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Abstract— A class of nonlinear, stochastic staticization control
problems (including minimization problems with smooth, con-
vex, coercive payoffs) driven by diffusion dynamics and constant
diffusion coefficient is considered. Using dynamic programming
and tools from static duality, a fundamental solution form is
obtained where the same solution can be used for a variety of
terminal costs without re-solution of the problem. Further, this
fundamental solution takes the form of a deterministic control
problem rather than a stochastic control problem.

I. INTRODUCTION

We consider nonlinear optimal stochastic control problems
where the finite-dimensional dynamics take the form of
stochastic differential equations (SDEs). These problems are
typically converted into Hamilton-Jacobi partial differential
equation (HJ PDE) problems. In the case of determinis-
tic optimal control problems, the HJ PDEs are first-order
equations, while in the stochastic case, they are second-
order HJ PDEs. The dimension of the space over which
these PDEs are defined is that of the state process of the
control problem. Realistic control problems typically have
relatively high dimensional state processes (i.e., greater than
dimension three), leading to PDEs over high dimensional
spaces. The solution of such HJ PDE problems has long
been hampered by the curse-of-dimensionality, and we note
that this has limited solution of such problems by classical
methods to relatively low state-space dimensions on the
order of three to five (cf. [3] and the references therein).
More recently, the max-plus based curse-of-dimensionality-
free methods have demonstrated computational tractability
for significantly higher space dimension, and this approach
have been quite effective in the case of first-order HJ PDE
[6], [13], [14], [15], [16], with the caveat being a curse-
of-complexity that grows rapidly with back propagation.
Extensions of the max-plus based curse-of-dimensionality-
free methods to second-order HJ PDE and stochastic control
problems has been less computationally successful [11], [1].

Here, we demonstrate that for certain classes of problems,
one may convert the second-order HJ PDE associated to
stochastic control problems driven by Brownian motion into
a first-order HJ PDE combined with a small integral term.
Hence, the rapid curse-of-dimensionality-free methods may
be applied. Further, the solutions are obtained as fundamental
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solutions, which implies that the same solution may be ap-
plied to varying terminal costs without complete re-solution
of the HJ PDE problem.

II. DEFINITION OF THE PROBLEM CLASS

We consider a nonlinear stochastic control problem where
the SDE dynamics and initial state are given by

dξt = f(ξt, ut) dt+ µdBt, ξs = x ∈ Rn, (1)

where the underlying probability space is denoted as
(Ω,F∞, P ). Also, B· denotes an n-dimensional Brownian
motion adapted to filtration Ft. We suppose the control,
ut ∈ U ⊆ Rk for all t. Fix T ∈ (0,∞), and for s ∈ [0, T ],
let the control and state-process spaces be given by

Us
.
= {u : [s, T ]× Ω → Rn |u is Ft-adapted, right-contin.

and such that E
∫ T

s
|ut|m dt <∞ ∀m ∈ IN }, (2)

Xs
.
= {ξ : [s, T ]× Ω → Rn | ξ is Ft-adapted, right-contin.

and such that E sup
t∈[s,T ]

|ξt|m <∞ ∀m ∈ IN }. (3)

The payoff will be given by

J(s, x, u; z)
.
= E

{ T

∫
s
L(ξt, ut) dt+ ψ(ξT ; z)

}
, (4)

ψ(x; z)
.
= 1

2 (x− z)T M̄(x− z) + γ̄, (5)

where M̄ is positive-definite and symmetric, and z ∈ Rn.
For reasons of space, we will not include the case of more
general payoffs here. The value function is given by

W̄ (s, x; z)
.
= stat

u∈Us

J(s, x, u; z). (6)

We remark that in the case of a convex, coercive, C1 payoff,
stat is equivalent to minimization; that is W̄ (s, x; z) =
minu∈Us J(s, x, u; z). Hence, all results obtained for stati-
cization problems hold for such minimization problems.

III. STATICIZATION DEFINITIONS

Although minimization, maximization and saddle-point
generation are more common in control theory, “staticiza-
tion” has recently proven to be quite useful. We make
the following definitions. Let Z be a real normed vector
space with A ⊆ Z , and suppose G : A → R. We say
ū ∈ argstatu∈AG(u)

.
= argstat{G(u) |u ∈ A} if ū ∈ A

and either
lim sup

u→ū,u∈A\{ū}

|G(u)−G(ū)|
|u−ū| = 0, (7)
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or there exists δ > 0 such that A ∩ Bδ(ū) = {ū}. If
argstat{G(u) |u ∈ A} 6= ∅, we define the possibly set-
valued stats operation by

stats
u∈A

G(u)
.
=

{
G(ū)

∣∣ ū ∈ argstat{G(u) |u ∈ A}
}
. (8)

If argstat{G(u) |u ∈ A} = ∅, then statsu∈AG(u) is
undefined. We are mainly interested in a single-valued stat
operation. In particular, if there exists a ∈ R such that
statsu∈AG(u) = {a}, then statu∈AG(u)

.
= a; otherwise,

statu∈AG(u) is undefined. The following is immediate.
Lemma 1: Suppose Z is a Banach space, with open set

A ⊆ Z , and that G is Fréchet differentiable at ū ∈ A. Then,
ū ∈ argstat{G(y) | y ∈ A} if and only if DG(ū) = 0.

IV. RECOLLECTION OF RESULTS

The first step is the development is that of obtaining the
equivalence between the value function and the solution of
the associated HJ PDE problem. This equivalence is very
standard in the minimization, maximization and minimax
cases, and less so in staticization cases that do not correspond
to these. We recall a dynamic-programming staticization
result here, so as to ground the sequel. In particular, we work
under strong conditions so as to avoid excessively technical
proofs.

We will let X .
= (0, T ) × Rn, X̄ .

= (0, T ] × Rn, Y .
=

(0, T )×R2n and Ȳ .
= (0, T ]×R2n. We specifically consider

0 =Wt + stat
v∈U

{
f(x, v)TWx + L(x, v)

}
+ 1

2 tr[AWxx]

.
=Wt +H0(x,Wx) +Q0(x,Wx) +

1
2 tr[AWxx],

.
=Wt + H̃0(x,Wx) +

1
2 tr[AWxx], (t, x, z) ∈ Y, (9)

W (T, x; z) = ψ(x; z), (x, z) ∈ R2n, (10)

where Q0 is a quadratic function of its arguments, and
H0 contains all remaining non-quadratic terms defining the
Hamiltonian (where we note that the diffusion coefficient in
(1) is constant). We assume the following.

Assume that for z ∈ Rn, W = W (·, ·; z) ∈
C1,4(X )∩Cp(X̄ ), and there exists C̄0 <∞ and
q ∈ IN such that |Wx(s, x)| ≤ C̄0(1 + |x|2q)
and |Wxx(s, x)| ≤ C̄0(1 + |x|2q) for all (s, x) ∈
X̄ . Assume U = Rk; f, L ∈ C3(Rn × U);
∃C̄1 < ∞ such that |fx(x, v)|, |fv(x, v)| ≤
C̄1, |fxx(x, v)|, |fxv(x, v)|, |fvv(x, v)| ≤ C̄1 and
|Lxx(x, v)|, |Lxv(x, v)|, |Lvv(x, v)|,≤ C̄1.

(A.1)

Theorem 2: Assume (A.1). Further, suppose that for each
z ∈ Rn, there exists ū ∈ C(X̄ ) such that f(x, ū(t, x))
is globally Lipschitz on X and such that ū(t, x) ∈
argstatv∈U{f(x, v)TWx(t, x)+L(x, v)} for all (t, x) ∈ X .
Then W = W̄ on Ȳ , and ū yields payoff W̄ .

The proof of Theorem 2 is quite similar to that of [10,
Th 4.1], but with a real-valued (rather than complex-valued)
system and less specific dynamics and cost. For the benefit
of the reader, a partial proof appears in the appendix.

All results to follow are obtained under (A.1).

V. CONVERSION TO A FUNDAMENTAL-SOLUTION FORM

We now proceed through several steps that will lead
to a fundamental solution form, and then further, to a
deterministic-control, fundamental solution form. We remark
that the term “fundamental solution form” is being employed
here to indicate that modifications of the terminal cost, within
a certain class, will not require re-solution of the problem.
For x, p, α, β ∈ Rn and c1, c2 ∈ R, let

Q(x, p, α, β)
.
= c1

2 |x− α|2 + c2
2 |p− β|2.

We assume that H0 ∈ C3(R2n), that the first,
second and third derivatives of H0 are uniformly
bounded, and that H0 is uniformly Morse in
(x, p) ∈ R2n.

(A.2)

Using Assumption (A.2) and [9] Th. 4, one obtains:
Lemma 3: For |c1|, |c2| sufficiently large,

H0(x, p) = stat
(α,β)∈R2n

[
G0(α, β)+Q(x, p, α, β)

]
,

G0(α, β) = stat
(x,p)∈R2n

[
H0(x, p)−Q(x, p, α, β)

]
.

Lemma 4: Let |c1|, |c2| be sufficiently large. Then, for
each z ∈ Rn, the value function given by (1)–(6) is the
unique, classical solution of

0 =Wt + stat
(α,β)∈R2n

{
G0(α, β) +Q(x,Wx, α, β)

}
+Q0(x,Wx) +

1
2 tr[AWxx], (t, x) ∈ X , (11)

W (T, x; z) = ψ(x; z), x ∈ Rn. (12)
Now, we let Q0 take the form

Q0(x, p) =
1
2

[
xTD1,1x+ 2xTD1,2p+ pTD2,2p

]
+ dT1 x+ dT2 p

where D1,1, D2,2 are symmetric. Note that for |c2| suffi-
ciently large, with Γ

.
= −(c2I +D2,2)

−1,

G0(α, β) +Q0(x, p) +Q(x, p, α, β) (13)

= stat
v∈Rn

{
[D1,2x+ d2 − c2β + v]T p+Q1(x, α, β, v)

}
,

Q1(x, α, β, v)
.
= G0(α, β) +

1
2x

TD1,1x+ c1
2 |x− α|2

+ c2
2 |β|

2 + dT1 x+ 1
2v

TΓv.

VI. UNDERLYING CONCEPTS

The discussion to follow in this section provides the
conceptual material related to the main result.

A. Iterated Staticization

Consider the following stationarity control problem.

dξt = (D1,2ξt + d2 − c2β̄t + ut) dt+ µdBt, ξs = x.

where u·, β̄· ∈ Us,T . Let the payoff and stationary value be

Jf (s, x, u, ᾱ, β̄; z)
.
= E

{∫ T

s

Q1(ξt, α̃
∗
T−t, β̄t, ut) dt

+ ψ(ξT ; z)
}
, (14)

Ŵ f (s, x; z)
.
= stat

ᾱ,β̄∈[Os,T ]2
stat

u·∈Us,T

Jf (s, x, u, ᾱ, β̄; z), (15)

Os,T
.
= {ν : [s, T ]× Ω → Rn | ν is Ft-adapted,
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right-contin. and s.t. E
∫ T

s
|νt|2 dt <∞}, (16)

Lemma 5: Let |c1|, |c2| be sufficiently large. Then, for
each z ∈ Rn, the value function W̄ given by (6) is identical
to the value function, Ŵ f , given by (15).

Proof: Note that Jf has a semi-quadratic form. The
result the follows from [8], [17].

Note that the inner staticization of (15),
statu·∈Us,T

Jf (s, x, u, ᾱ, β̄; z) is a set of linear-quadratic
Gaussian control problems, indexed by the ᾱ, β̄, and that
motivates the following.

B. Relevant Differential Riccati Equations

Consider the dynamics, driven by stochastic processes
ᾱt, β̄t, given by

Π̇t = −F̄1(Πt)
.
= −

{
ΠtK1Πt +KT

2 Πt +ΠtK2 +K3

}
,

(17)
π̇t = −F̄2(Πt, πt, ᾱt, β̄t)

.
= −

{
ΠtK1πt +ΠtK6V

2
t +K2πt + V 1

t

}
, (18)

γ̇t = −F̄3(Πt, πt, ᾱt, β̄t)
.
= −

{
G0(ᾱt, β̄t) +

c1
2 |ᾱt|2 (19)

+ c2
2 |β̄t|

2 + 1
2π

T
t K1πt+ (V 2

t )
Tπt +

1
2 tr(K4ΠtK5)

}
,

ΠT = Π̄
.
=

(
M̄ −M̄
−M̄ M̄

)
, πT = π̄

.
= 0, γT = γ̄, (20)

K1
.
=

(
(c2I +D2,2) 0

0 0

)
, K2

.
=

(
DT

1,2 0
0 0

)
,

K3
.
=

(
(c1I +D1,1) 0

0 0

)
, K4

.
=

(
AT

0

)T

,

K5
.
=

(
I
0

)
, K6

.
=

(
I 0
0 0

)
, V 1

t
.
=

(
d1 − c1ᾱt

0

)
,

and V 2
t
.
=

(
d2 − c2β̄t

0

)
. (21)

Note that F̄1 is independent of ᾱ·, β̄·. Also note that the
dynamics of (17)–(19), although stochastic, are not driven
by a Brownian motion; the stochasticity arises only through
the presence of ᾱ, β̄. Let a reverse-time state process be given
by (Π̂t, π̂t, γ̂t)

.
= (ΠT−t, πT−t, γT−t) for t ∈ [0, T −s]. The

reverse-time dynamics and initial condition are given by

˙̂
Πt = F̄1(Π̂t), ˙̂πt = F̄2(Π̂t, π̂t, α̂t, β̂t),

˙̂γt = F̄3(Π̂t, π̂t, α̂t, β̂t), Π̂0 = Π̄, π̂0 = π̄
.
= 0, γ̂0 = γ̄,

where α̂t
.
= ᾱT−t, β̂t

.
= β̄T−t. Consider the payoff given by

¯̂
J(τ, Π̄, π̄, γ̄, α̂, β̂;x, z) = 1

2

(
x
z

)T

Π̂τ

(
x
z

)
+

(
x
z

)T

E{π̂τ}

+ E{γ̂τ},
¯̂
W (τ, Π̄, π̄, γ̄;x, z)

.
= stat

(α̂,β̂)∈[O0,τ ]2

¯̂
J(τ, Π̄, π̄, γ̄, α̂, β̂;x, z).

Note that this is a problem formulation where the state has
been changed from ξ to Π̂, π̂, γ̂. Aside from the inputs α̃, β̃,
there is no stochastic input in this problem formulation. This
allows one to completely remove the stochastic element from
the problem. In that vein, note the following general result.

Theorem 6: Let −∞ < s < T < ∞ and Ns,T
.
=

L2((s, T );Rn). Let Os,T be as in (16), and supply Os,T

with the inner product 〈ν1, ν2〉 .
= E

∫ T

s
(ν1t )

T ν2t dt. Let
H ∈ C2(Ns,T ;R) with uniformly bounded second deriva-
tive. Define H : Os,T → R by H(ν)

.
= E{H(ν)}. Then

statν∈Os,T
H(ν) exists if and only if statη∈Ns,T

H(η) exists,
and further, statν∈Os,T

H(ν) = statη∈Ns,T
H(η).

VII. THE FIRST-ORDER HJ PDE

We now proceed to the equivalent first-order HJ PDE
problem. Let −∞ < s < T < ∞. Suppose there exists
Π ∈ C1

(
(s, T );R2n×2n

)
∩ C

(
[s, T ];R2n×2n

)
satisfying

Π̇t = −F̄1(Πt), t ∈ (s, T ), Πs = Π̄, (22)

where we recall that Π̄ is given in (20). Let Ns
.
=

L2

(
(s, T );Rn

)
, and let α̃, β̃ ∈ Ns. Let π ∈

C1
(
(s, T );R2n

)
∩C

(
[s, T ];R2n

)
satisfy (with πs = π̄

.
= 0)

π̇t = F̄2(Πt, πt, α̃t, β̃t) = B(t)πt + b(t, α̃t, β̃t), (23)

B(t)
.
= Πt,K1 +K2, b(t, α̃t, β̃t) = ΠtK6V

2
t + V 1

t .

Let the state-transition matrix associated to B(·) be denoted
by Φ(t, s). For (α̃, β̃) ∈ N 2

s , one has solution πt =
Φ(t, s)π̄ +

∫ t

s
Φ(t, r)b(r, α̃r, β̃r) dr. Note that there exists

γ ∈ C1
(
(s, T );R

)
∩ C

(
[s, T ];R

)
such that

γ̇t = F̄3(Πt, πt, α̃t, β̃t), t ∈ (s, T ), γs = γ̄. (24)

For t ∈ [s, T ], let

Ḡ(t; Π̄, γ̄, x, z)
.
= 1

2

(
x
z

)T

Πt

(
x
z

)
+ γ̄. (25)

Also consider the control problem with payoff and value

J̃(s, π̄, α̃, β̃; Π̄, x, z, T )
.
=

(
x
z

)T

πT +

∫ T

s

F̄3(Πt, πt, α̃t, β̃t) dt

W̃ (s, π̄; Π̄, x, z, T )
.
= stat
(α̃,β̃)∈[Ns]2

J̃(s, π̄, α̃, β̃; Π̄, x, z, T ) (26)

where we recall that π̄ = 0 here. The HJ PDE problem
associated to value W̃ is given by

0 = −Wt − stat
(α,β)∈R2n

{
Wπ · F̄2(Πt, π, α, β)

+ F̄3(Πt, π, α, β)
}
, (27)

W (T, π; Π̄, x, z, T ) = (xT , zT )π, π ∈ R2n, (28)

where we let Y .
= (s, T )× R2n and Ȳ .

= (s, T ]× R2n.
Theorem 7: Fix x, z. Let |c1|, |c2| be sufficiently large,

and suppose there exists a solution to (22) on [s, T ].
Suppose W (·, · ; Π̄, x, z, T ) ∈ C1,4(Y) ∩ Cp(Ȳ) satisfies
(27)–(28), and that Wππ is uniformly bounded. Then,
W (·, · ; Π̄, x, z, T ) = W̃ (·, · ; Π̄, x, z, T ) for all (t, π) ∈ Ȳ),
and there exist unique feedback controls α∗(t, π), β∗(t, π)
satisfying (27) such that there exists a unique solution to
(23), and that yield the stationary value.

Proof: (Sketch only.) It is sufficient to demon-
strate that W satisfies the conditions of (A.1) with
F̄2 replacing f , F̄3 replacing L, π replacing x and
(α̃, β̃) replacing v in the assumption. With a little work,
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one finds that F̄2, F̄3 ∈ C3(R2n×2n × Rn × R2n).
W (·, ·, Π̄, x, z) ∈ C1,4(Y) ∩ Cp(Ȳ), and that P· and the
second derivatives of G0 are bounded. By those bounds,
one easily sees that |[F̄2]π|, |[F̄2](α,β)|, |[F̄3]ππ|, |[F̄3]π(α,β)|
and |[F̄3](α,β)(α,β)| are bounded, while we note that
|[F̄2]ππ|, |[F̄2]π(α,β)|, |[F̄2](α,β)(α,β)| = 0.

It remains to verify that the feedback controls are globally
Lipschitz. Differentiating, we see that the feedback-form
control functions, α∗(t, π), β∗(t, π) achieving the argstat in
(27) must satisfy(
α
β

)
+ Ĉ−1[G0]α,β(α, β) = Îπ +MtWπ, (29)

Ĉ
.
=

(
c1In 0
0 c2In

)
, [G0]α,β(α, β)

.
=

(
[G0]α(α, β)
[G0]β(α, β)

)
,

Î .
=

(
0 0
In 0

)
, Mt

.
=

(
In 0
Pt Qt

)
.

where we see that for |c1|, |c2| sufficiently large, the right-
hand sides are contractions, and hence these define unique
feedback controls, α∗(t, π), β∗(t, π). With this in hand, one
may show that the remaining conditions of (A.1) are satis-
fied.

Although we often find that W̃ quite closely matches W̄
of (6), a correction term due to the second derivative of W̃
with respect to x is required for equality. It will be helpful to
consider the following HJ PDE problems. For any (α̃, β̃) ∈
N 2

s , the k = 0 problem is given by

0 = J0
t +

[
J0
π · F̄2(Πt, π, α̃t, β̃t) + F̄3(Πt, π, α̃t, β̃t)

]
(30)

J0(T, π; α̃, β̃, Π̄, x, z, T ) =

(
x
z

)T

π, π ∈ R2n, (31)

and for k ∈ ]1, n[ , the HJ PDE problems are given by
0 = −Jk

t − Jk
π · F̄2(Πt, π, α̃t, β̃t), (32)

Jk(T, π; α̃, β̃, Π̄, x, z, T ) = πk, π ∈ R2n, (33)

and the k = n+ 1 HJ PDE problem is given by
0 = −Jn+1

t −
{
Jn+1
π · F̄2(Πt, π, α̃t, β̃t)

+ 1
2

n∑
j,k=1

2n∑
`,m=1

Aj,kJ
k
π`

[
MT

t Ĉ[Ĉ +G′′
0(α̃t, β̃t)]

−1ĈMt

]
`,m

· Jj
πm

}
, (34)

Jn+1(T, π; α̃, β̃, Π̄, x, z, T ) = 0, π ∈ R2n. (35)

Note that the unique solution of (30)–(31) is payoff J̃
of (26). One obtains the HJ PDE problems for k ∈ ]1, n[
by formal differentiation of problem (30)–(31) by xk. The
HJ PDE problem corresponding to k = n + 1 may be
obtained by formally differentiating again by x, and taking
the appropriate linear combination. For k ∈ ]0, n + 1[ , the
J ′ k solutions are similarly related, with J̃ ′ replacing J̃ .

Lemma 8: Given α̃, β̃ ∈ C1((s, t);R2n), there exist
unique solutions for HJ PDE problems (30)–(35). These
solutions may be obtained by the method of characteristics.

We develop some of the characteristic equations for var-
ious HJ PDE problems above. Consider the characteristics

associated to (30)–(31), for (α̃, β̃) ∈ C1((s, T );R2n). We
let q0, p0, π0 correspond to J0

t , J
0
π, π. One finds

π0(t) = Φ(t, T )π −
T

∫
t
Φ(t, r)b(r, α̃r, β̃r) dr,

p0(t) = Φ−(t, T )(xT , zT )T −
T

∫
t
Φ−(t, r)b(r, α̃r, β̃r) dr,

One may also find q0 and J0, but that is not needed below.
Next, consider the (32)–(33) HJ PDE problems for k ∈

]1, n[ . One finds πk
· = π0

· for all k. Further,

pk(t) = Φ−(T, t)ẽk ∀ t ∈ [s, T ], k ∈ ]1, n[ , (36)

where ẽkj = δk,j and δk,j denotes the Kronecker δ function.
Lastly, we turn to the k = n + 1 case. As before,

we find πn+1(t) = π0(t) for all t ∈ [s, T ]. Here, again
˙pn+1 = −BT (t)pn+1(t), but now with pn+1(T ) = 0, and

hence pn+1(t) = 0 for all t ∈ [s, T ]. Using the characteristic
representation for Jk and (36) and Lemma 8, we find

Jn+1(t, π0(t); α̃, β̃) = Jn+1(t; α̃, β̃) =

∫ T

t

G1(r, α̃r, β̃r) dr

G1(t, α̃t, β̃t) =
1
2

n∑
j,k=1

2n∑
`,m=1

Aj,k[Φ
−(T, t)ẽk]`

[
MT

t Ĉ

· [Ĉ +G′′
0(α̃t, β̃t)]

−1ĈMt

]
`,m

[Φ−(T, t)ẽj ]m.

We now move to the relation between Jn+1 and the
correction term needed in the adjustment of W̃ .

Lemma 9: Fix Π̄, x, z, T . Suppose W̃ (t, π; Π̄, x, z, T ) is
twice differentiable in x for all (t, π, x) ∈ Ȳ × Rn.
Let (α̃, β̃) = (α̃∗, β̃∗), and for each k ∈ ]1, n[ , let
Jk(·, ·; α̃∗, β̃∗, Π̄, x, z, T ) be the corresponding solution of
HJ PDE problem (32)–(33). Similarly, let Jn+1(·, ·; α̃∗, β̃∗)
be the solution of HJ PDE problem (34)–(35), again with
(α̃, β̃) = (α̃∗, β̃∗). Then,

Jk(t, π; α̃∗, β̃∗, Π̄, x, z, T ) = W̃xk
(t, π; Π̄, x, z, T )

Jn+1(t; α̃∗, β̃∗) = 1
2 tr[AW̃xx(t, π; Π̄, x, z, T )].

For (s, π) ∈ (−∞, T ]× R2n let

W f (s, π; Π̄, γ̄, x, z, T )
.
=W̃ (s, π; Π̄, x, z, T )

+ Ḡ(T − s; Π̄, γ̄, x, z). (37)

Theorem 10: Fix M̄, z, γ̄ and π̄ = 0. Let |c1|, |c2| be
sufficiently large, and suppose there exists a solution to (22)
on [s, T ]. Then,

W f (T, π̄; Π̄, γ̄, x, z, T ) = W̄ (T, x; z, M̄ , γ̄, T ),

W f
t + stat

v∈U

{
f(x, v)TW f

x + L(x, v)
}
+ 1

2 tr[AW
f
xx]

= Jn+1(t; α̃∗
(t,T ), β̃

∗
(t,T )), ∀ (t, π, x) ∈ Y × Rn.

Proof: It is easily seen that at t = T ,

W f (T, π̄; Π̄, γ̄, x, z, T ) = 1
2

(
x
z

)T

Π̄

(
x
z

)
+ γ̄

= ψ(x; z) = W̄ (T, x; z, M̄ , γ̄, T ).
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By (9) and Lemma 4, one has

W f
t + stat

v∈U

{
f(x, v)TW f

x + L(x, v)
}
+ 1

2 tr[AW
f
xx]

=W f
t + stat

(α,β)∈R2n

{
G0(α, β) +Q(x,W f

x , α, β)
}

+Q0(x,W
f
x ) +

1
2 tr[AW

f
xx],

which after direct substitution and cancellation,
= 1

2 tr[AW̃xx] = Jn+1(t; α̃∗
(t,T ), β̃

∗
(t,T )),

for all (t, π, x) ∈ Y × Rn.
Using a standard dynamic programming verification proof,

one immediately obtains the following.
Corollary 11: Suppose the conditions of Theorem 10.

Then W̄ (s, x; z, M̄ , γ̄, T ) =W f (s, π̄; Π̄, γ̄, x, z, T ) (38)

+ 1
2E

{ T

∫
s

T

∫
t
G1(r; α̃

∗
r , β̃

∗
r ) dr dt

}
.

Remark 12: The correction term in (38) may be obtained
by integration of ODEs through the use of Ito’s rule.

VIII. EXAMPLE

We will discuss a simple, scalar-state, nonlinear stochastic
control problem to indicate how the approach may be applied
in that arena. A very special form is chosen so that we may
perform the bulk of the calculations analytically. In particu-
lar, the nonlinearities are already in a stat-duality form, thus
reducing the computations. We consider the second-order HJ
PDE problem given by

0 =Wt − 1
2W

2
x + stat

(α,β)∈R2

{
c1
2 (α− x)2 + c3 arctan(α)

+ c2
2 (β −Wx)

2 + c4 arctan(β)
}
+ µ2

2 Wxx,

W (T, x) = 1
2x

2,

where c1 = 5/4, c2 = 1/2, c3 = 1, c4 = −1/4 and
µ2 = 2/3. We also have s = 0 and T = 1/4. As
z = 0, one may take q = 0 (i.e., π = (ρ, 0)T ) in the
deterministic version. Standard finite-element methods are
used to compute the solutions. Both the solution to the
original, second-order HJ PDE problem and the solution to
the equivalent first-order HJ PDE problem were computed
over the combined original and dual space, (x, ρ) ∈ R2.
Standard finite-elements methods were used [3], [4]. In figure
1, the solutions at initial time, s = 0 (propagated from
T = 1/4., computed by both methods, are plotted, where
one can see the extreme closeness of the solutions. In figure
2, the difference between the solutions at initial time, s = 0
is depicted. In figure 3, the change in the solution from time
T to time s is depicted as a reference.

APPENDIX

A. Proof Sketch for Theorem 2

We consider not only generic dynamics (1), but also the
stationary dynamics given by

dξ̄∗t = f(ξ̄∗t , ū
∗
t ) dt+ µdBt, ξ̄∗s = x ∈ Rn, (39)

ū(t, ξ̄∗t )∈ argstat
v∈U

{f(ξ̄∗t , v)TWx(t, ξ̄
∗
t ) + L(ξ̄∗t , v)}. (40)

Fig. 1. Both solutions at the initial time

Fig. 2. The difference between the solutions at the initial time

Lemma 13: There exists a unique strong solution of (39)–
(40).

Lemma 14: Suppose W satisfies (9)–(10). Let u ∈ Us.
Let ξ satisfy (1). Let ξ̄∗, ū∗ be given by (39)–(40). Then,

W (s, x) = E
{∫ T

s

−
[
Wt(t, ξ̄

∗
t ) + f(ξ̄∗t , ū

∗
t )

TWx(t, ξ̄
∗
t )

+ 1
2 tr[AWxx(t, ξ̄

∗
t )]

]
dt+ ψ(ξ̄∗T , z)

}
.

Lemma 15: Suppose W satisfies (9)–(10). Let ū∗ be given
by (39)–(40). Then, W (s, x) = J(s, x, ū∗; z).

Lemma 16: Let ū∗ be given by (39)–(40). Then, ū∗ ∈
argstatu∈Us

J(s, x, u; z).
Proof: Let (s, x) ∈ X . Let u ∈ Us, with corresponding

trajectory, ξ given by (1), and let ξ̄∗, ū∗ be given by (39)–
(40). By (4),

J(s, x, ū∗; z)− J(s, x, u; z) = E
{∫ T

0

L(ξ̄∗t , ū
∗
t )

− L(ξt, ut) dt+ ψ(ξ̄∗T , z)− ψ(ξT , z)
}
. (41)

By Lemma 14,

E{ψ(ξ̄∗T , z)− ψ(ξT , z)} = E
{∫ T

s

[
Wt(t, ξ̄

∗
t )

+WT
x (t, ξ̄∗t )f(ξ̄

∗
t , ū

∗
t ) +

1
2 tr[AWxx(t, ξ̄

∗
t )]

]
(42)

−
[
Wt(t, ξt) +WT

x (t, ξt)f(ξt, ut)+
1
2 tr[AWxx(t, ξt)]

]
dt
}
.
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Fig. 3. Change in the solution from the terminal to the initial time

Substituting (42) into (41) yields

J(s, x, ū∗; z)−J(s, x, u; z) = E
{∫ T

0

[
L(ξ̄∗t , ū

∗
t ) +Wt(t, ξ̄

∗
t )

+WT
x (t, ξ̄∗t )f(ξ̄

∗
t , ū

∗
t ) +

1
2 tr[AWxx(t, ξ̄

∗
t )]

−
[
L(ξt, ut) +Wt(t, ξt) +WT

x (t, ξt)f(ξt, ut)

+ 1
2 tr[AWxx(t, ξt)]

]
dt
}

= E
{∫ T

0

[
Ĥ0(t, ξ̄∗t , ū

∗
t )− Ĥ0(t, ξt, ū(t, ξt))

]
+

[
Ĥ0(t, ξt, ū(t, ξt))− Ĥ0(t, ξt, ut)

]
dt
}
,

which by the choice of ū and ū∗t = ū(t, ξ̄∗t ) and (9),

= E
{∫ T

0

[
Ĥ0(t, ξt, ū(t, ξt))− Ĥ0(t, ξt, ut)

]
dt
}
. (43)

By using Taylor polynomials, the mean value theorem and
a measurable selection theorem [5], there exist progressively
measurable λ·(·), ν·(·) with λt(ω) ∈ [0, 1] for all (t, ω) ∈
[0, T ]× Ω and νt

.
= λtū(t, ξt) + (1− λt)ut, such that

|Ĥ0(t, ξt, ū(t, ξt))− Ĥ0(t, ξt, ut)|
≤ |Ĥ0

v (t, ξt, ū(t, ξt))| |ut − ū(t, ξt))|
+ 1

2 |Ĥ
0
vv(t, ξt, νt)| |ut − ū(t, ξt))|2,

which by ū(t, ξt) as an element of the argstat,
= 1

2 |Ĥ
0
vv(t, ξt, νt)| |ut − ū(t, ξt))|2. (44)

Combining (43), (44) and the assumptions, one finds that
there exists K1 <∞ such that

|J(s, x, ū∗; z)−J(s, x, u; z)|

≤ K1

2
E
{∫ T

0

(1 + |ξ̄∗t |2q +∆2
t )| |ut − ū(t, ξt))|2 dt

}
,

where ∆t
.
= ξt − ξ̄∗t and δt

.
= ut − ū∗t , and this is

≤ K1E
{∫ T

0

(1 + |ξ̄∗t |2q +∆2
t )[|ut − ū∗t |2

+ |ū∗t − ū(t, ξt))|2] dt
}
,

and again using the mean value theorem and a measurable
selection theorem, with appropriate ν̂ ∈ Xs, this is

≤ K1E
{∫ T

0

(1 + |ξ̄∗t |2q +∆2
t )[δ

2
t + |ūx(t, ν̂t)|2∆2

t ] dt
}
.

(45)

Now, using the stat definition of ū and implicit
differentiation, one has Ĥ0

xv(t, ν̂t, ū(t, ν̂t)) +
Ĥ0

vv(t, ν̂t, ū(t, ν̂t))ūx(t, ν̂t) = 0. Employing Assumptions
(A.1) and (A.2), we find that there exists K2 < ∞ such
that |ūx(t, ν̂t)|2 ≤ K2(1 + |ξ̄∗t |4q + ∆4q

t ). Applying this in
(45) yields

|J(s, x, ū∗; z)−J(s, x, u; z)| ≤ K1

2
E
{∫ T

0

(1+ |ξ̄∗t |2q +∆2
t )[

δ2t +K2(1 + |ξ̄∗t |4q +∆4q
t )∆2

t

]
dt
}
. (46)

The remainder of the proof consists of some Hölder estimates
as in the proof of [10, Th. 4.1], where we specifically note

E
∫ T

s

|∆t|2 dt = E
∫ T

s

∣∣∣ ∫ t

s

δr dr
∣∣∣2 dt ≤ (t− s)‖δ‖2Us

.

The details are not included, but the reader may refer to [10].
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