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Abstract—This paper studies novel attack and defense strate-
gies, based on a class of stealthy attacks, namely the zero-
dynamics attack (ZDA), for multi-agent control systems. ZDA
poses a formidable security challenge since its attack signal is
hidden in the null-space of the state-space representation of the
control system and hence it can evade conventional detection
methods. An intuitive defense strategy builds on changing the
aforementioned representation via switching through a set of
carefully crafted topologies. In this paper, we propose realistic
ZDA variations where the attacker is aware of this topology-
switching strategy, and hence employs the following policies to
avoid detection: (i) pause, update and resume ZDA according
to the knowledge of switching topologies; (ii) cooperate with a
concurrent stealthy topology attack that alters network topology
at switching times, such that the original ZDA is feasible under
the corrupted topology. We first systematically study the proposed
ZDA variations, and then develop defense strategies against
them under the realistic assumption that the defender has no
knowledge of attack starting, pausing, and resuming times and
the number of misbehaving agents. Particularly, we characterize
conditions for detectability of the proposed ZDA variations, in
terms of the network topologies to be maintained, the set of
agents to be monitored, and the measurements of the monitored
agents that should be extracted, while simultaneously preserving
the privacy of the states of the non-monitored agents. We then
propose an attack detection algorithm based on the Luenberger
observer, using the characterized detectability conditions. We
provide numerical simulation results to demonstrate our theo-
retical findings.

Index Terms—Multi-agent systems, security, privacy, zero-
dynamics attack, topology attack, attack detection.

I. INTRODUCTION

OORDINATION and control of networked systems is
a well-studied theoretical problem (see e.g., [2], [3])
with many practical applications including distributed opti-
mization [4], power sharing for droop-controlled inverters
in islanded microgrids [5], clock synchronization for sensor
networks [6], as well as connected vehicles [7], spacecrafts [8],
and electrical power networks [9].
Security concerns regarding the aforementioned networked
systems pose a formidable threat to their wide deployment,
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as highlighted by the recent incidents including distributed
denial-of-service (DDOS) attack on Estonian web sites [10]
and Maroochy water breach [11]. The “networked” aspect
exacerbates the difficulty of securing these systems, since
centralized measurement (sensing) and control are not feasible
for such large-scale systems [12], and hence require the
development of decentralized approaches, which are inherently
prone to attacks. Particularly, a special class of stealthy attacks,
namely the “zero-dynamics attack” (ZDA), poses a significant
security challenge [13]-[15]. The main idea behind ZDA
is to hide the attack signal in the null-space of the state-
space representation of the control system so that it cannot
be detected by applying conventional detection methods on
the observation signal. The objective of such an attack can
vary from manipulating the controller to accept false data that
would yield the system towards a desired (e.g., unstable) state
to maliciously altering system dynamics (topology attack) to
affect the system trajectory.

Recent research efforts have focused on variations of ZDA
for systems with distinct properties. For stochastic cyber-
physical systems, Park et al. [16] designed a robust ZDA,
where the attack-detection signal is guaranteed to stay below
a threshold over a finite horizon. In [17], Kim et al. proposed
a discretized ZDA for the sampled-data control systems,
where the attack-detection signal is constant zero at the
sampling times. Another interesting line of research pertains
to developing defense strategies [12], [18]-[21]. For example,
Jafarnejadsani et al. [14] proposed a multi-rate £; adaptive
controller that can detect ZDA in sampled-data control systems
by removing certain unstable zeros of discrete-time systems.
Back et al. [22] used generalized hold strategy to mitigate the
impact of ZDA.

Most of the prior work on defense strategies for the orig-
inal ZDA in networked systems builds on rather restrictive
assumptions regarding the connectivity of network topology
and the number of the misbehaving agents (i.e., the agents
under attack) [12], [18]-[20]. Teixeira et al. [23] showed that
the strategic changes in system dynamics could be used by
defender to detect ZDA. But the defense strategy requires
the attack-starting times to be the initial time and known
to defender, and the attacker has no capability of inferring
the changed system dynamics. In other words, the defense
strategy fails to work if the stealthy attack strategy is based
on the newly inferred system dynamics. As a first step towards
a practical ZDA defense strategy, in [24], strategic topology
switching is proposed. This strategy is motivated by the
feasibility of controlling communication topology driven due
to recent developments in mobile computing, wireless com-
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munication and sensing [25], [26]. We note, in passing, that
the idea of using the changes in the state-space dynamics to
detect ZDA first appeared in [23], albeit a realistic mechanism
(e.g., switching the system topology) to achieve that objective
was only very recently studied in [24]. However, the defense
strategy in [24] still relies on a naive attacker that does not take
the topology switching strategy of the defender into account.

In this paper, we systematically address this practically
important problem: what kind of ZDA strategies can an
informed attacker design against a topology-switching system
and what are the optimal defense strategies, beyond switching
the topology, against such intelligent attacks? We note that
we study these questions under realistic assumptions on the
capabilities of the defender, i.e., we assume that the defender
does not know the start, pause and resume times of the attack
or the number of misbehaving agents. We also assume that the
attacker is aware of the strategic changes in system dynamics.
Moreover, we assume that the defender has to preserve the
privacy of the outputs of the non-monitored agents, since it
is assumed that the attacker has access to the sensor outputs.
The following example from coordination control illustrates
our motivation to impose this privacy constraint.

For the coordination control of multi-agent systems, e.g., the
connected autonomous vehicles, the data of initial positions
and velocities can be used by the adversary to estimate
target location [27], and the individual initial positions in-
clude individual home-base locations. Once the attacker has
access to the outputs of monitored agents and the system
is observable, the attacker can use current available data to
infer the global initial condition and global real-time system
state. From a perspective of stealthy topology attack design
(e.g., topology attack in smart grids [28] and software-defined
networks [29]), the attacker needs (estimated) real-time data
of some agents’ state to decide the target connection links
to attack. Unfortunately, the inferred global real-time system
state implies the largest scope of attackable connection links
is exposed to the attacker. To reduce the feasible area of target
links for ZDA in cooperation with a stealthy topology attack,
monitored outputs have to be constrained to be unobservable
to preserve the privacy of non-monitored agents’ real-time
states, consequently, the global system state and global initial
condition.

Throughout this paper, we focus on the following policies
which can be used by the attacker to evade detection:

1) intermittently pause attack if the incoming topology is
unknown, and update (if necessary) and resume attack
after the newly activated topology is inferred (intermit-
tent ZDA).

2) cooperatively work with a stealthy topology attack, such
that the original ZDA policy continues to be feasible
under the corrupted topology (cooperative ZDA).

In this paper, we develop integrated defense strategies for
both intermittent and cooperative ZDAs, in the presence of
privacy considerations. More specifically, we develop defense
strategies to address the following questions: what network
topology should be maintained, which agents should be mon-
itored and what measurements the monitored agents should
output, such that the intermittent and cooperative ZDA variants

are detectable, and at the same time, the privacy of non-
monitored agents’ real-time states are preserved? Based on the
answers of the questions above, we next propose a strategic
topology-switching algorithm to detect the ZDA.

The contributions are summarized as follows.

o To evade conventional detection methods that rely on
naive attacker, we propose two ZDA variations: intermit-
tent and cooperative ZDAs, where the attacker is aware
of the defense strategy and has practical capability of
inferring switching topologies.

o We systematically study the policies of ZDA variations
that the attacker follows to devise stealthy attacks that lay
the foundation for the novel defense strategies.

o We characterize conditions for detectability of the pro-
posed ZDA variations, in terms of the network topologies
to be maintained, the set of agents to be monitored, and
the measurements of the monitored agents that should be
extracted.

o Under the privacy-preserving constraint of non-monitored
agents’ states, we propose a strategic topology-switching
algorithm for attack detection that is based on the de-
tectability of ZDA variations using the Luenberger ob-
server. The advantages of this approach include:

— in achieving consensus and tracking real systems in
the absence of attacks, it has no constraint on the
magnitudes of coupling weights and observer gains;

— in detecting ZDA variations, it allows the defender to
be unaware of attack starting, pausing, and resuming
times and the number of misbehaving agents;

— in detecting ZDA variations, only one monitored
agent is sufficient for intermittent ZDA and only two
monitored agents are sufficient for cooperative ZDA.

This paper is organized as follows. We present the prelim-
inaries and the problem formulation in Sections II and III,
respectively. In Section IV, we analyze the proposed ZDA
variations. In Section V, we characterize the conditions for
detectability of these ZDA variations. Based on this charac-
terization, we develop an attack detection algorithm in Section
VI. Numerical simulation results are provided in Section VII,
and the concluding remarks and the future research directions
are discussed in Section VIII.

II. PRELIMINARIES
A. Notation

We let R™ and R™*™ denote the set of n-dimensional
real vectors and the set of m X n-dimensional real matrices,
respectively. Let C denote the set of complex numbers. N
represents the set of the natural numbers and Ng = N U
{0}. Let 1,,x, and O,x, be the n x n-dimensional iden-
tity matrix and zero matrix, respectively. 1,, € R™ and
0, € R” denote the vector with all ones and the vector
with all zeros, respectively. The superscript ‘T’ stands for
matrix transpose. up (A) denotes the induced P-norm matrix
measure of A € R"™*", with P > 0, ie., up(4) =
1 max {\ (PY2AP~Y/2 4 P=1/24ATPY2)}, ker (Q) =

i=1,...,n

|

{y:Qy=0,,QcR™}, A~'F £ {y: Ay € F}. Also,
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denotes the cardinality of a set, or the modulus of a number.
V\K describes the complement set of K with respect to V.
X (M) is i eigenvalue of matrix M. z(*)(t) stands for the
b-order time derivative of x(t). For a matrix W € R"*",
Wk, (W], ;» (W], ., and [W]_, ., denote the k™ power of
W, the element in row ¢ and column j, the bt row, and the
sub-matrix formed by the entries in the a™ through b™ row
and the ¢ through d™ column of W, respectively.

The interaction among n agents is modeled by an undirected
graph G £ (V,E), where V £ {1,2,...,n} is the set of
vertices that represents n agents and E C V X V is the set of
edges of the graph G. The weighted adjacency matrix A =
[a;;) € R™*™ of the graph G is defined as a;; = a;; > 0 if
(i,4) € E, and a;; = aj; = 0 otherwise. Assume that there
are no self-loops, i.e., for any i € V, a;; = 0. The Laplacian
matrix of graph G is defined as £ £ [l;;] € R™ ", where

lii = Z a;;, and ZU =

a graph 1s the longest shortest unweighted path between any
two vertices in the graph.

—a;; for i # j. The diameter m of

B. Definitions

A second-order system consists of a population of n agents
whose dynamics are governed by the following equations:

ii (t) = V; (t) s (la)
’[}i (t) = Ui(t), (1b)

where z;(t) € R is the position, v;(t) € R is the velocity, and
u;(t) € R is the local control input. The broad applications of
its coordination control is the main motivation of this paper
considering the model (1), see e.g., [30]-[33]. For coordination
control, we consider the more representative average consen-
sus.

We recall the definitions of consensus and ZDA to review
the control objective and the attack policy.

Definition 1: [34] The agents in the system (1) are said
to achieve the asymptotic consensus with final zero common
velocity if for any initial condition:

1=1,...,n

Jim [0~

z; (t)|=0 andtllrgo lv; (t)|=0,Vi,j € V. (2)

Definition 2: [12], [35] Consider the system (with proper
dimension) in the presence of attack signal §(t):

(t) = AZ(t) + Bg(b),

3 (3a)
g (t) = Cz(t) + Dg(t).

(3b)

The attack signal §(t) = ge™ is a zero-dynamics attack if
there exist a scalar n € C, and nonzero vectors z, and g, that

satisfy
| _Z0_ | [ lpxn — A B ]
e (Pt ) e
Moreover, the states and observed outputs of system (7) satisfy
gt)y=y(t),t=>0 ®)
2(t) = 2 (t) +zoe™, (6)

3

where y (t) and z (t) are the output and state of the system
(3) in the absence of attacks, i.e., the dynamics:

2(t) = Az (1),
y(t)=Cz(t).

(7a)
(7b)

C. Control Protocol

We borrow a control protocol that involves topology switch-
ing from [34], [36] to achieve the consensus (2) for the agents
in system (1):

ui(t) = —vi(t) + > al” (x; (t) — 2 (1)), i€V (8)
JEV
where () : [tg,00) — S £ {1,...,s}, is the switching signal

of the interaction topology of the communication network;
o(t

a;j ) is the entry of the weighted adjacency matrix that

describes the activated topology of communication graph.

III. PROBLEM FORMULATION

We let K C V denote the set of misbehaving agents, i.e.,
the agents whose local control inputs are under attack. For
simplicity, we let the increasingly ordered set Ml = {1,2,...}
C V denote the set of monitored agents for attack detection.

We make the following assumptions on the attacker and
defender throughout this paper.

Assumption 1: The attacker

1) is aware that the changes in system dynamics are used
by the defender (system operator);

2) knows the initial topology, output matrix and switching
times;

3) needs a non-negligible time to exactly infer the newly
activated topology, compute and update attack strategy;

4) records the newly inferred topology into memorys;

5) knows the outputs of monitored agents in M.

Assumption 2: The defender

1) designs the switching times and switching topologies;

2) chooses candidate agents to monitor, i.e., the monitored
agent set M, for attack detection;

3) has no knowledge of the attack starting, pausing and
resuming times, and the misbehaving agents.

Remark 1: In Assumption 1, the assumed attacker’s ca-
pability 2) is motivated by recent incidents, see e.g., the
revenge sewage attack (cyber attack) that led to the Maroochy
water breach, where the attacker had previously installed
the industrial control systems for the water service network
(consequently, he knew the control protocol and the locations
of sensors) [37].

Remark 2: Strategically changing the system dynamics
has been demonstrated to be an effective approach to detect
system-based stealthy attacks, see e.g., ZDA [23], [24] and
Ci/C stealthy attacks [38]. The core idea behind this defense
strategy is the intentional generation of mismatch between
the models of the attacker and the defender. Specifically, the
attacker uses the original system dynamics to make the stealthy
attack decision (i.e., the computation (4)) before the system
starts to operate, while the defender strategically changes the
system dynamics at some operating point in time. However,
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from the attacker’s perspective, it is practical to become aware
of this defense strategy, and hence try to infer the changed
system dynamics to update the stealthy attack strategy and
evade detection. This motivates the awareness capability 1) in
Assumption 1.

Remark 3: Although the switching topologies are kept
confidential from attackers, the developed topology inference
algorithms [39], [40] enable the attacker to exactly infer the
switching topologies from observation signals. Even with the
global ability of observing all agents’ states, the inference
algorithms need to collect the state data over a time interval to
obtain an exact topology solution, which explains the imposed
non-negligible time in capability 3) in Assumption 1.

Remark 4: Since the sensor devices are embedded within
an environment, they are frequently vulnerable to local eaves-
dropping, which is the motivation of capability 5) in As-
sumption 1. The ZDA policy (4) shows that the attacker does
not need the capability 5) to obtain a feasible attack strategy
consisting of the false data zg, and the parameters g and 7 of
attack signal g(t). However, when ZDA seeks cooperation with
a stealthy topology attack in response to strategic topology
switching defense, then the attacker needs the real-time outputs
indicated by the capability to identify the target links to attack.

Remark 5: As analyzed in [1], the defense strategy of strate-
gically changing system dynamics [23] implicitly assumes that
the attack-starting time must be the initial time and known to
the defender. The capability 3) of defender in Assumption 2
removes this unrealistic assumption.

A. Topology Switching Strategy

The building block of our defense strategy is periodic
topology switching, i.e., there exists a period 7 such that

o(t)=0c(t+71)€Ss. )

« We note that (9) implies the building block belongs to the
time-dependent topology switching. The critical reason
that we do not consider state-dependent switching is the
attack signals injected into control input may generate a
Zeno behavior [41] that renders the control protocol (8)
infeasible.

« If the topology switching is random, the defender needs
to often send the generated “random” information of
network topology to the detector/estimator/observer in
the cyber layer as well, which will be subject to a
cyber topology attack (incorrect information of network
topology is transmitted) [28], [29], [42]. To avoid this
type of cyber attack, the defender chooses here periodic
topology switching, and preprogram the (repeated) peri-
odic switching sequence into the controlled links, and
hence avoids sending the topology information to the
cyber layer during the system operation.

For our defense strategy based on the periodic topology

switching (9), we define the following periodic sequence with
length of [:

L2 o(ty),o(t1),...,0(ti—2),0(tiz1) p,  (10)
N N~ N— e N——
T0 T1 TI—2 TI—1

4

where 7;, denotes the dwell time of the activated topology
indexed by U(tk), i.e., Tk = tk+1 — tg.

Next, we study whether the agents in the system (1) using
control input (8) can reach consensus under periodic topology
switching. We first recall the well-known property of Lapla-
cian matrix £, of a connected undirected graph from [43]:

Q, =Q, ", (11a)
[Qr]m = [Qr]z,l = = [thw,lv (11b)
Q) LrQr = diag {0, \2(Ly), ..., \n(L)} £ A, (L10)
based on which, we define:
Trs £Q, LQr, (12a)
A, 2 [Py iy, i 1uw DX(VI=1)_ (12b)
~[Crslogwi vy | —Lavi—nx(vi-1)

Proposition 1: Consider the second-order multi-agent sys-
tem (1) with control input (8). If the sequence L in (10) in-
cludes one connected topology, there exists a periodic topology
sequence that satisfies

-1
Z vspp (As) <0,
s=0

-1
where v, = T; with 7 = > 7. Moreover, under that periodic

13)

topology switching, the cto_r?sensus (2) can be achieved.
Proof: See Appendix B. [ ]
Remark 6: Proposition 1 implies that periodic topology
switching has no constraint on the magnitudes of coupling
weights in achieving consensus, i.e., for any coupling weights
there exists a feasible periodic topology switching sequence
for consensus. This is in sharp contrast with the arbitrary
topology switching that imposes a strict condition on the
magnitudes of coupling weights in achieving consensus [36].

B. System Description

Under periodic topology switching, the multi-agent system
in (1), with the control input given by (8) and the outputs of
monitored agents in M subject to the attack signal g;(¢), can
be written as

%i(t) =;(t) (142)
_ 7(t) gi(t),icK
= +§a (t))+{07 eV\K (14b)
J

where c¢;; and c;o are constant coefficients designed by the
defender (system operator), while constant coefficient d; is
designed by the attacker.

Remark 7: The model in (14b) with (1b) implies that
there are two practical approaches to attack the local control
inputs: (i) the attacker directly injects the attack signal to the
control architectures of misbehaving agents (target agents) in
K; (ii) possibly through breaking the encryption algorithm that
protects the communication channels with misbehaving agents,
the attacker injects attack signals to the data sent to controller.
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The system in (14) can be equivalently expressed as a
switched system under attack:

2() = Ao 2 (1) + 9 (¢) (15a)
y(t)=Cx(t)+ Dy (1), (15b)

where we define:
2 [ (6 Ey () @) ey )], (16a)

A 0 X b1 X

o [ g A ] (16
C2[CiCy ], (16¢)
C; = [diag{er, - iy} Opap (v -pap ], 7 =1,2 - (16d)

D= [0y diag{di, ., diua } Oty vi—pap] - (160)

gty = 0f; ‘T(t)r, (166)
gi(t)2 {gf( )’2. c @K. (16g)

In addition, we consider the system (15) in the absence of
attacks, which is given by

Z(t) = Agyz (1), (17a)
y () = Cx(t). (17b)

C. Privacy of Initial Condition and Global System State

To fully secure multi-agent systems, e.g., connected au-
tonomous vehicles, the initial conditions should be kept
confidential from an adversary since the initial data could
be utilized to estimate the target locations [27]. Moreover,
individual initial positions contain the information of home-
base locations. The following two examples illustrate that the
global initial condition as well as the global system state play
an important role in stealthy attacks.

Example 1 (Attack Objective): The state solution under
attack (6) implies that if n = 0, attacker’s objective is to
modify the steady-state value. If the attack objective is to
modify the target location to a new location that the attacker
desires, the attacker must know the original target location
in the absence of attacks. Under undirected communication,
it is straightforward to verify from the system (1) with its

control input (8) that the average position Z(t) = ﬁ S (t)
iev

proceeds with the average velocity o(t) = ﬁ Su(t) =
i€V

e~ '9(to), which indicates that when the consensus is achieved,
all of the individual agents synchronize to the target location:

¥ = tliglo (Z(to) + (1—e™ ") 0(to)) = Z(to) + v(to). (18)

Unfortunately, (18) shows that once the global initial condition
is known (i.e., initial positions and velocities of all agents),
the original target location can simply be computed through a
simple mean computation.

Example 2 (Stealthy Topology Attack Design): Stealthy
topology attack design, as in smart grids [28] and power
networks [42], requires (estimated) real-time data of system
states to choose the target connection links to maliciously alter.
Since attacker can record the newly obtained knowledge of
the network topology, the attacker has the memory of the past
topology sequence. Whenever the data on the global initial

5

condition z (ty) (or real-time global state z(t)) is available,
the attacker can infer the exact real-time global state z(t) (or
global initial condition z(tg)) through

k-1
2(t) = eAo(tp) (Bt H Ao =t (to),t € [trytrt1)
1=0

which indicates whenever ZDA seeks a cooperation with
stealthy topology attack to evade detection, the attacker would
have the largest scope of attackable links since the attacker
knows all of agents’ real-time state data. Therefore, the private
global initial condition or system state can reduce the scope
of target links for stealthy topology attack.

We next impose the following unobservability condition
on the monitored outputs to preserve the privacy of non-
monitored agents, such that the attacker cannot use the avail-
able (monitored) outputs to infer any non-monitored agent’s
full state (and consequently, the global system state and initial
condition).

Lemma 1: For the system (17), x;(t) and v;(t), Vi € V\M,
are not simultaneously observable for any ¢ € [to, ;! ), if and
only if

3p € N§': |pil + [pigyvi| # 0,¥i € V\M (19)

where
N7 =ker (On,), (20)
Ny" = ker(O,) me_A"“q’TqN;"H, 0<g¢g<m-1 (21)
0= |CT  (CAy)T | (CAi‘XL;l)T}T (22)

Proof: The condition in (19) implies that N* # {0y }.
Using Theorem 1 in [44], it follows that the system in (17)
is unobservable for any ¢ € [to, ¢, ). Also, (19) implies that
pi # 0, and (or) p;1|v| # 0, and therefore the agent i’s position
and (or) velocity are (is) not partially observable. [ ]

Remark 8: Although the selection of the monitored output
coefficients in (14c) subject to (19) renders the system (17)
unobservable to preserve privacy, we will show that the
proposed ZDA variations become detectable using the outputs
yi(t)’s by careful selection of switching topologies and the set
of monitored agents.

IV. STEALTHY ATTACK MODEL

In the scenario where the attacker is aware of the detection
purpose of strategic changes in system dynamics induced by
topology switching [24], the attacker can evolve the attack
policies in response to the strategic changes at switching times
to stay stealthy:

o “pause attack” before topology switching when the in-
coming topology is unknown or the attack policy (4)
is infeasible under the known incoming topology, and
“resume attack” after the feasibility of (updated if needed)
attack policy under the inferred activated topology is
verified;

e cooperate with a topology attack that maliciously alters
network topology at switching times, such that the orig-
inal attack policy (4) continues to be feasible under the
corrupted topology.
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In the following subsections, we present a systematic study on
these ZDA variations.

A. Intermittent Zero-Dynamics Attack

For convenience, we refer to T as the set of topologies under
which the attacker injects attack signals to control inputs, and
we refer to & and ( as the attack-resuming and attack-
pausing times over the active topology intervals [t,tx+1),
k € Ny, respectively.

The ZDA signals injected into the control input and mon-
itored output of system (14) with intermittent pausing and
resuming behaviors are described as

ai(y = o7 emen 7, e g, G
0, otherwise.

[tk tit) (23)

To analyze this ZDA, we review the monitored output (14c)
at the first “pausing” time (p:

Ui (¢0) = eandi(Cy) + caati($y ) + digi (¢) ,VieM

which implies that g, (C&) = 9J; (¢p) if and only if g; (Ca) =
i (o), since ; (¢5) = ¥; (o) and Z; (¢y) = #; (o). Mean-
while, the velocity and position states are always continuous
with respect to time, and hence the monitored outputs must
be continuous as well. Therefore, to avoid the “jump” on
monitored outputs to maintain the stealthy property (5), the
attacker cannot completely pause the attack, i.e., whenever
the attacker pauses injecting ZDA signals to control inputs at
pausing time (i, simultaneously continues to inject the same
attack signals to monitored outputs (14c):

Ui (£) = cinds () +cinti(t +ngz ) tE (G hi1) (24)

or equivalently,

y(t) = +DZ

m=0

ot € [Cry Ert1) - (25)

Based on the above analysis, for ZDA policy consisting
of “pause attack” and “resume attack” behaviors to remain

stealthy, it should satisfy (25) and

7 (to) € N§ (NG, (26a)
Z<fk)}
[ AT € ker (P,.) ,Vo(&)eT (26b)
where
N = ker(Oy), 27

]_/\\I]; = ker(oq) mefAf’(f,q)(qu(qugq))N];_‘rl,0 S q S kE—1

(28)
ﬁﬁ = ker(@k), (29)
ﬁlr; = ker(éq) me_A"(tq’(Tq_(c"_gq»NI;H?0 <g¢g<k-1
(30)

~ ; ; T
0. 2 [(ca,)T (CA2)T (cATMT] (31)

o [ meLayvixaw) ~Ar | oo ]
P, [ L B (32)
TiyT1T 2% 9T TigT _ T17

z:[x v} :zfz:[x —z'iv! —v ], (33)

6

and O, is given by (22).

Proposition 2: Under the stealthy attack policy consisting of
(25) and (26), the states and monitored outputs of the systems
(17) and (15) in the presence of attack signal (23) satisfy

g(t)=y(t),t € [to,trs1), (34)

20 =2+ TV (g) e 60 G). G9)
Proof: See Appendix C. [ ]
Remark 9: At first glance, it might seem that the intermittent
ZDA is an asynchronous attack response to the strategic topol-
ogy switching, which is due to the imposed non-negligible
time on capability 3) in Assumption 1. We note however
that the attacker can record the newly obtained topology
knowledge into the memory. Since the defender switches
topologies periodically, if the recorded length of topology
sequence is sufficiently long, the attacker can learn from
the recorded memory the (recurring) periodic sequence, i.e.,
the attacker knows all future switching topologies and times.
The corresponding future synchronous attack policies can be
obtained off-line. Therefore, a synchronous attack response is
possible only after the attacker obtains the (recurring) periodic
topology sequence from memory.

B. Cooperative Zero-Dynamics Attack

The objective of cooperation with stealthy topology attack
is to make the ZDA policy (4) continue to hold under the
corrupted topology. Stealthy topology attack can be of two
types:

« Physical Topology Attack: the attacker maliciously alters
the status of target connection links of physical systems,
e.g., the bus interaction breaks in power networks [42]
and link fabrication in software-defined networks [29].

o Cyber Topology Attack: the attacker maliciously alters
the information of network topology sent to the estima-
tor/observer/detector in cyber layer [28], [45].

As stated in Subsection III-A, the basis of our defense
strategy is the periodic topology switching, and the defender
(system operator) would preprogram the repeated switching
times and topologies into the controlled links of the real system
and observer/detector. In this case, the operator of the real
system does not need to send the topology information to the
observer/detector when the system operates. Therefore, the
system under our defense strategy is not subject to a cyber
topology attack, albeit it is subject to a physical topology
attack.

We let ti41 denote the switching time when ZDA cooper-
ates with topology attack. The multi-agent system (15) in the
presence of such cooperative attacks is described by

2(t) = Ag2 (t) + G (1)t € [tegr, tero) (362)
y(t)=Cz(t)+ Dy (), (36b)
where Eg(t) is defined as
1 Opypervl - 1wy
Ay 2 |- L S : (37
Sl s o) ¢ ~vixw
with Eg(tk 1) denoting the Laplacian matrix of the corrupted

topology. We describe its corresponding system in the absence
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of ZDA, i.e., in the presence of the only physical topology
attack, as
Z(6) = Ay (1) 11 € [trr, tiyo) (382)
yt)=CzZ(1). (38b)

If g (t) is a ZDA signal in systems (15) and (36) at times
treq and try1, by (6) we have Z(tgxy1) = “(t;_H) =
2 (tpyq) + zoe™ + and % (t4) = £ (tes1) = 2 (trg1) +
zoet++1. Here, we conclude that

Z(tee1) = 2 (tyq) = 2 (trgr) (39)

otherwise, the system state Z (1) has “jump” behavior,
which contradicts with the fact that Z(-) is continuous.

The equation (39) and the stealthy property (5) imply that
C% (tk+1) = Cz(tk41) = CZ(tk+1), based on which, a
necessary condition for the existence of ZDA under corrupted
topology is stated formally in the following proposition.

Proposition 3: Consider the systems in (38) and (17). We
have y (¢) = y (¢t) for any t € [tg+1,tk+2), if and only if

d
Z CAi"(tk+1)<Aa'(tk‘+1) - AU(thrl))Z(d_l) (tr+1)
=0

= 0|M\7 Vd € Ny. (40)

Proof: See Appendix D. ]
We set d = 0,1 and expand (40) out to obtain:

~

Cz(ﬁg(tk+1) - Ed(tk+1))x(tk+1) = O‘Ml’

~

CZ(£O’(tk+1) - Ea(tkﬂ))v(tk"'l) - O‘Ml'

(41a)
(41b)

The result (41) shows that like the stealthy topology attacks
in smart grids [28], [45] and software-defined networks [29],
the attacker needs some agents’ real-time state data to decide
the target links to attack, while according to Lemma 1, the
attacker cannot simultaneously infer x; (tx41) and v; (tx+1),
Vi € V\M. Therefore, there should be a scope of attackable
connection links under the strategy (19).

Without loss of generality, we express the difference of
Laplacian matrices in the form:
i Lottssn). 1 Ompvizipn |

—L =|--=-- - -
oty ot )
s 2101w p1ywm :0(v1— B VI~ B1)

(42)
where D denotes the set of agents in the sub-graph formed by
the target links to be possibly attacked, £5(;, ., ,) € RIPIXIPI jg
the elementary row transformation of the Laplacian matrix of a
subgraph G in the difference graph, which is generated by the
corrupted graph Gy, ., of the topology attacker and candidate
graph G, of the defender at time 5.

Since Cy € RIMIXIVI and Lo(trr) € RIPIXIPL the relations
in (19), (41), and (42) imply that the attacker can devise a
stealthy topology attack (without knowing the measurements
of the agents in V\M which are unavailable) only when the
scope of target links satisfies:

D C M. (43)
V. DETECTABILITY OF STEALTHY ATTACKS
Based on the systematic study of the attack behaviors and
policies in Section IV, in this section, we investigate the
detectability of the proposed ZDA variations.

7

A. Detectability of Intermittent Zero-Dynamics Attack
We first define

Upi 2 diag {[Qv]; 1., [Qrl o } (44)
Fé{z‘|[Qr]i,jfo,ieM,VjeV,WeL}, 45)
where (), satisfies (11).
Defense Strategy Against Intermittent ZDA ’7
Strategy on switching topologies: £, has distinct
eigenvalues for Vr € L.| (46)
Strategy on monitored-agent locations: T # (). 47

Theorem 1: Consider the system (14) in the presence of
attack signals (23). Under the defense strategy against inter-
mittent ZDA,

« if the monitored agents output the full observations of

their velocities (i.e., ¢;; = 0 and ¢;o # 0 for Vi € M),
the intermittent ZDA is detectable and

N8°={02V|7[1|§f|0rw} }%

o if the monitored agents output the full observations of
their positions (i.e., ¢;1 # 0 and ¢;5 = 0 for Vi € M), the
intermittent ZDA is detectable but

NG® = {0} ; (49)

« if the monitored agents output the partial observations
(i.e., ¢t 75 0 and ¢;o 75 0 for Vi € M), and ¢;1 = ¢;2,Vi €
M, the kernel of the observability matrix satisfies

(48)

Ng° = {02|V|» [1|‘{V|—1§,|}T} ; (50)
and the intermittent ZDA is detectable if
§o > to, or D = Opy 2|, (51
where Ng° is computed recursively by (20) and (21).
Proof: See Appendix E. [ ]

Under the defense strategy consisting of (46) and (47), the
result (49) implies that if the monitored agents output full ob-
servations of position, the condition (19) is not satisfied. While
the results (48) and (50) show that if the monitored agents
output full observations of velocity or partial observations,
the condition (19) is satisfied, and according to Lemma 1,
the privacy of all states of non-monitored agents is preserved,
which further implies that using the available data (5), the
attacker cannot infer the global system state and the global
initial condition. Therefore, for the purpose of privacy preserv-
ing of non-monitored agents’ states, consequently, restricting
the scope of attackable links to derive the defense strategies
against the cooperative ZDA, we abandon full observation of
position.

B. Detectability of Cooperative Zero-Dynamics Attack

Considering the matrix @, satisfying (11), we describe the
defense strategy as follows:

Defense Strategy Against Cooperative ZDA ’7

Strategy on switching topologies: (46).

Strategy on monitored-agent outputs: c;o >0,Vie M.| (52)
Strategy on monitored-agent locations:
[Qr]i,m_ [Qr}jym;«é 0,vymeV\{1},VreL,Vi#£jeM.,| (53)
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Theorem 2: Consider the system (36) in the presence of
zero-dynamics attack in cooperation with topology attack
under (43). Under the defense strategy against cooperative
ZDA, the attack is detectable.

Proof: See Appendix F. [ |

Remark 10: The common critical requirement of our defense
strategies is that the communication network has distinct
Laplacian eigenvalues. There indeed exist many topologies
whose associated Laplacian matrices have distinct eigenval-
ues. The following lemma provides a guide to design such
topologies:

Lemma 2 (Proposition 1.3.3 in [43]): Let G be a connected
graph with diameter m. Then, G has at least m + 1 distinct
Laplace eigenvalues.

VI. ATTACK DETECTION ALGORITHM

Using the proposed defense strategies and the detectability
conditions in Section V, this section focuses on the attack
detection algorithm that is based on a Luenberger observer.

A. Luenberger Observer under Switching Topology
We now present a Luenberger observer [46]:

q; (t) = W; (t) (543)
wi(t) = —w; () + Y_af g; (1) — ai(t))
eV
Tz'(t), cil#O,iGM
= [ ri(b)db, ciy = 0,ieM (54b)
0, i€eV\M
7i(t) = cinqi(t) + cipw;(t) —yi(t),i€M (54c)

where J;(t) is the monitored output of agent ¢ in system (14),
r; (t) is the attack-detection signal.

We next consider a system matrix related to the system (54)
in the absence of attacks:

. 0 1
i s [ ix vl L Lvixe } ’ (55)
—Lr = C 1 =Lxy
where
= [ “ } or [ & ] (56)
Ov|—napyx v O(jv|—|mp)x|v]

with C7 and Cs given by (16d). It is straightforward to obtain
the following result regarding the matrix stability.

Lemma 3: The matrix A, defined by (55) is Hurwitz, if £,
is the Laplacian matrix of a connected graph and

Oy # C 2 0. (57)

If the sequence (10) has one connected graph and gain ma-
trix C' (56) satisfies (57), it follows from Lemma 3 that there
exists a P > 0, such that under convex linear combination,
the matrix measure satisfies

-1 R
> vanr (A) <o.
s=0

(58)

8

Algorithm 1: Strategic Topology Switching

Input: Initial index k£ = 0, initial time ¢; = 0, observer

gains satisfying (57), periodic sequence L (10)
with length of [ satisfying (13) and (58).

1 Run the system (14) and the observer (54);

2 Update dwell time: 7,(1,) <= To(t poa (oni))>

3 Switch topology of system (14) and observer (54) at time

U + To(ty): oty + Tg(tk)) + L(mod(k +1,L));

Update switching time: tg < tx + Ty (1)

Update index: k < k + 1;

Go to Step 2.

A A

B. Strategic Topology-Switching Algorithm

We next propose Algorithm 1 that describes when and which

topology to switch to detect the ZDA variations.

Theorem 3: If the monitored agents satisfy (47), (52) and

(53), and the switching topologies in L satisfy (46),

o without requiring the knowledge of the misbehaving
agents and the start, pause, and resume times of the
attack,

1) with ¢;; = 0, Vi € M, the observer (54) is able to
detect the intermittent and cooperative ZDAs;

2) with ¢;1 = ¢;9, Vi € M, the observer (54) is able to
detect the cooperative ZDA and intermittent ZDA
under (51);

o in the absence of attacks, the agents in system (14)
achieve the asymptotic consensus, and the observer (54)
asymptotically tracks the real system (15) if ¢;; = c;2,
Vie M, or ¢;; =0, Vi € M.

Proof: See Appendix G. [ ]

Remark 11: The modulo operations in steps 2 and 3

of Algorithm 1 describe the building block of our defense

strategy, that is periodic topology switching. Given the length

of topology switching sequence, i.e., [, and the length of the

running time of the system (14) and the observer (54), denoted

by ty—to, the totzzll n?mber of topology switchings can roughly
=],

be computed as ~—

VII. SIMULATIONS

We consider a system with n = 16 agents. The initial

position and velocity conditions are chosen as zgo) =
T 71T _ T T

2x1d,4x1{] and v(ty) = [6x1J,8x1{] . The
coupling weights and observer gains are uniformly set to one.
The considered network topologies are given in the following
Figures 1 and 4 where the yellow nodes denote the monitored
agents that output full observations of individual velocities.

A. Detection of Intermittent ZDA

We first consider the periodic topology switching scheme
in Figure 1 (a). We denote the topologies with the controlled
links a%t) in “On” and “Off” by 1 and 2, respectively.
The considered corresponding periodic switching sequence is
L =

o(tg) =1,0(t1) =2 p . It can be verified that with
—_— —

To:3 7'1:6
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(a) Periodic Topology Switching
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(b) Periodic Topology Switching

Figure 1. Two periodic topology switching schemes for intermittent ZDA.

y1(t) = v1(t), neither of the switching topologies in Figure 1
(a) has distinct eigenvalues and IF = &, such that the defense
strategy consisting of (46) and (47) does not hold. Therefore,
the attacker can design an undetectable intermittent ZDA as
follows:
o inject false data z(ty) = [04,—1,1,0{,, —0.08 — 2i,
0.08+2i,01,]"
the observer (54);
o inject ZDA  signals  gi(t) = (29136 +
2.321)e(0:08=20)(t=02)  and  gs(t) = (-2.9136 —
2.321)e(0:08=2)(t=02) o the local control inputs of
agents 4 and 5 for the initial Topology 1 at £, = 0.2;
o pause the ZDA if the incoming topology is unknown;
o update the attack strategy if necessary, and resume the
feasible attack after newly switched topology is inferred;
o iterate the last two steps.

to the data of initial condition sent to

Some agents’ velocities and the attack-detection signals in
Figure 2 show that with y;(t) = v1(t), when the defense
strategy consisting of (46) and (47) does not hold, the attacker
can design an intermittent ZDA that cannot be detected by
the observer (54) under Algorithm 1 (constant zero detection
signal), and the stealthy attack renders the system unstable (in
the absence of attacks, tl_lglo lv;(¢)| = 0,Vi € V).

3 =10%° (@) 1 (b)
P 5
g * 134(75) —Imag(r, (1))
B 1 Real(r, (1))
A “ = 05¢ - 1
1F I =
= %< 5
S o x o
oc - o
& -5 =
1) s 3
s - =05
oF .
-
%
-3 -1
-5 o 5 ) 50 80
Imag(-) =103 Time

Figure 2. Individual velocities (a) and attack-detection signal (b).

The switching topologies in Figure 1 (b) satisfy the defense
strategy consisting of (46) and (47). Hence, according to the
first statement in Theorem 1, with y; (¢) = v1 (), i.e., c11 =0,
we can turn to the switching scheme at some time to detect
the stealthy attack. Under the topology switching scheme
in Figure 1 (b), the trajectory of attack-detection signal in
Figure 3 (b) shows the observer (54) succeeds in detecting

the intermittent ZDA (nonzero detection signal), which also
demonstrates the first statement in Theorem 3.

4 a b
5> <10 (a) 14000 (b)
|84 (2)]
— |55 ()| 12000 |
@ L =
215 — 10000
[&] —
3 £ so000
D > +
= 1 5
3 § 6000 -
= S
S £ 4000+
= L
= 0.5 8
2000
o [¢)
o 10 20 o 10 20
Time Time

Figure 3. Trajectories of velocities (a) and attack-detection signal (b).

B. Detection of Cooperative ZDA

(a) Periodic Topology Switching

(b) Periodic Topology Switching

@

@ ©-@
LB, @

®

@:\
©-@

I

Figure 4. Network topologies for cooperative ZDA.

®

We denote the switching topologies in Figure 4 (a) by 3
and 4, in Figure 4 (b) by 5 and 6, respectively. It can be
verified that with y;(t) = v;(¢), i € M = {1, 2,3}, neither
Topology 3 nor Topology 4 satisfies the defense strategy
consisting of (46), (52) and (53). Therefore, under the periodic

topology switching sequence L = ¢ o(tg) =3,0(t1) =4 »,

T0=3 T1=1
it is possible to design stealthy cooperati\?e ZDA as follows:

« inject false data z(ty) = [0,0,0,1,1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0, O}T to the data
of initial condition sent to observer (54);

o inject ZDA signals §1 (t) = g3(t) = g7 (t) = —ét,
ga (t) = bet, gs (t) = 2¢* and gg (t) = 3e’ to the local
control inputs of agents 1, 3, 7, 4, 5 and 6, respectively,
at initial time for Topology 3;

o inject false data —e? to the monitored outputs;

« maliciously control the connection between agents 2 and
3, such that the original ZDA policy maintains its feasi-
bility under the corrupted topology at incoming switching
times.

The trajectories of velocities and attack-detection signals in
Figure 5 show that the designed attack makes system unstable
without being detected (constant zero detection signals).

The switching topologies in Figure 4 (b) satisfy the defense

strategy consisting of (46), (52) and (53). Therefore, with
yi(t) = v;i(t), ie., ;g = 0,9 € M = {1,2,3}, according to

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on July 01,2020 at 17:35:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2997363, IEEE

Transactions on Automatic Control

a5 ~<10°% (a) 1 (b)
5.0)] | ()
3 ---6 ()| | 1o (t)
%] ! =2 ()]
Ees I ogos rs(t)
3 | 5
£ 2 i UC)
< | S o
315 N =
E | Z
= 1 Il 9.5
/
0.5 /
/
/
0 = -1
o 5 10 15 o) 5 10 15
Time Time

Figure 5. Trajectories of velocities (a) and attack-detection signals (b).

Theorem 2, to detect the cooperative ZDA we can consider
the periodic topology switching sequence in Figure 4 (b):

L =1<0(ty)=5,0(t1)=6
— ——

T0:3 7'1:1

. We assume that the attacker

can modify any connection in the scope of attackable links.
The trajectories of attack-detection signals in Figure 6 demon-
strate that the observer (54) under Algorithm 1 succeeds in
detecting the cooperative ZDA (nonzero detection signals).

10

a b
3000 @) 0.2 (b) -
1\34 (t) 'l 1 (t) ,‘l 'l‘
2500 -- U6 ()] | 1o (t)| | |
3 /Il <« 0.1 --rg(B))
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Figure 6. Trajectories of velocities (a) and attack-detection signals (b).

C. Comparison with Existing Works

The existing results on the detection of ZDA are summa-
rized in Table 1. Since |M| = 1 in Figure 1 and |K| = 1 for
intermittent ZDA, M| = 3 in Figure 4 and |K| = 6 for cooper-
ative ZDA, and the connectivity of all network topologies are
the same as 1, which violate the conditions in Table I. Defense
strategies that rely on only strategically changing system
dynamics [23], [24], while are effective against conventional
ZDA and inspired us to analyze more sophisticated scenarios
in this paper, implicitly assume that the attacker has no aware-
ness of the aforementioned defense. Hence, the intermittent
ZDA (when the system is unobservable) or cooperative ZDA
(when the system is observable) cannot be detected by these
methods. We also note that none of the prior work explicitly
takes the issue of privacy/observability of initial/final states
into account as we have pursued in this work.

VIII. CONCLUSION

In this paper, we have first introduced two ZDA variations
for a scenario where the attacker is informed about the
switching strategy of the defender: intermittent ZDA where

Table 1
CONDITIONS FOR DETECTION OF ZDA

Reference | Conditions Dynamics

[12] size of input-output linking is smaller than [K] Continuous Time
[18] connectivity is not smaller than 2|K| + 1 Discrete Time
[19] [K] is smaller than connectivity Discrete Time
[20] the minimum vertex separator is larger than [K[ + 1 | Discrete Time
[21] single attack, ie., [K[ =1 Continuous Time

the attacker pauses, updates and resumes ZDA in conjunction
with the knowledge of switching topologies, and cooperative
ZDA where the attacker employs a stealthy topology attack
to render the switching topology defense ineffective. We have
then studied conditions for a defender to detect these attacks,
and subsequently based on these conditions, we have proposed
an attack detection algorithm. The proposed defense strategy
can detect both of the proposed ZDA variations, without
requiring any knowledge of the set of misbehaving agents or
the start, pause and resume times of the attack. Moreover, this
strategy achieves asymptotic consensus and tracking in the
absence of an attack without limiting the magnitudes of the
coupling weights or the number of monitored agents.

Our analysis suggests an interesting trade-off among the
switching cost, the duration of an undetected attack, the
convergence speed to consensus and tracking. Analyzing this
fundamental trade-off through the lens of game theory and
multi-objective optimization constitutes a part of our future
research.

APPENDIX A: AUXILIARY LEMMAS

In this section, we present auxiliary lemmas that are used

in the proofs of the main results of this paper.
Lemma 4: [47] Consider the switched systems:

T (t) = Agpyz (1)

under periodic switching, i.e., o (t) = o (t + 7) € &. If there
exists a convex combination of some matrix measure that

satisfies
-1
Y vk (An) <0, (59)
m=0
where v, = Z=—; then the switched system system is
> Ti
=0
-1
uniformly asymptotically stable for every positive 7= Y 7;.
i=0

Lemma 5: [48] Consider the Vandermonde matrix:

1 71 Pl
B A TR A
e | 6f | a3 iooioan | cgexn
. | | |
RS S S e
al” iay Lap!

T (ai —ay).

Its determinant is det (H) = (—1) =

1<j
Lemma 6: Consider the matrix (), that satisfies (11). If
A2(L;) > 0, then

ker ([Q/],.0,.) = {11401} (60)
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Proof: The proof follows from a contradiction argument.
We assume that (60) does not hold, i.e., there exists a vector
U =e1,-.-, gaw‘]T such that

v & span {1y}, Opy } (61)
and [Q ]2 W), % = Ojy|—1. Then, it follows from (11) that

L, = QrArQ] ¥ = Q,01y) = Opy.

From [43], we know that an undirected graph is connected
if and only if Ay(L,) > 0, and further the null space of the
Laplacian matrix £, of a connected graph is spanned by the
vector 1jy|. We obtain from (62) that 1 = ... = ¢y|, which
contradicts with (61). Thus, (60) holds. This concludes the
proof. ]

(62)

APPENDIX B: PROOF OF PROPOSITION 1

Based on average variables Z(t) £ ﬁ > x; (t) and (¢) £
iev

ﬁ >~ v;(t), we define the following fluctuation terms:
iev

B (t) & w; (1) — 2(b), (63a)
v; (t) £ v () — 0(t), (63b)
which implies that
1Yy& (t) =0, for t > tg (64a)
110 (t) =0, for ¢ > to. (64b)
Con51der1ng (1b), (8) and ag(t) = ag(t) we have
at |V| 7 2 TV 7 2wl
i€V i€V
o’(t )
|V| Z —v;(t +Za ) —x; (1))
zGV Jjev
= |V| Z Uz = 7
i€V

which, in conjunction with (63b), leads to
¥ (t)
=0 (t) —0(t) = u; (¢t )+17( )

+ Z aa’(t)

= vt —; (1) + (1)
Jjev
- +Z%f> (6 =2(8) — (z: ()~ (1))
JEV
— it +Za"“ =& ).V (©5)
JEV

The dynamics of the second-order multi-agent system (1)
with control input (8) can now be expressed equivalently as

z(t)=0(t) (66a)
V() =~ (t) = LowT (t), (66b)
where (66b) considers its equivalent form (65).
Let us define # = Q% and © £ Q. Noting (11), the
dynamics (66) can equivalently transform to
2(t)=20(1)
() =—0(t) -

(67a)

Y,d(t),r,s €S (67b)
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where Y,, is defined in (12a). We note that it fol-
lows from (64) and (11b) that 2 (¢) = ©1(¢) = 0,
(Trsly. = OWI and [Y,s].; = Ojy|. Let us define § =
[To |... xm L. 17}|V|]T. Thus, the system (67) equiv-
alently reduces to

0(t)=AHb(t),s€S (68)

with A, given in (12b). Meanwhile, it is straightforward to
verify that when r = s, Ay is Hurwitz. Therefore, the exists
a P > 0 such that up (A,) < 0. Through setting on the
dwell time of the topology indexed by r, (59) can be satisfied.
By Lemma 4, the system (68) is uniformly asymptotically
stable, i.e., for any initial condition, tlim 0(t) = 02/v|—2
— 0
which implies that lim QTz(t) = Jim QTo(t) = Oy,
Since @ is full- rank we have hm x(t) = tlim o(t) =
—00
Ojv|. Then, (63) implies that hm xi (t) = tlim Z; (t) and
—00

thm 0; () = thm 0; (t), Vi ;é j € V. Here, we conclude
— 00 —r OO

that the second-order consensus is achieved, and we define
v* = tlim ¥; (t),Vi € V. Then, substituting the second-order

—00

consensus into the system (1) with control input (8) yields the
dynamics ©* = —ov*, which implies a common zero velocity
at steady state.

APPENDIX C: PROOF OF PROPOSITION 2
Let us first define:

A L
Y=9—y. (69)

It is straightforward to obtain dynamics from (3) and (7) as

z(t) = Az (t) + g (t)
y(#)=Cz(t)+ Dg (),

where z (t) is defined in (33).

1) Proof of (35): Since [{x, (k) C [t trt1), o(t) =7
for t € [¢,Cr). We denote = (s) = £{z(t)}, where £()
stands for the Laplace transform operator. It follows from the
attack signal (23) that £{g(¢t)} = (e % —e gks)g(ék) te
[€k, C). Without loss of generality, we let o(t) = r for t €
[tk, tk+1)- Then, the Laplace transform of the dynamics in (70)
is obtained as

(e68" = e60) (62 (5) — 2(61)
= (6757@8 - ekaS)ATE (s)+ (67&“8 —e

(70a)
(70b)

7(;65) g(gk)
5= "77’7

which is equivalent to

e—Ers _ o—Cks <
e H )2 = ()(z(fk){(i’;)). (71)

G
s1yy|xov—A

T,

Expanding (26b) out yields

Cz (&) + Dg (§k) = Oy,
z (&) — Az (&) = 9 (&),r € T.

Substltutmg (73) into (71) yields (e7%° — e~**)=(s) =
(e ke —e—<k)

g1vesé (3”5).

(72)
(73)

z (£x), and the inverse Laplace transform of it
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2) Proof of (34): It follows from (35) and (70) that
y(t) =€) (Ca(&) + Di(ér)) € (€, k), kENy (74)

which combined with (72) results in y (t) = Opy, or equiva-
lently, 7 (t) = y (¢), for any ¢ € [&, (k).

We next prove (5) over non-attack interval of ZDA
[Cks&k+1). From (23) and (25), the dynamics (70) over such
non-attack intervals of ZDA (subject to the monitored output
attack as (25)) is described by

z(t) = Aspyz (1) (752)
y(t)=Cz(t)+ D Z L€ [Cryrsr).  (T5b)

It follows from (35) and (75a) that

z(t) (76)
€A"(‘k)(t7tk)z (tk) , tE[tk, §k)

= { pramixzv e (t=Er) A () (G —te) (te) telen, C)

eAg(tk)(t_tk_(Ck_fk))""lz\w><2|‘V\77T(Ck_£k)z(tk)7te[é-k’tk+1).
We conclude from (69) that (34) is equivalent to

Yy (t) = O\M| on [to, tk+1) . (77)

For D = Oy x2v|> we note that (77) implies that the system
(75) is unobservable for any ¢t € [tg,tg+1), & € Np. It is
immediate that

z(t) € ker(Ox) = N}, k € No. (78)

We next show that z(t,_1) € Nq p for 0 < ¢g—1 <k,
through inductive argument. Let us suppose z(t,) € N’C
We obtain from (76) that z(t,) = z(t;) =
ena(tq_1>(€q—1—5q—1)€Ao(tq_1)("’q—l—(Cq—l—Eq—1))z(tq_1),
which, in conjunction with the fact of eMottq—1)(Ca-1=8a-1)

0, leads to z(ty—1) € e_A”(tq—l)(T"‘l_(gq‘l_gq‘l))ﬁ’;.
Moreover, we note that (78) implies that z(t,—1) € ker(Og—1).
Therefore,

2(tyr)€e Hotta-n ot =G =8 INE Aker (0, 1), (79)

where the right-hand expression is, in fact, the computation
of N*__, i.., the unobservable space given by (28). Let ¢ =
1, we have z(to) € NE. Then, following the same steps in
the proof of necessary condition in Theorem 1 of [44], we
conclude that (34) holds if and only if there exists a non-zero
vector z (to) such that

q—1

VA (to) S 1/\\1]8

For D # Opvyx2pv)» it follows from (72) and (75b) that
v() =y (C,;) = Opy. Therefore, in this scenario, (77)
holds only when y () = Opyg on [to,tx41). Updating the
observability matrix O, in (22) by (5q in (31) and following
the same steps to derive (80), we conclude that (34) holds if
and only if

(80)

z(ty) € N§, (81)

where 1(175 is recursively computed by (29) and (30).

12

In addition to (80) and (81), we conclude that if (26a) and
k
(72) hold, regardless of D 3 §((,,) # Op or = Opg, (34)
m=0
always holds.

APPENDIX D: PROOF OF PROPOSITION 3

- T =717 & ~ .
Let us define é £ [e;r § e;'—] £ 2 — 2. Without loss of

generality, we let o'(tz41) = s. Noticing (39), we obtain from
the dynamics (38) and (17) that

é(t) = Age(t)+(Ay—Ay)2(t), tE€ [trar, tire)  (822)
y(t)—y(t) = Ce(t), (82b)
€(tk+1) = Oy, (82¢)

from which we have
_ t N
mt)—y(t):CeAS“‘“““)/ e A7) (A, — A)=(7))dr,
tht1

and the corresponding derivatives

ORI
R t —~
_ CA\(SieAS(t_thrl)/ e—AS (T—tk+l) (A\S —AS)Z(T)dT
tet1
-1
+ D" CAL((A, - A,)2171 D (). (83)
=0

We note that under corrupted topology, the stealthy property
y(t) —y(t) = Opy for any ¢ € [tyy1,tx12) is equivalent to
U (ths1) — Y (tit1) = Opy for Vd € No, which is further
equivalent to (40) by considering the solution (83).

APPENDIX E: PROOF OF THEOREM 1

Without loss of generality, we let o((x) = r € T, and
Cr < trt1, k € N, i.e., attacker “pauses” ZDA at (. We now
prove this theorem via a contradiction. We assume that the
attack is not detectable in [, , {x41), which is equivalent to

y (t) = Opy for any ¢ € [(, Ekt1), (84)

where y (t) is defined in (69).
Considering the fact that given a differentiable function
f(t), f(t) = 0 for any t € [a,b], if and only if f(a) =

and f((a) = 0, Vd € N. We conclude from (75) that (84) at
time (j is equivalent to
C D =0 d=0
v @)= ¢7 (Ck) + Z 9 (Cm) = Opy, (85)
CA? (Ck) = 0|M| vd € N.

With the definitions of A,, C, D and z(-) in (16b), (16c),
(16e) and (33), the relation (85) can be further rewritten under
different forms of observation as follows:

o Full Observation of Velocity, i.e., ¢;; = 0, Vi € M,

Cov (Cr) + DZ (¢n) = Oy (86a)
m=0

Cov (C) + CoL,x (Cr) = Opy (86b)

CQ»CiV (Ck) = 0|M‘,V6 eN (86¢)

CoL¥% (Ck) = O, Vd € N>o  (86d)
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e Full Observation of Position, i.e., ¢;o = 0, Vi € M,

k
C1x (G) + DY §(¢m) = Opy (87a)
m=0
C1E$X (Ck) = 0|M‘,V€ eN (87b)
CLLiv (G) = O, VA €N (870)

o Partial Observation, i.e., ¢;1 # 0 and ¢;5 # 0, Vi € M,

k
C1x (Gr)+Cav (G)+ DY §(Cm) =Opnay,

m=0

C1Lx (C) + C2LEv (Ce) =0|M‘,V€€N (88b)
(C1—C2) LIV (C) — Co L2 %(Cr) =0y, Vd € No. (88¢)

(88a)

Considering the definition of the vector z(t) in (33), and
its continuity with respect to time, i.e., z (C]:) = z((x), it
follows from (35) and (23) that at time ¢,

[Z(C@} _ oG —n) {Zv(f’f)] C®89)

which, in conjunction with the fact of e”*(g —&x) # 0 and the
condition (26b), results in

(90)

With variables §(¢, ), 9(¢; ), z (Cx), A, and Py, defined in
(16f), (16g), (33), (16b) and (32), respectively, expanding (90)
yields
on
92)

nrx (k) — v (Ck) = Oy,
=g (¢;) + v(C) + Lx (G) + 1ov(Ce) = Oy

Before proceeding the rest of proof, we define the variables:

H; & [Upix (Ck)]o:v)s (93a)
D, £ diag {Ag (Lr), e Ay (,cr)} , (93b)
[ AB(Ly) e AR (L)
AL e AR (L)
H, & A , (93c)
AL e AL
o 1 L Lo
o AaLe) e Aw(Lr)
H, = : T : , (93d)
ST

where U,-; is given in (44).

A. Under Full Observation of Position or Velocity

Let us start with full observation of velocity. It follows from
(11) that £¢ = Q,A%Q, with A, given in (11). Thus, (86d)
is equivalent to C2Q,A%Q, x () = Oy, Vd € N>o, which
is further equivalent to

V|

S ONL)Q;, (@], % () =0,Yd €N, Vie M (94)

1=1
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with the consideration of the matrix (' defined in (16d) with
c;2 # 0,Vi € M. Further, recalling H,., H; and U,.; from (93c),
(93a) and (44), from (94) we have

H,H; = Oyj_1,Vi € M. (95)
It can be verified from (93b)—(93d) that 7—~£T = H,D,,

from which we have det(H,.) = det(#,) det(D,.). The matrix
defined in (93b) shows if £, has distinct eigenvalues, D, is
full-rank. In addition, by Lemma 5, the Vandermonde matrix
H, is full-rank; thus, H, is full-rank. Therefore, the solution

of (95) is
H, = OW|,1,VZ. € M. (96)

With the definitions in (44) and (93a), the equation (96)
indicates that for Vi € M,

diag{[@r]i,w AR [Qr]”i\”}[@j] 2:|V|7;X (Ck) :OWML (97)
We note that (44), (45) and (47) imply that 9i € M :
diag {[QT]Z‘Q’ cey [QT]Z'7‘V‘} is full-rank. Thus, from (97) we

have [QHQ:W‘_:X(@) = Ojy|—1. By Lemma 6, the solution
of (97) is '

x1 (G) = =Xy (Ck) - (98)

Considering (86c), using the same method to derive (98), we
obtain

vi(p)=...= vy (Ck) - (99)

Substituting (98) into (86b) yields Cav (Cx) = Ojpg), Which
together with (99) results in

vi(Ge) =...= vy (&) =0. (100)

For the full observation of position, using nearly the same
analysis method employed above, we obtain the same results
as (98) and (100).

Substituting (98) and (100) into (92) yields g (Cl; ) = Oy,
and consequently, ¢ (C & ) = Ogjy|. This means that there is no
ZDA on the system at ¢, , which contradicts the assumption
that the attack is applied until (. Therefore, we conclude
that under the full observation of position or velocity, the
intermittent ZDA is detectable.

1) Full Observation of Velocity: To proceed with the proof
of (48), we first need to obtain ker(Qy) of the system (17)
given in (22). The analysis of the kernel of the observability
matrix Oy can follow the relation (85) with the setting of
D = Opyyx2jv)- We note that (85) is equivalently represented
by (86), (87) and (88). The results (98) and (99) are obtained
without considering (86a), (87a) and (88a) which are the only
terms involving D. Then, results similar to (98) and (99) can
be obtained for the system in (17) as

x1 (Gr)=...=xv| () and vy () =...=vy (k). (101)
Further, with D = Ojyqjx2jv|, from (86a) with v () replaced
by v (Cx), we have Cov (Cx) = Oy, which combined with
(101) yields z1 (Cx) = ... = v (Cx) and vy (C) = ... =
vy (Cx) = 0. Thus, ker(Oy) = {OQW, [1‘—%/‘ 30&/‘ }T} Since
all of the elements in ker(Oy) are the equilibrium points of

the system (17), through the recursive computation of (20) and
(21), we arrive at (48).
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2) Full Observation of Position: To obtain ker(Oy) un-
der full observation of position, we can consider (87) with
D = Ojyx2pv|- From (87a) and (98) we have 1 () =

. = my| (Gk) = 0. Then, we obtain from (100) (replace
v; (Ck) by v; (C)) that ker(Oy) = {0y| }, which means that
if the monitored agents output full observation of positions,
the system (17) is observable at t;; thus (49) is obtained by
the recursive computation of (20) and (21).

B. Under Partial Observation

The analysis of observability follows the same steps of
that under full observation. With C; = Cs, from (88c) we
have CyLEH1x((),) = 0,Vd € Ny. Employing the same steps
to derive (98) under full observation of velocity, we obtain
(98) as well under partial observation. Moreover, substituting
(98) into (88b) and repeating the same steps, we arrive at
(99). It is straightforward to verify from the dynamics (17)
that x; (¢) = ... = X|v| (t) and v (t) = ... = Vv (t)
for any t > tg, if and only if (99) and (98) hold. Finally,
considering (88a) with the setting of D = Ojyyxopv|, We
have C1x(Cx) + Cov (Ck) = Ojpy, from which we have

T
ker(O) = {OQW, [IRM g_ll—l\—fl] ,Vk € Ny, and then (50)
is obtained by computation of (20) and (21).

Under the condition (51), z ({x) € Ng, which in conjunc-
tion with (91) implies 7, = —1. Substituting (98), (99) and
ny = —1 into (92) yields g (¢; ) = Opy|, and consequently,
g (C,:) = Ogpy|. This means that there is no ZDA on the

system at (;;', which contradicts the assumption that the attack
is applied until (.

APPENDIX F: PROOF OF THEOREM 2

With the definition of C},j = 1,2, in (16d), we can rewrite
(82) as

ém (t)=¢én(t), (102a)

b t) = —0 ()~ Lata ()~ (Lo=L,) (1), (102b)

y(t) —y(t) = Cré, (t) + C2éy (1) ,t € [tps1,trya) (1020)
€ (tsr1) = 0|V| €y (tky1) = Oy (102d)
We define C £ diag {012, ...,Cpj2}, where the diagonal

entries are from C5 defined in (16d). According to (52) and

|D| < |M]| (implied by (43)), the matrix C is invertible. Now,

considering (42), we have

¢y (£~ c.)= { ,,,,, CL L Ompa-io.

014 — 1)1 O] D] yx( 1] - D).

which, in conjunction with invertible matrix C and the def-

initions of A, in (16b) and A, in (37), implies that if

Oy <E§ — Eg) I(d) (tk+1) = 0|M‘,Vd € Ny, then

(A —A ) ) (try1) = Ogpy), Ve € No. (104)

Under the dynamics (102) and the relation (104), the
necessary condition (40) of guaranteeing stealthy property of
cooperative ZDA is equivalently written as

Cy (L = £0) L2 (tr11) = O, ¥ € No

, (103)

(1052)

Oy (ES - Es) L% (try1) = Opg,¥d € No.  (105b)

14

We assume that the topology attack in system (36) can
ensure that the stealthy property (5) of ZDA holds. Noticing
(103) and the dynamics (17), the equation (105) is equivalent
to Csa(tk+1)x(m)(tk+l) = O|D|,Vm € Ny, where X(tk+1) e

[1(trs1) | oo | x\D\(thrl)]T

’Qa(tk+1)x(m) (tk-‘rl) = O\D|7vm c NO'

. Since C is invertible, we have
(106)

As £5(4,,,) is the elementary row transformation of a
Laplacian matrix, there exists an elementary row operator
E € RIPIXIPI guch that So(tk“) = E£,(t,.,) is a Laplacian
matrix. Pre-multiplying both sides of (106) by E yields

LotteX™ (tet1) = Oyp|, ¥m € No. (107)

It is well-known that the null space of the Laplacian matrix of
a connected graph is spanned by the vector with all ones.
From (107) we conclude that 35,5 € D : .T,gm)(tk+1) =
l“gm)(tk;_i'_l), tr+1 > to, Vm € Ny, which can be rewritten as

(e —e ) al™ (ty41) = 0,Vm € No (108)

where e; denotes a vector of length |D| with a single nonzero
entry with value 1 in its sth position.
Due to the dynamics (17), the equation (108) leads to
(e] —e]) LIx (trs1) =0,¥m € Ny (109a)
(e] —e]) L0 (tpy1) = 0,Vm € N. (109b)

It follows from (11) that £¢ = Q,A?Q, with A, given in

(11c), substituting which into (109) yields that for Vm € N,

[V]
SN (1R~ [@r]0 )@, w(thi1) =0, (1108)
=2
[V]
S AL (1R~ [@r]2 )], v(tisn)=0. (110b)
=2

Then, with the definitions
Dy 2ding{[Qu],2 ~ Q)0+ Qi — [@el s (11D
FEQ @ (i) (112)
following the same derivations from (94) to (95), we arrive at
H,Dijf = Opyj_1,Vi € M, (113)

where H, is given in (93c). Using the same analysis to derive
(96), we conclude that under the condition (46), the solution of
(113) is D;; f = Oy|_1. Since D;; given by (111) is full-rank
under the condition (53), we have f = Opv|—1- Then, noticing
(112), by Lemma 6 we arrive at

oy (ter1) = ... = 2| (tegr) - (114)

Repeating the same procedure of deriving (114) from (110a),
we conclude v (tg41) = ... = v}y| (tg+1) from (110b), which
means that the second-order consensus is achieved at {51, i.e.,
x; (tk+1) =x; (tk+1) and v; (tk—i-l) =, (tk+1), Vi # jev.
It is straightforward to verify from the dynamics (66) that
the second-order consensus is achieved at some time ¢ < oo
if and only if the individual initial conditions are identical,
ie., T; (to) = T; (to) and v; (to) = vy (to). Hence, the
cooperative ZDA is undetectable only in the case of identical
initial condition that corresponds to the steady state.
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APPENDIX G: PROOF OF THEOREM 3
We define e, (t) = q(t) — % (t) and e, (t) = w (t) — 0 (1).
The dynamics of tracking errors in the presence of the attack
obtained from (54) and (14) are given as:

(1) =ey (), (1152)
e (t)=—eu(t) + 3 al(es,(t) — ey (1))
eV
o . Tz‘(t), Cﬂ#O,’iGM
gi(t),1€K t iy
_ {07 Tev\g ~ ) Jrori(®)db, e =0i€M (115b)
0, ieV\M
T (t) :Cilezi(t) + Cigevi(t) — d2§Z (t) ,’L. € M. (1150)

The attack is not detected by the observer (54) means that
r; (t) = 0,4 € M, for any ¢ > (. Substituting it into the above
equation results in

ém(t) = *em(t) + iezvagj(t)(emj(t) — exi(t)) — {gt (?é%/e\}éli
ri(t) = cireg(t) + cioey(t) —

which has the same form of dynamics as that of (14).
Therefore, the analysis of ZDA variations in the observer
(54) follows the same analysis of the system (14). Moreover,
the required condition (52) implies that the monitored agents
output full observations of velocity or partial observations:
either (48) or (50) implies (19). Hence, the topology attacker
cannot infer the real-time full states of the non-monitored
agents, and the topology attacker has to consider the scope of
the target connections implied by (43). Therefore, the proof
of the first statement follows from Theorems 1 and 2.

In the absence of attacks, the system matrix of system (115)
is A, () defined in (55). Since the condition (46) implies that
all of the switching topologies provided to Algorithm 1 are
connected graphs and condition (52) implies (57), the matrix
Ag(ty is Hurwitz by Lemma 3. Thus, there exists a P > (
such that both (59) and (58) hold. Hence, the proof of the
second statement follows from Proposition 1 and Lemma 3.
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