﬁ> =1, .€ N lz<k%>] —1Imq/O e ( >ABma (kﬁ+r> dr.
The upper bounds in (A23) and (A32) yield the following upper bound:

T, T\ . (. T ¥ T,

where #,(+), k(-), and ¢(-, -) are defined in (36), (37), and (44), respectively. This confirms the upper bound in (A31) for
k + 1. Hence, Equation (A30) holds for all j% <.

- T
AALA 1(FS—T>

-
1, e ABn

dr < g(?()s TS)’
2

2

2 2

For all j % +t<rt,andt e [0, %], using the expression from (A26), we obtain

(T ez (T ! enaa T ! ey T
y(jﬁs+t> =1, Mo IE <jﬁs> +11mq/0 MmAT =D A G <1NS> dT—lImq/O MmATUEIAB & <Jﬁs +T> dr.

The upper bound in (A23) and the expressions of #,(-), #,(-), #5(, -), and 5,(-, -), given in (36) and (42), lead to

y@%+0 ?Q%> ZQ%> 90%>

< Mm@l
2

+ 13 (t7 TS)
2

+ [|m2(Dll,
2

+ na(0)1/q 01 (7o)
2
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Consider (A30) and #,(-), B,(), f3(-), B4(-) defined in (40)-(41). For arbitrary nonnegative integer j subject to j% +t<n

and forallt e [O, %] , we have

- 'Ts+t
yJN

Since the right-hand side coincides with the definition of yo(¥o, Ts) in (45), we have the bound

—
< B (T <o T + P (T) AL@) T 5 (T (o Ts) + /3s (To) A (7).

2

IFDOl; < yo(Ts, €), Vt € [0, 71],
which, along with the design constraint on T introduced in (54), yields
171l < 7o-

This clearly contradicts the statement in (A18). Therefore, ||7||,_ < 7o, which proves (68). Furthermore, it follows from
Lemma 5 that

lledle, < €a(Ts)io,

which holds uniformly for all ¢ > 0 and therefore leads to the first upper bound in (69).
To prove the second bound in (69), from (3), (16), (56), (A4), (A5), and (A6), it follows

Uref(s) — U(S) = C(5)Pg (9)F(5) — C(8)de(s) + (1 c(5) — um(s)) + (um(s) — u(s)), (A43)

where d.(s) is the Laplace transform of d(¢) defined in (A7). In addition, uc and uy are defined in (A4) and (A5). Then,
it leads to

litet(s) = u)ll < |COPRG| M1l + luc®) = us @l + () = u@ e+ 1CO)le Lo llelle_.  (A44)
Combining (A14), (A15), (68), (69), and (A44) leads to
lluret(s) — u@)llz < 2(Ts)o. (A45)
This concludes the proof.

A.4 | Proof of Theorem 2

Using (4) and (11), the error e,(t) is governed by

é,(t) = Aze,(t) + B, (rm(t) — ¥(1)) — 8(x(1), 1), €,(0) = 0. (A46)

Then, we can rewrite (A46) as

,(6) = Age,(t) = (1 - @B, W Tsat { LWFZeZm} + B, (ret(t) — (D) + B, (1 () = Yree(D)
l-a . (A47)
+B, <rm(t) —r) + (1 — )W lsat { T WF,e,(0 }) — g(x(0), 1) + By (1) — & (D).

where the Laplace transforms of rr(¢) is given by

U
S+ u

re(s) = r(s). (A48)
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Let

F () = B, (ret(®) = y(0) + B (15(0) = yre(0) + By (n(0) = 1(0) = <0, 1) + (1 = a)B,W st { ——WFe,(0) }

+ B, (r(t) = re(0)) .

(A49)

Then, the equation in (A47) can be rewritten as
&,(t) = Aye,(t) — (1 — a)B, W sat { %WFZeZ(t)} +F ). (A50)
-

Select V() = e (£)Re,(t) as the Lyapunov function for the closed-loop error dynamics in (A50). Then, the derivative of V,,
can be obtained as

V,(t) = 2e] (DR (A,e,(t) + F(t)) — 2¢] ()RB,(1 — &)W 'sat { %WFZeZ(t)} . (AS1)
—a
We have ||e,(0)|| =0 < p,. In addition, e,(¢) is continuous. Therefore, if the bound in (60) is not true, there exists a time
71 > 0 such that

||ez(t)”oo < pZ9 Vt S [07 Tl)9 ”eZ(Tl)”oo = pZ7
which implies that ||e, || = p.. Then, by Lemma 6 and the condition in (49), we have for V¢ € [0, 7,] that

Vo) < max_ {2e; (R (Aze,(t) — B, (DiF; + D[ H,) e,(t) + F(1)) } . (A52)
i€{1,...,24}
Furthermore, from the condition in (48), we obtain
V() < —e) (t)Se,(t) + 2e, (HRF(¢). (A53)

Using the upper bound from (A53), for ¢ € [0, 7], one can derive

Vao(t) < =Amin(S) llez 113 + 2+/pllez Ol IRI || 7, |- (A54)
Notice that if 5
2/PIIRIL|| 7, |
Vo(t) > Amax(R =], A55
() > Amax( )( ) (A55)
the following holds:
2y/PIRIL|| 7, |
e;(0|l, > =. A56
lle-(D)ll; ) (A56)
Moreover, the upper bound in (A54) yields
V() <0. (A57)
From (A55)-(A57), it follows
2
2y/PIIRIL|| 7 |
V,(t) < 4 R =1, A58
and therefore
24/PIIRIL||F-
g AR, )
L, j'min(S)

In the following, we obtain the bound on F(¢) for ¢ € [0, 71]. Using the result of the Theorem 1, it follows ||x||._ < pr + 1.
Then, Assumption 1 implies that

lgCx(®), Ol < Gp47,- (A60)
Moreover, from Theorem 1, one can obtain

ly - Yrefllﬁw < |ICxll Q1 (Ts)70. (A61)
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In addition, from (59) and (A48), we have
rE(S) — Yref(S) = <$ﬂq - Pm(S)Kg> r(s) — Cn (S[lq - Am)_lcjnyo = Pm(s) (l]q - C(S)) Oref(S).- (A62)

It follows

76 = yetll_ < HHLMuq — Pn(9)K, ﬁer + Uscm(suq —Am) 'l cmHEM o+ ”Pm(s) (I, - C(s)) Hc pa. (A63)

Forallt € [kMTs, (k+ DMT) N[0, 71], k € Z5o, we obtain from (24) that

< H(l —a)Ww! <sat{ IWFZ ez(t)} - sat{ IWFZ e,(kMTy) } ) H

- -

Foi(6) = F(O) + (1 — @)W 1sat { ﬁWFeZ(t)}

(s

< M, ||WF; (e,(t) — e,(kMTy))l|
S MIWF, || ll(ex(t) — e,(kMTo))|| o -

(A64)
From (A46), one can obtain
t
e,(t) = M, (kM) + 7 (B, (rm(7) — () — g(x(2), 7)) dz. (A65)
kMT,
Using Theorem 1, Lemma 4, and the bounds defined in (52), from (A60) and (A65), it follows
lle,(t) — e,(kMTs)|l o < 72(Fo, Ts), (A66)
where y,(:, -) is defined in (51). Let
re,[k] = re(kMT), t € [kMTs, (k + DMTs), k € Zs,. (A67)
Then, from (A48) and (A67), we have
k
rr Ikl =) e M1 — e MTr [k - 1]. (A68)
1=0
Using summation by part, it follows from (A68) that
k
re,[K] = ralk] + ) e M (e glk+ 1= 1] = ralk = ). (A69)
1=0
Then, one can obtain
k
e, K1 = ralK][|, < D HOMT i gl + 1= 1] = ralk = 1]l (A70)
1=0
From (14), (24), (A64), and (A66), for any k € Z5(, we have
”rd[k +1] - rd[k]”oo < Mr“WFzHooYZ()_/O, Ts) + MTS(Srm~ (A71)

From (A70) and (A71), it follows

—uMT
“er [k] - rd[k]”oo < ﬁ (Ml’“WFZ“coJ/ZO—/O? Ts) +MT35rm) . (A72)



JAFARNEJADSANI ET AL.

Taking the discretization error into account, we have

e—uMT

T— o T, (M IWF || o 72(F0, Ts) + MT6: ) +2 (1 — e_”MTS) M;.

llre = rll_ <
Then, from (A60)-(A73), it follows

17Nz, < IBzllo|[Pm(s)(lg — Cs)| 2, 2 + 1B2llo | Cill R (TS0 + 72(Fo, Ts) + Gz,

u
+||B ——I; — P (5)K,
1Bl |2t = Pl

M, + ||BZ||OO||sCm (sl —Am)‘lcjncm”E 2
L, 1

1 1 _
+ ;”BZ”oo <]w_TsMr”WFz”oo72(70a Ts) + 5rm> .

Since Ts < Ts__ is selected such that the inequalities in (54) hold, we have y,(7o, Ts) < 7;. Therefore,

-1
24/PlIR|;As(p, Fz)
”Fﬁncm < (1 - VPIRI:A, ’ ) Ar(p, Fz),

Amin(s)
where Ag(u, F,) and Ar(u, F,) are defined in (46). From (A59) and (A75), it follows

€z

1

. < Pz,

which contradicts with ||e,., ||, = p,. Hence, the inequality in (71) is true.

WILEY—2*

(A73)

(A74)

(A75)

(A76)
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