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Detectability of Intermittent Zero-Dynamics Attack in Networked
Control Systems
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Abstract— This paper analyzes stealthy attacks, particularly
the zero-dynamics attack (ZDA) in networked control systems.
ZDA hides the attack signal in the null-space of the state-space
representation of the control system and hence it cannot be
detected via conventional detection methods. A natural defense
strategy builds on changing the null-space via switching through
a set of topologies. In this paper, we propose a realistic ZDA
variation where the attacker is aware of this topology-switching
strategy, and hence employs the policy to avoid detection:
“pause (update and resume) attack” before (after) topology
switching to evade detection. We first systematically study the
proposed ZDA variation, and then develop defense strategies
under the realistic assumptions. Particularly, we characterize
conditions for detectability of the proposed ZDA variation, in
terms of the network topologies to be maintained, the set of
agents to be monitored, and the measurements of the monitored
agents that should be extracted. We provide numerical results
that demonstrate our theoretical findings.

I. INTRODUCTION

Security concerns regarding the networked control systems
pose significant challenges to their use and wide deployment,
as highlighted by the recent incidents including distributed
denial-of-service (DDOS) attack on Estonian web sites [1],
Maroochy water breach [2] and cyber attacks on smart grids
[3]. Particularly, a special class of “stealthy” attacks, namely
the “zero-dynamics attack” (ZDA), poses a formidable secu-
rity challenge [4]-[6]. The main idea behind the machinery
of ZDA is to hide the attack signal in the null-space of the
state-space representation of the networked control system
so that the attack can evade conventional detection methods
that are based on the observation signal (hence, the name
“stealthy” attack). The objective of such a stealthy attack
can vary from manipulating the controller to accept false data
which would yield the system towards a desired (e.g., unsta-
ble) state to altering the system trajectory by maliciously
changing the system dynamics (e.g., a stealthy topology
attack).

Recent research efforts in this area have mainly focused on
two directions: i) novel ZDA variations for particular systems
[7], and ii) defense strategies [8]-[12]. For example, Park
et al. [7] designed a robust ZDA for a particular stochastic
cyber-physical system, for which the attack-detection signal
can be guaranteed to stay below a threshold over a finite
horizon. Jafarnejadsani et al. [S], [13] proposed a multi-rate
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L adaptive controller which can detect ZDA in the sampled-
data control systems, by removing certain unstable zeros of
discrete-time systems [4], [6].

Most of the prior work on defense strategies for the
original ZDA require limiting assumptions regarding the
connectivity of network topology and the number of the
misbehaving agents (i.e., the agents under attack) [8]-[11].
For example, the detection approach in [12] works only for
the scenario of single misbehaving agent in second-order
systems [10], i.e., if there are multiple agents compromised
by the attacker, the defense strategy cannot detect ZDA.
Teixeira et al. [14] showed that the strategic changes in
system dynamics could be utilized by defender to detect
ZDA, but the approach taken in [14] requires the attack-
starting times to be the initial time and known to the
defender. In other words, the defense strategy can fail to
work if the defender does not know the attack starting time,
as is practically the case for most stealthy attack scenarios.

Towards designing a practical ZDA defense strategy,
strategic topology switching is proposed in [15], [16]. The
approach here is based on changing the topology through a
carefully crafted set of topologies so that the ZDA can be
detected. Controlling topology in this manner is physically
feasible thanks to recent developments in mobile computing,
wireless communication and sensing [17], [18]. We note,
in passing, that the idea of using the changes in the state-
space dynamics to detect ZDA first appeared in [14], albeit
a realistic mechanism (e.g., changing the system topology)
to achieve that objective was only very recently studied in
[15], [16]. However, the defense strategy in [15], [16] still
relies on the critical assumption of a naive attacker that does
not take the topology switching strategy of the defender into
account.

In this paper, we systematically address the following
problem: can an attack comprising intermittently pausing,
updating and resuming ZDA based on the knowledge of
the sequence of topologies that the system goes through,
be successful? We study this attack strategy, which we refer
to as intermittent ZDA, in detail. We next analyze possible
optimal defense strategies, beyond switching the topology,
against the proposed intermittent ZDA. We demonstrate our
theoretical findings via numerical simulation results.

II. PRELIMINARIES

A. Notations

We let R™ and R™*" denote the set of n-dimensional
real vectors and the set of m x n-dimensional real matrices,
respectively. Let C denote the set of complex numbers, and
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let N represent the set of the natural numbers, and Ny =
N U {0}. Let 1,,x, and 0, be the n x n-dimensional
identity matrix and zero matrix, respectively. 1,, € R™ and
0,, € R™ denote the vector with all ones and the vector with
all zeros, respectively. The superscript ‘T’ stands for matrix
transpose. ker (Q) £ {y: Qy =0,,Q € R"™*"}, A~IF £
{y : Ay € F}. Also, |-| denotes the cardinality of a set, or the
modulus of a number. V\K describes the complement set of
K with respect to V. \; (M) is i® eigenvalue of matrix M.
For a matrix W € R™*", [W], . denotes the element in row
1 and column j.

B. Zero-Dynamics Attack

Consider the following system, where §(t) represents an
attack signal:

(1a)
(1b)
and 2 (t) € R", y(t) € R™, §(t) € R°, A € R"™", B €
Rﬁxé’ C c Rmxﬁ’ D c Rmxé'

Definition 1: [19] The attack signal §(t) = ge™ is a
ZDA, if there exist scalar n € C, and nonzero vectors zy €
R™ and g € R?, that satisfy

Z ﬂlﬁxﬁ—AiB
slon(ttg) o

III. SYSTEM DESCRIPTION

Consider a second-order system of a population of n
agents whose dynamics are governed by the following equa-
tions:

.’i?i (t) = V; (t) 5

(3a)

i=1,...,n, (3b)

where z;(t) € R is the position, v;(t) € R is the velocity,
and u;(t) € R is the local control input'.

The interaction among the agents is modeled by an undi-
rected graph G 2 (V,E), where V 2 {1,2,...,n} is the set
of vertices that represents the n agents and E C V x V is the
set of edges of the graph G. The weighted adjacency matrix
A = [a;;] € R"*™ of the graph G is defined as a;; = a;; > 0
if (4,7) € E, and a;; = a;; = 0 otherwise. Assume that there
are no self-loops, i.e., for any ¢ € V, a;; = 0. The Laplacian
matrix of the graph G is defined as £ £ [;;] € R"*™, where
lii £ Z (D) and lij £

i=1

De;inition 2: [27] The agents in the system (3) are said
to achieve the asymptotic consensus with final zero common
velocity if for any initial condition:

—a;; for i # j.

tlggo |z; (t)—x; (t)]=0 and tlgl;lo lv; (¢)|=0,Vi,j € V. (4)

ISeveral real-world networked systems that can be represented by (3)
including the second-order consensus [20], flocking [21], swarming [22],
velocity synchronization and regulation of relative distances [23], and their
applications in the decentralized formation control of mobile robots [24]
and spacecrafts [25], and distributed continuous-time optimization [26], etc.

A. Control Protocol

In this paper, we will propose a defense strategy that
is based on topology switching. We now borrow a control
protocol that involves topology switching from [27], [28] to
achieve consensus according to (4) for the agents in system

(3
OEDIA

JEV

where o(t) : [tg,00) — S £ {1,...,s} is the switching
signal of the interaction topology of the communication
network; afj(t) is the entry of the weighted adjacency matrix
that describes the activated topology of the communication
graph. For a system with finite agents, the topology set S
has finite elements as well.

u;(t) = —v;(t —xz; (t),i €V, (5

B. System in the Presence of Attacks

We let K C V denote the set of misbehaving agents, i.e.,
the agents under attack. We let the increasingly ordered set
M £ {1,2,...} C V denote the set of monitored agents.
Under time-dependent switching topology, the multi-agent
system in (3), with the control input given by (5) and the
outputs of monitoring agents in M subject to the ZDA signal
gi(t), can be written as

:%i(t) =;(t) (6a)
_ a( ) gi(t),ieK
t)=—¥;(t +ze;a ! (t))+{0 eMK (6b)

Pi(t) =ci1 & (t) + cio¥i(t) + d;gi(t), i €M, (6¢)

where ¢;1’s and c¢;2’s are constant coefficients designed by
the defender (system operator), while d;’s are coefficients
designed by the attacker.

Remark 1: 1f d; # 0 for some ¢ € M, (6¢) means that the
sensor outputs are under attack. However, the attack form in
(1) with the attack policy computation (2) indicate that the
ZDA signals for sensor outputs and control inputs are not
independent of each other.

The system in (6) can be equivalently rewritten in the form
of a switched system under attack:

2(t) = A 2 (t )+§< ) (7a)
y(t)=Cz(t)+ Dg (t), (7b)
where
SR ()R () 0 e (0], (8a)
OMWL'MWW}
Ao = [ Low | =Ly (&0
c2l e i, (80)
C; = [diag{cuj, .- ey } O (vi—pap ], 5=1,2  (8d)
D= [Opgyx|v| idiag{di, ..., djng } Opax (v pap ], (8e)
. T
s 2[of aTm] (30
A 7 ) ) K
a2 {308 se)
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In addition, we consider the system (7) in the absence of
attacks:

(9a)
(9b)

IV. PROBLEM FORMULATION

We make the following assumptions on the attacker and
the defender.

Assumption 1: The attacker

« is aware that the changes in system dynamics are used
by the defender (system operator);

o knows the output matrix, the initial topology and the
switching times before the first topology switching;

« needs a non-negligible time to compute and update the
attack policy and identify the newly activated topology.

o can record the newly obtained knowledge of network
topology into her memory.

Assumption 2: The defender

o designs the switching times (when to switch) and the
switching topologies (what topology to switch to);

« chooses candidate agents to monitor, i.e., the monitoring
agent set M, for attack detection;

o knows that the states of (3) in the absence of attack are
continuous with respect to time, i.e., z (t7) = z (t) =
z(tT)andv(t7) =v(t) =v(th);

o has no knowledge of the attack starting, pausing and
resuming times, and the misbehaving agents.

A. Attack-Starting Time

We now use the following to describe the system (1) in
the absence of attacks:

Z2(t) = Az (t),

y(t) = C= (1),
Let us first recall the properties of ZDA to review the prior
defense strategies.

Lemma 1: [19] Consider the systems (1) and (10). Under
the ZDA policy (2), the outputs and system states satisfy

y(t)=5(t),t=0 (11)

Z(t) = 2 (t) + zoe™. (12)

If the attack-starting time, denoted by x, is not the initial

time, the ZDA signal in (1) and the state (12) would
intuitively update as

(10a)
(10b)

y ge"t=r) >k
t) = . 13
9(t) {05, otherwise, (13)
9 z(t), tel0,k
Z(t) = ®) (t—x) [0, %) . (14)
z (t) + zoe™*' ")t € [k, 00).

We note that the system (1) is not subject to attack when
t < kK, which results in the first term in (14). Consequently,
Z (k) = z (k7). Moreover, after the attacker launches attack
at t = k, according to the second term in (14) we have

Z (k) = z (k) + 2zo. Since zg is a non-zero vector, we have
Z(k) # z(k) = Z(k7), ie, if Kk # 0, the attack causes
“jump” of the system state Z (x), which contradicts with
the continuity of % (-) w.r.t. time. Therefore, we conclude
here that the defense strategy against ZDA — according to
Definition 1 — implicitly assumes that the attack-starting time
is the initial time.

B. Naive Attacker

Strategically changing system dynamics has been demon-
strated to be an effective approach to detect system-based
stealthy attacks, see e.g., ZDA [14] and C,/C stealthy attacks
[29]. The core idea behind this defense strategy is the
intentional mismatch between the models of the attacker
and the defender. Specifically, the attacker uses the original
system dynamics to make the stealthy attack decision before
the system starts to operate, while the defender strategically
changes the system dynamics at some operating point in
time. However, this defense strategy assumes that the attacker
has no capability of inferring the altered system dynamics.
Otherwise, the attacker can make a synchronous attack
decision according to the inferred changed dynamics to evade
the detection.

To remove these unrealistic assumptions, [15] first inves-
tigated the attack policy for the attack signal (13), subject
to the properties (11) and (14). A corresponding defense
strategy of topology switching was then proposed to detect
this ZDA variation in the multi-agent systems like (3).
However, the attack signal (13) in [15] assumes that once
the attacker launches the attack, she never changes the attack
strategy. This further indicates the attacker’s assumption that
the defender follows the defense strategy proposed in [14],
[29] to switch the topology only several times after the
system starts the operation. In other words, the attacker
assumes that without the knowledge of the attack-starting
time the defender cannot switch the topology infinitely many
times over infinite time to detect her. Otherwise, the attacker
can try to infer the topologies online and update the stealthy
attack decision accordingly.

We note that the recently developed inference algorithms
can use the data of the agents’ states in a non-negligible time
interval to exactly infer either undirected [30] or directed
network topology [31], [32]. If the attacker has such infer-
ence ability and is aware of the topology-switching defense
strategy, as made in Assumption 1, she can avoid detection
via the following strategy:

o pauses the attack before the incoming switching times;

« resumes, and if necessary, updates the attack, after the

newly switched/activated topology is inferred.

In this paper, we first systematically study the behavior of
such realistic ZDA variation that is referred to as intermittent
ZDA. We then investigate its detectability. The two problems
are stated formally as follows:

Problem I: Following which attack policy, the attacker
can make stealthy attack decision?

Problem II: Following which defense strategy, the de-
fender can detect intermittent ZDA?
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V. PROBLEM I: ATTACK PoOLICY

For convenience, we refer to T as the set of topologies
under which the attacker injects attack signals to control
inputs, and we refer to & and (i as the attack-resuming
and attack-pausing times over the active topology intervals
[tk,tk+1), k € N, respectively.

The ZDA signals injected into the control input and the
monitored output of the system (6) with intermittent pausing
and resuming behaviors are described as:

otk Mot (t—Ek)
Gilt) = g; et e [fkjfk) Cltr, try1) . (15)
0, otherwise.

To analyze this ZDA, we review the monitored output (6¢)
at the first “pausing” time (p:

Ui (¢o) = candi(Cy) + cin®i(C ) + didii (Gy)  VieM,
which implies that ¥; (¢;) Ui ({o) if and only if
dlgz (Ca) = dlgl (go), since 1\72 (Ca) = ’lu)l‘ (C()) and
Z; ({;) = &; (¢). Meanwhile, the defender knows that
the velocity and position states are always continuous with
respect to time, and hence the monitored outputs must
be continuous as well. Therefore, to avoid the “jump” on
monitored outputs to maintain the stealthy property (??), the
attacker cannot completely pause the attack, i.e., whenever
the attacker pauses injecting ZDA signals to control inputs at
pausing time (j, she must continue to inject the same attack
signals to monitored outputs (6¢):

k
J)=Ci(t)+ DY G(¢n) € [Crréryr).  (16)
m=0
Based on the above analysis, for the ZDA policy consisting
of “pausing attack” and “resuming attack” behaviors to
remain stealthy, it should satisfy (16) and

z (to) € NY (| NF, (17a)
.z (fk)}
[ AT € ker (P,.),Vo(&)eT (17b)
, Where
N = ker(O), (18)

with 7, denoting the dwell time of the activated topology,
i.e., Tq = tq — tq_l. N

Remark 2: By the proof of Theorem in [33], N’; is
obtained via recursive computation consisting of (18) and
(19), which holds for N’; as well. The recursive compu-
tations indicate that the attacker also needs the knowledge
of inferred switched topologies recorded in her memory to
make attack decision.

Proposition 1: [34] Under the stealthy attack policy con-
sisting of (16) and (17), the states and monitored outputs of
the systems (9) and (7) in the presence of attack signal (15)
satisfy

g(t)=y(t),t € [to,ter1),
(t) =z (t) + " g (gt € 6, G-

(26)
27)

N

VI. PROBLEM II: DETECTABILITY

The following theorem presents the detectability of inter-
mittent ZDA.

Theorem 1: [34] Consider the system (7) in the presence
of attack signals (15). Under the defense strategy:

(28a)
(28b)

L, has distinct eigenvalues for Vr € S
FieM: [Qr]m 20,V eV, Vres§

o if the monitored agents output the full observations of
their velocities (i.e., ¢;; = 0 and ¢;2 # 0 for Vi € M),
the intermittent ZDA is detectable and

. T
NY©° = {Ozw [%ﬁ“M }%

« if the monitored agents output the full observations of
their positions (i.e., ¢;1 # 0 and ¢;o = 0 for Vi € M),
the intermittent ZDA is detectable but

N = {0gy }:

« if the monitored agents output the partial observations
(i.e., ¢i1 7é 0 and ¢;o 75 0 for Vi € M), and ¢;; =
Ci2, Vi € M, the kernel of the observability matrix
satisfies

(29)

(30)

Nk — —As ) (Ta—(Cg—Eq)) N ; T
N; = ker(Og) (e~ oo NGl <g<sm—1 NY© = {02V|> (11| }; 3D
(19) '
NF — ker(@k), (20) and the intermittent ZDA is detectable if
1(1’; = ker(0O,) ﬂe*A"“q)(T‘I*(CQ*ELI})NZLD 1<g<m—1 §o > to or D = Opyyx2)v), (32)
2n where (), is the orthogonal matrix of £,, and N{° is
. . T .
; ; ; AT recursively computed by
0, £ [(of (can)’ L (CAz‘V' 1) (22)
; o N —ker (O, (332)
: : T
~ ; i i T m —A, TaN™
0, 2 [<0A»T (ca)T L (oA } L@ Np=ker(O))[ e M0TNL 1<g<m—1 (33b)
» 2 M Lagyiarv) — Ar | Lo 9y with O, given by (22).
A o A DT ) 24 Remark 3: Under the defense strategy (28), the result (30)
T T T Ay teT  TisT  TAT means if the monitored agents output full observations of
z=[x" vl £f—z=[2" —2" 0" —v'], (25)  positions, the system (9) is observable at any time ¢ > .
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As a result, using the available data of sensor outputs (9b),
the attacker can infer the global system state and the global
initial condition. While the results (29) and (31) show that
if the monitored agents output full observations of velocity
or partial observations, the privacy of full states of non-
monitored agents are preserved, which would be useful in
defending ZDA in cooperation with topology attack, since
the stealthy topology needs the data of real-time states
to decide target links to the attack [34]. Therefore, for
the purpose of privacy preserving of non-monitored agents’
states, consequently, restricting the scope of target links of
the stealthy topology attack, the defender (system operator)
has to abandon full observation of the position.

Remark 4: The compact defense strategy also includes
a strategy on switching times. The building block of our
defense strategy is the time-dependent topology switching
that does not need a central unit to trigger links to switch.
The critical reason that we do not consider state-dependent
topology switching is that the attack signals injected into
control input may generate Zeno behaviors [35], such that
the control protocol (5) becomes infeasible. For this part of
work, we refer the readers to [34], [36].

VII. SIMULATION

We consider a system with n = 16 agents. The initial
position and velocity conditions are chosen randomly as
o(t) =1[2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4] " and v(to) =
[6,6,6,6,6,6,6,6,8,8,8,8,8,8, S,S]T. The considered net-
work topologies are given in Fig. 1, where the agents 1, 2
and 3 are the monitored agents, and the coupling weights are
uniformly set as ones. We denote r;(t) = ¢; (t) —y; (t),i €
M = {1, 2, 3}, as the attack-detection signals.

(b) Topology 2

(a) Topology 1

Fig. 1. Network topologies for intermittent ZDA, where agents 1, 2 and
3 are monitored agents.

We first consider the periodic topology switching se-
quence: 1 - 2 = 1 — 2 — ... with the dwell times
71 = To = 2. It can be verified that neither Topology 1 nor
2 in Fig. 1 satisfies the defense strategy (28). Therefore, the
attacker can design undetectable intermittent ZDA by:

« inject false data z(¢y) = [0,0,0,—1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0, —0.5,0.5,O,O,O,O,O,O,O,O,O,O,O]Tto
the data of initial condition;

o inject ZDA signals g4 (t) = —1.75¢%5" and g5 (t) =
1.75e¢%%* to the local control inputs of agents 4 and 5
for the initial Topology 1;

o pause the ZDA before the incoming new topology,
e.g. Topology 2, since the new topology has not been
inferred yet;

o update the attack policy if necessary and resume the
feasible attack after switching to the new topology
finishes;

o iterate the last two steps.

The trajectories of some agents’ positions and the attack-
detection signals in Fig. 2 show that the designed intermittent
ZDA is not detected, and the stealthy attack destabilizes the
system.

x10* (a) (b)

I
0

0.5

e
o

-0.5

Trajectories of Positions
o
Trajectories of Detection Signals
o

"o 5 10 15 0 5 10 15
Time Time

Fig. 2. Trajectories of individual positions and attack-detection signals:
undetectable attack under switching Topologies 1 and 2.

b
10 _(b) ‘
ri(t)
—=ert)
) - - r3(t)
g s¢ J
2 2 /
S @ oo
= c g
2 S NOUERY:
B o ) S - v
< g ° AT
o Jo] kY 1
8 2 YN
2 5 1%
o L
g 8
(0] =
' L
= 3
T 1ol
Z-10
20 -15
0 5 10 0 5 10
Time Time
Fig. 3. Trajectories of individual positions and attack-detection signals:

detectable attack under switching Topologies 3 and 4.

It is straightforward to show that both Topologies 3 and
4 in Fig. 1 satisfy the defense strategy (28). Hence, we can
turn to the following periodic topology switching sequence
at some time to detect the stealthy attack: 3 — 4 —
3 — 4 — ... with the dwell times 73 = 74 = 2. Under
the periodic sequence, the trajectories of attack-detection

5609

Authorized licensed use limited to: University of lllinois. Downloaded on July 01,2020 at 17:36:34 UTC from IEEE Xplore. Restrictions apply.



signals in Fig. 3 show that the stealthy intermittent ZDA
is successfully detected.

VIII. CONCLUSION

This paper introduces one ZDA variant for a scenario
where the attacker is informed about the switching strat-
egy of the defender: intermittent ZDA where the attacker
pauses, and updates and resumes ZDA in conjunction with
the knowledge of switching topology and dwell times. A
defense strategy without requiring any knowledge of the set
of misbehaving agents or the start, pause and resume times
of the attack is proposed to detect the intermittent ZDA.
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