


can only use single-antenna spoofing systems. Furthermore, the attacker can spoof the GPS receivers without being

detected if multi-antenna spoofing devices are available [11].

In Cyber-physical system (CPS) security literature, GPS spoofing attacks have been described as a malicious signal

injection to the genuine sensor output [12]. Attack detection against malicious signal injection has been widely studied

over the last few years. The attack detection problem has been formulated as an `0/`∞ optimization problem, which is

NP-hard in [13, 14]. The fundamental limitations of structural detectability, as well as graph-theoretical detectability

for linear time-invariant systems, have been studied in [15], where distributed attack detection has also been studied.

The attack detection problem has been formulated as an attack-resilient estimation problem of constrained state and

unknown input in [16]. A switching mode resilient detection and estimation framework for GPS spoofing attacks has

been studied in [17]. Attack detection using multiple GPS signals by checking cross-correlation was introduced in [18].

In [19], the maximum deviations of the state were identified due to the sensor attacks while remaining stealthy due

to the detection. Resilience to cyber-attacks for multi-agent systems becomes more challenging than for single-agent

systems. There has been much effort in investigating resilient strategies for multi-agent systems in the presence of

cyber-attack. A method of switching the network topologies is utilized to secure consensus tracking performance in

the presence of the cyber-attack on communication channels in [20]. In [21], an event-triggered mechanism and a

distributed observer-based controller are designed to ensure the overall consensus of multi-agent systems is achieved.

The coordinated path following design based on an adaptive control method and a synchronization scheme is presented

in [22], where coordinated path following goal is achieved. These architectures can efficiently handle a class of attacks

for multi-agent systems, but do not consider fundamental problems indirectly induced by attacks and cannot address the

significant problem due to limited sensor availability in the presence of cyber-attacks.

Contribution. The current paper addresses safety problems induced by limited sensor availability due to GPS

spoofing attacks while completing the time-critical coordination task for a Multi-UAV system. We model the sensor

drift problem in the presence of GPS spoofing attacks as an increasing variance of state estimation to quantify the

sensor drift and introduce escape time under which the state estimation error remains within a tolerable error with

high confidence. We propose a safety constrained bi-level control framework for multi-UAV systems that adapts the

UAV(s) at a path re-planning level to support resilient state estimation against GPS spoofing attacks. The proposed

framework achieves a consensus of coordination state at the time-critical coordination level and is equipped with an

escape controller (ESC) that drives the UAV(s) away from the effective range of the spoofing device within the escape

time to avoid intolerable sensor drift at safety-critical control level.

The remainder of this paper is organized as follows: In Section II, we introduce the notation convention, definition of

the escape time and the dynamic system models for multi-UAV systems. In the same section, we formulate the problem.

In Section III, we propose a resilient safety constrained bi-level control framework. In Section IV, the numerical

simulations of the multi-UAV system for a time-critical mission under the GPS spoofing attack is presented. Section V

draws the conclusion.

II. Preliminaries

A. Notation

We use the subscript k of xk to denote the time index; Rn
+

denotes the set of positive elements in the n-dimensional

Euclidean space; Rn×m denotes the set of all n × m real matrices; A>, tr (A) and A−1 denote the transpose, trace and

inverse of matrix A, respectively; I denotes the identity matrix with an appropriate dimension; ‖ · ‖ denotes the standard

Euclidean norm for a vector or an induced matrix norm; × is used to denote Cartesian product; E[ · ] denotes the

expectation operator. For a matrix S, S > 0 and S ≥ 0 indicate that S is positive definite and positive semi-definite,

respectively.

B. Escape time

In the presence of the GPS spoofing attack, the state estimation algorithm relies on the relative measurement sensors

because the GPS signals do not contain legitimate information. In this case, the variance of the state estimation errors is

strictly increasing and unbounded in time (Theorem 4.2 in [17]). Regarding the sensor drift problem, we utilize a new

resilience measure, escape time, which is defined as follows:

Definition II.1 [17] The escape time kesc ≥ 0 is the time difference between the attack time ka and the first time

instance when the estimation error ‖xk − x̂k ‖ is not within the tolerable error distance ζ ∈ Rn
+

with the significance α,
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i.e.

kesc
= arg min

k≥ka
k − ka

s.t. ζ>P−1
k ζ < χ

2
d f (α),

where Pk is the error covariance of xk − x̂k , and χ2 is the chi-squared test value with degree of freedom df .

The escape time provides a new safety criterion for optimal control with increasing uncertainties. It is worth to notice

that the escape time kesc can be calculated by Algorithm 1 in [17].

C. System model

In what follows, we describe the multi-UAV system in detail.

1. Agent model

Consider the discrete-time dynamic system model of the single agent:

xk+1 = Axk + Buk + wk (1a)

y
G
k
= CG xk + dk + v

G
k

(1b)

y
I
k = CI (xk − xk−1) + v

I
k (1c)

where xk ∈ Rn is the state, uk ∈ Rm is the control input and A, B, CG and CI are the system matrix, input matrix, and

output matrix with proper sizes. The sensor measurement yG
k

∈ RmG is the GPS measurement which may be corrupted

by unknown GPS spoofing signal dk ∈ RmG . We assume that the attacker can inject any signal dk into y
G
k

. The sensor

measurement yI
k
∈ RmI is the inertial measurement unit (IMU) measurement which returns a noisy measurement of

the state difference. The output yI
k

can represent any relative sensor measurement, such as velocity measurement by a

camera. In this paper, we use IMU for the illustration.

The noise signals wk , vG
k

and v
I
k

are assumed to be independent and identically distributed (i.i.d.) Gaussian random

variables with zero means and covariances E[wkw
>
k
] = Σ

w
≥ 0, E[vG

k
(vG

k
)>] = Σ

G
> 0, and E[vI

k
(vI

k
)>] = Σ

I
> 0,

respectively.

2. Multi-agent network

Let xi,k ∈ Rn, i = 1, · · · ,N be the state of the ith agent associated with dynamic system model (1) where N

is the total number of the agents. Graph theory can provide the natural abstractions for how information is shared

between agents in a network [23]. An undirected graph G = (V,E) consists of a set of nodes V = {1,2, · · · ,N}, which

corresponds to the different agents, and a set of edges E ⊂ V × V , which relates to a set of unordered pairs of agents. In

particular, (i, j), ( j, i) ∈ E if and only if there exists a communication channel between agents i and j. The neighborhood

N(i) ⊆ V of the agent i will be understood as the set { j ∈ V | (i, j) ∈ E}.

3. Path following consensus

Each agent i ∈ V has a desired trajectory gi : si,k → R
ns that is parameterized by coordination state variable

si,k ∈ [0,1] as shown in Fig. 1. Dimension ns is usually 2 (2−D mission) or 3 (3−D mission). At time k, gi(si,k) is the

virtual target that the agent i follows at that time, i.e., agent i pursues to minimize the error ‖gi(si,k) − xi,k ‖ which is

marked in red in Fig. 1. The state si,k can be seen as a normalized length of trajectory. The agents also desire to achieve

the consensus of the coordination state variable

si,k − sj ,k
k→∞
−→ 0 ∀i, j ∈ V,

so that the virtual targets of the agents arrive at the destination at the same time.

The agent i knows coordination state si,k as well as the coordination states sj ,k for neighboring agents j ∈ N(i).
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B. Resilient State Estimator

The defender implements an estimator and χ2 detector to estimate the state and detect the GPS spoofing attack. The

following Kalman-filter like state estimator is used to estimate the current state:

x̂k = Ax̂k−1 + Buk−1 + KG
k
(yG

k
− CG(Ax̂k−1 + Buk−1)) + K I

k (y
I
k − CI (Ax̂k−1 + Buk−1 − x̂k−1)) (6)

Pk = (A − KkCA + KkDC)Pk−1(A − KkCA + KkDC)> + (I − KkC)Σw(I − KkC)> + KkΣyK>
k , (7)

where x̂k is the state estimate and Pk is the state estimation error covariance at time k. We define

Kk :=
[

KG
k

K I
k

]
, C :=

[
CG

CI

]

, Σy :=

[
ΣG 0

0 ΣI

]

, and D :=

[
0 0

0 I

]

.

The optimal gain Kk , given by

Kk = (APk−1(CA − DC)> + ΣwC>)
(
(CA − DC)Pk−1(CA − DC)> + CΣwC>

+ Σy

)−1
,

is the solution of the optimization problem minKk
tr (Pk).

In [17], it has been shown that the covariance in (7) is bounded when the GPS signal is available. If the GPS is

denied, and only the relative sensor yI
k

is available, the covariance is strictly increasing and is unbounded in time. That

is, the sensor drift problem can be formulated as instability of the covariance matrix.

C. Attack Detector

We conduct the χ2 test to detect the GPS spoofing attacks:

H0 : dk = 0; H1 : dk , 0, (8)

using CUSUM (CUmulative SUM) algorithm, which is widely used in attack detection research [24–26].

Since dk = y
G
k
−CG xk − v

G
k

, given the previous state estimate x̂k−1, we estimate the attack vector by comparing the

sensor output and the output prediction:

d̂k = y
G
k
− CG(Ax̂k−1 + Buk−1). (9)

Note that the current estimate x̂k should not be used for the prediction, because it is correlated with the current output;

i.e., E[x̂k(y
G
k
)>] , 0. Due to the Gaussian noises wk and vk injected to the linear system in (1), the states follow

Gaussian distribution since any finite linear combination of Gaussian distributions is also Gaussian. Similarly, d̂k is

Gaussian as well, and thus the use of χ2 test (8) is justified. In particular, the χ2 test compares the normalized attack

vector estimate d̂>
k
(Pd

k
)−1 d̂k with χ2

d f
(α):

Accept H0, if d̂>
k (P

d
k )

−1 d̂k ≤ χ2
d f (α)

Accept H1, if d̂>
k (P

d
k )

−1 d̂k > χ
2
d f (α),

(10)

where Pd
k

:= E[(dk − d̂k)(dk − d̂k)
>] = CG(APk−1 A>

+ Σw)(C
G)> + ΣG , and χ2

d f
(α) is the threshold found in the

Chi-square table. In χ2
d f
(α), df denotes the degree of freedom, and α denotes the statistical significance level.

To reduce false positive/negative due to noise, we use the test (10) in a cumulative form. The proposed χ2 CUSUM

detector is characterized by the detector state Sk ∈ R+:

Sk = δSk−1 + (d̂k)
>(Pd

k )
−1 d̂k, S0 = 0, (11)

where 0 < δ < 1 is the pre-determined forgetting factor. At each time k, the CUSUM detector (11) is used to update the

detector state Sk and detect the attack.

The attack detector will i) update the estimated state x̂k and the error covariance Pk in (7) with KG
k
= 0 and ii)

switch the controller to ESC, if

Sk >

∞∑

i=0

δi χ2
d f (α) =

χ2
d f
(α)

1 − δ
. (12)

If Sk <
χ2
d f

(α)

1−δ
, then it returns to the robust control mode.
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the repulsive potential function [28] as a high penalty in the cost function which is active only after the escape time

ka
+ kesc . The repulsive potential function Urep(D) is defined as the following:

Urep(D) :=




1
2
β
(

1
D
− 1

reffect

)2

if D ≤ reffect

0 if D > reffect

,

which can be constructed based on the distance between the location of the attacker and the location of UAV,

D := d(xa
ka
+kesc

, x̂ka
+kesc ). The scaling parameter β is a large constant, which represents a penalty when the constraint

has not been fulfilled. Utilizing the soft constraint, we reformulate the MPC problem as follows:

Program III.1

min
u

ka
+N∑

i=ka

ˆ̃x>i+1Qi
ˆ̃xi+1 + u>i Riui +

ka
+N∑

i=ka
+kesc

Urep(Di)

s.t. x̂i+1 = Ax̂i + Bui

h(x̂i,ui) ≤ 0 (14)

for i = ka, ka
+ 1, · · · , ka

+ N,

where N ≥ kesc is the prediction horizon, ˆ̃xi is defined as the difference between the state estimation and the goal state

at time index i, i.e., ˆ̃xi := x̂i − x
goal

i
, Qi and Ri are symmetric positive definite weight matrices, and x̂a

i
is the estimate

of the attacker location. Value reffect is the upper bound of the effective range of the spoofing device. Inequality (14) is

any nonlinear constraint on the state estimation x̂i (e.g., velocity) and the control input ui (e.g., acceleration).

Remark III.3 Each agent obtains the attacker’s information and switches to ESC when it is under attack. In the cases

that a large portion of the planned trajectory is inside the effective range of the spoofing device, following the virtual

target may cause the agent to re-enter the effective range when the agent switches back to the robust controller. Once the

agent obtains the attacker information, it will share with the robust controller to avoid re-entering.

Remark III.4 Comparing to the use of the repulsive potential function Urep in the collision avoidance literature [29–31],

the proposed application of the repulsive potential function in Program III.1 has two differences. First of all, the

repulsive potential function is known before the collision happens in collision avoidance literature, while we can only get

the repulsive potential function Urep after the collision happens, i.e., only after the UAV has entered the effective range

of the spoofing device. Second, the repulsive potential function Urep is only counted in the cost function in Program III.1

after the escape time.

IV. Simulation
The scenario in Fig. 1 is used to demonstrate the efficacy of the proposed framework. In the simulation, three UAVs

are moving to the desired goal positions simultaneously from different initial locations by using feedback control∗ based

on the state estimate from (6). When one of the UAVs is in the effective range of the spoofing device, its state estimate

will be no longer trustful. After the GPS measurement is turned off, the only available relative state measurement

causes the sensor drift problem [17]. The UAV will switch the controller from the robust controller to ESC when the

attack is detected, using ESC to escape away from the attacker within the escape time, while all UAVs will adjust

their coordination states if necessary to achieve time-coordination. The online computation of ESC is described in

Program III.1 done using Julia, and ESC is implemented by using JuMP [32] package with Ipopt solver.

A. Single UAV Model

We use a double integrator UAV dynamics under the GPS spoofing attack as in [33]. The discrete time state vector

xk considers planar position and velocity at time step k, i.e.

xk = [rxk ,r
y

k
, vxk , v

y

k
]>,

∗We implemented a proportional-derivative (PD) like tracking controller, which is widely used for double integrator systems.
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where rx
k

, r
y

k
denote x, y position coordinates, and v

x
k
, v

y

k
denote velocity coordinates. We consider the acceleration of

UAV as the control input uk = [ux
k
,u

y

k
]>. We assume that the state constraint and control input constraint are given as

√
(vx

k
)2 + (v

y

k
)2 ≤ 5,

√
(ux

k
)2 + (u

y

k
)2 ≤ 2.

With sampling time at 0.1 seconds, the double integrator model is discretized into the following matrices:

A =



1 0 0.1 0

0 1 0 0.1

0 0 1 0

0 0 0 1



, B =



0 0

0 0

0.1 0

0 0.1



,

and the outputs yG
k

and y
I
k

are the position measurements from GPS and the velocity measurements from IMU, with the

output matrices:

CG
=

[
1 0 0 0

0 1 0 0

]

, CI
=

[
0 0 1 0

0 0 0 1

]

.

The covariance matrices of the sensing and disturbance noises are chosen as Σw = 0.1I, ΣG = I and ΣI = 0.01I.

B. Trajectory generation and time coordination for multi-UAV systems

The nominal trajectories of a three-UAV system gi(si,k), where i ∈ {1,2,3}, are generated by the cubic Bézier curves

[34]

gi(si,k) , (1 − si,k)
3
P
(0)

i
+ 3(1 − si,k)

2si,kP
(1)

i
+ 3(1 − si,k)s

2
i,kP

(2)

i
+ s3

i,kP
(3)

i
, (15)

where si,k ∈ [0,1] is the coordination state and P
(j)

i
, where j ∈ {0,1,2,3}, are the control points for the agent i. The

control points we used are listed in Table 1.

H
H
H
H
H

i

( j)
(0) (1) (2) (3)

1 [0 , 0]> [100, 100]> [10, 300]> [190, 400]>

2 [200, 0]> [100, 100]> [250, 200]> [200, 400]>

3 [400, 0]> [450, 150]> [300, 300]> [210, 400]>

Table 1 Bézier curve control points P
(j)

i

Fig. 4a shows the trajectories generated by (15), and the Bézier curve control points for each agent are marked

with colored dots. Agent i aims to follow the trajectory starting from point P
(0)

i
and plans to arrive at the destination

point P
(3)

i
simultaneously. To achieve these goals, the time coordination controller proposed in (5) is used to update

the consensus network in (4); then a proportional-derivative (PD) tracking controller is used to track the virtual target

generated by the coordination state in (4).

The parameters used in (5) and the PD controller were set to the following values:

ρ =
1

1200
, ke = 0.005, ks = 0.005, kp = 0.05 and ki = 0.315,

where kp and ki are the proportional gain and the derivative gain.

Fig. 4b shows the path following and time coordination results. A series of locations of the three agents are plotted

by the hex points. Their connections by the dotted lines indicates that they have the same coordination states. We can

see that the time coordination and PD control are both well designed, and all of the agents arrived at goal destination

simultaneously.
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