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Abstract
We study the statistical performance of the semidefinite programming (SDP) relaxation approach
for clustering under the binary symmetric Stochastic Block Model (SBM). We show that the SDP
achieves an error rate of the form

exp

[
−(1− o(1))

nI

2

]
,

where I is an appropriate information-theoretic measure of the signal-to-noise ratio. This bound
matches the minimax lower bound on the optimal Bayes error rate for this problem, and improves
upon existing results that are sub-optimal by a multiplicative constant in the exponent. As a corol-
lary, our result implies that SDP achieves the optimal exact recovery threshold with the correct
leading constant. We further show that this error rate of SDP is robust; that is, it remains unchanged
under the so-called semirandom model where the graph is modified by a monotone adversary, as
well as under the setting with heterogeneous edge probabilities. Our proof is based on a novel
primal-dual analysis of the SDP.
Keywords: Stochastic Block Model, semidefinite programming, minimax rates, Bayes risk, ro-
bustness.

1. Introduction

The Stochastic Block Model (SBM) is a popular probabilistic model for studying clustering and
community detection problems. In SBM, a set of n nodes is partitioned into several unknown clus-
ters, where nodes in the same cluster are more likely to be connected than those in different clusters.
Clustering under SBM entails determining the cluster membership of each node based on a single
realization of the random graph of connections. In this paper, we focus on the canonical binary
symmetric SBM with two equal-sized clusters. In this model, the ground-truth cluster membership
can be represented by the cluster label vector σ∗ ∈ {±1}n such that σ∗i is the cluster label of node
i and

∑
i σ
∗
i = 0. Two nodes i and j are connected with probability p if σ∗i σ

∗
j = 1 (i.e., they are in

the same cluster), and with probability q if σ∗i σ
∗
j = −1 (i.e., they are in different clusters), where

p > q. The goal is to estimate the true cluster membership σ∗ or its equivalent matrix representation
Y∗ := σ∗(σ∗)> ∈ {±1}n×n.

Recent research has showcased that SBM possesses a rich set of properties interweaving algo-
rithmic and information-theoretic considerations. A major challenge therein is that clustering under
SBM is a discrete and hence non-convex problem. SDP relaxations have emerged as an efficient
and robust approach to this problem, and recent work has witnessed the advances in establishing
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rigorous performance guarantees for SDP (see Section 2 for a review of this literature). For the
general problem of controlling the estimation error of SDP, the best and most general results to date
are given in the line of work in Guédon and Vershynin (2016); Fei and Chen (2019b), which proves
that the optimal SDP solution Ŷ satisfies the bound

err(σ̂sdp,σ∗) .
1

n2
‖Ŷ −Y∗‖1 . exp

[
−nI
C

]
, (1)

where C > 0 is a large constant, I is an appropriate measure of the signal-to-noise ratio, ‖ · ‖1
denotes the entrywise `1 norm, and err(σ̂sdp,σ∗) denotes the fraction of nodes mis-clustered by
an estimate σ̂sdp ∈ {±1}n, extracted from Ŷ, of the ground-truth cluster labels σ∗. The above result
is, however, unsatisfactory due to the presence of a large multiplicative constant C in the exponent,
rendering the bound fundamentally sub-optimal. In particular, the interesting regime for proving an
error bound is when nI ≤ 2 log n, as otherwise SDP is already known to attain zero error. With a
large C in the exponent, the result in (1) provides a rather loose, sometimes even uninformative,1

bound in this regime. Moreover, this sub-optimality is intrinsic to the proof techniques used and
cannot be avoided simply by more careful calculations.

In this paper, we establish a strictly tighter, and essentially optimal, error bound on SDP:

Theorem 1 (Informal) Let I := −2 log
[√

pq +
√

(1− p)(1− q)
]
. As n → ∞, with probability

tending to one, the optimal solution Ŷ of the SDP relaxation satisfies

1

n2
‖Ŷ −Y∗‖1 ≤ exp

[
−(1− o(1))

nI

2

]
. (2)

Moreover, the explicit label estimate σ̂sdp computed by taking entrywise signs of the top eigenvector
of Ŷ satisfies

err(σ̂sdp,σ∗) ≤ exp

[
−(1− o(1))

nI

2

]
. (3)

See Theorem 2 for the precise statement of our results as well as an explicit, non-asymptotic estimate
of the o(1) term. One should compare this result with the minimax lower bound in Zhang and Zhou
(2016), which shows that any estimator σ̂ must incur an error

err(σ̂,σ∗) ≥ exp

[
−(1 + o(1))

nI

2

]
, (4)

as the latter represents the best achievable Bayes risk of the problem. Therefore, the SDP relaxation
achieves the optimal Bayes error, up to a vanishing second-order term.

Optimality as a surprise? The result above has come as unexpected to us, as it shows that re-
laxing the original problem via SDP incurs essentially no loss in terms of statistical accuracy. It
is perhaps even more surprising considering the fact that the SDP is a relaxation of the maximum
likelihood estimator (MLE) of σ∗, and in general MLE minimizes the 0-1 loss P {σ̂ 6= σ∗} but
not err(σ̂,σ∗), the difference between σ̂ and σ∗. Our proof for Theorem 1 reveals one possible
explanation of this phenomenon (see Section 1.1 for further discussion).

1. Note that 1
n2 ‖Ŷ −Y∗‖1 is trivially upper bounded by 2 since Ŷ,Y∗ ∈ [−1, 1]n×n.
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Exact recovery. As one illustration of the strength of Theorem 1, we note that it implies a sharp
sufficient condition for SDP to recover σ∗ exactly. In particular, when nI > (2 + ε) log n for any
positive constant ε, the bound (3) ensures that err(σ̂sdp,σ∗) < 1

n and hence err(σ̂sdp,σ∗) = 0 (in
fact, Ŷ = Y∗ can be guaranteed). With the estimate I = (1 + o(1))

(√
p−√q

)2, this means that
SDP achieves exact recovery whenever

(√
p−√q

)2
> (2+ε) lognn —a remarkable result first estab-

lished in Hajek et al. (2016a); Bandeira (2018); Abbe et al. (2016) via specialized analysis—whereas
it is known that exact recovery is information-theoretically impossible when

(√
p−√q

)2
< 2 logn

n .
In fact, the non-asymptotic version of our results is strong enough to guarantee exact recovery with
ε = Θ

(
1√
logn

)
—a second-order refinement of existing results.

Robustness. Significantly, we show that the bound in Theorem 1 continues to hold under the
so-called monotone semirandom model (Feige and Kilian (2001)), where an adversary is allowed
to make arbitrary change to the graph in a way that apparently strengthens connections within each
cluster and weakens connections between clusters. The same is true under SBM with heterogeneous
edge probabilities only assumed to be ≥ p within clusters and ≤ q between clusters. While these
two settings of SBM seemingly make the clustering problem easier, they in fact foil, provably,
many existing algorithms, particularly those that over-exploit the specific structures of standard
SBM in order to achieve tight recovery guarantees (Feige and Kilian (2001); Moitra et al. (2016)).
In contrast, our results show that SDP relaxations enjoy a robustness property that is possessed by
few other algorithms.

1.1. Primal-dual analysis

Key to the establishment of our results is a novel analysis that exploits both primal and dual charac-
terizations of the SDP. To set the context, we note that the sub-optimal bound (1) in Fei and Chen
(2019b); Giraud and Verzelen (2018) is established by utilizing the primal optimality of the SDP
solution Ŷ. Their arguments, however, are too crude to provide a tight estimate of the multiplicative
constant C in the exponent. On the other hand, work on exact recovery for SDP typically makes
use of a dual analysis (Hajek et al., 2016a; Bandeira, 2018); in particular, the optimality of Y∗

is certified by showing the existence of a corresponding dual optimal solution, often explicitly in
the form of a diagonal matrix D with Dii = σ∗i

∑
j Aijσ

∗
j . As this “dual certificate” D is tied to

(and constructed using) Y∗, such a certification approach would only succeed when the SDP indeed
admits Y∗ as an optimal solution.

Here we are concerned with the setting where the optimal solution Ŷ is different from Y∗, and
our goal is to bound their difference. As it is a priori unknown what Ŷ should look like, we do not
know which matrix to certify and how to construct its associated dual solution, rendering the above
dual certification argument inapplicable. Instead, we make use of the fact that Ŷ is feasible to the
SDP and has a better primal objective value than Y∗, that is, Ŷ lies in the sublevel set defined by
Y∗ and the constraints of the SDP. We then characterize the diameter of this sublevel set by using,
perhaps surprisingly, the dual certificate D of Y∗. Our analysis is thus fundamentally different from
the dual certification analysis in existing work, which only applies when the sublevel set consists of
a single element Y∗. At the same time, we make use of D in a crucial way to achieve an exponential
improvement over previous primal analysis.

Interestingly, our analysis, and hence our error bounds as well, actually apply to every element
of this sublevel set, not just the optimal solution Ŷ. As can be seen in our proof, this flexibility
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plays an important role in establishing the aforementioned robustness results under semirandom
and heterogeneous SBMs. On the other hand, however, with this level of generality we probably
should not expect the second-order o(1) term in our bounds to be optimal.

It is worth noting that a subsequent paper, Fei and Chen (2019a), shows similar results for Z2

Synchronization, Censored Block Model and SBM in a unified framework. It also provides insights
on a joint majority voting mechanism of SDP.

1.2. Paper organization

In Section 2, we review related work on SBM and the SDP approach. In Section 3, we formally in-
troduce the SBM and its variants, as well as the SDP approach used to solve the clustering problem.
We present our main results in Section 4, and outline the main steps of the proof in Section 5. The
paper is concluded in Section 6 with a discussion on future directions.

2. Related work

Without enumerating the large array of recent research efforts on the SBM, we restrict attention to
those that study sharp performance bounds for SBM, with a particular focus on work about the SDP
relaxation approach. We refer readers to the surveys Abbe (2018); Moore (2017); Li et al. (2018)
for a more comprehensive review.

2.1. Optimal error rates

Most related to us is a line of work that seeks to characterize minimax optimal rates for the error
err(σ̂,σ∗) under SBM and its variants. For any estimator σ̂ under the binary symmetric SBM,
Zhang and Zhou (2016) identify the aforementioned minimax lower bound (4). They also provide
an exponential-time algorithm that achieves a matching upper bound (up to an o(1) factor in the
exponent). Much research effort focuses on revealing the minimax rates under more general settings
and developing computationally feasible algorithms (Gao et al., 2017, 2018; Xu et al., 2017; Yun
and Proutiere, 2014, 2016; Zhang and Zhou, 2017). The monograph Gao and Ma (2018) provides
a review on recent work on this front. Concurrently to our work, Zhou and Li (2018) prove a
refined non-asymptotic minimax lower bound and provide a polynomial-time algorithm that attains
a matching upper bound. We note that this line of work does not consider the SDP relaxation
approach nor deliver robustness guarantees as we do. Nevertheless, we will compare our results
with theirs after stating our main theorems.

2.2. Exact recovery

The special case of achieving exact recovery, namely err(σ̂,σ∗) = 0, is the focus of a large
volume of recent work. In the case of the binary symmetric SBM with p, q � logn

n , Abbe et al.
(2016) and Mossel et al. (2016) prove that exact recovery is information-theoretically possible if
and only if (

√
p − √q)2 > 2 logn

n . Much research endeavor has since been devoted to identifying
similar thresholds for more general SBMs and designing algorithms that succeed in exact recovery
above optimal thresholds; see, e.g., Abbe et al. (2014); Abbe and Sandon (2015a,c); Abbe et al.
(2017); Agarwal et al. (2017); Jog and Loh (2015); Perry and Wein (2015). As mentioned, our
results imply sharp bounds for exact recovery as a corollary.
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2.3. Weak recovery

Complementary to exact recovery is the notion of weak (non-trivial) recovery, that is, achieving an
error err(σ̂,σ∗) that is better than random guess. For the binary symmetric SBM in the sparse
regime p, q � 1

n , work of Lelarge et al. (2015); Massoulié (2014); Mossel et al. (2015) establishes

that the necessary and sufficient condition of weak recovery is n(p−q)2
p+q > 2. Subsequent work

proves similar phase transitions and show that various algorithms achieve weak recovery above the
optimal threshold for the SBM with k ≥ 2 and possibly unbalanced clusters; see, e.g., Abbe and
Sandon (2015b); Abbe et al. (2018); Banerjee (2018); Bordenave et al. (2018); Caltagirone et al.
(2018); Coja-Oghlan et al. (2018); Montanari and Sen (2016); Mossel et al. (2018); Stephan and
Massoulié (2018). As discussed later, our results also imply weak recovery guarantees with a sub-
optimal constant.

2.4. Optimality and robustness of SDP

SDP has been proven to succeed in exact and weak recovery above corresponding optimal thresholds
(sometimes under additional assumptions). In particular, see Agarwal et al. (2017); Bandeira (2018);
Hajek et al. (2015, 2016a,b) for exact recovery, and Montanari and Sen (2016) for weak recovery.
Prior to our work, however, SDP was not known to achieve the optimal error rate between the exact
and weak recovery regimes. Sub-optimal polynomial rates are first proved in Guédon and Vershynin
(2016), later improved to exponential in Fei and Chen (2019b) and further generalized in Fei and
Chen (2018); Giraud and Verzelen (2018).

Robustness has been recognized as a distinct feature of the SDP approach as compared to other
more specialized algorithms for SBMs. Work in this direction has established robustness of SDP
against random erasures Hajek et al. (2015, 2016b), atypical node degrees Guédon and Vershynin
(2016) and adversarial corruptions Hajek et al. (2016a); Montanari and Sen (2016); Cai and Li
(2015); Makarychev et al. (2016). Moitra et al. (2016) investigate the relationship between statistical
optimality and robustness under monotone semirandom models; we revisit this work in more details
later.

3. Problem Set-up

In this section, we formally define the binary symmetric SBM and introduce the SDP approach.

3.1. Notations

Vectors and matrices are denoted by bold letters. For a vector u, we let ui be its i-th entry. For
a matrix M, we let Mij denote its (i, j)-th entry, ‖M‖1 :=

∑
i,j |Mij | its entry-wise `1 norm,

‖M‖F :=
√∑

i,jM
2
ij its Frobenius norm, and ‖M‖op its spectral norm (the maximum singular

value). We write M � 0 if M is symmetric positive semidefinite. The trace inner product between
two matrices is 〈M,G〉 :=

∑
i,jMijGij = Tr(M>G). We denote by I and J the n × n identity

matrix and all-one matrix, respectively, and let 1 be the all-one column vector of length n.
Bern(µ) denotes the Bernoulli distribution with mean µ ∈ [0, 1]. For a positive integer i, let

[i] := {1, 2, . . . , i}. For a real number x, dxe denotes its ceiling and bxc denotes its floor. I{·}
is the indicator function. For two non-negative sequences {an} and {bn}, we write an = O(bn),
bn = Ω(an) or an . bn if there exists a universal constant C > 0 such that an ≤ Cbn for all n. We
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write an � bn if an = O(bn) and an = Ω(bn). We are sometimes concerned with the asymptotic
regime n→∞, in which case we write an = o(bn) or bn = ω(an) if limn→∞ an/bn = 0.

3.2. The Stochastic Block Models

We begin with formally describing our basic model.

Model 1 (Binary symmetric SBM) Suppose that the ground-truth clustering σ∗ ∈ {±1}n satis-
fies 〈σ∗,1〉 = 0. The graph adjacency matrix A ∈ {0, 1}n×n is symmetric with Aii = 0 for i ∈ [n]
and its entries {Aij , i < j} generated independently by

Aij ∼

{
Bern(p) if σ∗i σ

∗
j = 1,

Bern(q) if σ∗i σ
∗
j = −1,

where 0 ≤ q < p ≤ 1 are allowed to scale with n.

As the cluster labels σ∗ are assumed to contain the same number of 1’s and −1’s, the binary
symmetric SBM represents two clusters with equal size. Despite its simple form, this model has
been of central importance in studying fundamental limits of clustering problems (Abbe et al., 2016;
Hajek et al., 2016a; Lelarge et al., 2015; Massoulié, 2014; Montanari and Sen, 2016; Mossel et al.,
2015, 2016).

For the purpose of studying the robustness properties of SDP relaxation, we consider two exten-
sions of the above basic model. The first one is a semirandom model where a so-called monotone
adversary, upon observing the random adjacency matrix A generated from Model 1 and the ground-
truth clustering σ∗, modifies A by arbitrarily adding edges between nodes of the same cluster and
deleting edges between nodes of different clusters.

Model 2 (Semirandom SBM) A monotone adversary observes A and σ∗ from Model 1, picks an
arbitrary set of pairs of nodes L ⊂ {(i, j) ∈ [n]× [n] : i < j}, and outputs a matrix ASR such that
for each i, j ∈ [n],

ASR
ij =


1 if (i, j) ∈ L, σ∗i σ∗j = 1,

0 if (i, j) ∈ L, σ∗i σ∗j = −1,

Aij , if (i, j) /∈ L.

Note that the set L is allowed to depend on the realization of A. Setting L = ∅ in Model 2
recovers the basic Model 1. Semirandom models have a long history with many variants (Blum
and Spencer, 1995). Model 2 above has been considered in Feige and Kilian (2001); Moitra et al.
(2016) for SBM. While seemingly revealing more information about the underlying cluster struc-
ture, the semirandom model in fact destroys many local structures of the basic SBM, thus frustrating
many algorithms that over-exploit such structures. In contrast, SDP is robust against the monotone
adversary under Model 2, as we shall see in Section 4.2 below.

Another way to extend Model 1 is by allowing the edge probabilities to vary across node pairs:

Model 3 (Heterogeneous SBM) Suppose that the ground-truth clustering σ∗ ∈ {±1}n satisfies
〈σ∗,1〉 = 0. The graph adjacency matrix AH ∈ {0, 1}n×n is symmetric with AH

ii = 0 for i ∈ [n]
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and its entries {AH
ij , i < j} generated independently by

AH
ij ∼

{
Bern(pij) if σ∗i σ

∗
j = 1,

Bern(qij) if σ∗i σ
∗
j = −1,

where 0 ≤ qij ≤ q < p ≤ pij ≤ 1 and all p, q, {pij}, {qij} are allowed to scale with n.

Clearly, Model 1 is a special case of Model 3 with all {pij} equal to p and all {qij} equal to q.
For all three models, we define the following measure of the signal-to-noise ratio (SNR):

I := −2 log
[√

pq +
√

(1− p)(1− q)
]
. (5)

Note that I is the Renyi divergence of order 1
2 between Bern(p) and Bern(q). As we shall see very

soon, the quantity I dictates the minimax error rates. Let us also introduce the following measure
of the distance between two vectors of cluster labels σ,σ′ ∈ {±1}n:

err(σ,σ′) := min
g∈{±1}

1

n

∑
i∈[n]

I{gσi = σ′i}.

In words, err(σ,σ′) is the fractions of nodes that are assigned a different label under σ and σ′,
modulo a global flipping of signs. With σ∗ being the true labels, err(σ̂,σ∗) measures the relative
error of the estimator σ̂.

3.3. SDP relaxation

To motivate the SDP relaxation we are to consider, we first note that the MLE of σ∗ under the
binary symmetric SBM (Model 1) is given by the solution of the following discrete and non-convex
optimization problem

max
σ∈{±1}n

〈
A,σσ>

〉
s.t. 〈σ,1〉 = 0.

Derivation of the MLE in this form is now standard; see for example Li et al. (2018). We define
the lifted variable Y = σσ>, and observe that Y satisfies Y � 0, Yii = (σi)

2 = 1 for i ∈ [n] as
well as 〈J,Y〉 =

〈
11>,σσ>

〉
= 〈σ,1〉2 = 0. Dropping the constraints that Y has rank one and

binary entries, we obtain the following SDP relaxation:

Ŷ = arg max
Y∈Rn×n

〈A,Y〉

s.t. Y � 0,

Yii = 1, ∀i ∈ [n],

〈J,Y〉 = 0.

(6)

The optimization problem (6) is a standard SDP that can be solved in polynomial time. We remark
that this SDP does not require any information about edge probabilities p and q. We note that
the same SDP is also considered in Hajek et al. (2016a) for studying the optimal exact recovery
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threshold by SDP under the binary symmetric SBM. It can be further traced back to the work of
Feige and Kilian (2001), which studies SDP for MIN BISECTION.

In the case where we are given the monotonically modified adjacency matrix ASR generated by
the semirandom SBM (Model 2), we solve the same SDP relaxation (6) with the input A replaced
by ASR. Similarly, under the Heterogeneous SBM (Model 3), we solve the SDP with A replaced
by AH.

We consider Ŷ as an estimate of the ground-truth matrix Y∗, and seek to characterize the
accuracy of the SDP solution Ŷ in terms of the `1 error ‖Ŷ−Y∗‖1. Note that Ŷ is not necessarily
a rank one matrix of the form Ŷ = σσ>. To extract from Ŷ a vector of binary estimates of cluster
labels, we take the signs of the entries of the top eigenvector of Ŷ (where the sign of 0 is 1, an
arbitrary choice). Letting σ̂sdp ∈ {±1}n be the vector obtained in this way, we study the error of
σ̂sdp as an estimate of the ground-truth label vector σ∗, as measured by err(σ̂sdp,σ∗).

4. Main results

In this section, we provide our main results on the error rate of the SDP relaxation (6).
As mentioned, our results for the binary symmetric SBM (Model 1) in fact hold for any element

in the following sublevel set (or superlevel set to be precise):

Y(A) :=
{
Y ∈ Rn×n : 〈A,Y〉 ≥ 〈A,Y∗〉 ,Y is feasible to the program (6)

}
, (7)

i.e., the set of feasible solutions to the SDP (6) that attain an objective value no worse than the
ground-truth Y∗. Clearly, the optimal solution to the SDP belongs to Y(A), since Y∗ is feasible
to the SDP. For the semirandom and heterogeneous SBMs (Models 2 and 3), we consider the sets
Y(ASR) and Y(AH), respectively, defined in a similar way. With a slight abuse of notation, in the
sequel we shall use Ŷ to denote an arbitrary matrix in the setY(A), Y(ASR) orY(AH); accordingly,
we let σ̂sdp denote the corresponding vector of labels extracted from this Ŷ.

4.1. Error rates under Binary Symmetric SBM

Our first theorem is a non-asymptotic bound on the error rates of the SDP relaxation (6) under the
binary symmetric SBM.

Theorem 2 (Binary Symmetric SBM) Under Model 1 and assuming 0 < c0p ≤ q < p ≤ 1− c1
for some constants c0, c1 ∈ (0, 1), there exist some constants CI , Ce, C > 0 such that the following
holds: If nI ≥ CI , then there hold the bounds

1

n
‖Ŷ −Y∗‖1 ≤

⌊
n exp

[
−
(

1− Ce

√
1

nI

)
nI

2

]⌋
,

err(σ̂sdp,σ∗) ≤ exp

[
−
(

1− Ce

√
1

nI

)
nI

2

]
,

∀Ŷ ∈ Y(A),

with probability at least 1− 2(e/2)−2n − 3 exp
(
−
√

log n
)
− 1

n2 − 2√
n

.

Remark 1 The assumption c0p ≤ q arises from a technical step in our proof. We note that this
assumption is common in the literature on minimax rates (Gao et al., 2017, 2018; Zhang and Zhou,
2017; Zhou and Li, 2018). In Section 5.1 in Gao et al. (2017), a weaker minimax upper bound is
obtained with this assumption dropped.
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In Section 5 we outline the main steps of the proof of the above theorem, deferring the details
to Appendices B and D. Note the floor operation in the first inequality above, which implies that
‖Ŷ−Y∗‖1 = 0 whenever the exponent is strictly less than− log n; later we explore its implication
for exact recovery.

Letting n→∞ in Theorem 2, we immediately obtain the following asymptotic result:

Corollary 1 (Binary Symmetric SBM, Asymptotic) Under Model 1 with n → ∞ and assuming
0 < c0p ≤ q < p ≤ 1 − c1 for some constants c0, c1 ∈ (0, 1), if nI → ∞, then there hold the
bounds

1

n
‖Ŷ −Y∗‖1 ≤

⌊
n exp

[
− (1− o(1))

nI

2

]⌋
,

err(σ̂sdp,σ∗) ≤ exp

[
− (1− o(1))

nI

2

]
,

∀Ŷ ∈ Y(A),

with probability 1− o(1).

The results in Theorem 2 and Corollary 1 can be compared with an existing minimax lower bound
on the error rate for SBM. Denote by σ̂ an arbitrary estimator (that is, a measurable function of A)
of ground-truth labels σ∗. Theorem 1.1 in Zhang and Zhou (2016) implies that under Model 1 with
nI →∞, any σ̂ must satisfy the lower bound

Eerr(σ̂,σ∗) ≥ exp

[
−(1 + o(1))

nI

2

]
.

In view of this lower bound and the upper bound in Corollary 1, we see that the SDP achieves the
optimal error rate, up to a vanishing second-order term in the exponent.2

Our Theorem 2 in fact provides an explicit, non-asymptotic upper bound for the o(1) term in
the exponent. This bound, taking the form of O(1/

√
nI), yields second-order characterization of

various recovery thresholds and is strong enough to provide non-trivial guarantees in the sparse
graph regime. We discuss these points in Section 4.3 to follow. We do not expect this bound to be
information-theoretic optimal though, for reasons discussed in the Introduction section.

4.2. Robustness under Semirandom and Heterogeneous SBMs

The following theorem shows that the error rate of the SDP is unaffected by passing to the semiran-
dom model (Model 2). Recall that Y(ASR) is the sublevel set of the SDP (6) with ASR as the input.

Theorem 3 (Semirandom SBM) Suppose that ASR is generated according to Model 2. The con-
clusions of Theorem 2 and Corollary 1 continue to hold with Y(A) replaced by Y(ASR).

A similar result holds for the heterogeneous model (Model 3). In fact, Model 3 can be reduced to
Model 2 as shown in Fei and Chen (2019b, Appendix V). Recall that Y(AH) is the sublevel set of
the SDP (6) with AH as the input.

2. We note that Theorem 1.1 in Zhang and Zhou (2016) bounds the error in expectation and holds for a parameter space
containing σ∗ with slightly unequal-sized clusters. Our results provide a high-probability bound. Extending our
results to the setting of slightly unequal-sized clusters is possible, albeit tedious; we leave this to future work.
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Theorem 4 (Heterogeneous SBM) Suppose that AH is generated according to Model 3. The
conclusions of Theorem 2 and Corollary 1 continue to hold with Y(A) replaced by Y(AH).

The proofs of the two theorems above are both given in Appendix E.
The results above show that SDP is insensitive to monotone modification and heterogeneous

probabilities. We emphasize that such robustness is by no means automatic. With non-uniformity
in the probabilities, the likelihood function no longer has a known, rigid form, a property heavily
utilized in many algorithms. The monotone adversary can similarly alter the graph structure by
creating hotspots and short cycles. Even worse, the adversary is allowed to make changes after ob-
serving the realized graph,3 thus producing unspecified dependency among all edges in the observed
data and leading to major obstacles for existing analysis of iterative algorithms.

We would like to mention that the work in Moitra et al. (2016) shows that the semirandom
model makes weak recovery strictly harder. While not contradicting their results technically, the
fact that our error bounds remain unaffected under this model does demand a closer look. We note
that our bounds are optimal only up to a second order term in the exponent and consequently do
not attain the optimal weak recovery limit. Also, our robustness results on error rates are tied to
a specific form of SDP analysis (using the sublevel set Y(A)). In comparison, for exact recovery
SDP is robust by design to the semirandom model, as is well recognized in past work (Feige and
Kilian, 2001; Chen et al., 2014; Hajek et al., 2016a).

In the following, we discuss some consequences of the results presented above, and compare
them with results in other work that derives minimax rate.

4.3. Consequences and Optimality

Theorem 2 and Corollary 1 imply sharp sufficient conditions for several types of recovery.
Exact recovery: Noting the equivalence I = (1+o(1))(

√
p−√q)2 valid for 0 < q � p = o(1),

we see that whenever n(
√
p−√q)2 ≥ (2+ε) log n for any constant ε > 0, we have ‖Ŷ−Y∗‖1 = 0

by Corollary 1 (note the floor operation therein) and hence SDP achieves exactly recovery by itself.
We thus recover, as a corollary, the sharp exact recovery threshold for SDP established in Hajek
et al. (2016a); Bandeira (2018).

Second-order refinement: Using the non-asymptotic Theorem 2, we can obtain the following
refinement of the above result: exact recovery provided nI

logn ≥ 2+ C1√
logn

+ C2
logn for some constants

C1, C2 > 0. This result is comparable to the sufficient condition n(
√
p−√q)2
logn ≥ 2+ C√

logn
+ω

(
1

logn

)
for SDP established in Hajek et al. (2016a), whereas the necessary and sufficient condition for
optimal estimator (MLE) is n(

√
p−√q)2
logn ≥ 2− log logn

logn +ω
(

1
logn

)
(Abbe et al., 2016; Mossel et al.,

2016).
Almost exact recovery: Theorem 2 ensures that err(σ̂,σ∗) = o(1) under the condition nI →

∞. This condition is optimal, as proved in Mossel et al. (2016); Abbe and Sandon (2015a).
Weak recovery: When nI ≥ C for a sufficiently large constant C, Theorem 2 ensures that

err(σ̂,σ∗) < 1
2 and hence SDP achieves weak recovery. This condition matches, up to constants,

the so-called Kesten-Stigum (KS) threshold n(p−q)2
p+q > 2 (in view of I � (p−q)2

p ; cf. Fact 5), which
is optimal (Massoulié, 2014; Abbe and Sandon, 2015b; Mossel et al., 2013, 2015).

3. In this sense we have strengthened the robustness results in the previous work Fei and Chen (2019b), which does not
allow such adaptivity.
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Sparse regime: Our result guarantees an arbitrarily small constant error when nI is a suf-
ficiently large but finite constant. This result is applicable even in the sparse graph regime with
constant expected degrees, namely np, nq, nI = Θ(1). In comparison, many results on minimax
rates require nI , and hence the degrees, to diverge (e.g., Gao et al. (2017); Zhang and Zhou (2017)).

4.4. Comparison with existing results

We compare with the existing work that derives sharp error rate bounds achievable by polynomial-
time algorithms. Here we focus on the binary symmetric SBM (Model 1). To be clear, the algorithms
considered in this line of work are very different from ours. In particular, most existing results
and particularly those discussed below, require a good enough initial estimate of the true clusters.
Obtaining such an initial solution (typically done using spectral clustering) is itself a non-trivial
task.

Using neighbor voting and variational inference algorithms, the work in Gao et al. (2017) and
Zhang and Zhou (2017) obtains an error bound of the same form as our Corollary 1, under the
assumption that 0 < q < p < 1, p � q and nI →∞ (Zhang and Zhou (2017) assume additionally
p = o(1)). Yun and Proutiere (2014) consider a spectral algorithm and prove the error bound

err(σ̂,σ∗) ≤ exp

[
−(1− ε)

n(
√
p−√q)2

2

]
for any constant ε > 0, under the conditions np→∞ and (1 + ε)q ≤ p = o

(
1/ log2 n

)
. Recalling

I = (1 + o(1))(
√
p − √q)2, we find that our error rate in Corollary 1 is better as we allow the ε

term to vanish. A strength of our results is that we provide an explicit bound for the second-order
term in the exponent; we know of few error rate results (with the exception discussed below) that
offer this level of accuracy.

Concurrently to our work, Zhou and Li (2018) show that an EM-type algorithm achieves a
non-asymptotic error rate of the form

err(σ̂,σ∗) ≤ exp

[
−
(

1 +
2

nI
log

√
np

C

)
nI

2

]
for some constant C > 0, under the conditions 1 .

√
np . nI and q � p. This bound has a better

second-order term in the exponent compared to our Theorem 2. We do note that their algorithm
is fairly technical, involving data partition and the leave-one-out tricks to ensure independence,
degree truncation to regularize spectral clustering, and blackbox solvers for K-means and matching
problems. In comparison, the SDP approach is much simpler conceptually.

Finally, we emphasize that we also provide robustness guarantees under the monotone semiran-
dom model and non-uniform edge probabilities. In comparison, it is unclear if comparable robust-
ness results can be established for the work above, as their algorithms and analysis make substantial
use of the properties of the standard SBM, particularly the complete independence among edges
and the specific form of the likelihood function.

5. Proof Outline of Theorem 2

To prove Theorem 2, we proceed in three steps:

11
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Step 1: As mentioned in Section 1, we construct a diagonal matrix D := diag [σ∗ ◦ ((A− λ∗(J− I))σ∗)],
which takes the same form as the “dual certificate” used in previous work (the parameter λ∗ is intro-
duced only for technical reasons later and plays no role in this step). The construction of D allows
us to establish the basic inequality:

0 ≤
〈
−D,PT⊥(Ŷ)

〉
+
〈
A− EA,PT⊥(Ŷ)

〉
, for any Ŷ ∈ Y(A);

see the proof of Lemma 1 for the details of this critical step. Here PT⊥ is an appropriate projection
operator that satisfies Tr

[
PT⊥(Ŷ)

]
= 1

n‖Ŷ −Y∗‖1, thus exposing the `1 error of Ŷ that we seek
to control.

Step 2: We then show that the second term 〈A − EA,PT⊥(Ŷ)〉 in the basic inequality is
negligible compared to the first term 〈−D,PT⊥(Ŷ)〉. Consequently, the problem boils down to
studying the inequality

0 ≤ 〈−D,PT⊥(Ŷ)〉 =
∑
i∈[n]

(−Dii)bi,

where bi :=
(
PT⊥(Ŷ)

)
ii

satisfies
∑

i∈[n] bi = 1
n‖Ŷ −Y∗‖1.

Step 3: The bi’s take fractional values in general. Crucially, we argue that the bounding the
fractional sum

∑
i(−Dii)bi can be reduced to controlling the discrete sum

∑
i∈M (−Dii) for appro-

priate subsets M of [n] with |M | ≈ 1
n‖Ŷ −Y∗‖1. We then observe that each Dii is roughly the

difference between n
2 Bern(q) random variables and n

2 Bern(p) random variables. Applying a tight
Chernoff inequality, in which I arises as the rate function, we show that∑

i∈[n]

(−Dii)bi . log

[
n/
( 1

n
‖Ŷ −Y∗‖1

)]
−
(
1− o(1)

)nI
2
.

Combining the above two inequalities and inverting the logarithm yield the exponential error bound
in the first inequality in Theorem 2.

Once we establish the first inequality in Theorem 2, the second inequality follows from a
straightforward application of Davis-Kahan theorem. The details of the proof of these inequali-
ties are given in Appendices B and D.

6. Discussion

In this paper, we have analyzed the error rates of the SDP relaxation approach for clustering under
the binary symmetric SBM. We have shown that SDP achieves an exponentially-decaying error with
a sharp constant, matching the minimax lower bound. As an immediate consequence, SDP achieves
exact recovery above the optimal threshold. We have also shown that these results continue to hold
under monotone semirandom models and non-uniform edge probabilities.

Interesting future directions include extensions to SBM with multiple and unbalanced clusters,
as well as to closely related models such as the weighted and degree-corrected SBMs. It is also
of interest to see if better estimates of the second order term can be obtained, and if there is a
fundamental tradeoff between statistical optimality and robustness.
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Appendix A. Additional notations

We introduce some additional notations for subsequent proofs. For a matrix M, we let M> denote
the transpose of M, Tr(M) its trace, ‖M‖∞ := maxi,j |Mij | its entrywise `∞ norm, and diag (M)
the vector of its diagonal entries. With another matrix G of the same shape as M, we use M ≥ G
to mean that Mij ≥ Gij for all i, j.

Appendix B. Proof of the first inequality in Theorem 2

Here we prove the first inequality in Theorem 2. The proof of the second inequality is given in
Section D

Consider any Ŷ from the set Y(A). Let us define γ := ‖Ŷ − Y∗‖1, the key quantity of our
interest. Let t∗ be the minimizer of t 7→ Eet(X−Y ) where X ∼ Bern(q), Y ∼ Bern(p) and X and
Y are independent. It can be shown that

t∗ =
1

2
log

p(1− q)
q(1− p)

. (8)

Since we assume p > q, we have t∗ > 0. Let

λ∗ :=
1

2t∗
log

1− q
1− p

. (9)
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Let A0 := A− λ∗(J− I) and W := A− EA. Define an n× n diagonal matrix

D :=

D11

. . .
Dnn


such that for each i ∈ [n], Dii :=

∑
j∈[n]A

0
ijY
∗
ij = σ∗i

∑
j∈[n]A

0
ijσ
∗
j . Let d := [D11, . . . , Dnn]>.

Let U ∈ Rn be a vector of the left singular vector of Y∗ and it can be seen that U = 1√
n
σ∗. Define

the projection PT (M) := UU>M+MUU> −UU>MUU> and PT⊥(M) = M−PT (M) for
any M ∈ Rn×n.

B.1. Establishing basic inequality

Let us record some facts about Ŷ ∈ Y(A) and parameters t∗, λ∗, I that will be useful for the
subsequent proof.

Fact 1 We have
〈
EA− λ∗(J− I),PT⊥

(
Ŷ
)〉

= −(p− λ∗) Tr
(
PT⊥

(
Ŷ
))

.

The proof is given in Section C.1.

Fact 2 PT⊥
(
Ŷ
)
� 0 and Tr

(
PT⊥

(
Ŷ
))

= γ
n .

The proof is given in Section C.2.

Fact 3 We have ‖PT⊥(Ŷ)‖∞ ≤ 4.

The proof is given in Section C.3.

Fact 4 If 0 < c0p ≤ q < p ≤ 1 − c1 for some constants c0, c1 ∈ (0, 1), then there exists some
constant C > 0 such that t∗ ≤ C p−q

p .

The proof is given in Section C.4.

Fact 5 If 0 < q < p ≤ 1− c for some constant c ∈ (0, 1), then I � (p−q)2
p .

This is a partial result of Lemma B.1 of Zhang and Zhou (2016).

Fact 6 If 0 < q < p < 1, we have λ∗ ∈ (q, p).

The proof is given in Section C.5.

With the facts above, we establish the following critical basic inequality.

Lemma 1 Any Ŷ ∈ Y(A) satisfies the inequality

0 ≤
〈
−D,PT⊥

(
Ŷ
)〉

+
〈
W,PT⊥

(
Ŷ
)〉

.

The proof is given in Section C.6.
We define the shorthands S1 :=

〈
−D,PT⊥

(
Ŷ
)〉

and S2 :=
〈
W,PT⊥

(
Ŷ
)〉

. In the follow-
ing, we first control S2 and then derive the exponential error rate from S1 + S2.
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B.2. Controlling S2
The proposition below provides a bound on S2.

Proposition 1 Under the conditions of Theorem 2, with probability at least 1 − 1
n2 − 3√

n
at least

one of the following inequalities holds:

γ

n
≤

⌊
n exp

[
−

(
1− Ce

√
1

nI

)
nI

2

]⌋
,

S2 ≤ C
1

t∗
γ

√
I

n
, (10)

for some constants Ce, C > 0.

The proof is given in Section C.7. WLOG we assume the second equation in Proposition 1 holds.
By Lemma 1, we have

0 ≤
〈
−D,PT⊥

(
Ŷ
)〉

+ C
1

t∗
γI

√
1

nI
. (11)

B.3. Analyzing S1 + S2

If γ = 0 then we are done. Therefore, we assume γ > 0 in the following. By Fact 2, PT⊥
(
Ŷ
)

is
psd and all its diagonal entries are non-negative, with

Tr
(
PT⊥

(
Ŷ
))

=
γ

n

Let bi :=
(
PT⊥

(
Ŷ
))

ii
, bmax = 4, β := 1

bmax

∑
i∈[n] bi = γ

bmaxn
and Xi := −di. By Fact 3,

bi
bmax

∈ [0, 1]. Note that each Xi is the sum of n − 1 independent random variables, but Xi is

not independent with Xj for i 6= j. To proceed, we show that the quantity
〈
−D,PT⊥

(
Ŷ
)〉

is
bounded by the sum of a certain subset of {Xi} with size roughly β, which can be further controlled
by the following lemma.

Lemma 2 Let η := C
√

1
nI for some large constantC > 0 andM be any positive number satisfying

1 ≤M ≤ C
√

n
I . There exists some constantCI > 0 that only depends onC such that the following

holds. If nI ≥ CI then we have

max
M⊂[n], |M|=m

[∑
i∈M

Xi

]
≤ 1

t∗

(
(1 + η)m log

(ne
m

)
− (1− 2η)

mn

2
I
)
, m = 1, 2, . . . , bMc

with probability at least 1− 3 exp
(
−
√

log n
)
.

The proof is given in Section C.8. To see that the range ofM is valid, one can verify that 1 ≤ C ′
√

n
I

for some constant C ′ > 0. Indeed, p ≤ 1 implies 1 ≤
√

n
p , and p ≥ (p−q)2

p together with Fact 5

implies
√

n
p ≤

√
np

(p−q)2 ≤ C
′√n

I .

We need a simple pilot bound, which ensures that the SDP solution satisfies a non-trivial error
bound.
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Lemma 3 Under Model 1, if p ≥ 1
n then there exists some constant C > 0 such that

γ ≤ C
√
n3

I

with probability at least 1− 2(e/2)−2n.

The proof is given in Section C.9.
To proceed, we employ a technique involving order statistics similar to those in Fei and Chen

(2018, 2019b). Let X(1) ≥ X(2) ≥ · · · ≥ X(n) be the order statistics of {Xi}. We can write

S1 =
∑
i∈[n]

Xibi

= bmax

∑
i∈[n]

Xi

(
bi
bmax

)
.

Let η be as defined in Lemma 2.
If 0 < β ≤ 1, we have

S1 ≤ bmaxβX(1)

(a)

≤ bmaxβ

[
1

t∗

(
(1 + η) log

(ne
1

)
− (1− 2η)

n

2
I
)]

= bmaxβ

[
1

t∗

(
(1 + η) log

(
ne

dβe

)
− (1− 2η)

n

2
I

)]
where step (a) follows from Lemma 2 with M = 1 and the last step holds since dβe = 1. Then
Equation (11) yields

0 ≤ C 1

t∗

√
1

nI
γI + bmaxβ

[
1

t∗

(
(1 + η) log

(
ne

dβe

)
− (1− 2η)

n

2
I

)]
= bmaxβ

[
1

t∗

(
(1 + η) log

(
ne

dβe

)
− (1− C ′′e η)

n

2
I

)]
for some constant C ′′e > 0. Since nI ≥ CI implies η ≤ C ′

√
1
CI

, rearranging the above equation
yields

dβe ≤ en exp

[
−(1− C ′eη)

nI

2

]
for some constant C ′e > 0. Since dxe ≤ y implies x ≤ byc for any x, y ≥ 0, the above inequality
yields

γ

bmaxn
= β ≤

⌊
en exp

[
−(1− C ′eη)

nI

2

]⌋
.

To proceed, we record a fact related to the floor function.

Fact 7 For any x ≥ 0 and positive integer c, we have c bxc ≤ bcxc.
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Proof We have bcxc = bc bxc+ (cx− c bxc)c ≥ bc bxcc = c bxc by noting that cx − c bxc ≥ 0
and c bxc is an integer.

By Fact 7 and the definition bmax = 4, we have

γ

n
≤ bmax

⌊
en exp

[
−(1− C ′eη)

nI

2

]⌋
=

⌊
bmaxen exp

[
−(1− C ′eη)

nI

2

]⌋
=

⌊
n exp

[
−(1− C ′eη)

nI

2
+ log (bmaxe)

]⌋

As long as nI ≥ 1, we have
√

1
nI ≥

1
nI and

γ

n
≤
⌊
n exp

[
−(1− Ceη)

nI

2

]⌋
for some constant Ce ≥ C ′e. We have arrived at the desired result for 0 < β ≤ 1.

Now if β > 1, then

S1 ≤ bmax

 ∑
i∈[bβc]

X(i) + (β − bβc)X(dβe)


Continuing from Equation (11), we have

0 ≤ S1 + Cbmaxβ
1

t∗

√
1

nI
nI

≤ bmax

 ∑
i∈[bβc]

(
X(i) + C

1

t∗

√
1

nI
nI

)
+ (β − bβc)

(
X(dβe) + C

1

t∗

√
1

nI
nI

) .
It would be challenging to handle the residual term (β − bβc)X(dβe) when β is not an integer.
Fortunately, taking the integer part of β enables us to control the SDP error γ more easily while not
loosening the bound by too much, with help of the next lemma.

Lemma 4 Let {φi}i∈[n] be such that φ1 ≥ φ2 ≥ . . ., and u′ ∈ [1, n]. Define V (u) :=
∑

i∈[buc] φi+

(u− buc)φdue. If 0 ≤ V (u′), then we have 0 ≤ V (u0) for any u0 ∈ [1, u′].

The proof can be found in Section C.10.

Let β0 := bβc. By Lemma 4 with u′ = β and φ(i) = X(i)+C
1
t∗

√
1
nInI , last displayed equation

implies that

0 ≤ bmax

∑
i∈[β0]

(
X(i) + C

1

t∗

√
1

nI
nI

)
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= bmax

∑
i∈[β0]

X(i) + bmaxβ0C
1

t∗

√
1

nI
nI.

Lemma 3 implies that β0 ≤ β ≤ C ′
√

n
I for some constant C ′ > 0 with high probability, and

therefore by Lemma 2 with M = C ′
√

n
I , with high probability we have

0 ≤ 1

t∗

(
(1 + η)β0 log

(
ne

β0

)
− (1− 2η)

β0n

2
I

)
+ C

1

t∗
β0nI

√
1

nI

= β0
1

t∗

(
(1 + η) log

(
ne

β0

)
− (1− C ′′e η)

n

2
I

)
for some constant C ′′e > 0. Since nI ≥ CI implies η ≤ C ′

√
1
CI

, rearranging the above equation
yields

β0 ≤ en exp

[
−(1− C ′eη)

nI

2

]
for some constant C ′e > 0. Since β0 is an integer by definition, we must also have

β0 ≤
⌊
en exp

[
−(1− C ′eη)

nI

2

]⌋
.

Given β > 1 and the definition of β, we have β ≤ 2β0 and γ
n = bmaxβ. Then Fact 7 and the

definition bmax = 4 implies

γ

n
≤ 2bmax

⌊
en exp

[
−(1− C ′eη)

nI

2

]⌋
≤
⌊

2bmaxen exp

[
−(1− C ′eη)

nI

2

]⌋
.

As long as nI ≥ 1, we have
√

1
nI ≥

1
nI and

γ

n
≤
⌊
n exp

[
−(1− C ′eη)

nI

2
+ log(2bmaxe)

]⌋
=

⌊
n exp

[
−(1− Ceη)

nI

2

]⌋
for some constant Ce ≥ C ′e. The proof is completed.

Appendix C. Proofs of Technical Lemmas in Section B

C.1. Proof of Fact 1

The conclusion follows that〈
EA− λ∗(J− I),PT⊥

(
Ŷ
)〉

=
〈

(EA + pI)− λ∗J− (p− λ∗)I,PT⊥
(
Ŷ
)〉
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=
〈

(EA + pI)− λ∗J,PT⊥
(
Ŷ
)〉
− (p− λ∗) Tr

(
PT⊥

(
Ŷ
))

=
〈
PT⊥((EA + pI)− λ∗J), Ŷ

〉
− (p− λ∗) Tr

(
PT⊥

(
Ŷ
))

(a)
=

〈
PT⊥

(
p− q

2
Y∗ +

p+ q

2
J− λ∗J

)
, Ŷ

〉
− (p− λ∗) Tr

(
PT⊥

(
Ŷ
))

(b)
=

〈(
p+ q

2
− λ∗

)
J, Ŷ

〉
− (p− λ∗) Tr

(
PT⊥

(
Ŷ
))

= −(p− λ∗) Tr
(
PT⊥

(
Ŷ
))

where step (a) holds since (EA+pI)−λ∗J = p−q
2 Y∗+ p+q

2 J−λ∗J, step (b) holds since PT⊥(Y∗)

is equal to the all-zero matrix and PT⊥(J) = J (since
(
I−UU>

)
J =

(
I− 1

nY
∗)J = J), and

the last step holds since
〈
J, Ŷ

〉
= 0.

C.2. Proof of Fact 2

Fix any x ∈ Rn and let v := x>
(
I−UU>

)
. Then

x>
[
PT⊥

(
Ŷ
)]

x = x>
[(

I−UU>
)
Ŷ
(
I−UU>

)]
x

= v>Ŷv

≥ 0

where the last step holds since Ŷ � 0 by feasibility to program (6). Therefore, PT⊥
(
Ŷ
)
� 0. We

also have

Tr
(
PT⊥

(
Ŷ
))

= Tr
((

I−UU>
)(

Ŷ −Y∗
)(

I−UU>
))

(a)
= Tr

((
I−UU>

)(
Ŷ −Y∗

))
(b)
= Tr

((
−UU>

)(
Ŷ −Y∗

))
=

1

n
Tr
(

(−Y∗)
(
Ŷ −Y∗

))
=
γ

n
,

where step (a) holds since trace is invariant under cyclic permutations and the matrix I −UU> is
idempotent, and step (b) holds since Y ∗ii − Ŷii = 0 for i ∈ [n].

C.3. Proof of Fact 3

The result follows from the definition of PT⊥(·) and direct calculation

‖PT⊥
(
Ŷ
)
‖∞ ≤ ‖Ŷ‖∞ + ‖UU>Ŷ‖∞ + ‖ŶUU>‖∞

+ ‖UU>ŶUU>‖∞
≤ 4.
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C.4. Proof of Fact 4

By definition of t∗ in Equation (8), we have

t∗ =
1

2

[
log

p

q
+ log

1− q
1− p

]
.

We discuss two cases based on whether pq is larger than 1−q
1−p .

If pq ≥
1−q
1−p , we have

t∗ ≤ log
p

q

= log

(
1 +

p− q
q

)
(a)

≤ p− q
q

≤ p− q
c0p

where step (a) holds since the fact that 1 + x ≤ ex for x ∈ R implies log(1 + x) ≤ x for x ≥ 0,
and the last step holds by the assumption that c0p ≤ q.

If pq ≤
1−q
1−p , then

t∗ ≤ log
1− q
1− p

(a)

≤ 1− q
1− p

− 1

(b)

≤ p− q
c1

≤ p− q
c1p

,

where step (a) holds since log x ≤ x − 1 for x > 0, step (b) holds by our assumption p ≤ 1 − c1,
and the last step holds since p ≤ 1.

Hence, taking C = max
{

1
c0
, 1
c1

}
finishes the proof.

C.5. Proof of Fact 6

We want to show

0 < p− λ∗ =

[
log

p(1− q)
q(1− p)

]−1 [
p log

p(1− q)
q(1− p)

− log
1− q
1− p

]
by definition of λ∗. Since 0 < q < p < 1, we have log p(1−q)

q(1−p) > 0. We also have

p log
p(1− q)
q(1− p)

− log
1− q
1− p

= p log
p

q
+ p log

1− q
1− p

− log
1− q
1− p
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= p log
p

q
+ (1− p) log

1− p
1− q

,

which is the KL divergence between Bern(p) and Bern(q). It is positive since p 6= q, whence
p− λ∗ > 0 as claimed.

Similarly, we have

λ∗ − q =

[
log

p(1− q)
q(1− p)

]−1 [
q log

q

p
+ (1− q) log

1− q
1− p

]
.

With 0 < q < p < 1, the quantity inside the first bracket on the RHS is positive, and the quantity
inside the second bracket is the KL divergence and thus is also positive. We therefore conclude that
λ∗ − q > 0.

C.6. Proof of Lemma 1

Recall the definitions of A0,W,D,d defined in the beginning of Section B. Note that

Dσ∗ = σ∗ ◦ d
= σ∗ ◦ σ∗ ◦

(
A0σ∗

)
= A0σ∗

and therefore
DY∗ = Dσ∗ (σ∗)> = A0σ∗ (σ∗)> = A0Y∗.

Since Ŷ ∈ Y(A), we have

0 ≤
〈
A, Ŷ −Y∗

〉
(a)
=
〈
A0 −D, Ŷ −Y∗

〉
(b)
=
〈
A0 −D, Ŷ

〉
=
〈
A0 −D,PT⊥

(
Ŷ
)〉

+
〈
A0 −D,PT

(
Ŷ
)〉

(c)
=
〈
A0 −D,PT⊥

(
Ŷ
)〉

=
〈
W −D + (EA− λ∗(J− I)),PT⊥

(
Ŷ
)〉

(d)

≤
〈
−D,PT⊥

(
Ŷ
)〉

+
〈
W,PT⊥

(
Ŷ
)〉

where

• step (a) holds since
〈
J, Ŷ

〉
= 〈J,Y∗〉 = 0, Ŷ −Y∗ has zero diagonal and D is a diagonal

matrix;

• step (b) holds since DY∗ = A0Y∗;
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• step (c) holds since〈
A0 −D,PT

(
Ŷ
)〉

=
〈
A0 −D,UU>Ŷ

〉
+
〈
A0 −D, ŶUU>

〉
−
〈
A0 −D,UU>ŶUU>

〉
and UU> = n−1Y∗ = n−1σ∗ (σ∗)>, there exist some vectors u,v ∈ Rn such that〈

A0 −D,PT
(
Ŷ
)〉

=
〈
A0 −D,σ∗u> + v (σ∗)>

〉
= 0

where the last step follows Dσ∗ = A0σ∗;

• step (d) follows from Fact 1, and Tr
(
PT⊥

(
Ŷ
))
≥ 0 by Fact 2, and p− λ∗ ≥ 0 by Fact 6.

C.7. Proof of Proposition 1

Recall that
S2 =

〈
PT⊥(Ŷ),W

〉
. (12)

We control the right hand side of Equation (12) by splitting the term into two parts, one involving a
trimmed version of W and the other the residual. This technique is similar to those in Fei and Chen
(2019b); Zhang and Zhou (2017), but here we provide somewhat tighter bounds.

C.7.1. TRIMMING

We need two technical lemmas concerning properties of a trimmed Bernoulli matrix and its residual.

Lemma 5 Suppose M ∈ Rn×n is a random matrix with zero on the diagonal and independent
entries {Mij} with the following distribution

Mij =

{
1− pij , w.p. pij ,
−pij , w.p. 1− pij .

Let p′ := maxij pij and M̃ be the matrix obtained from M by zeroing out all the rows and columns
having more than 40np′ positive entries. Then there exists some constant C > 0 such that

‖M̃‖op ≤ C
√
np′

with probability at least 1− 1
n2 .

Proof The claim follows from Lemma 9 in Fei and Chen (2019b) with σ2 therein set to p′.

Lemma 6 Let M ∈ {0, 1}n×n be a binary matrix withMii = 0 for all i ∈ [n], and {Mij}i∈[n],j∈[n]
being independent Bernoulli random variables. Let p′ := maxij EMij . Define T := {i ∈ [n] :∑

jMij ≥ 40np′} and Zi :=
∑

j |Mij − EMij | I{i ∈ T }. If p′ ≥ C
n for a sufficiently large

positive constant C, then we have ∑
i

Zi ≤ 40n2p′e−5np
′

with probability at least 1− 1√
n

.
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Proof Define the event B :=
{∑

i Zi > 40n2p′e−5np
′
}

. First consider the case where np′ ≥
1
10 log n. Applying Lemma C.5 in Zhang and Zhou (2017) with p therein set to 2p′,4 we obtain
that P {B} ≤ e−10np

′
. Under the case np′ ≥ 1

10 log n, this probability is at most e− logn ≤ 1√
n

as

claimed. Next consider the case where C ≤ np′ < 1
10 log n. Since

∑
jMijI{i ∈ T } ≥ 40np′I{i ∈

T } by definition of T , we have∑
i

Zi ≤
∑
i

∑
j

MijI{i ∈ T }+ np′
∑
i

I{i ∈ T }

≤ 2
∑
i

∑
j

MijI{i ∈ T }.

Set ε = 20np′e−5np
′
; note that ε ∈ (0, 1/2] and 21np′+2 log ε−1 ≤ 40np′ since p′ ≥ C

n . Applying
Lemma 8.1 in Rebrova and Vershynin (2016) with the above ε,5 we obtain that

P

∑
i

∑
j

MijI{i ∈ T } > 20n2p′e−5np
′

 ≤ exp
(
−10n2p′e−5np

′
)

≤ exp
(
−10Cne−

1
2
logn

)
= exp

(
−10C

√
n
)
≤ 1√

n
.

Combining the last two display equations proves that P {B} ≤ 1√
n

as claimed.

Let Wup be obtained from W by zeroing out its lower triangular entries. Turning to S2, we observe
that

S2 = 2
〈
PT⊥(Ŷ),Wup

〉
= 2

〈
PT⊥(Ŷ),W̃up

〉
+ 2

〈
PT⊥(Ŷ),Wup − W̃up

〉
(a)

≤ 2 Tr
[
PT⊥(Ŷ)

]
· ‖W̃up‖op + 2‖PT⊥(Ŷ)‖∞‖Wup − W̃up‖1

(b)

≤ 2
γ

n
‖W̃up‖op + 8‖Wup − W̃up‖1,

where step (a) holds since PT⊥(Ŷ) � 0 (by Fact 2) implies ‖PT⊥(Ŷ)‖∗ = Tr
{
PT⊥

(
Ŷ
)}

, and

step (b) holds by Fact 2 and Fact 3. We then apply Lemma 5 to W̃up to bound ‖W̃up‖op, and apply
Lemma 6 to Wup and (Wup)> to bound ‖Wup − W̃up‖1. Note that the assumption p′ ≥ C

n of
Lemma 6 is satisfied by the assumption of this proposition that nI ≥ CI for some large enough
CI > 0 (since Fact 5 implies I . (p−q)2

p ≤ p). Then with probability at least 1 − 1
n2 − 2√

n
, there

holds

S2 ≤ C0
γ

n

√
np+ C1n

2pe−5np =: C0Q1 + C1Q2

for some constants C0, C1 > 0.

4. Inspecting their proof, we see that their bound holds without change for matrices with independent entries.
5. Inspecting their proof, we see that their bound holds without change when the means of the Bernoulli are upper

bounded by the same p′.
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C.7.2. CONTROLLING Q1

Note that Fact 5 implies
√
I ≤ C ′ p−q√p for some constant C ′ > 0 and therefore Q1 = γ p−qp−q

√
p
n ≤

1
C′γ(p− q)

√
1
nI .

C.7.3. CONTROLLING Q2

We record an elementary inequality.

Lemma 7 For any number α > 0 with α � 1, there exists a constant C(α) ≥ 1 (that only depends
on α) such that if nI ≥ 2C(α), then

pe−pn/(2α) ≤ (p− q)e−nI/(4α).

Proof Note that pn ≥ (p− q)n ≥ (p−q)2
p n ≥ 1

C′nI ≥
1
C′ 2C(α) for some constant C ′ > 0 by Fact

5. As long as C(α) is sufficiently large, we have pn
2 ≤ e

pn/(4α). These inequalities imply that

p

p− q
≤ pn

2
≤ epn/(4α) ≤ e(2p−I)n/(4α).

Multiplying both sides by (p− q)e−2pn/(4α) yields the claimed inequality.

Equipped with the above bound, we are ready to bound Q2. Let ξ = Ce

√
1
nI for some constant

Ce > 0 such that
⌊
ne−(1−ξ)nI/2

⌋
> 0. If γ

n = 0 or γ
n ≤

⌊
ne−(1−ξ)nI/2

⌋
, then the first inequality

in Proposition 1 holds and we are done. It remains to consider the case γ
n >

⌊
ne−(1−ξ)nI/2

⌋
> 0.

We have that
⌊
ne−(1−ξ)nI/2

⌋
is a positive integer and γ > n

⌊
ne−(1−ξ)nI/2

⌋
≥ 1

2n
2e−(1−ξ)nI/2.

Lemma 7 with α = 1
5 implies that

Q2 ≤ pn2e−5pn/2

≤ (p− q)n2e−5nI/4

≤ (p− q)e−nI/2 · n2e−nI/2

≤ (p− q)e−nI/2 · n2e−(1−ξ)nI/2

≤ 2(p− q)e−nI/2 · γ

Choosing CI > 0 large enough so that e−nI/2 ≤
√

1
nI , we have Q2 ≤ 2γ(p− q)

√
1
nI .

C.7.4. PUTTING TOGETHER

So far, we have shown that

S2 ≤ C2γ(p− q)
√

1

nI

for some constant C2 > 0. Under the assumption 0 < c0p ≤ q < p ≤ 1− c1, we have p− q ≤ C′I
t∗

for some constant C ′ > 0 by Fact 4 and Fact 5. The proof is completed.
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C.8. Proof of Lemma 2

Recall that Xi = −di and d = diag(D) = σ∗ ◦ ((A− λ∗(J− I))σ∗). For clarity of exposition,
we define the shorthands

Lm := max
M⊂[n], |M|=m

[
−
∑
i∈M

di

]
, m ∈ [bMc],

Lm,M := −
∑
i∈M

di, M⊂ [n], |M| = m,

Rm :=
1

t∗

(
(1 + η)m log

(ne
m

)
− (1− 2η)

mn

2
I
)
, m ∈ [bMc],

Pm,M := P (Lm,M ≥ Rm) ,

Pm := P (∃M ⊂ [n], |M| = m : Lm,M ≥ Rm) ,

P := P (∃m ∈ [M ] : Lm ≥ Rm) .

Our goal is to show that P ≤ 3 exp
(
−
√

log n
)
. We start the proof by controlling Pm,M for a fixed

M⊂ [n] with |M| = m.

C.8.1. A CLOSER LOOK AT Lm,M

Let {Zj}, {Z ′j}
i.i.d.∼ Bern(q),{Yj}, {Y ′j }

i.i.d.∼ Bern(p) such that each of them is independent of the
rest. By definition, each−di is the sum of n2 random variables {Zj−λ∗} and n

2−1 random variables
{−Yj + λ∗}. For fixed m andM, the quantity Lm,M is the sum of mn −m random variables. It
can be seen that Lm,M =

∑
j∈[mn−m] Vj , where each Vj distributes as either Z1 − λ∗ or Y1 − λ∗.

Due to symmetry of A, there may exist some j 6= j′ ∈ [mn−m] such that Vj and Vj′ identify
the same random variable. Let us define a set to group together all such random variables. We set

J :=
{
j ∈ [mn−m] : ∃j′ ∈ [mn−m]\{j} s.t. Vj = Vj′

}
.

Note that |J | = 0 for m = 1 and |J | > 0 for m > 1. We further split the set {Vj} according to
their distribution and quantify the sizes of the resulting partitions:

mp := |{j /∈ J : EUj = −p+ λ∗}| ,
mq := |{j /∈ J : EUj = q − λ∗}| ,

m′p :=
1

2
|{j ∈ J : EUj = −p+ λ∗}| ,

m′q :=
1

2
|{j ∈ J : EUj = q − λ∗}| .

It is not hard to see that mq +mp = mn−m2 and m′q +m′p = m(m−1)
2 . Now we can write

Lm,M =

 ∑
j∈[mq ]

(Zj − λ∗)−
∑
j∈[mp]

(Yj − λ∗)

+ 2

 ∑
j∈[m′q]

(Z ′j − λ∗)−
∑

j∈[m′p]

(Y ′j − λ∗)

 .
Recall the definition of t∗ > 0 in Equation (8). We have

Pm,M = P (Lm,M ≥ Rm)
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= P (exp (t∗Lm,M) ≥ exp (t∗Rm))

(a)

≤ exp (−t∗Rm)

E exp

t∗ ∑
j∈[mq ]

(Zj − λ∗)− t∗
∑
j∈[mp]

(Yj − λ∗)


×

E exp

2t∗
∑

j∈[m′q]

(Z ′j − λ∗)− 2t∗
∑

j∈[m′p]

(Y ′j − λ∗)




=: Q1Q2Q3,

where step (a) holds by Chernoff inequality.

C.8.2. CONTROLLING Q1

By definition of Rm, we have

Q1 = exp
(
−(1 + η)m log

(ne
m

)
+ (1− 2η)

mn

2
I
)

To control Q2 and Q3, we need the following result about Bernoulli moment generating functions.

Fact 8 Let Z ∼ Bern(q) and Y ∼ Bern(p). We have the following identities

Eet
∗ZEe−t

∗Y = e−I ,(
Eet

∗Z
) 1

2
(
Ee−t

∗Y
)− 1

2
e−t

∗λ∗ = 1,

Ee2t
∗ZEe−2t

∗Y = 1,(
Ee2t

∗Z
) 1

2
(
Ee−2t

∗Y
)− 1

2
e−2t

∗λ∗ = 1.

The proof is given in Section C.8.6.

C.8.3. CONTROLLING Q2

We have

Q2 = E exp

t∗ ∑
j∈[mq ]

(Zj − λ∗)− t∗
∑
j∈[mp]

(Yj − λ∗)


= e−t

∗λ∗(mq−mp)
(
Eet

∗Z1

)mq
(
Ee−t

∗Y1
)mp

=
(
Eet

∗Z1Ee−t
∗Y1
) 1

2
mp+

1
2
mq

((
Eet∗Z1

Ee−t∗Y1

) 1
2

e−t
∗λ∗

)mq−mp

.

By Fact 8, we can continue to write

Q2 ≤ exp

(
−
(

1

2
mp +

1

2
mq

)
I

)
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≤ exp

(
−1

2
(mn−m2)I

)
≤ exp

(
−(1− η)

mn

2
I
)

where the last step holds since m ≤M ≤ C
√

n
I = nη.

C.8.4. CONTROLLING Q3

Similar to controlling Q2, we compute

Q3 = E exp

2t∗
∑

j∈[m′q]

(Z ′j − λ∗)− 2t∗
∑

j∈[m′p]

(Y ′j − λ∗)


= e−2t

∗λ∗(m′q−m′p)
(
Ee2t

∗Z′1
)m′q (

Ee−2t
∗Y ′1
)m′p

=
(
Ee2t

∗Z′1Ee−2t
∗Y ′1
) 1

2
m′p+

1
2
m′q

( Ee2t∗Z′1
Ee−2t∗Y ′1

) 1
2

e−2t
∗λ∗

m′q−m′p

= 1

where the last step holds by by Fact 8.

C.8.5. PUTTING TOGETHER

We have

Pm,M ≤ exp
(

(1− 2η)
mn

2
I − (1 + η)m log

(ne
m

))
· exp

(
−(1− η)

mn

2
I
)
· 1

= exp
(
−(1 + η)m log

(ne
m

)
− ηmn

2
I
)

and by the union bound

Pm ≤
(
n

m

)
exp

(
−(1 + η)m log

(ne
m

)
− ηmn

2
I
)

(a)

≤ exp
(
−ηm log

(ne
m

)
− ηmn

2
I
)

=

[
exp

(
−C
√

1

nI
log
(ne
m

)
− C

2

√
nI

)]m
where step (a) holds by

(
n
m

)
≤
(
en
m

)m and the last step holds by the definition of η. Note that if
m ≤

√
n, then

C

√
1

nI
log
(ne
m

)
+
C

2

√
nI ≥ C

√
1

2
log
(ne
m

)
≥
√

log n

where the last step holds since C > 10. We also have Pm ≤
[
exp

(
−
√

log n
)]m

< 1
2 . If m >

√
n,

then

C

√
1

nI
log
(ne
m

)
+
C

2

√
nI ≥ C

2

√
nI ≥ log 10
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by choosing CI large enough and hence Pm ≤ [exp (− log 10)]m ≤ 1
10m . It follows that

P ≤
∑
m∈[M ]

Pm

≤
∑

1≤m≤
√
n

Pm +
∑

√
n<m≤n

Pm

≤
∑

1≤m<∞

[
exp

(
−
√

log n
)]m

+ n · 1

10
√
n

≤
exp

(
−
√

log n
)

1− exp
(
−
√

log n
) +

1

n

≤ 2 exp
(
−
√

log n
)

+ exp (− log n)

≤ 3 exp
(
−
√

log n
)

as desired.

C.8.6. PROOF OF FACT 8

The first equation can be shown by

Eet
∗ZEe−t

∗Y =
(
qet
∗

+ 1− q
)(

pe−t
∗

+ 1− p
)

= pq + (1− p)(1− q) + q(1− p)et∗ + p(1− q)pe−t∗

= pq + (1− p)(1− q) + 2
√
pq(1− p)(1− q)

=
(√

pq +
√

(1− p)(1− q)
)2

= e−I

Note that e2t
∗λ∗ = 1−q

1−p . For the second equation, we compute

Eet∗Z

Ee−t∗Y
e−2t

∗λ∗ =

(
qet
∗

+ 1− q
pe−t∗ + 1− p

)(
1− p
1− q

)

=

q
√

p(1−q)
q(1−p) + 1− q

p
√

q(1−p)
p(1−q) + 1− p

(1− p
1− q

)
= 1

and take square roots on both sides. Finally, the remaining equations are combinations of the fol-
lowing key identities:

Ee2t
∗Z = qe2t

∗
+ 1− q

= q
p(1− q)
q(1− p)

+ 1− q

=
p(1− q)

1− p
+

(1− p)(1− q)
1− p
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=
1− q
1− p

and

Ee−2t
∗Y = pe−2t

∗
+ 1− p

= p
q(1− p)
p(1− q)

+ 1− p

=
q(1− p)

1− q
+

(1− q)(1− p)
1− q

=
1− p
1− q

and e2t
∗λ∗ = 1−q

1−p .

C.9. Proof of Lemma 3

Since Ŷ ∈ Y(A), we have

0 ≤
〈
Ŷ −Y∗,A

〉
(a)
=

〈
Ŷ −Y∗,A− p+ q

2
(J− I)

〉
=

〈
Ŷ −Y∗,EA− p+ q

2
(J− I)

〉
+
〈
Ŷ −Y∗,A− EA

〉
where step (a) holds since

〈
J, Ŷ

〉
= 〈J,Y∗〉 and Ŷii = Y ∗ii . Noting that〈

Ŷ −Y∗,EA− p+ q

2
(J− I)

〉
= −p− q

2
γ,

we have the bound γ ≤ 2
p−q

〈
Ŷ −Y∗,A− EA

〉
. To control the RHS, we compute〈

Ŷ −Y∗,A− EA
〉

=
〈
Ŷ,A− EA

〉
− 〈Y∗,A− EA〉

≤ 2 sup
Y�0,diag(Y)≤1

|〈Y,A− EA〉| .

The Grothendieck’s inequality (Grothendieck, 1953; Lindenstrauss and Pełczyński, 1968) guaran-
tees that

sup
Y�0,diag(Y)≤1

|〈Y,A− EA〉| ≤ KG‖A− EA‖∞→1

whereKG denotes the Grothendieck’s constant (0 < KG ≤ 1.783) and ‖M‖∞→1 := supx:‖x‖∞≤1 ‖Mx‖1
is the `∞ → `1 operator norm for a matrix M. Furthermore, we have the identity

‖A− EA‖∞→1 = sup
x:‖x‖∞≤1

‖(A− EA)x‖1 = sup
y,z∈{±1}n

∣∣∣y>(A− EA)z
∣∣∣ .
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Set v2 :=
∑

1≤i<j≤n Var(Aij). For each pair of fixed vectors y, z ∈ {±1}n, the Bernstein
inequality ensures that for each number t ≥ 0,

Pr
{∣∣∣y>(A− EA)z

∣∣∣ > t
}
≤ 2 exp

{
− t2

2v2 + 4t/3

}
.

Setting t =
√

16nv2 + 8
3n gives

Pr

{∣∣∣y>(A− EA)z
∣∣∣ > √16nv2 +

8

3
n

}
≤ 2e−2n.

Applying the union bound and using the fact that v2 ≤ p(n2−n)/2, we obtain that with probability
at most 22n · 2e−2n = 2(e/2)−2n,

‖A− EA‖∞→1 > 2
√

2p(n3 − n2) +
8

3
n.

Combining pieces, we conclude that with probability at least 1− 2(e/2)−2n,〈
Ŷ −Y∗,A− EA

〉
≤ 8
√

2p(n3 − n2) +
32

3
n;

whence

γ ≤ 2

p− q

(
8
√

2p(n3 − n2) +
32

3
n

)
(a)

≤ 45
√
pn3

p− q

≤ 45

C ′

√
n3

I
,

for some constant C ′ > 0, where step (a) holds by our assumption p ≥ 1
n and the last step follows

from Fact 5.

C.10. Proof of Lemma 4

If φi ≥ 0 for all i ∈ [du′e], then the result follows immediately. Now we assume that at least one of
{φi} is negative. Define w := arg min{i ∈ [du′e] : φi < 0} be the smallest index of negative φi.
Then for u0 ∈ [1, w − 1], we have 0 ≤ V (u0) as φi ≥ 0 for all i ∈ [1, w − 1]. On the other hand,
it is not hard to see that V is decreasing on [w − 1, u′] since φi < 0 for all i ∈ [w, du′e]. In view of
our assumption 0 ≤ V (u′), the proof is completed.

Appendix D. Proof of the second inequality in Theorem 2

Observe that for any Ŷ ∈ Y(A), we have

‖Ŷ −Y∗‖2F =
∑
i,j∈[n]

(Ŷij − Y ∗ij)2
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(a)

≤
∑
i,j∈[n]

2
∣∣∣Ŷij − Y ∗ij∣∣∣

= 2‖Ŷ −Y∗‖1

where step (a) holds since Ŷ,Y∗ ∈ [−1, 1]n×n by feasibility to the program (6). Then combined
with the first inequality of Theorem 2, this implies

‖Ŷ −Y∗‖2F ≤ 2n2 exp

[
−

(
1− C ′e

√
1

nI

)
nI

2

]

≤ n2 exp

[
−

(
1− Ce

√
1

nI

)
nI

2

]
for some constants Ce > C ′e > 0.

Let ε := exp
[
−
(

1− Ce
√

1
nI

)
nI
2

]
and v̂ be an eigenvector of Ŷ corresponding to the largest

eigenvalue with ‖v̂‖22 = n. It can seen that σ∗ is an eigenvector of Y∗ corresponding to the largest
eigenvalue. We claim that

min
g∈{±1}

‖gv̂ − σ∗‖22 ≤ C2εn

for an absolute constant C > 0. This follows from Davis-Kahan theorem. To see this, note that
the largest eigenvalue of Y∗ is n and all the others are equal to 0, so the eigengap is n. Because
Ŷ = Y∗+ (Ŷ−Y∗) and ‖Ŷ−Y∗‖F ≤

√
εn, David-Kahan theorem (see, for example, Corollary

3 in Vu (2011)) implies that

min
g∈{±1}

‖gû− u∗‖2 = 2

∣∣∣∣sin(θ2
)∣∣∣∣ ≤ C√ε

where û and u∗ denote the unit-norm eigenvectors associated to the largest eigenvalues of Ŷ and
Y∗, respectively, and θ ∈ [0, π2 ] denotes the angle between these two vectors. By definition v̂ =√
nû and σ∗ =

√
nu∗, we have the desired result.

Finally, we relate err(σ̂sdp,σ∗) to ε via the quantity ming∈{±1} ‖gv − σ∗‖22. Let g∗ :=

arg ming∈{±1} ‖gv−σ∗‖22 and WLOG we assume g∗ = 1. By definition we have σ̂sdp
i = sign(v̂i).

It can be seen that

C2εn ≥ ‖v̂ − σ∗‖22
=
∑
i∈[n]

(v̂i − σ∗i )2

≥
∑
i∈[n]

(v̂i − σ∗i )2I{sign(v̂i) 6= σ∗i }

≥
∑
i∈[n]

I{sign(v̂i) 6= σ∗i }

≥ n · err(σ̂sdp,σ∗).

We divide both sides of the above equation by n, and note that the constant C2 can be absorbed into
Ce under the assumption that nI ≥ CI for CI sufficiently large. The result follows.
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Appendix E. Proof of Theorems 3 and 4

We first prove Theorem 3 for the semirandom Model 2. Recall that ASR is the observed adjacency
matrix generated from Model 2, and take Ŷ to be an arbitrary element of Y(ASR). By definition of
ASR and the feasibility of Ŷ, we have for all i, j ∈ [n]{

ASR
ij ≥ Aij , Ŷij − Y ∗ij ≤ 0, if Y ∗ij = 1,

ASR
ij ≤ Aij , Ŷij − Y ∗ij ≥ 0, if Y ∗ij = −1.

The fact that Ŷ ∈ Y(ASR), together with the above displayed equation, implies that 0 ≤
〈
ASR, Ŷ −Y∗

〉
≤〈

A, Ŷ −Y∗
〉

. This further implies that Ŷ ∈ Y(A). Therefore, invoking Theorem 2 gives the de-
sired result.

We next prove Theorem 4 for the heterogeneous Model 3. To this end, we show that Model
3 can be reduced to Model 2, by applying a coupling argument similar to that in Appendix V in
Fei and Chen (2019b). Here we include the proof for completeness. Recall that for each i < j,
we have AH

ij ∼ Bern(pij) if Y ∗ij = 1, AH
ij ∼ Bern(qij) if Y ∗ij = −1 and AH

ij = AH
ji, where we

assume pij ≥ p and qij ≤ q. We claim that such a AH can also be generated by the following 3-step
process:

1. We first construct a set of node pairs L as follows: independently for each i < j, if Y ∗ij = 1

we include (i, j) in L with probability 1− 1−pij
1−p , and if Y ∗ij = −1 we include (i, j) in L with

probability 1− qij
q ;

2. Independently of above, we sample a graph adjacency matrix A from Model 1;

3. The final graph adjacency matrix AH is constructed as follows: for each i < j, if Y ∗ij = 1 we
letAH

ij = I {Aij = 1 or (i, j) ∈ L}, and if Y ∗ij = −1 we letAH
ij = I {Aij = 1 and (i, j) /∈ L}.

Note that the assumption pij ≥ p and qij ≤ q ensures that the probabilities in step 1 are in [0, 1].
We verify that the distribution of AH generated above is the same as that of the adjacency matrix
from Model 3 as claimed. Indeed, for each i < j we have

P
(
AH
ij = 1

)
=

{
P (Aij = 1 or (i, j) ∈ L) , if Y ∗ij = 1,

P (Aij = 1 and (i, j) /∈ L) , if Y ∗ij = −1.

=

{
1− (1− p) · 1−pij1−p = pij , if Y ∗ij = 1,

q · qijq = qij , if Y ∗ij = −1.

On the other hand, conditioned on the set L, the distribution of AH is identical to that of ASR from
Model 2 with the sameL, since step 2 is independent of step 1 and in step 3 the matrix A is modified
monotonically to produce AH. This means that Y(AH) = Y(ASR) conditioned on L. But we have
established above that the error bounds in Theorem 2 continue to hold for Y(ASR), and hence also
for Y(AH) when conditioned on L. Integrating out the randomness of the set L, we see that the
same error bounds hold for Y(AH) unconditionally.
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