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Abstract—This paper studies novel attack and defense strate-
gies, based on a class of stealthy attacks, namely the zero-
dynamics attack (ZDA), for multi-agent control systems. ZDA
poses a formidable security challenge since its attack signal is
hidden in the null-space of the state-space representation of the
control system and hence it can evade conventional detection
methods. An intuitive defense strategy builds on changing the
aforementioned representation via switching through a set of
carefully crafted topologies. In this paper, we propose realistic
ZDA variations where the attacker is aware of this topology-
switching strategy, and hence employs the following policies to
avoid detection: (i) pause, update and resume ZDA according
to the knowledge of switching topologies; (ii) cooperate with a
concurrent stealthy topology attack that alters network topology
at switching times, such that the original ZDA is feasible under
the corrupted topology. We first systematically study the proposed
ZDA variations, and then develop defense strategies against
them under the realistic assumption that the defender has no
knowledge of attack starting, pausing, and resuming times and
the number of misbehaving agents. Particularly, we characterize
conditions for detectability of the proposed ZDA variations, in
terms of the network topologies to be maintained, the set of
agents to be monitored, and the measurements of the monitored
agents that should be extracted, while simultaneously preserving
the privacy of the states of the non-monitored agents. We then
propose an attack detection algorithm based on the Luenberger
observer, using the characterized detectability conditions. We
provide numerical simulation results to demonstrate our theo-
retical findings.

Index Terms—Multi-agent systems, security, privacy, zero-
dynamics attack, topology attack, attack detection.

I. INTRODUCTION

C
OORDINATION and control of networked systems is

a well-studied theoretical problem (see e.g., [2], [3])

with many practical applications including distributed opti-

mization [4], power sharing for droop-controlled inverters

in islanded microgrids [5], clock synchronization for sensor

networks [6], as well as connected vehicles [7], spacecrafts [8],

and electrical power networks [9].

Security concerns regarding the aforementioned networked

systems pose a formidable threat to their wide deployment,
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as highlighted by the recent incidents including distributed

denial-of-service (DDOS) attack on Estonian web sites [10]

and Maroochy water breach [11]. The “networked” aspect

exacerbates the difficulty of securing these systems, since

centralized measurement (sensing) and control are not feasible

for such large-scale systems [12], and hence require the

development of decentralized approaches, which are inherently

prone to attacks. Particularly, a special class of stealthy attacks,

namely the “zero-dynamics attack” (ZDA), poses a significant

security challenge [13]–[15]. The main idea behind ZDA

is to hide the attack signal in the null-space of the state-

space representation of the control system so that it cannot

be detected by applying conventional detection methods on

the observation signal. The objective of such an attack can

vary from manipulating the controller to accept false data that

would yield the system towards a desired (e.g., unstable) state

to maliciously altering system dynamics (topology attack) to

affect the system trajectory.

Recent research efforts have focused on variations of ZDA

for systems with distinct properties. For stochastic cyber-

physical systems, Park et al. [16] designed a robust ZDA,

where the attack-detection signal is guaranteed to stay below

a threshold over a finite horizon. In [17], Kim et al. proposed

a discretized ZDA for the sampled-data control systems,

where the attack-detection signal is constant zero at the

sampling times. Another interesting line of research pertains

to developing defense strategies [12], [18]–[21]. For example,

Jafarnejadsani et al. [14] proposed a multi-rate L1 adaptive

controller that can detect ZDA in sampled-data control systems

by removing certain unstable zeros of discrete-time systems.

Back et al. [22] used generalized hold strategy to mitigate the

impact of ZDA.

Most of the prior work on defense strategies for the orig-

inal ZDA in networked systems builds on rather restrictive

assumptions regarding the connectivity of network topology

and the number of the misbehaving agents (i.e., the agents

under attack) [12], [18]–[20]. Teixeira et al. [23] showed that

the strategic changes in system dynamics could be used by

defender to detect ZDA. But the defense strategy requires

the attack-starting times to be the initial time and known

to defender, and the attacker has no capability of inferring

the changed system dynamics. In other words, the defense

strategy fails to work if the stealthy attack strategy is based

on the newly inferred system dynamics. As a first step towards

a practical ZDA defense strategy, in [24], strategic topology

switching is proposed. This strategy is motivated by the

feasibility of controlling communication topology driven due

to recent developments in mobile computing, wireless com-
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munication and sensing [25], [26]. We note, in passing, that

the idea of using the changes in the state-space dynamics to

detect ZDA first appeared in [23], albeit a realistic mechanism

(e.g., switching the system topology) to achieve that objective

was only very recently studied in [24]. However, the defense

strategy in [24] still relies on a naive attacker that does not take

the topology switching strategy of the defender into account.

In this paper, we systematically address this practically

important problem: what kind of ZDA strategies can an

informed attacker design against a topology-switching system

and what are the optimal defense strategies, beyond switching

the topology, against such intelligent attacks? We note that

we study these questions under realistic assumptions on the

capabilities of the defender, i.e., we assume that the defender

does not know the start, pause and resume times of the attack

or the number of misbehaving agents. We also assume that the

attacker is aware of the strategic changes in system dynamics.

Moreover, we assume that the defender has to preserve the

privacy of the outputs of the non-monitored agents, since it

is assumed that the attacker has access to the sensor outputs.

The following example from coordination control illustrates

our motivation to impose this privacy constraint.

For the coordination control of multi-agent systems, e.g., the

connected autonomous vehicles, the data of initial positions

and velocities can be used by the adversary to estimate

target location [27], and the individual initial positions in-

clude individual home-base locations. Once the attacker has

access to the outputs of monitored agents and the system

is observable, the attacker can use current available data to

infer the global initial condition and global real-time system

state. From a perspective of stealthy topology attack design

(e.g., topology attack in smart grids [28] and software-defined

networks [29]), the attacker needs (estimated) real-time data

of some agents’ state to decide the target connection links

to attack. Unfortunately, the inferred global real-time system

state implies the largest scope of attackable connection links

is exposed to the attacker. To reduce the feasible area of target

links for ZDA in cooperation with a stealthy topology attack,

monitored outputs have to be constrained to be unobservable

to preserve the privacy of non-monitored agents’ real-time

states, consequently, the global system state and global initial

condition.

Throughout this paper, we focus on the following policies

which can be used by the attacker to evade detection:

1) intermittently pause attack if the incoming topology is

unknown, and update (if necessary) and resume attack

after the newly activated topology is inferred (intermit-

tent ZDA).

2) cooperatively work with a stealthy topology attack, such

that the original ZDA policy continues to be feasible

under the corrupted topology (cooperative ZDA).

In this paper, we develop integrated defense strategies for

both intermittent and cooperative ZDAs, in the presence of

privacy considerations. More specifically, we develop defense

strategies to address the following questions: what network

topology should be maintained, which agents should be mon-

itored and what measurements the monitored agents should

output, such that the intermittent and cooperative ZDA variants

are detectable, and at the same time, the privacy of non-

monitored agents’ real-time states are preserved? Based on the

answers of the questions above, we next propose a strategic

topology-switching algorithm to detect the ZDA.

The contributions are summarized as follows.

• To evade conventional detection methods that rely on

naive attacker, we propose two ZDA variations: intermit-

tent and cooperative ZDAs, where the attacker is aware

of the defense strategy and has practical capability of

inferring switching topologies.

• We systematically study the policies of ZDA variations

that the attacker follows to devise stealthy attacks that lay

the foundation for the novel defense strategies.

• We characterize conditions for detectability of the pro-

posed ZDA variations, in terms of the network topologies

to be maintained, the set of agents to be monitored, and

the measurements of the monitored agents that should be

extracted.

• Under the privacy-preserving constraint of non-monitored

agents’ states, we propose a strategic topology-switching

algorithm for attack detection that is based on the de-

tectability of ZDA variations using the Luenberger ob-

server. The advantages of this approach include:

– in achieving consensus and tracking real systems in

the absence of attacks, it has no constraint on the

magnitudes of coupling weights and observer gains;

– in detecting ZDA variations, it allows the defender to

be unaware of attack starting, pausing, and resuming

times and the number of misbehaving agents;

– in detecting ZDA variations, only one monitored

agent is sufficient for intermittent ZDA and only two

monitored agents are sufficient for cooperative ZDA.

This paper is organized as follows. We present the prelim-

inaries and the problem formulation in Sections II and III,

respectively. In Section IV, we analyze the proposed ZDA

variations. In Section V, we characterize the conditions for

detectability of these ZDA variations. Based on this charac-

terization, we develop an attack detection algorithm in Section

VI. Numerical simulation results are provided in Section VII,

and the concluding remarks and the future research directions

are discussed in Section VIII.

II. PRELIMINARIES

A. Notation

We let R
n and R

m×n denote the set of n-dimensional

real vectors and the set of m × n-dimensional real matrices,

respectively. Let C denote the set of complex numbers. N

represents the set of the natural numbers and N0 = N ∪
{0}. Let 1n×n and 0n×n be the n × n-dimensional iden-

tity matrix and zero matrix, respectively. 1n ∈ R
n and

0n ∈ R
n denote the vector with all ones and the vector

with all zeros, respectively. The superscript ‘⊤’ stands for

matrix transpose. µP (A) denotes the induced P -norm matrix

measure of A ∈ R
n×n, with P > 0, i.e., µP (A) =

1
2 max
i=1,...,n

{
λi

(
P 1/2AP−1/2 + P−1/2A⊤P 1/2

)}
. ker (Q) ,

{y : Qy = 0n, Q ∈ R
n×n}, A−1

F , {y : Ay ∈ F}. Also, |·|
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denotes the cardinality of a set, or the modulus of a number.

V\K describes the complement set of K with respect to V.

λi (M) is ith eigenvalue of matrix M . x(b)(t) stands for the

bth-order time derivative of x(t). For a matrix W ∈ R
n×n,

W k, [W ]i,j , [W ]i,:, and [W ]a:b,c:d denote the kth power of

W , the element in row i and column j, the bth row, and the

sub-matrix formed by the entries in the ath through bth row

and the cth through dth column of W , respectively.

The interaction among n agents is modeled by an undirected

graph G , (V,E), where V , {1, 2, . . . , n} is the set of

vertices that represents n agents and E ⊆ V× V is the set of

edges of the graph G. The weighted adjacency matrix A =
[aij ] ∈ R

n×n of the graph G is defined as aij = aji > 0 if

(i, j) ∈ E, and aij = aji = 0 otherwise. Assume that there

are no self-loops, i.e., for any i ∈ V, aii = 0. The Laplacian

matrix of graph G is defined as L , [lij ] ∈ R
n×n, where

lii ,
n∑

j=1

aij , and lij , −aij for i ̸= j. The diameter m of

a graph is the longest shortest unweighted path between any

two vertices in the graph.

B. Definitions

A second-order system consists of a population of n agents

whose dynamics are governed by the following equations:

ẋi (t) = vi (t) , (1a)

v̇i (t) = ui(t), i = 1, . . . , n (1b)

where xi(t) ∈ R is the position, vi(t) ∈ R is the velocity, and

ui(t) ∈ R is the local control input. The broad applications of

its coordination control is the main motivation of this paper

considering the model (1), see e.g., [30]–[33]. For coordination

control, we consider the more representative average consen-

sus.

We recall the definitions of consensus and ZDA to review

the control objective and the attack policy.

Definition 1: [34] The agents in the system (1) are said

to achieve the asymptotic consensus with final zero common

velocity if for any initial condition:

lim
t→∞

|xi (t)−xj (t)|=0 and lim
t→∞

|vi (t)|=0, ∀i, j ∈ V. (2)

Definition 2: [12], [35] Consider the system (with proper

dimension) in the presence of attack signal ğ(t):

˙̆z (t) = Az̆ (t) +Bğ(t), (3a)

y̆ (t) = Cz̆ (t) +Dğ(t). (3b)

The attack signal ğ(t) = geηt is a zero-dynamics attack if

there exist a scalar η ∈ C, and nonzero vectors z0 and g, that

satisfy
[

z0
−g

]
∈ ker

([
η1n×n −A B
−C D

])
. (4)

Moreover, the states and observed outputs of system (7) satisfy

y̆ (t) = y (t) , t ≥ 0 (5)

z̆ (t) = z (t) + z0e
ηt, (6)

where y (t) and z (t) are the output and state of the system

(3) in the absence of attacks, i.e., the dynamics:

ż (t) = Az (t) , (7a)

y (t) = Cz (t) . (7b)

C. Control Protocol

We borrow a control protocol that involves topology switch-

ing from [34], [36] to achieve the consensus (2) for the agents

in system (1):

ui(t) = −vi(t) +
∑

j∈V

a
σ(t)
ij (xj (t)− xi (t)), i ∈ V (8)

where σ(t) : [t0,∞)→ S , {1, . . . , s}, is the switching signal

of the interaction topology of the communication network;

a
σ(t)
ij is the entry of the weighted adjacency matrix that

describes the activated topology of communication graph.

III. PROBLEM FORMULATION

We let K ⊆ V denote the set of misbehaving agents, i.e.,

the agents whose local control inputs are under attack. For

simplicity, we let the increasingly ordered set M , {1, 2, . . .}
⊆ V denote the set of monitored agents for attack detection.

We make the following assumptions on the attacker and

defender throughout this paper.

Assumption 1: The attacker

1) is aware that the changes in system dynamics are used

by the defender (system operator);

2) knows the initial topology, output matrix and switching

times;

3) needs a non-negligible time to exactly infer the newly

activated topology, compute and update attack strategy;

4) records the newly inferred topology into memory;

5) knows the outputs of monitored agents in M.

Assumption 2: The defender

1) designs the switching times and switching topologies;

2) chooses candidate agents to monitor, i.e., the monitored

agent set M, for attack detection;

3) has no knowledge of the attack starting, pausing and

resuming times, and the misbehaving agents.

Remark 1: In Assumption 1, the assumed attacker’s ca-

pability 2) is motivated by recent incidents, see e.g., the

revenge sewage attack (cyber attack) that led to the Maroochy

water breach, where the attacker had previously installed

the industrial control systems for the water service network

(consequently, he knew the control protocol and the locations

of sensors) [37].

Remark 2: Strategically changing the system dynamics

has been demonstrated to be an effective approach to detect

system-based stealthy attacks, see e.g., ZDA [23], [24] and

Ck/C stealthy attacks [38]. The core idea behind this defense

strategy is the intentional generation of mismatch between

the models of the attacker and the defender. Specifically, the

attacker uses the original system dynamics to make the stealthy

attack decision (i.e., the computation (4)) before the system

starts to operate, while the defender strategically changes the

system dynamics at some operating point in time. However,
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from the attacker’s perspective, it is practical to become aware

of this defense strategy, and hence try to infer the changed

system dynamics to update the stealthy attack strategy and

evade detection. This motivates the awareness capability 1) in

Assumption 1.

Remark 3: Although the switching topologies are kept

confidential from attackers, the developed topology inference

algorithms [39], [40] enable the attacker to exactly infer the

switching topologies from observation signals. Even with the

global ability of observing all agents’ states, the inference

algorithms need to collect the state data over a time interval to

obtain an exact topology solution, which explains the imposed

non-negligible time in capability 3) in Assumption 1.

Remark 4: Since the sensor devices are embedded within

an environment, they are frequently vulnerable to local eaves-

dropping, which is the motivation of capability 5) in As-

sumption 1. The ZDA policy (4) shows that the attacker does

not need the capability 5) to obtain a feasible attack strategy

consisting of the false data z0, and the parameters g and η of

attack signal ğ(t). However, when ZDA seeks cooperation with

a stealthy topology attack in response to strategic topology

switching defense, then the attacker needs the real-time outputs

indicated by the capability to identify the target links to attack.

Remark 5: As analyzed in [1], the defense strategy of strate-

gically changing system dynamics [23] implicitly assumes that

the attack-starting time must be the initial time and known to

the defender. The capability 3) of defender in Assumption 2

removes this unrealistic assumption.

A. Topology Switching Strategy

The building block of our defense strategy is periodic

topology switching, i.e., there exists a period τ such that

σ (t) = σ (t+ τ) ∈ S. (9)

• We note that (9) implies the building block belongs to the

time-dependent topology switching. The critical reason

that we do not consider state-dependent switching is the

attack signals injected into control input may generate a

Zeno behavior [41] that renders the control protocol (8)

infeasible.

• If the topology switching is random, the defender needs

to often send the generated “random” information of

network topology to the detector/estimator/observer in

the cyber layer as well, which will be subject to a

cyber topology attack (incorrect information of network

topology is transmitted) [28], [29], [42]. To avoid this

type of cyber attack, the defender chooses here periodic

topology switching, and preprogram the (repeated) peri-

odic switching sequence into the controlled links, and

hence avoids sending the topology information to the

cyber layer during the system operation.

For our defense strategy based on the periodic topology

switching (9), we define the following periodic sequence with

length of l:

L ,




σ(t0)︸ ︷︷ ︸

τ0

, σ(t1)︸ ︷︷ ︸
τ1

, . . . , σ(tl−2)︸ ︷︷ ︸
τl−2

, σ(tl−1)︸ ︷︷ ︸
τl−1




, (10)

where τk denotes the dwell time of the activated topology
indexed by σ(tk), i.e., τk = tk+1 − tk.

Next, we study whether the agents in the system (1) using

control input (8) can reach consensus under periodic topology

switching. We first recall the well-known property of Lapla-

cian matrix Lr of a connected undirected graph from [43]:

Q⊤
r = Q−1

r , (11a)

[Qr]1,1 = [Qr]2,1 = . . . = [Qr]|V|,1, (11b)

Q⊤
r LrQr = diag {0, λ2(Lr), . . . , λn(Lr)} , Λr, (11c)

based on which, we define:

Υrs , Q⊤
r LsQr, (12a)

As ,

[
0(|V|−1)×(|V|−1) 1(|V|−1)×(|V|−1)

−[Υrs]2:|V|,2:|V| −1(|V|−1)×(|V|−1)

]
. (12b)

Proposition 1: Consider the second-order multi-agent sys-

tem (1) with control input (8). If the sequence L in (10) in-

cludes one connected topology, there exists a periodic topology

sequence that satisfies

l−1∑

s=0

νsµP (As) < 0, (13)

where νs =
τs
τ with τ =

l−1∑
i=0

τi. Moreover, under that periodic

topology switching, the consensus (2) can be achieved.

Proof: See Appendix B.

Remark 6: Proposition 1 implies that periodic topology

switching has no constraint on the magnitudes of coupling

weights in achieving consensus, i.e., for any coupling weights

there exists a feasible periodic topology switching sequence

for consensus. This is in sharp contrast with the arbitrary

topology switching that imposes a strict condition on the

magnitudes of coupling weights in achieving consensus [36].

B. System Description

Under periodic topology switching, the multi-agent system

in (1), with the control input given by (8) and the outputs of

monitored agents in M subject to the attack signal gi(t), can

be written as

˙̆xi(t)= v̆i(t) (14a)

˙̆vi(t)=−v̆i(t) +
∑

j∈V

a
σ(t)
ij (x̆j(t)−x̆i(t))+

{
gi(t), i∈K
0, i∈V\K

(14b)

y̆i(t)=ci1x̆i(t) + ci2v̆i(t) + digi(t), i∈M (14c)

where ci1 and ci2 are constant coefficients designed by the

defender (system operator), while constant coefficient di is

designed by the attacker.

Remark 7: The model in (14b) with (1b) implies that

there are two practical approaches to attack the local control

inputs: (i) the attacker directly injects the attack signal to the

control architectures of misbehaving agents (target agents) in

K; (ii) possibly through breaking the encryption algorithm that

protects the communication channels with misbehaving agents,

the attacker injects attack signals to the data sent to controller.
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The system in (14) can be equivalently expressed as a

switched system under attack:

˙̆z (t) = Aσ(t)z̆ (t) + ğ (t) (15a)

y̆ (t) = Cz̆(t) +Dğ (t) , (15b)

where we define:

z̆ (t),
[
x̆1 (t) . . . x̆|V| (t) v̆1 (t) . . . v̆|V| (t)

]⊤
, (16a)

Aσ(t),

[
0|V|×|V| 1|V|×|V|

−Lσ(t) −1|V|×|V|

]
, (16b)

C,
[
C1 C2

]
, (16c)

Cj,
[
diag

{
c1j , . . . , c|M|j

}
0|M|×(|V|−|M|)

]
, j=1, 2 (16d)

D,
[
0|M|×|V| diag

{
d1, . . . , d|M|

}
0|M|×(|V|−|M|)

]
, (16e)

ğ(t),
[
0⊤
|V| ḡ⊤(t)

]⊤
, (16f)

ḡi(t),

{
gi(t), i ∈ K

0, i ∈ V\K.
(16g)

In addition, we consider the system (15) in the absence of

attacks, which is given by

ż (t) = Aσ(t)z (t) , (17a)

y (t) = Cz(t). (17b)

C. Privacy of Initial Condition and Global System State

To fully secure multi-agent systems, e.g., connected au-

tonomous vehicles, the initial conditions should be kept

confidential from an adversary since the initial data could

be utilized to estimate the target locations [27]. Moreover,

individual initial positions contain the information of home-

base locations. The following two examples illustrate that the

global initial condition as well as the global system state play

an important role in stealthy attacks.

Example 1 (Attack Objective): The state solution under

attack (6) implies that if η = 0, attacker’s objective is to

modify the steady-state value. If the attack objective is to

modify the target location to a new location that the attacker

desires, the attacker must know the original target location

in the absence of attacks. Under undirected communication,

it is straightforward to verify from the system (1) with its

control input (8) that the average position x̄(t)
∆
= 1

|V|

∑
i∈V

xi (t)

proceeds with the average velocity v̄(t)
∆
= 1

|V|

∑
i∈V

vi(t) =

e−tv̄(t0), which indicates that when the consensus is achieved,

all of the individual agents synchronize to the target location:

x∗ = lim
t→∞

(
x̄(t0) +

(
1−e−t

)
v̄(t0)

)
= x̄(t0) + v̄(t0). (18)

Unfortunately, (18) shows that once the global initial condition

is known (i.e., initial positions and velocities of all agents),

the original target location can simply be computed through a

simple mean computation.

Example 2 (Stealthy Topology Attack Design): Stealthy

topology attack design, as in smart grids [28] and power

networks [42], requires (estimated) real-time data of system

states to choose the target connection links to maliciously alter.

Since attacker can record the newly obtained knowledge of

the network topology, the attacker has the memory of the past

topology sequence. Whenever the data on the global initial

condition z (t0) (or real-time global state z(t)) is available,

the attacker can infer the exact real-time global state z(t) (or

global initial condition z(t0)) through

z(t) = e
A

σ(tk)
(t−tk)

k−1∏

l=0

e
A

σ(tl)
(tl+1−tl)z (t0) , t ∈ [tk, tk+1)

which indicates whenever ZDA seeks a cooperation with

stealthy topology attack to evade detection, the attacker would

have the largest scope of attackable links since the attacker

knows all of agents’ real-time state data. Therefore, the private

global initial condition or system state can reduce the scope

of target links for stealthy topology attack.

We next impose the following unobservability condition

on the monitored outputs to preserve the privacy of non-

monitored agents, such that the attacker cannot use the avail-

able (monitored) outputs to infer any non-monitored agent’s

full state (and consequently, the global system state and initial

condition).

Lemma 1: For the system (17), xi(t) and vi(t), ∀i ∈ V\M,

are not simultaneously observable for any t ∈ [t0, t
+
m), if and

only if

∃p ∈ Nm
0 : |pi|+

∣∣pi+|V|

∣∣ ̸= 0, ∀i ∈ V\M (19)

where

Nm
m = ker (Om) , (20)

Nm
q = ker(Oq)

∩
e−Aσ(tq)τqNm

q+1, 0 ≤ q ≤ m− 1 (21)

Oq =
[
C⊤ (CAσ(tq))

⊤ . . . (CA
2|V|−1
σ(tq)

)⊤
]⊤

. (22)

Proof: The condition in (19) implies that Nm
0 ̸=

{
02|V|

}
.

Using Theorem 1 in [44], it follows that the system in (17)

is unobservable for any t ∈ [t0, t
+
m). Also, (19) implies that

pi ̸= 0, and (or) pi+|V| ̸= 0, and therefore the agent i’s position

and (or) velocity are (is) not partially observable.

Remark 8: Although the selection of the monitored output

coefficients in (14c) subject to (19) renders the system (17)

unobservable to preserve privacy, we will show that the

proposed ZDA variations become detectable using the outputs

yi(t)’s by careful selection of switching topologies and the set

of monitored agents.

IV. STEALTHY ATTACK MODEL

In the scenario where the attacker is aware of the detection

purpose of strategic changes in system dynamics induced by

topology switching [24], the attacker can evolve the attack

policies in response to the strategic changes at switching times

to stay stealthy:

• “pause attack” before topology switching when the in-

coming topology is unknown or the attack policy (4)

is infeasible under the known incoming topology, and

“resume attack” after the feasibility of (updated if needed)

attack policy under the inferred activated topology is

verified;

• cooperate with a topology attack that maliciously alters

network topology at switching times, such that the orig-

inal attack policy (4) continues to be feasible under the

corrupted topology.

Authorized licensed use limited to: University of Illinois. Downloaded on July 01,2020 at 17:35:59 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2997363, IEEE

Transactions on Automatic Control

6

In the following subsections, we present a systematic study on

these ZDA variations.

A. Intermittent Zero-Dynamics Attack

For convenience, we refer to T as the set of topologies under

which the attacker injects attack signals to control inputs, and

we refer to ξk and ζk as the attack-resuming and attack-

pausing times over the active topology intervals [tk, tk+1),
k ∈ N0, respectively.

The ZDA signals injected into the control input and mon-

itored output of system (14) with intermittent pausing and

resuming behaviors are described as

gi(t) =

{
g
σ(tk)
i eησ(tk)(t−ξk), t∈ [ξk, ζk)⊆ [tk, tk+1)
0, otherwise.

(23)

To analyze this ZDA, we review the monitored output (14c)

at the first “pausing” time ζ0:

y̆i
(
ζ−0

)
= ci1x̆i(ζ

−
0 ) + ci2v̆i(ζ

−
0 ) + digi

(
ζ−0

)
, ∀i∈M

which implies that y̆i
(
ζ−0

)
= y̆i (ζ0) if and only if gi

(
ζ−0

)
=

gi (ζ0), since v̆i
(
ζ−0

)
= v̆i (ζ0) and x̆i

(
ζ−0

)
= x̆i (ζ0). Mean-

while, the velocity and position states are always continuous

with respect to time, and hence the monitored outputs must

be continuous as well. Therefore, to avoid the “jump” on

monitored outputs to maintain the stealthy property (5), the

attacker cannot completely pause the attack, i.e., whenever

the attacker pauses injecting ZDA signals to control inputs at

pausing time ζk, simultaneously continues to inject the same

attack signals to monitored outputs (14c):

y̆i (t)=ci1x̆i(t)+ci2v̆i(t)+di

k∑

m=0

gi
(
ζ−m

)
, t∈ [ζk, ξk+1) (24)

or equivalently,

y̆ (t) = Cz̆ (t) +D

k∑

m=0

ğ
(
ζ−m

)
, t ∈ [ζk, ξk+1) . (25)

Based on the above analysis, for ZDA policy consisting
of “pause attack” and “resume attack” behaviors to remain

stealthy, it should satisfy (25) and

z (t0) ∈ N̂k
0

∩
Ñk

0 , (26a)
[

z (ξk)
−ğ (ξk)

]
∈ ker (Pr) , ∀σ(ξk)∈T (26b)

where

N̂k
k = ker(Ok), (27)

N̂k
q = ker(Oq)

∩
e−Aσ(tq)(τq−(ζq−ξq))Nk

q+1, 0 ≤ q ≤ k−1

(28)

Ñk
k = ker(Õk), (29)

Ñk
q = ker(Õq)

∩
e−Aσ(tq)(τq−(ζq−ξq))Nk

q+1, 0 ≤ q ≤ k−1

(30)

Õr ,

[
(CAr)

⊤ (CA2
r)

⊤ . . . (CA
2|V|
r )⊤

]⊤
, (31)

Pr ,

[
ηr12|V|×2|V| −Ar 12|V|×2|V|

−C D

]
, (32)

z =
[
x⊤ v⊤

]⊤
, z̆ − z =

[
x̆⊤ − x⊤ v̆⊤ − v⊤

]⊤
, (33)

and Or is given by (22).

Proposition 2: Under the stealthy attack policy consisting of

(25) and (26), the states and monitored outputs of the systems

(17) and (15) in the presence of attack signal (23) satisfy

y̆ (t) = y (t) , t ∈ [t0, tk+1) , (34)

z̆ (t) = z (t) + e
ησ(tk)

(t−ξk)
z (ξk), t ∈ [ξk, ζk) . (35)

Proof: See Appendix C.

Remark 9: At first glance, it might seem that the intermittent

ZDA is an asynchronous attack response to the strategic topol-

ogy switching, which is due to the imposed non-negligible

time on capability 3) in Assumption 1. We note however

that the attacker can record the newly obtained topology

knowledge into the memory. Since the defender switches

topologies periodically, if the recorded length of topology

sequence is sufficiently long, the attacker can learn from

the recorded memory the (recurring) periodic sequence, i.e.,

the attacker knows all future switching topologies and times.

The corresponding future synchronous attack policies can be

obtained off-line. Therefore, a synchronous attack response is

possible only after the attacker obtains the (recurring) periodic

topology sequence from memory.

B. Cooperative Zero-Dynamics Attack

The objective of cooperation with stealthy topology attack

is to make the ZDA policy (4) continue to hold under the

corrupted topology. Stealthy topology attack can be of two

types:

• Physical Topology Attack: the attacker maliciously alters

the status of target connection links of physical systems,

e.g., the bus interaction breaks in power networks [42]

and link fabrication in software-defined networks [29].

• Cyber Topology Attack: the attacker maliciously alters

the information of network topology sent to the estima-

tor/observer/detector in cyber layer [28], [45].

As stated in Subsection III-A, the basis of our defense

strategy is the periodic topology switching, and the defender

(system operator) would preprogram the repeated switching

times and topologies into the controlled links of the real system

and observer/detector. In this case, the operator of the real

system does not need to send the topology information to the

observer/detector when the system operates. Therefore, the

system under our defense strategy is not subject to a cyber

topology attack, albeit it is subject to a physical topology

attack.

We let tk+1 denote the switching time when ZDA cooper-

ates with topology attack. The multi-agent system (15) in the

presence of such cooperative attacks is described by

˙̆z (t) = Âσ(t)z̆ (t) + ğ (t) , t ∈ [tk+1, tk+2) (36a)

y̆ (t) = Cz̆(t) +Dğ (t) , (36b)

where Âσ(t) is defined as

Âσ(t),

[
0|V|×|V| 1|V|×|V|

−L̂σ(t) −1|V|×|V|

]
, (37)

with L̂σ(tk+1) denoting the Laplacian matrix of the corrupted

topology. We describe its corresponding system in the absence
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of ZDA, i.e., in the presence of the only physical topology

attack, as

˙̂z (t) = Âσ(t)ẑ (t) , t ∈ [tk+1, tk+2) (38a)

ŷ (t) = Cẑ (t) . (38b)

If ğ (t) is a ZDA signal in systems (15) and (36) at times

t−k+1 and tk+1, by (6) we have z̆ (tk+1) = z̆
(
t−k+1

)
=

z
(
t−k+1

)
+ z0e

ηtk+1 and z̆
(
t−k+1

)
= z̆ (tk+1) = ẑ (tk+1) +

z0e
ηtk+1 . Here, we conclude that

ẑ (tk+1) = z
(
t−k+1

)
= z (tk+1) , (39)

otherwise, the system state z̆ (tk+1) has “jump” behavior,

which contradicts with the fact that z̆(·) is continuous.

The equation (39) and the stealthy property (5) imply that

Cz̆ (tk+1) = Cz (tk+1) = Cẑ (tk+1), based on which, a

necessary condition for the existence of ZDA under corrupted

topology is stated formally in the following proposition.

Proposition 3: Consider the systems in (38) and (17). We

have y (t) = ŷ (t) for any t ∈ [tk+1, tk+2), if and only if

d∑

l=0

CÂl
σ(tk+1)

(Âσ(tk+1) −Aσ(tk+1))z
(d−l) (tk+1)

= 0|M|, ∀d ∈ N0. (40)

Proof: See Appendix D.

We set d = 0, 1 and expand (40) out to obtain:

C2(L̂σ(tk+1) − Lσ(tk+1))x(tk+1) = 0|M|, (41a)

C2(L̂σ(tk+1) − Lσ(tk+1))v(tk+1) = 0|M|. (41b)

The result (41) shows that like the stealthy topology attacks

in smart grids [28], [45] and software-defined networks [29],

the attacker needs some agents’ real-time state data to decide

the target links to attack, while according to Lemma 1, the

attacker cannot simultaneously infer xi (tk+1) and vi (tk+1),
∀i ∈ V\M. Therefore, there should be a scope of attackable

connection links under the strategy (19).

Without loss of generality, we express the difference of

Laplacian matrices in the form:

L̂σ(tk+1)−Lσ(tk+1)=

[
Lσ(tk+1) 0|D|×(|V|−|D|)

0(|V|−|D|)×|D| 0(|V|−|D|)×(|V|−|D|)

]
, (42)

where D denotes the set of agents in the sub-graph formed by

the target links to be possibly attacked, Lσ(tk+1) ∈ R
|D|×|D| is

the elementary row transformation of the Laplacian matrix of a

subgraph G in the difference graph, which is generated by the

corrupted graph Ĝtk+1
of the topology attacker and candidate

graph Gtk+1
of the defender at time tk+1.

Since C2 ∈ R
|M|×|V| and Lσ(tk+1) ∈ R

|D|×|D|, the relations

in (19), (41), and (42) imply that the attacker can devise a

stealthy topology attack (without knowing the measurements

of the agents in V\M which are unavailable) only when the

scope of target links satisfies:

D ⊆M. (43)

V. DETECTABILITY OF STEALTHY ATTACKS

Based on the systematic study of the attack behaviors and

policies in Section IV, in this section, we investigate the

detectability of the proposed ZDA variations.

A. Detectability of Intermittent Zero-Dynamics Attack

We first define

Uri , diag
{
[Qr]i,1, . . . , [Qr]i,|V|

}
Q⊤

r , (44)

F ,

{
i| [Qr]i,j ̸= 0, i ∈M, ∀j ∈ V, ∀r ∈ L

}
, (45)

where Qr satisfies (11).

Strategy on switching topologies: Lr has distinct

eigenvalues for ∀r ∈ L.

Strategy on monitored-agent locations: F ̸= ∅.

Defense Strategy Against Intermittent ZDA

(46)

(47)

Theorem 1: Consider the system (14) in the presence of

attack signals (23). Under the defense strategy against inter-

mittent ZDA,

• if the monitored agents output the full observations of

their velocities (i.e., ci1 = 0 and ci2 ̸= 0 for ∀i ∈ M),

the intermittent ZDA is detectable and

N∞
0 =

{
02|V|,

[
1⊤
|V| 0

⊤
|V|

]⊤}
; (48)

• if the monitored agents output the full observations of

their positions (i.e., ci1 ̸= 0 and ci2 = 0 for ∀i ∈M), the

intermittent ZDA is detectable but
N∞

0 =
{
02|V|

}
; (49)

• if the monitored agents output the partial observations

(i.e., ci1 ̸= 0 and ci2 ̸= 0 for ∀i ∈M), and ci1 = ci2, ∀i ∈
M, the kernel of the observability matrix satisfies

N∞
0 =

{
02|V|,

[
1⊤
|V| −1

⊤
|V|

]⊤}
; (50)

and the intermittent ZDA is detectable if

ξ0 > t0, or D = 0|M|×2|V|, (51)

where N∞
0 is computed recursively by (20) and (21).

Proof: See Appendix E.

Under the defense strategy consisting of (46) and (47), the

result (49) implies that if the monitored agents output full ob-

servations of position, the condition (19) is not satisfied. While

the results (48) and (50) show that if the monitored agents

output full observations of velocity or partial observations,

the condition (19) is satisfied, and according to Lemma 1,

the privacy of all states of non-monitored agents is preserved,

which further implies that using the available data (5), the

attacker cannot infer the global system state and the global

initial condition. Therefore, for the purpose of privacy preserv-

ing of non-monitored agents’ states, consequently, restricting

the scope of attackable links to derive the defense strategies

against the cooperative ZDA, we abandon full observation of

position.

B. Detectability of Cooperative Zero-Dynamics Attack

Considering the matrix Qr satisfying (11), we describe the

defense strategy as follows:

Strategy on switching topologies: (46).

Strategy on monitored-agent outputs: ci2>0, ∀i∈M.

Strategy on monitored-agent locations:

[Qr]i,m−[Qr]j,m̸=0, ∀m∈V\{1}, ∀r∈L, ∀i ̸=j∈M.

Defense Strategy Against Cooperative ZDA

(52)

(53)
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Theorem 2: Consider the system (36) in the presence of

zero-dynamics attack in cooperation with topology attack

under (43). Under the defense strategy against cooperative

ZDA, the attack is detectable.

Proof: See Appendix F.

Remark 10: The common critical requirement of our defense

strategies is that the communication network has distinct

Laplacian eigenvalues. There indeed exist many topologies

whose associated Laplacian matrices have distinct eigenval-

ues. The following lemma provides a guide to design such

topologies:

Lemma 2 (Proposition 1.3.3 in [43]): Let G be a connected

graph with diameter m. Then, G has at least m + 1 distinct

Laplace eigenvalues.

VI. ATTACK DETECTION ALGORITHM

Using the proposed defense strategies and the detectability

conditions in Section V, this section focuses on the attack

detection algorithm that is based on a Luenberger observer.

A. Luenberger Observer under Switching Topology

We now present a Luenberger observer [46]:

qi (t) = wi (t) (54a)

ẇi(t) = −wi (t) +
∑

i∈V

a
σ(t)
ij (qj(t)− qi(t))

−





ri(t), ci1 ̸= 0, i∈M∫ t

t0
ri(b)db, ci1 = 0, i∈M

0, i∈V\M

(54b)

ri(t) = ci1qi(t) + ci2wi(t)−y̆i(t), i∈M (54c)

where y̆i(t) is the monitored output of agent i in system (14),

ri (t) is the attack-detection signal.

We next consider a system matrix related to the system (54)

in the absence of attacks:

Âr ,

[
0|V|×|V| 1|V|×|V|

−Lr − Ĉ −1|V|×|V|

]
, (55)

where

Ĉ ,

[
C1

0(|V|−|M|)×|V|

]
or

[
C2

0(|V|−|M|)×|V|

]
(56)

with C1 and C2 given by (16d). It is straightforward to obtain

the following result regarding the matrix stability.

Lemma 3: The matrix Âr defined by (55) is Hurwitz, if Lr

is the Laplacian matrix of a connected graph and

0|V|×|V| ̸= Ĉ ≥ 0. (57)

If the sequence (10) has one connected graph and gain ma-

trix Ĉ (56) satisfies (57), it follows from Lemma 3 that there

exists a P > 0, such that under convex linear combination,

the matrix measure satisfies

l−1∑

s=0

νsµP

(
Âs

)
< 0. (58)

Algorithm 1: Strategic Topology Switching

Input: Initial index k = 0, initial time tk = 0, observer

gains satisfying (57), periodic sequence L (10)

with length of l satisfying (13) and (58).

1 Run the system (14) and the observer (54);

2 Update dwell time: τσ(tk) ← τσ(t mod (k,L+1));

3 Switch topology of system (14) and observer (54) at time

tk + τσ(tk): σ(tk + τσ(tk))← L(mod(k + 1, L));
4 Update switching time: tk ← tk + τσ(tk);
5 Update index: k ← k + 1;

6 Go to Step 2.

B. Strategic Topology-Switching Algorithm

We next propose Algorithm 1 that describes when and which

topology to switch to detect the ZDA variations.

Theorem 3: If the monitored agents satisfy (47), (52) and

(53), and the switching topologies in L satisfy (46),

• without requiring the knowledge of the misbehaving

agents and the start, pause, and resume times of the

attack,

1) with ci1 = 0, ∀i ∈ M, the observer (54) is able to

detect the intermittent and cooperative ZDAs;

2) with ci1 = ci2, ∀i ∈M, the observer (54) is able to

detect the cooperative ZDA and intermittent ZDA

under (51);

• in the absence of attacks, the agents in system (14)

achieve the asymptotic consensus, and the observer (54)

asymptotically tracks the real system (15) if ci1 = ci2,

∀i ∈M, or ci1 = 0, ∀i ∈M.

Proof: See Appendix G.

Remark 11: The modulo operations in steps 2 and 3

of Algorithm 1 describe the building block of our defense

strategy, that is periodic topology switching. Given the length

of topology switching sequence, i.e., l, and the length of the

running time of the system (14) and the observer (54), denoted

by tf−t0, the total number of topology switchings can roughly

be computed as
tf−t0

τ l.

VII. SIMULATIONS

We consider a system with n = 16 agents. The initial

position and velocity conditions are chosen as x(t0) =[
2× 1⊤

8 , 4× 1⊤
8

]⊤
and v(t0) =

[
6× 1⊤

8 , 8× 1⊤
8

]⊤
. The

coupling weights and observer gains are uniformly set to one.

The considered network topologies are given in the following

Figures 1 and 4 where the yellow nodes denote the monitored

agents that output full observations of individual velocities.

A. Detection of Intermittent ZDA

We first consider the periodic topology switching scheme

in Figure 1 (a). We denote the topologies with the controlled

links a
σ(t)
17 in “On” and “Off” by 1 and 2, respectively.

The considered corresponding periodic switching sequence is

L =



σ(t0) = 1︸ ︷︷ ︸

τ0=3

, σ(t1) = 2︸ ︷︷ ︸
τ1=6



 . It can be verified that with
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Figure 1. Two periodic topology switching schemes for intermittent ZDA.

y1(t) = v1(t), neither of the switching topologies in Figure 1

(a) has distinct eigenvalues and F = ∅, such that the defense

strategy consisting of (46) and (47) does not hold. Therefore,

the attacker can design an undetectable intermittent ZDA as

follows:

• inject false data z(t0) =
[
0⊤
3 ,−1, 1,0

⊤
14,−0.08− 2i,

0.08 + 2i,0⊤
11

]⊤
to the data of initial condition sent to

the observer (54);

• inject ZDA signals ğ4(t) = (2.9136 +
2.32i)e(0.08−2i)(t−0.2) and ğ5(t) = (−2.9136 −
2.32i)e(0.08−2i)(t−0.2) to the local control inputs of

agents 4 and 5 for the initial Topology 1 at ξ0 = 0.2;

• pause the ZDA if the incoming topology is unknown;

• update the attack strategy if necessary, and resume the

feasible attack after newly switched topology is inferred;

• iterate the last two steps.

Some agents’ velocities and the attack-detection signals in

Figure 2 show that with y1(t) = v1(t), when the defense

strategy consisting of (46) and (47) does not hold, the attacker

can design an intermittent ZDA that cannot be detected by

the observer (54) under Algorithm 1 (constant zero detection

signal), and the stealthy attack renders the system unstable (in

the absence of attacks, lim
t→∞

|vi(t)| = 0, ∀i ∈ V).

-5 0 5

Imag( ) 10
38

-3

-2

-1

0

1

2

3

R
ea

l(
)

10
39 (a) 

0 50 80

Time

-1

-0.5

0

0.5

1

D
et

ec
tio

n 
S

ig
na

l r
1(t)

(b)

Imag(r
1
(t))

Real(r
1
(t))

Figure 2. Individual velocities (a) and attack-detection signal (b).

The switching topologies in Figure 1 (b) satisfy the defense

strategy consisting of (46) and (47). Hence, according to the

first statement in Theorem 1, with y1(t) = v1(t), i.e., c11 = 0,

we can turn to the switching scheme at some time to detect

the stealthy attack. Under the topology switching scheme

in Figure 1 (b), the trajectory of attack-detection signal in

Figure 3 (b) shows the observer (54) succeeds in detecting

the intermittent ZDA (nonzero detection signal), which also

demonstrates the first statement in Theorem 3.
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Figure 3. Trajectories of velocities (a) and attack-detection signal (b).

B. Detection of Cooperative ZDA

Figure 4. Network topologies for cooperative ZDA.

We denote the switching topologies in Figure 4 (a) by 3

and 4, in Figure 4 (b) by 5 and 6, respectively. It can be

verified that with yi(t) = vi(t), i ∈ M = {1, 2, 3}, neither

Topology 3 nor Topology 4 satisfies the defense strategy

consisting of (46), (52) and (53). Therefore, under the periodic

topology switching sequence L =



σ(t0) = 3︸ ︷︷ ︸

τ0=3

, σ(t1) = 4︸ ︷︷ ︸
τ1=1



,

it is possible to design stealthy cooperative ZDA as follows:

• inject false data z(t0) = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

⊤
to the data

of initial condition sent to observer (54);

• inject ZDA signals ğ1 (t) = ğ3 (t) = ğ7 (t) = −et,
ğ4 (t) = 5et, ğ5 (t) = 2et and ğ6 (t) = 3et to the local

control inputs of agents 1, 3, 7, 4, 5 and 6, respectively,

at initial time for Topology 3;

• inject false data −et to the monitored outputs;

• maliciously control the connection between agents 2 and

3, such that the original ZDA policy maintains its feasi-

bility under the corrupted topology at incoming switching

times.

The trajectories of velocities and attack-detection signals in

Figure 5 show that the designed attack makes system unstable

without being detected (constant zero detection signals).

The switching topologies in Figure 4 (b) satisfy the defense

strategy consisting of (46), (52) and (53). Therefore, with

yi(t) = vi(t), i.e., ci1 = 0, i ∈ M = {1, 2, 3}, according to
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Figure 5. Trajectories of velocities (a) and attack-detection signals (b).

Theorem 2, to detect the cooperative ZDA we can consider

the periodic topology switching sequence in Figure 4 (b):

L =



σ(t0) = 5︸ ︷︷ ︸

τ0=3

, σ(t1) = 6︸ ︷︷ ︸
τ1=1



 . We assume that the attacker

can modify any connection in the scope of attackable links.

The trajectories of attack-detection signals in Figure 6 demon-

strate that the observer (54) under Algorithm 1 succeeds in

detecting the cooperative ZDA (nonzero detection signals).
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Figure 6. Trajectories of velocities (a) and attack-detection signals (b).

C. Comparison with Existing Works

The existing results on the detection of ZDA are summa-

rized in Table I. Since |M| = 1 in Figure 1 and |K| = 1 for

intermittent ZDA, |M| = 3 in Figure 4 and |K| = 6 for cooper-

ative ZDA, and the connectivity of all network topologies are

the same as 1, which violate the conditions in Table I. Defense

strategies that rely on only strategically changing system

dynamics [23], [24], while are effective against conventional

ZDA and inspired us to analyze more sophisticated scenarios

in this paper, implicitly assume that the attacker has no aware-

ness of the aforementioned defense. Hence, the intermittent

ZDA (when the system is unobservable) or cooperative ZDA

(when the system is observable) cannot be detected by these

methods. We also note that none of the prior work explicitly

takes the issue of privacy/observability of initial/final states

into account as we have pursued in this work.

VIII. CONCLUSION

In this paper, we have first introduced two ZDA variations

for a scenario where the attacker is informed about the

switching strategy of the defender: intermittent ZDA where

Table I
CONDITIONS FOR DETECTION OF ZDA

Reference Conditions Dynamics

[12] size of input-output linking is smaller than |K| Continuous Time

[18] connectivity is not smaller than 2|K| + 1 Discrete Time

[19] |K| is smaller than connectivity Discrete Time

[20] the minimum vertex separator is larger than |K|+1 Discrete Time

[21] single attack, i.e., |K| = 1 Continuous Time

the attacker pauses, updates and resumes ZDA in conjunction

with the knowledge of switching topologies, and cooperative

ZDA where the attacker employs a stealthy topology attack

to render the switching topology defense ineffective. We have

then studied conditions for a defender to detect these attacks,

and subsequently based on these conditions, we have proposed

an attack detection algorithm. The proposed defense strategy

can detect both of the proposed ZDA variations, without

requiring any knowledge of the set of misbehaving agents or

the start, pause and resume times of the attack. Moreover, this

strategy achieves asymptotic consensus and tracking in the

absence of an attack without limiting the magnitudes of the

coupling weights or the number of monitored agents.

Our analysis suggests an interesting trade-off among the

switching cost, the duration of an undetected attack, the

convergence speed to consensus and tracking. Analyzing this

fundamental trade-off through the lens of game theory and

multi-objective optimization constitutes a part of our future

research.

APPENDIX A: AUXILIARY LEMMAS

In this section, we present auxiliary lemmas that are used

in the proofs of the main results of this paper.

Lemma 4: [47] Consider the switched systems:

ẋ (t) = Aσ(t)x (t)

under periodic switching, i.e., σ (t) = σ (t+ τ) ∈ S. If there

exists a convex combination of some matrix measure that

satisfies

l−1∑

m=0

νmµ (Am) < 0, (59)

where νm = τm
l−1∑
i=0

τi

; then the switched system system is

uniformly asymptotically stable for every positive τ =
l−1∑
i=0

τi.

Lemma 5: [48] Consider the Vandermonde matrix:

H ,




1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n
...

... · · ·
...

an−1
1 an−1

2 · · · an−1
n



∈ R

n×n.

Its determinant is det (H) = (−1)
n2−n

2
∏
i<j

(ai − aj).

Lemma 6: Consider the matrix Qr that satisfies (11). If

λ2(Lr) > 0, then

ker
([
Q⊤

r

]
2:|V|,:

)
=

{
1|V|,0|V|

}
. (60)
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Proof: The proof follows from a contradiction argument.

We assume that (60) does not hold, i.e., there exists a vector

ψ = [ϕ1, . . . , ϕ|V|]
⊤ such that

ψ /∈ span
{
1|V|,0|V|

}
, (61)

and
[
Q⊤

r

]
2:|V|,:

ψ = 0|V|−1. Then, it follows from (11) that

Lrψ = QrΛrQ
⊤
r ψ = Qr0|V| = 0|V|. (62)

From [43], we know that an undirected graph is connected

if and only if λ2(Lr) > 0, and further the null space of the

Laplacian matrix Lr of a connected graph is spanned by the

vector 1|V|. We obtain from (62) that ϕ1 = . . . = ϕ|V|, which

contradicts with (61). Thus, (60) holds. This concludes the

proof.

APPENDIX B: PROOF OF PROPOSITION 1

Based on average variables x̄(t)
∆
= 1

|V|

∑
i∈V

xi (t) and v̄(t)
∆
=

1
|V|

∑
i∈V

vi(t), we define the following fluctuation terms:

x̃i (t) , xi (t)− x̄(t), (63a)

ṽi (t) , vi (t)− v̄(t), (63b)

which implies that

1⊤
|V|x̃ (t) = 0, for t ≥ t0 (64a)

1⊤
|V|ṽ (t) = 0, for t ≥ t0. (64b)

Considering (1b), (8) and a
σ(t)
ij = a

σ(t)
ji , we have

˙̄v(t) =
1

|V|

∑

i∈V

v̇i(t) =
1

|V|

∑

i∈V

ui(t)

=
1

|V|

∑

i∈V

(−vi(t) +
∑

j∈V

a
σ(t)
ij (xj (t)− xi (t)))

= −
1

|V|

∑

i∈V

vi(t) = −v̄(t),

which, in conjunction with (63b), leads to

˙̃vi (t)

= v̇i (t)− ˙̄v(t) = ui (t) + v̄(t)

= −vi(t) +
∑

j∈V

a
σ(t)
ij (xj (t)− xi (t)) + v̄(t)

= −(vi(t)−v̄(t))+
∑

j∈V

a
σ(t)
ij ((xj(t)−x̄(t))−(xi(t)−x̄(t)))

= −ṽi(t) +
∑

j∈V

a
σ(t)
ij (x̃j (t)− x̃i (t)), i ∈ V. (65)

The dynamics of the second-order multi-agent system (1)

with control input (8) can now be expressed equivalently as

˙̃x (t) = ṽ (t) (66a)

˙̃v (t) = −ṽ (t)− Lσ(t)x̃ (t) , (66b)

where (66b) considers its equivalent form (65).

Let us define x̂ , Q⊤
r x̃ and v̂ , Q⊤

r ṽ. Noting (11), the

dynamics (66) can equivalently transform to

˙̂x (t) = v̂ (t) (67a)

˙̂v (t) = −v̂ (t)−Υrsx̂ (t) , r, s ∈ S (67b)

where Υrs is defined in (12a). We note that it fol-

lows from (64) and (11b) that x̂1 (t) = v̂1 (t) = 0,

[Υrs]1,: = 0⊤
|V| and [Υrs]:,1 = 0|V|. Let us define θ ,

[x̂2 . . . x̂|V| v̂2 . . . v̂|V|]
⊤. Thus, the system (67) equiv-

alently reduces to

θ̇ (t) = Asθ (t) , s ∈ S (68)

with As given in (12b). Meanwhile, it is straightforward to

verify that when r = s, As is Hurwitz. Therefore, the exists

a P > 0 such that µP (Ar) < 0. Through setting on the

dwell time of the topology indexed by r, (59) can be satisfied.

By Lemma 4, the system (68) is uniformly asymptotically

stable, i.e., for any initial condition, lim
t→∞

θ (t) = 02|V|−2,

which implies that lim
t→∞

Q⊤x̃ (t) = lim
t→∞

Q⊤ṽ (t) = 0|V|.

Since Q is full-rank, we have lim
t→∞

x̃ (t) = lim
t→∞

ṽ (t) =

0|V|. Then, (63) implies that lim
t→∞

x̃i (t) = lim
t→∞

x̃j (t) and

lim
t→∞

ṽi (t) = lim
t→∞

ṽj (t) , ∀i ̸= j ∈ V. Here, we conclude

that the second-order consensus is achieved, and we define

v∗ = lim
t→∞

ṽi (t) , ∀i ∈ V. Then, substituting the second-order

consensus into the system (1) with control input (8) yields the

dynamics v̇∗ = −v∗, which implies a common zero velocity

at steady state.

APPENDIX C: PROOF OF PROPOSITION 2

Let us first define:

y
∆
= y̆ − y. (69)

It is straightforward to obtain dynamics from (3) and (7) as

ż (t) = Aσ(t)z (t) + ğ (t) (70a)

y (t) = Cz (t) +Dğ (t) , (70b)

where z (t) is defined in (33).

1) Proof of (35): Since [ξk, ζk) ⊆ [tk, tk+1), σ(t) = r
for t ∈ [ξk, ζk). We denote Ξ (s) , L {z (t)}, where L(·)
stands for the Laplace transform operator. It follows from the

attack signal (23) that L {ğ(t)} = (e−ξks − e−ζks) ğ(ξk)s−ηr
, t ∈

[ξk, ζk). Without loss of generality, we let σ(t) = r for t ∈
[tk, tk+1). Then, the Laplace transform of the dynamics in (70)

is obtained as

(e−ξks − e−ζks)(sΞ (s)− z(ξk))

= (e−ξks − e−ζks)ArΞ (s) + (e−ξks − e−ζks)
ğ(ξk)

s− ηr
,

which is equivalent to

(e−ξks−e−ζks)Ξ(s)=
(e−ξks−e−ζks)

s12|V|×2|V|−Ar

(
z (ξk)+

ğ(ξk)

s−ηr

)
. (71)

Expanding (26b) out yields

Cz (ξk) +Dğ (ξk) = 0|M|, (72)

ηrz (ξk)−Arz (ξk) = ğ (ξk) , r ∈ T. (73)

Substituting (73) into (71) yields (e−ξks − e−ζks)Ξ (s) =
(e−ξks−e−ζks)

s−ηr
z (ξk), and the inverse Laplace transform of it

gives (35).

Authorized licensed use limited to: University of Illinois. Downloaded on July 01,2020 at 17:35:59 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2997363, IEEE

Transactions on Automatic Control

12

2) Proof of (34): It follows from (35) and (70) that

y(t)=eηr(t−ξk) (Cz(ξk)+Dğ(ξk)) , t∈ [ξk, ζk) , k∈N0 (74)

which combined with (72) results in y (t) = 0|M|, or equiva-

lently, y̆ (t) = y (t), for any t ∈ [ξk, ζk).
We next prove (5) over non-attack interval of ZDA

[ζk, ξk+1). From (23) and (25), the dynamics (70) over such

non-attack intervals of ZDA (subject to the monitored output

attack as (25)) is described by

ż (t) = Aσ(t)z (t) (75a)

y (t) = Cz (t) +D

k∑

m=0

ğ
(
ζ−m

)
, t ∈ [ζk, ξk+1) . (75b)

It follows from (35) and (75a) that

z(t) (76)

=





e
A

σ(tk)
(t−tk)

z (tk) , t∈[tk, ξk)

e
12|V|×2|V|ηr(t−ξk)+A

σ(tk)
(ξk−tk)

z (tk) , t∈[ξk, ζk)

e
A

σ(tk)
(t−tk−(ζk−ξk))+12|V|×2|V|ηr(ζk−ξk)

z(tk), t∈[ζk, tk+1).

We conclude from (69) that (34) is equivalent to

y (t) ≡ 0|M| on [t0, tk+1) . (77)

For D = 0|M|×2|V|, we note that (77) implies that the system

(75) is unobservable for any t ∈ [t0, tk+1), k ∈ N0. It is

immediate that

z(tk) ∈ ker(Ok) = N̂k
k, k ∈ N0. (78)

We next show that z(tq−1) ∈ N̂k
q−1 for 0 ≤ q − 1 ≤ k,

through inductive argument. Let us suppose z(tq) ∈ N̂k
q .

We obtain from (76) that z(tq) = z(t−q ) =

eησ(tq−1)(ζq−1−ξq−1)eAσ(tq−1)(τq−1−(ζq−1−ξq−1))z(tq−1),

which, in conjunction with the fact of eησ(tq−1)(ζq−1−ξq−1) ̸=
0, leads to z(tq−1) ∈ e−Aσ(tq−1)(τq−1−(ζq−1−ξq−1))N̂k

q .

Moreover, we note that (78) implies that z(tq−1) ∈ ker(Oq−1).
Therefore,

z(tq−1)∈e
−Aσ(tq−1)(τq−1−(ζq−1−ξq−1))N̂k

q∩ker(Oq−1), (79)

where the right-hand expression is, in fact, the computation

of N̂k
q−1, i.e., the unobservable space given by (28). Let q =

1, we have z(t0) ∈ N̂k
0 . Then, following the same steps in

the proof of necessary condition in Theorem 1 of [44], we

conclude that (34) holds if and only if there exists a non-zero

vector z (t0) such that

z (t0) ∈ N̂k
0 . (80)

For D ̸= 0|M|×2|V|, it follows from (72) and (75b) that

y (ζk) = y
(
ζ−k

)
= 0|M|. Therefore, in this scenario, (77)

holds only when ẏ (t) ≡ 0|M| on [t0, tk+1). Updating the

observability matrix Oq in (22) by Õq in (31) and following

the same steps to derive (80), we conclude that (34) holds if

and only if

z (t0) ∈ Ñk
0 , (81)

where Ñk
0 is recursively computed by (29) and (30).

In addition to (80) and (81), we conclude that if (26a) and

(72) hold, regardless of D
k∑

m=0
ğ (ζ−m) ̸= 0|M| or = 0|M|, (34)

always holds.

APPENDIX D: PROOF OF PROPOSITION 3

Let us define ẽ ,
[
ẽ⊤x ẽ⊤v

]⊤
, ẑ − z. Without loss of

generality, we let σ(tk+1) = s. Noticing (39), we obtain from

the dynamics (38) and (17) that

˙̃e(t) = Âsẽ(t)+(Âs−As)z(t), t∈ [tk+1, tk+2) (82a)

ŷ(t)−y(t) = Cẽ(t), (82b)

ẽ(tk+1) = 0|M|, (82c)

from which we have

ŷ(t)−y(t)=CeÂs(t−tk+1)

∫ t

tk+1

e−Âs(τ−tk+1)((Âs−As)z(τ))dτ,

and the corresponding derivatives

ŷ(d)(t)− y(d)(t)

= CÂd
se

Âs(t−tk+1)

∫ t

tk+1

e−Âs(τ−tk+1)(Âs−As)z(τ)dτ

+

d−1∑

l=0

CÂl
s((Âs −As)z

(d−1−l)(t)). (83)

We note that under corrupted topology, the stealthy property

ŷ (t) − y (t) = 0|M| for any t ∈ [tk+1, tk+2) is equivalent to

ŷ(d) (tk+1)−y
(d) (tk+1) = 0|M| for ∀d ∈ N0, which is further

equivalent to (40) by considering the solution (83).

APPENDIX E: PROOF OF THEOREM 1

Without loss of generality, we let σ(ζk) = r ∈ T, and

ζk < tk+1, k ∈ N, i.e., attacker “pauses” ZDA at ζk. We now

prove this theorem via a contradiction. We assume that the

attack is not detectable in [ζ−k , ξk+1), which is equivalent to

y (t) = 0|M| for any t ∈ [ζ−k , ξk+1), (84)

where y (t) is defined in (69).

Considering the fact that given a differentiable function

f(t), f(t) = 0 for any t ∈ [a, b], if and only if f(a) = 0
and f (d)(a) = 0, ∀d ∈ N. We conclude from (75) that (84) at

time ζk is equivalent to

y(d)(ζk)=




Cz (ζk) +D

k∑
m=0

ğ (ζ−m) = 0|M|, d = 0

CAd
rz (ζk) = 0|M|, ∀d ∈ N.

(85)

With the definitions of Ar, C, D and z (·) in (16b), (16c),

(16e) and (33), the relation (85) can be further rewritten under

different forms of observation as follows:

• Full Observation of Velocity, i.e., ci1 = 0, ∀i ∈M,

C2v (ζk) +D
k∑

m=0

ğ
(
ζ−m

)
= 0|M| (86a)

C2v (ζk) + C2Lrx (ζk) = 0|M| (86b)

C2L
e
rv (ζk) = 0|M|, ∀e ∈ N (86c)

C2L
d
rx (ζk) = 0|M|, ∀d ∈ N≥2 (86d)
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• Full Observation of Position, i.e., ci2 = 0, ∀i ∈M,

C1x (ζk) +D

k∑

m=0

ğ
(
ζ−m

)
= 0|M| (87a)

C1L
e
rx (ζk) = 0|M|, ∀e ∈ N (87b)

C1L
d
rv (ζk) = 0|M|, ∀d ∈ N0 (87c)

• Partial Observation, i.e., ci1 ̸= 0 and ci2 ̸= 0, ∀i ∈M,

C1x (ζk)+C2v (ζk)+D

k∑

m=0

ğ
(
ζ−m

)
=0|M|, (88a)

C1L
e
rx (ζk) + C2L

e
rv (ζk)=0|M|, ∀e∈N (88b)

(C1−C2)L
d
rv(ζk)−C2L

d+1
r x(ζk)=0|M|, ∀d∈N0. (88c)

Considering the definition of the vector z(t) in (33), and

its continuity with respect to time, i.e., z
(
ζ−k

)
= z (ζk), it

follows from (35) and (23) that at time ζ−k ,[
z (ζk)

−ğ
(
ζ−k

)
]
= eηr(ζ−

k
−ξk)

[
z (ξk)
−ğ (ξk)

]
, (89)

which, in conjunction with the fact of eηr(ζ−
k
−ξk) ̸= 0 and the

condition (26b), results in
[

z (ζk)

−ğ
(
ζ−k

)
]
∈ ker (Pk) . (90)

With variables ğ(ζ−k ), ḡ(ζ−k ), z (ζk), Ar and Pk defined in

(16f), (16g), (33), (16b) and (32), respectively, expanding (90)

yields

ηrx (ζk)− v (ζk) = 0|V|, (91)

−ḡ
(
ζ−k

)
+ v(ζk) + Lrx (ζk) + ηrv(ζk) = 0|V|. (92)

Before proceeding the rest of proof, we define the variables:

Hi , [Urix (ζk)]2:|V|, (93a)

Dr , diag
{
λ22 (Lr) , . . . , λ

2
|V| (Lr)

}
, (93b)

H̃r ,




λ22(Lr) · · · λ2|V|(Lr)

λ32(Lr) · · · λ3|V|(Lr)
... · · ·

...

λ
|V|
2 (Lr) · · · λ

|V|
|V|(Lr)



, (93c)

Hr ,




1 · · · 1
λ2(Lr) · · · λ|V|(Lr)

... · · ·
...

λ
|V|−2
2 (Lr) · · · λ

|V|−2
|V| (Lr)



, (93d)

where Uri is given in (44).

A. Under Full Observation of Position or Velocity

Let us start with full observation of velocity. It follows from

(11) that Ld
r = QrΛ

d
rQ

⊤
r with Λr given in (11). Thus, (86d)

is equivalent to C2QrΛ
d
rQ

⊤
r x (ζk) = 0|M|, ∀d ∈ N≥2, which

is further equivalent to

|V|∑

l=1

λdl (Lr)[Qr]i,l
[
Q⊤

r

]
l,:
x (ζk) = 0, ∀d ∈ N, ∀i ∈M (94)

with the consideration of the matrix C2 defined in (16d) with

ci2 ̸= 0, ∀i ∈M. Further, recalling H̃r, Hi and Uri from (93c),

(93a) and (44), from (94) we have

H̃rHi = 0|V|−1, ∀i ∈M. (95)

It can be verified from (93b)–(93d) that H̃r = HrDr,

from which we have det(H̃r) = det(Hr) det(Dr). The matrix

defined in (93b) shows if Lr has distinct eigenvalues, Dr is

full-rank. In addition, by Lemma 5, the Vandermonde matrix

Hr is full-rank; thus, H̃r is full-rank. Therefore, the solution

of (95) is

Hi = 0|V|−1, ∀i ∈M. (96)

With the definitions in (44) and (93a), the equation (96)

indicates that for ∀i ∈M,

diag
{
[Qr]i,2, . . . , [Qr]i,|V|

}[
Q⊤

r

]
2:|V|,:

x (ζk)=0|V|−1. (97)

We note that (44), (45) and (47) imply that ∃i ∈ M :

diag
{
[Qr]i,2, . . . , [Qr]i,|V|

}
is full-rank. Thus, from (97) we

have
[
Q⊤

r

]
2:|V|,:

x (ζk) = 0|V|−1. By Lemma 6, the solution

of (97) is

x1 (ζk) = . . . = x|V| (ζk) . (98)

Considering (86c), using the same method to derive (98), we

obtain

v1 (ζk) = . . . = v|V| (ζk) . (99)

Substituting (98) into (86b) yields C2v (ζk) = 0|M|, which

together with (99) results in

v1 (ζk) = . . . = v|V| (ζk) = 0. (100)

For the full observation of position, using nearly the same

analysis method employed above, we obtain the same results

as (98) and (100).

Substituting (98) and (100) into (92) yields ḡ
(
ζ−k

)
= 0|V|,

and consequently, ğ
(
ζ−k

)
= 02|V|. This means that there is no

ZDA on the system at ζ−k , which contradicts the assumption

that the attack is applied until ζk. Therefore, we conclude

that under the full observation of position or velocity, the

intermittent ZDA is detectable.
1) Full Observation of Velocity: To proceed with the proof

of (48), we first need to obtain ker(Ok) of the system (17)

given in (22). The analysis of the kernel of the observability

matrix Ok can follow the relation (85) with the setting of

D = 0|M|×2|V|. We note that (85) is equivalently represented

by (86), (87) and (88). The results (98) and (99) are obtained

without considering (86a), (87a) and (88a) which are the only

terms involving D. Then, results similar to (98) and (99) can

be obtained for the system in (17) as

x1 (ζk)= . . .=x|V| (ζk) and v1 (ζk)= . . .=v|V| (ζk) . (101)

Further, with D = 0|M|×2|V|, from (86a) with v (ζk) replaced

by v (ζk), we have C2v (ζk) = 0|M|, which combined with

(101) yields x1 (ζk) = . . . = x|V| (ζk) and v1 (ζk) = . . . =

v|V| (ζk) = 0. Thus, ker(Ok) =

{
02|V|,

[
1⊤
|V| 0

⊤
|V|

]⊤}
. Since

all of the elements in ker(Ok) are the equilibrium points of

the system (17), through the recursive computation of (20) and

(21), we arrive at (48).
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2) Full Observation of Position: To obtain ker(Ok) un-

der full observation of position, we can consider (87) with

D = 0|M|×2|V|. From (87a) and (98) we have x1 (ζk) =
. . . = x|V| (ζk) = 0. Then, we obtain from (100) (replace

vi (ζk) by vi (ζk)) that ker(Ok) =
{
02|V|

}
, which means that

if the monitored agents output full observation of positions,

the system (17) is observable at tk; thus (49) is obtained by

the recursive computation of (20) and (21).

B. Under Partial Observation

The analysis of observability follows the same steps of

that under full observation. With C1 = C2, from (88c) we

have C2L
d+1
r x(ζk) = 0, ∀d ∈ N0. Employing the same steps

to derive (98) under full observation of velocity, we obtain

(98) as well under partial observation. Moreover, substituting

(98) into (88b) and repeating the same steps, we arrive at

(99). It is straightforward to verify from the dynamics (17)

that x1 (t) = . . . = x|V| (t) and v1 (t) = . . . = v|V| (t)
for any t ≥ t0, if and only if (99) and (98) hold. Finally,

considering (88a) with the setting of D = 0|M|×2|V|, we

have C1x (ζk) + C2v (ζk) = 0|M|, from which we have

ker(Ok) =

{
02|V|,

[
1⊤
|V| −1

⊤
|V|

]⊤}
, ∀k ∈ N0, and then (50)

is obtained by computation of (20) and (21).

Under the condition (51), z (ζk) ∈ Nk
0 , which in conjunc-

tion with (91) implies ηr = −1. Substituting (98), (99) and

ηr = −1 into (92) yields ḡ
(
ζ−k

)
= 0|V|, and consequently,

ğ
(
ζ−k

)
= 02|V|. This means that there is no ZDA on the

system at ζ−k , which contradicts the assumption that the attack

is applied until ζk.

APPENDIX F: PROOF OF THEOREM 2

With the definition of Cj , j = 1, 2, in (16d), we can rewrite

(82) as

˙̃ex (t) = ẽv (t) , (102a)

˙̃ev (t) = −ẽv (t)−L̂sẽx (t)−
(
L̂s−Ls

)
x (t) , (102b)

ŷ (t)− y (t) = C1ẽx (t) + C2ẽv (t) , t ∈ [tk+1, tk+2) (102c)

ẽx (tk+1) = 0|V|, ẽv (tk+1) = 0|V|. (102d)

We define C , diag
{
c12, . . . , c|D|2

}
, where the diagonal

entries are from C2 defined in (16d). According to (52) and

|D| ≤ |M| (implied by (43)), the matrix C is invertible. Now,

considering (42), we have

C2

(
L̂s − Ls

)
=

[
CLs 0|D|×(|M|−|D|)

0(|M|−|D|)×|D| 0(|M|−|D|)×(|M|−|D|)

]
, (103)

which, in conjunction with invertible matrix C and the def-

initions of As in (16b) and Âs in (37), implies that if

C2

(
L̂s − Ls

)
x(d) (tk+1) = 0|M|, ∀d ∈ N0, then

(
Âs −As

)
z(d) (tk+1) = 02|V|, ∀d ∈ N0. (104)

Under the dynamics (102) and the relation (104), the

necessary condition (40) of guaranteeing stealthy property of

cooperative ZDA is equivalently written as

C2

(
L̂s − Ls

)
Ld
sx (tk+1) = 0|M|, ∀d ∈ N0 (105a)

C2

(
L̂s − Ls

)
Ld
sv (tk+1) = 0|M|, ∀d ∈ N0. (105b)

We assume that the topology attack in system (36) can

ensure that the stealthy property (5) of ZDA holds. Noticing

(103) and the dynamics (17), the equation (105) is equivalent

to CLσ(tk+1)χ
(m)(tk+1) = 0|D|, ∀m ∈ N0, where χ(tk+1) ,[

x1(tk+1) . . . x|D|(tk+1)
]⊤
. Since C is invertible, we have

Lσ(tk+1)χ
(m)(tk+1) = 0|D|, ∀m ∈ N0. (106)

As Lσ(tk+1) is the elementary row transformation of a

Laplacian matrix, there exists an elementary row operator

E ∈ R
|D|×|D| such that L̂σ(tk+1) , ELσ(tk+1) is a Laplacian

matrix. Pre-multiplying both sides of (106) by E yields

L̂σ(tk+1)χ
(m)(tk+1) = 0|D|, ∀m ∈ N0. (107)

It is well-known that the null space of the Laplacian matrix of

a connected graph is spanned by the vector with all ones.

From (107) we conclude that ∃i, j ∈ D : x
(m)
i (tk+1) =

x
(m)
j (tk+1), tk+1 ≥ t0, ∀m ∈ N0, which can be rewritten as

(
e⊤i − e⊤j

)
x(m) (tk+1) = 0, ∀m ∈ N0 (108)

where ei denotes a vector of length |D| with a single nonzero

entry with value 1 in its ith position.

Due to the dynamics (17), the equation (108) leads to
(
e⊤i − e⊤j

)
Lm
r x (tk+1) = 0, ∀m ∈ N0 (109a)

(
e⊤i − e⊤j

)
Lm
r v (tk+1) = 0, ∀m ∈ N0. (109b)

It follows from (11) that Ld
r = QrΛ

d
rQ

⊤
r with Λr given in

(11c), substituting which into (109) yields that for ∀m ∈ N,

|V|∑

l=2

λml (Lr)
(
[Qr]i,l−[Qr]j,l

)[
Q⊤

r

]
l,:
x(tk+1)=0, (110a)

|V|∑

l=2

λml (Lr)
(
[Qr]i,l−[Qr]j,l

)[
Q⊤

r

]
l,:
v(tk+1)=0. (110b)

Then, with the definitions

Dij,diag
{
[Qr]i,2 − [Qr]j,2, . . . , [Qr]i,|V| − [Qr]j,|V|

}
, (111)

f, [Qr]
⊤
2:|V|,: x (tk+1) , (112)

following the same derivations from (94) to (95), we arrive at

H̃rDijf = 0|V|−1, ∀i ∈M, (113)

where H̃r is given in (93c). Using the same analysis to derive

(96), we conclude that under the condition (46), the solution of

(113) is Dijf = 0|V|−1. Since Dij given by (111) is full-rank

under the condition (53), we have f = 0|V|−1. Then, noticing

(112), by Lemma 6 we arrive at

x1 (tk+1) = . . . = x|V| (tk+1) . (114)

Repeating the same procedure of deriving (114) from (110a),

we conclude v1 (tk+1) = . . . = v|V| (tk+1) from (110b), which

means that the second-order consensus is achieved at tk+1, i.e.,

xi (tk+1) = xj (tk+1) and vi (tk+1) = vj (tk+1), ∀i ̸= j ∈ V.

It is straightforward to verify from the dynamics (66) that

the second-order consensus is achieved at some time t < ∞
if and only if the individual initial conditions are identical,

i.e., xi (t0) = xj (t0) and vi (t0) = vj (t0). Hence, the

cooperative ZDA is undetectable only in the case of identical

initial condition that corresponds to the steady state.
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APPENDIX G: PROOF OF THEOREM 3

We define ex (t) , q (t)− x̆ (t) and ev (t) , w (t)− v̆ (t).
The dynamics of tracking errors in the presence of the attack

obtained from (54) and (14) are given as:

ėxi
(t)=evi(t) , (115a)

ėvi(t)=−evi
(t) +

∑

i∈V

a
σ(t)
ij

(
exj

(t)− exi
(t)

)

−

{
ği(t), i∈K
0, i∈V\K

−





ri(t), ci1 ̸=0,i∈M∫ t

t0
ri(b)db, ci1=0,i∈M

0, i∈V\M

(115b)

ri(t)=ci1exi
(t) + ci2evi

(t)− diği(t) , i ∈M. (115c)

The attack is not detected by the observer (54) means that

ri (t) = 0, i ∈M, for any t ≥ t0. Substituting it into the above

equation results in

ėxi
(t) = evi(t)

ėvi(t) = −evi(t) +
∑

i∈V

a
σ(t)
ij

(
exj

(t)− exi
(t)

)
−

{
ği(t), i∈K
0, i∈V\K

ri(t) = ci1exi
(t) + ci2evi

(t)− diği(t) , i ∈M

which has the same form of dynamics as that of (14).

Therefore, the analysis of ZDA variations in the observer

(54) follows the same analysis of the system (14). Moreover,

the required condition (52) implies that the monitored agents

output full observations of velocity or partial observations:

either (48) or (50) implies (19). Hence, the topology attacker

cannot infer the real-time full states of the non-monitored

agents, and the topology attacker has to consider the scope of

the target connections implied by (43). Therefore, the proof

of the first statement follows from Theorems 1 and 2.

In the absence of attacks, the system matrix of system (115)

is Âσ(t) defined in (55). Since the condition (46) implies that

all of the switching topologies provided to Algorithm 1 are

connected graphs and condition (52) implies (57), the matrix

Âσ(t) is Hurwitz by Lemma 3. Thus, there exists a P > 0
such that both (59) and (58) hold. Hence, the proof of the

second statement follows from Proposition 1 and Lemma 3.
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