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Abstract— This paper analyzes stealthy attacks, particularly
the zero-dynamics attack (ZDA) in networked control systems.
ZDA hides the attack signal in the null-space of the state-space
representation of the control system and hence it cannot be
detected via conventional detection methods. A natural defense
strategy builds on changing the null-space via switching through
a set of topologies. In this paper, we propose a realistic ZDA
variation where the attacker is aware of this topology-switching
strategy, and hence employs the policy to avoid detection:
“pause (update and resume) attack” before (after) topology
switching to evade detection. We first systematically study the
proposed ZDA variation, and then develop defense strategies
under the realistic assumptions. Particularly, we characterize
conditions for detectability of the proposed ZDA variation, in
terms of the network topologies to be maintained, the set of
agents to be monitored, and the measurements of the monitored
agents that should be extracted. We provide numerical results
that demonstrate our theoretical findings.

I. INTRODUCTION

Security concerns regarding the networked control systems

pose significant challenges to their use and wide deployment,

as highlighted by the recent incidents including distributed

denial-of-service (DDOS) attack on Estonian web sites [1],

Maroochy water breach [2] and cyber attacks on smart grids

[3]. Particularly, a special class of ”stealthy” attacks, namely

the “zero-dynamics attack” (ZDA), poses a formidable secu-

rity challenge [4]–[6]. The main idea behind the machinery

of ZDA is to hide the attack signal in the null-space of the

state-space representation of the networked control system

so that the attack can evade conventional detection methods

that are based on the observation signal (hence, the name

“stealthy” attack). The objective of such a stealthy attack

can vary from manipulating the controller to accept false data

which would yield the system towards a desired (e.g., unsta-

ble) state to altering the system trajectory by maliciously

changing the system dynamics (e.g., a stealthy topology

attack).

Recent research efforts in this area have mainly focused on

two directions: i) novel ZDA variations for particular systems

[7], and ii) defense strategies [8]–[12]. For example, Park

et al. [7] designed a robust ZDA for a particular stochastic

cyber-physical system, for which the attack-detection signal

can be guaranteed to stay below a threshold over a finite

horizon. Jafarnejadsani et al. [5], [13] proposed a multi-rate
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L1 adaptive controller which can detect ZDA in the sampled-

data control systems, by removing certain unstable zeros of

discrete-time systems [4], [6].

Most of the prior work on defense strategies for the

original ZDA require limiting assumptions regarding the

connectivity of network topology and the number of the

misbehaving agents (i.e., the agents under attack) [8]–[11].

For example, the detection approach in [12] works only for

the scenario of single misbehaving agent in second-order

systems [10], i.e., if there are multiple agents compromised

by the attacker, the defense strategy cannot detect ZDA.

Teixeira et al. [14] showed that the strategic changes in

system dynamics could be utilized by defender to detect

ZDA, but the approach taken in [14] requires the attack-

starting times to be the initial time and known to the

defender. In other words, the defense strategy can fail to

work if the defender does not know the attack starting time,

as is practically the case for most stealthy attack scenarios.

Towards designing a practical ZDA defense strategy,

strategic topology switching is proposed in [15], [16]. The

approach here is based on changing the topology through a

carefully crafted set of topologies so that the ZDA can be

detected. Controlling topology in this manner is physically

feasible thanks to recent developments in mobile computing,

wireless communication and sensing [17], [18]. We note,

in passing, that the idea of using the changes in the state-

space dynamics to detect ZDA first appeared in [14], albeit

a realistic mechanism (e.g., changing the system topology)

to achieve that objective was only very recently studied in

[15], [16]. However, the defense strategy in [15], [16] still

relies on the critical assumption of a naive attacker that does

not take the topology switching strategy of the defender into

account.

In this paper, we systematically address the following

problem: can an attack comprising intermittently pausing,

updating and resuming ZDA based on the knowledge of

the sequence of topologies that the system goes through,

be successful? We study this attack strategy, which we refer

to as intermittent ZDA, in detail. We next analyze possible

optimal defense strategies, beyond switching the topology,

against the proposed intermittent ZDA. We demonstrate our

theoretical findings via numerical simulation results.

II. PRELIMINARIES

A. Notations

We let R
n and R

m×n denote the set of n-dimensional

real vectors and the set of m× n-dimensional real matrices,

respectively. Let C denote the set of complex numbers, and
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let N represent the set of the natural numbers, and N0 =

N ∪ {0}. Let 1n×n and 0n×n be the n × n-dimensional

identity matrix and zero matrix, respectively. 1n ∈ R
n and

0n ∈ R
n denote the vector with all ones and the vector with

all zeros, respectively. The superscript ‘>’ stands for matrix

transpose. ker (Q) , {y : Qy = 0n, Q ∈ R
n×n}, A−1

F ,

{y : Ay ∈ F}. Also, |·| denotes the cardinality of a set, or the

modulus of a number. V\K describes the complement set of

K with respect to V. λi (M) is ith eigenvalue of matrix M .

For a matrix W ∈ R
n×n, [W ]i,j denotes the element in row

i and column j.

B. Zero-Dynamics Attack

Consider the following system, where ğ(t) represents an

attack signal:

˙̆z (t) = Az̆ (t) +Bğ(t), (1a)

y̆ (t) = Cz̆ (t) +Dğ(t), (1b)

and z̆ (t) ∈ R
n̄, y̆ (t) ∈ R

m̄, ğ(t) ∈ R
ō, A ∈ R

n̄×n̄, B ∈
R

n̄×ō, C ∈ R
m̄×n̄, D ∈ R

m̄×ō.

Definition 1: [19] The attack signal ğ(t) = geηt is a

ZDA, if there exist scalar η ∈ C, and nonzero vectors z0 ∈
R

n̄ and g ∈ R
ō, that satisfy

[
z0

−g

]
∈ ker

([
η1n̄×n̄ −A B

−C D

])
. (2)

III. SYSTEM DESCRIPTION

Consider a second-order system of a population of n

agents whose dynamics are governed by the following equa-

tions:

ẋi (t) = vi (t) , (3a)

v̇i (t) = ui(t), i = 1, . . . , n, (3b)

where xi(t) ∈ R is the position, vi(t) ∈ R is the velocity,

and ui(t) ∈ R is the local control input1.

The interaction among the agents is modeled by an undi-

rected graph G , (V,E), where V , {1, 2, . . . , n} is the set

of vertices that represents the n agents and E ⊆ V×V is the

set of edges of the graph G. The weighted adjacency matrix

A = [aij ] ∈ R
n×n of the graph G is defined as aij = aji > 0

if (i, j) ∈ E, and aij = aji = 0 otherwise. Assume that there

are no self-loops, i.e., for any i ∈ V, aii = 0. The Laplacian

matrix of the graph G is defined as L , [lij ] ∈ R
n×n, where

lii ,
n∑

j=1

aij , and lij , −aij for i 6= j.

Definition 2: [27] The agents in the system (3) are said

to achieve the asymptotic consensus with final zero common

velocity if for any initial condition:

lim
t→∞

|xi (t)−xj (t)|=0 and lim
t→∞

|vi (t)|=0, ∀i, j ∈ V. (4)

1Several real-world networked systems that can be represented by (3)
including the second-order consensus [20], flocking [21], swarming [22],
velocity synchronization and regulation of relative distances [23], and their
applications in the decentralized formation control of mobile robots [24]
and spacecrafts [25], and distributed continuous-time optimization [26], etc.

A. Control Protocol

In this paper, we will propose a defense strategy that

is based on topology switching. We now borrow a control

protocol that involves topology switching from [27], [28] to

achieve consensus according to (4) for the agents in system

(3):

ui(t) = −vi(t) +
∑

j∈V

a
σ(t)
ij (xj (t)− xi (t)), i ∈ V, (5)

where σ(t) : [t0,∞) → S , {1, . . . , s} is the switching

signal of the interaction topology of the communication

network; a
σ(t)
ij is the entry of the weighted adjacency matrix

that describes the activated topology of the communication

graph. For a system with finite agents, the topology set S

has finite elements as well.

B. System in the Presence of Attacks

We let K ⊆ V denote the set of misbehaving agents, i.e.,

the agents under attack. We let the increasingly ordered set

M , {1, 2, . . .} ⊆ V denote the set of monitored agents.

Under time-dependent switching topology, the multi-agent

system in (3), with the control input given by (5) and the

outputs of monitoring agents in M subject to the ZDA signal

ği(t), can be written as

˙̆xi(t)= v̆i(t) (6a)

˙̆vi(t)=−v̆i(t) +
∑

i∈V

a
σ(t)
ij (x̆j(t)−x̆i(t))+

{
ği(t), i∈K

0, i∈V\K
(6b)

y̆i(t)=ci1x̆i(t) + ci2v̆i(t) + diği(t), i∈M, (6c)

where ci1’s and ci2’s are constant coefficients designed by

the defender (system operator), while di’s are coefficients

designed by the attacker.

Remark 1: If di 6= 0 for some i ∈ M, (6c) means that the

sensor outputs are under attack. However, the attack form in

(1) with the attack policy computation (2) indicate that the

ZDA signals for sensor outputs and control inputs are not

independent of each other.

The system in (6) can be equivalently rewritten in the form

of a switched system under attack:

˙̆z (t) = Aσ(t)z̆ (t) + ğ (t) (7a)

y̆ (t) = Cz̆(t) +Dğ (t) , (7b)

where

z̆ (t),
[
x̆1 (t) . . . x̆|V| (t) v̆1 (t) . . . v̆|V| (t)

]>
, (8a)

Aσ(t),

[
0|V|×|V| 1|V|×|V|

−Lσ(t) −1|V|×|V|

]
, (8b)

C,
[
C1 C2

]
, (8c)

Cj,
[
diag

{
c1j , . . . , c|M|j

}
0|M|×(|V|−|M|)

]
, j=1, 2 (8d)

D,
[
0|M|×|V| diag

{
d1, . . . , d|M|

}
0|M|×(|V|−|M|)

]
, (8e)

ğ(t),
[
0
>
|V| ḡ>(t)

]>
, (8f)

[ḡ (t)]i,

{
ği (t) , i ∈ K

0, i ∈ V\K.
(8g)
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In addition, we consider the system (7) in the absence of

attacks:

ż (t) = Aσ(t)z (t) , (9a)

y (t) = Cz(t). (9b)

IV. PROBLEM FORMULATION

We make the following assumptions on the attacker and

the defender.

Assumption 1: The attacker

• is aware that the changes in system dynamics are used

by the defender (system operator);

• knows the output matrix, the initial topology and the

switching times before the first topology switching;

• needs a non-negligible time to compute and update the

attack policy and identify the newly activated topology.

• can record the newly obtained knowledge of network

topology into her memory.

Assumption 2: The defender

• designs the switching times (when to switch) and the

switching topologies (what topology to switch to);

• chooses candidate agents to monitor, i.e., the monitoring

agent set M, for attack detection;

• knows that the states of (3) in the absence of attack are

continuous with respect to time, i.e., x (t−) = x (t) =
x (t+) and v (t−) = v (t) = v (t+);

• has no knowledge of the attack starting, pausing and

resuming times, and the misbehaving agents.

A. Attack-Starting Time

We now use the following to describe the system (1) in

the absence of attacks:

ż (t) = Az (t) , (10a)

y(t) = Cz (t) . (10b)

Let us first recall the properties of ZDA to review the prior

defense strategies.

Lemma 1: [19] Consider the systems (1) and (10). Under

the ZDA policy (2), the outputs and system states satisfy

y (t) = y̆ (t) , t ≥ 0 (11)

z̆ (t) = z (t) + z0e
ηt. (12)

If the attack-starting time, denoted by κ, is not the initial

time, the ZDA signal in (1) and the state (12) would

intuitively update as

ğ(t) =

{
geη(t−κ), t ≥ κ

0ō, otherwise,
. (13)

z̆ (t) =

{
z (t) , t ∈ [0, κ)

z (t) + z0e
η(t−κ), t ∈ [κ,∞).

. (14)

We note that the system (1) is not subject to attack when

t < κ, which results in the first term in (14). Consequently,

z̆ (κ) = z (κ−). Moreover, after the attacker launches attack

at t = κ, according to the second term in (14) we have

z̆ (κ) = z (κ) + z0. Since z0 is a non-zero vector, we have

z̆ (κ) 6= z (κ) = z̆ (κ−), i.e., if κ 6= 0, the attack causes

“jump” of the system state z̆ (κ), which contradicts with

the continuity of z̆ (·) w.r.t. time. Therefore, we conclude

here that the defense strategy against ZDA – according to

Definition 1 – implicitly assumes that the attack-starting time

is the initial time.

B. Naive Attacker

Strategically changing system dynamics has been demon-

strated to be an effective approach to detect system-based

stealthy attacks, see e.g., ZDA [14] and Ck/C stealthy attacks

[29]. The core idea behind this defense strategy is the

intentional mismatch between the models of the attacker

and the defender. Specifically, the attacker uses the original

system dynamics to make the stealthy attack decision before

the system starts to operate, while the defender strategically

changes the system dynamics at some operating point in

time. However, this defense strategy assumes that the attacker

has no capability of inferring the altered system dynamics.

Otherwise, the attacker can make a synchronous attack

decision according to the inferred changed dynamics to evade

the detection.

To remove these unrealistic assumptions, [15] first inves-

tigated the attack policy for the attack signal (13), subject

to the properties (11) and (14). A corresponding defense

strategy of topology switching was then proposed to detect

this ZDA variation in the multi-agent systems like (3).

However, the attack signal (13) in [15] assumes that once

the attacker launches the attack, she never changes the attack

strategy. This further indicates the attacker’s assumption that

the defender follows the defense strategy proposed in [14],

[29] to switch the topology only several times after the

system starts the operation. In other words, the attacker

assumes that without the knowledge of the attack-starting

time the defender cannot switch the topology infinitely many

times over infinite time to detect her. Otherwise, the attacker

can try to infer the topologies online and update the stealthy

attack decision accordingly.

We note that the recently developed inference algorithms

can use the data of the agents’ states in a non-negligible time

interval to exactly infer either undirected [30] or directed

network topology [31], [32]. If the attacker has such infer-

ence ability and is aware of the topology-switching defense

strategy, as made in Assumption 1, she can avoid detection

via the following strategy:

• pauses the attack before the incoming switching times;

• resumes, and if necessary, updates the attack, after the

newly switched/activated topology is inferred.

In this paper, we first systematically study the behavior of

such realistic ZDA variation that is referred to as intermittent

ZDA. We then investigate its detectability. The two problems

are stated formally as follows:

Problem I: Following which attack policy, the attacker

can make stealthy attack decision?

Problem II: Following which defense strategy, the de-

fender can detect intermittent ZDA?
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V. PROBLEM I: ATTACK POLICY

For convenience, we refer to T as the set of topologies

under which the attacker injects attack signals to control

inputs, and we refer to ξk and ζk as the attack-resuming

and attack-pausing times over the active topology intervals

[tk, tk+1), k ∈ N0, respectively.

The ZDA signals injected into the control input and the

monitored output of the system (6) with intermittent pausing

and resuming behaviors are described as:

ği(t) =

{
g
σ(tk)
i eησ(tk)(t−ξk), t∈ [ξk, ζk)⊆ [tk, tk+1)
0, otherwise.

. (15)

To analyze this ZDA, we review the monitored output (6c)

at the first “pausing” time ζ0:

y̆i
(
ζ−0

)
= ci1x̆i(ζ

−
0 ) + ci2v̆i(ζ

−
0 ) + diği

(
ζ−0

)
, ∀i∈M,

which implies that y̆i
(
ζ−0

)
= y̆i (ζ0) if and only if

diği
(
ζ−0

)
= diği (ζ0), since v̆i

(
ζ−0

)
= v̆i (ζ0) and

x̆i

(
ζ−0

)
= x̆i (ζ0). Meanwhile, the defender knows that

the velocity and position states are always continuous with

respect to time, and hence the monitored outputs must

be continuous as well. Therefore, to avoid the “jump” on

monitored outputs to maintain the stealthy property (??), the

attacker cannot completely pause the attack, i.e., whenever

the attacker pauses injecting ZDA signals to control inputs at

pausing time ζk, she must continue to inject the same attack

signals to monitored outputs (6c):

y̆ (t) = Cz̆ (t) +D

k∑

m=0

ğ
(
ζ−m

)
, t ∈ [ζk, ξk+1) . (16)

Based on the above analysis, for the ZDA policy consisting

of “pausing attack” and “resuming attack” behaviors to

remain stealthy, it should satisfy (16) and

z (t0) ∈ N̂
k
1

⋂
Ñ

k
1 , (17a)

[
z (ξk)
−ğ (ξk)

]
∈ ker (Pr) , ∀σ(ξk)∈T (17b)

, where

N̂
k
k = ker(Ok), (18)

N̂
k
q = ker(Oq)

⋂
e−Aσ(tq)(τq−(ζq−ξq))N

m
q+1, 1 ≤ q ≤ m−1

(19)

Ñ
k
k = ker(Õk), (20)

Ñ
k
q = ker(Õq)

⋂
e−Aσ(tq)(τq−(ζq−ξq))N

m
q+1, 1 ≤ q ≤ m−1

(21)

Or ,

[
(C)

> (
CA2

r

)>
. . .

(
CA

2|V|−1
r

)>
]>

, (22)

Õr ,

[
(CAr)

> (
CA2

r

)>
. . .

(
CA

2|V|
r

)>
]>

, (23)

Pr ,

[
ηr12|V|×2|V| −Ar 12|V|×2|V|

−C D

]
, (24)

z =
[
x
>

v
>
]>

, z̆ − z=
[
x̆> − x> v̆> − v>

]>
, (25)

with τq denoting the dwell time of the activated topology,

i.e., τq = tq − tq−1.

Remark 2: By the proof of Theorem in [33], N̂
k
q is

obtained via recursive computation consisting of (18) and

(19), which holds for Ñ
k
q as well. The recursive compu-

tations indicate that the attacker also needs the knowledge

of inferred switched topologies recorded in her memory to

make attack decision.

Proposition 1: [34] Under the stealthy attack policy con-

sisting of (16) and (17), the states and monitored outputs of

the systems (9) and (7) in the presence of attack signal (15)

satisfy

y̆ (t) = y (t) , t ∈ [t0, tk+1) , (26)

z̆ (t) = z (t) + e
ησ(tk)

(t−ξk)
z (ξk), t ∈ [ξk, ζk) . (27)

VI. PROBLEM II: DETECTABILITY

The following theorem presents the detectability of inter-

mittent ZDA.

Theorem 1: [34] Consider the system (7) in the presence

of attack signals (15). Under the defense strategy:

Lr has distinct eigenvalues for ∀r ∈ S (28a)

∃i ∈ M : [Qr]i,j 6= 0, ∀j ∈ V, ∀r ∈ S (28b)

• if the monitored agents output the full observations of

their velocities (i.e., ci1 = 0 and ci2 6= 0 for ∀i ∈ M),

the intermittent ZDA is detectable and

N
∞
1 =

{
02|V|,

[
1
>
|V| 0

>
|V|

]>}
; (29)

• if the monitored agents output the full observations of

their positions (i.e., ci1 6= 0 and ci2 = 0 for ∀i ∈ M),

the intermittent ZDA is detectable but

N
∞
1 =

{
02|V|

}
; (30)

• if the monitored agents output the partial observations

(i.e., ci1 6= 0 and ci2 6= 0 for ∀i ∈ M), and ci1 =
ci2, ∀i ∈ M, the kernel of the observability matrix

satisfies

N
∞
1 =

{
02|V|,

[
1
>
|V| −1

>
|V|

]>}
; (31)

and the intermittent ZDA is detectable if

ξ0 > t0 or D = 0|M|×2|V|, (32)

where Qr is the orthogonal matrix of Lr, and N
∞
1 is

recursively computed by

N
m
m=ker (Om) (33a)

N
m
q =ker(Oq)

⋂
e−Aσ(tq)τqN

m
q+1, 1≤q≤m−1 (33b)

with Oq given by (22).

Remark 3: Under the defense strategy (28), the result (30)

means if the monitored agents output full observations of

positions, the system (9) is observable at any time t > t0.
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As a result, using the available data of sensor outputs (9b),

the attacker can infer the global system state and the global

initial condition. While the results (29) and (31) show that

if the monitored agents output full observations of velocity

or partial observations, the privacy of full states of non-

monitored agents are preserved, which would be useful in

defending ZDA in cooperation with topology attack, since

the stealthy topology needs the data of real-time states

to decide target links to the attack [34]. Therefore, for

the purpose of privacy preserving of non-monitored agents’

states, consequently, restricting the scope of target links of

the stealthy topology attack, the defender (system operator)

has to abandon full observation of the position.

Remark 4: The compact defense strategy also includes

a strategy on switching times. The building block of our

defense strategy is the time-dependent topology switching

that does not need a central unit to trigger links to switch.

The critical reason that we do not consider state-dependent

topology switching is that the attack signals injected into

control input may generate Zeno behaviors [35], such that

the control protocol (5) becomes infeasible. For this part of

work, we refer the readers to [34], [36].

VII. SIMULATION

We consider a system with n = 16 agents. The initial

position and velocity conditions are chosen randomly as

x(t0) = [2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4]
>

and v(t0) =
[6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8]

>
. The considered net-

work topologies are given in Fig. 1, where the agents 1, 2

and 3 are the monitored agents, and the coupling weights are

uniformly set as ones. We denote ri(t) = y̆i (t)− yi (t) , i ∈
M = {1, 2, 3}, as the attack-detection signals.

Fig. 1. Network topologies for intermittent ZDA, where agents 1, 2 and
3 are monitored agents.

We first consider the periodic topology switching se-

quence: 1 → 2 → 1 → 2 → . . . with the dwell times

τ1 = τ2 = 2. It can be verified that neither Topology 1 nor

2 in Fig. 1 satisfies the defense strategy (28). Therefore, the

attacker can design undetectable intermittent ZDA by:

• inject false data z(t0) = [0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,−0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

>
to

the data of initial condition;

• inject ZDA signals ğ4 (t) = −1.75e0.5t and ğ5 (t) =
1.75e0.5t to the local control inputs of agents 4 and 5

for the initial Topology 1;

• pause the ZDA before the incoming new topology,

e.g. Topology 2, since the new topology has not been

inferred yet;

• update the attack policy if necessary and resume the

feasible attack after switching to the new topology

finishes;

• iterate the last two steps.

The trajectories of some agents’ positions and the attack-

detection signals in Fig. 2 show that the designed intermittent

ZDA is not detected, and the stealthy attack destabilizes the

system.
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Fig. 2. Trajectories of individual positions and attack-detection signals:
undetectable attack under switching Topologies 1 and 2.
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Fig. 3. Trajectories of individual positions and attack-detection signals:
detectable attack under switching Topologies 3 and 4.

It is straightforward to show that both Topologies 3 and

4 in Fig. 1 satisfy the defense strategy (28). Hence, we can

turn to the following periodic topology switching sequence

at some time to detect the stealthy attack: 3 → 4 →
3 → 4 → . . . with the dwell times τ3 = τ4 = 2. Under

the periodic sequence, the trajectories of attack-detection
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signals in Fig. 3 show that the stealthy intermittent ZDA

is successfully detected.

VIII. CONCLUSION

This paper introduces one ZDA variant for a scenario

where the attacker is informed about the switching strat-

egy of the defender: intermittent ZDA where the attacker

pauses, and updates and resumes ZDA in conjunction with

the knowledge of switching topology and dwell times. A

defense strategy without requiring any knowledge of the set

of misbehaving agents or the start, pause and resume times

of the attack is proposed to detect the intermittent ZDA.
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