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Achieving the Bayes Error Rate in Synchronization
and Block Models by SDP, Robustly

Yingjie Fei and Yudong Chen

Abstract— We study the statistical performance of semidefinite
programming (SDP) relaxations for clustering under random
graph models. Under the Z2 Synchronization model, Cen-
sored Block Model (CBM) and Stochastic Block Model (SBM),
we show that SDP achieves an error rate of the form
exp[−(1 − o(1))n̄I∗]. Here n̄ is an appropriate multiple of
the number of nodes and I∗ is an information-theoretic measure
of the signal-to-noise ratio. We provide matching lower bounds
on the Bayes error for each model and therefore demonstrate that
the SDP approach is Bayes optimal. As a corollary, our results
imply that SDP achieves the optimal exact recovery threshold
under each model. Furthermore, we show that SDP is robust:
the above bound remains valid under semirandom versions of the
models in which the observed graph is modified by a monotone
adversary. Our proof is based on a novel primal-dual analysis
of SDP under a unified framework for all three models, and the
analysis shows that SDP tightly approximates a joint majority
voting procedure.

Index Terms— Stochastic Block Model (SBM), Censored
Block Model (CBM), synchronization, semidefinite programming
(SDP), convex relaxation, Bayes error rates, semi-random
robustness.

I. INTRODUCTION

CLUSTERING and community detection in graphs is an
important problem lying at the intersection of computer

science, optimization, statistics and information theory. Ran-
dom graph models provide a venue for studying the average-
case behavior of these problems. In these models, noisy
pairwise observations are generated randomly according to the
unknown clustering structure of the nodes. In its basic form,
such a model involves n nodes divided into two clusters, which
can be represented by a vector σ∗ ∈ {±1}n. For each pair
of nodes i and j, one observes a number Aij ∈ R generated
independently based on the sign of σ∗

i σ∗
j , that is, whether the

two nodes are in the same cluster or not. Given one realization
of the random graph A = (Aij) ∈ Rn×n, the goal is to
estimate the vector σ∗, or equivalently, the matrix Y∗ :=
(σ∗

i σ∗
j ) ∈ {±1}n×n. Among the most popular random graph

models are the Z2 Synchronization (Z2) model, Censored
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Block Model (CBM) and Stochastic Block Model (SBM),
where Aij follows the Gaussian, censored ±1 and Bernoulli
distributions, respectively (see Section III for the details).
We consider these three models in this paper.

Clustering is a challenging problem involving discrete
and hence non-convex optimization. semidefinite program-
ming (SDP) relaxations have emerged as an efficient and
robust approach to this problem, and recent work has wit-
nessed the advances in establishing rigorous performance
guarantees for SDP (see Section II for a review of this
literature). Such guarantees are typically stated in terms of
a signal-to-noise ratio (SNR) measure I∗ that depends on
the specific random model (see Equation (5)). In terms of
controlling the estimation error of SDP, the best and most
general results to date are given in the line of work in [2], [3],
which proves that the optimal SDP solution �Y satisfies the
bound

err(�σsdp, σ∗) � 1
n2

� �Y − Y∗�1 � exp
�
−nI∗

C

�
, (1)

where C > 0 is a large constant, � · �1 denotes the entry-
wise �1 norm, and err(�σsdp, σ∗) denotes the fraction of
nodes mis-clustered by an estimate �σsdp ∈ {±1}n, extracted
from �Y, of the ground-truth cluster labels σ∗. The above
result is, however, unsatisfactory due to the presence of a
large multiplicative constant C in the exponent, rendering the
bound fundamentally sub-optimal. In particular, the interesting
regime for proving an error bound is when nI∗ ≤ 2 logn,
as otherwise SDP is already known to attain zero error.
With a large C in the exponent, the result in (1) provides
a rather loose, sometimes even uninformative,1 bound in this
regime. Moreover, this sub-optimality is intrinsic to the proof
techniques used and cannot be avoided simply by more careful
calculations.

In this paper, we establish a strictly tighter, and essentially
optimal, error bound on SDP. Let n̄ = n for Z2 and CBM,
and n̄ = n

2 for SBM.
Theorem 1 (Informal): As n → ∞, with probability tending

to one, the optimal solution �Y of the SDP relaxation satisfies

1
n2

� �Y − Y∗�1 ≤ exp
�
−
�
1 − o(1)

�
n̄I∗

�
, (2)

Moreover, the explicit label estimate �σsdp computed by taking
entrywise signs of the top eigenvector of �Y satisfies

err(�σsdp, σ∗) ≤ exp
�
−
�
1 − o(1)

�
n̄I∗

�
. (3)

1Note that 1
n2 � �Y−Y∗�1 is trivially upper bounded by 2 since �Y,Y∗ ∈

[−1, 1]n×n.
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In all three models, the error exponent I∗ is a form of Renyi
divergence. See Theorem 4 for the precise statement of our
results as well as an explicit, non-asymptotic estimate of the
o(1) term. One should compare this result with the following
minimax lower bound, which shows that any estimator �σ must
incur an error

err(�σ, σ∗) ≥ exp
�
−
�
1 + o(1)

�
n̄I∗

�
. (4)

as the latter represents the best achievable Bayes risk of the
problem. For SBM, this bound is established in [4]; for Z2 and
CBM, the above lower bound is new and formally established
in Theorem 3. In view of the above upper and lower bound,
we see that SDP achieves the optimal Bayes error under all
three models.

a) Optimality as a surprise: The result above has come as
unexpected to us, as it shows that relaxing the original discrete
clustering problem via SDP incurs essentially no loss in terms
of statistical accuracy. As we discuss in Section I-A and further
elaborate in Section V, we prove this result by showing, via
a novel primal-dual analysis, that SDP tightly approximates
a majority voting procedure, and this procedure leads to the
optimal error exponent I∗. Interestingly, our analysis is not
tethered to the optimality of �Y to the SDP; rather, it only
relies on the fact that �Y is feasible and no worse in objective
value than Y∗, and thus the bounds (2) and (3) in fact hold for
any matrix Y with these two properties. This kind of leeway
in the analysis makes the bounds robust, as we elaborate next.

b) Robustness: We show that the bounds in Theorem 1
continue to hold under the so-called monotone semirandom
model [5], where an adversary is allowed to make arbitrary
changes to the graph in a way that apparently strengthens
connections within each cluster and weakens connections
between clusters. While this model seemingly makes the
clustering problem easier, they in fact foil, provably, many
existing algorithms, particularly those that over-exploit the
specific structures of standard SBM in order to achieve tight
recovery guarantees [5], [6]. In contrast, our results show that
SDP relaxations enjoy a robustness property that is possessed
by few other algorithms. Importantly, this generalization can
be achieved with little extra effort from our main result (see
Theorem 7 and its proof).

c) Exact recovery: As another illustration of the strength
of Theorem 1, we note that it implies sharp condition for
SDP to recover σ∗ exactly. In particular, when n̄I∗ > (1 +
δ) log n for any positive constant δ, the bound (3) ensures
that err(�σsdp, σ∗) < 1

n and hence err(�σsdp, σ∗) = 0.
Moreover, the lower bound (4) shows that exact recovery is
information-theoretically impossible when n̄I∗ < log n. In the
literature, establishing such tight exact recovery thresholds
often involves specialized and sophisticated arguments, and
has been the milestones in the remarkable recent development
on community detection (see Section II for a discussion of
related work). We recover these results, for all three models,
as a corollary of our main theorem by plugging in the corre-
sponding expressions of I∗ and n̄. In fact, the non-asymptotic
version of Theorem 1 guarantees exact recovery via SDP with
an explicit second-order term δ = O

�
1/

√
log n

�
, which is a

refinement of existing results.

A. Primal-Dual Analysis

Key to the establishment of our results is a novel analysis
that exploits both primal and dual characterizations of the SDP.
To set the context, we note that the sub-optimal bound (1) in
[3], [7] is established by utilizing the primal optimality of the
SDP solution �Y. Their arguments, however, are too crude to
provide a tight estimate of the multiplicative constant C in the
exponent. On the other hand, work on exact recovery for SDP
typically makes use of a dual analysis [8], [9]; in particular,
the optimality of Y∗ is certified by showing the existence
of a corresponding dual optimal solution, often explicitly in
the form of a diagonal matrix D with Dii = σ∗

i

	
j Aijσ

∗
j .

As this “dual certificate” D is tied to (and constructed using)
Y∗, such a certification approach would only succeed when
the SDP indeed admits Y∗ as an optimal solution.

Here we are concerned with the setting where the optimal
solution �Y is different from Y∗, and our goal is to bound
their difference. As it is a priori unknown what �Y should
look like, we do not know which matrix to certify or how
to construct its associated dual solution, rendering the above
dual certification argument inapplicable. Instead, we make
use of the fact that �Y is feasible to the SDP and has a
better primal objective value than Y∗, that is, �Y lies in
the sublevel set defined by Y∗ and the constraints of the
SDP. We then characterize the diameter of this sublevel set
by using, perhaps surprisingly, the dual certificate D of Y∗.
Our analysis is thus fundamentally different from the dual
certification analysis in existing work, which only applies
when the sublevel set consists of a single element Y∗. At the
same time, we make use of D in a crucial way to achieve an
exponential improvement over previous primal analysis.

Note that our analysis, and hence our error bounds as
well, actually apply to every element of this sublevel set,
not just the optimal solution �Y. As can be seen in our
proof, this flexibility plays an important role in establishing
the aforementioned robustness results under semirandom and
heterogeneous SBMs. On the other hand, however, with this
level of generality we probably should not expect the second-
order o(1) term in our bounds to be optimal.

Finally, we emphasize that our results for Z2, CBM and
SBM are proved under a unified framework. The main proof
steps are deterministic and hold for the three models at
once; only certain probabilistic arguments are model-specific.
In Section V we outline this proof framework, and provide
intuitions on the majority voting mechanism that drives the
error rate e−n̄I∗

. We believe that this unified framework
may be broadly useful in studying SDP relaxations for other
discrete problems under average-case/probabilistic settings.

B. Paper Organization

In Section II, we review related work on Z2, CBM and
SBM. In Section III, we formally introduce the models and
the SDP relaxation approach. In Section IV, we present our
main results, with a discussion on their consequences and
comparison with existing work. We outline the main steps
of the proofs and discuss the intuitions in Section V, with
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the complete proofs deferred to the appendix. The paper is
concluded in Section VI with a discussion on future directions.

II. RELATED WORK

There is a large array of recent results on community
detection and graph clustering, in particular, under Z2, CBM
and SBM. The readers are referred to the surveys [10]–[12]
for comprehensive reviews. Without trying to enumerate this
body of work, here we restrict attention to those that study
sharp performance bounds, with a particular focus on work
on the SDP relaxation approach. A more detailed, quantitative
comparison with our results is provided in Section IV after
our main theorems.

To begin, we note that existing work has considered several
recovery criteria for an estimator �σ of σ∗: weak recovery
means �σ is better than random guess, that is, err(�σ, σ∗) < 1

2 ;
partial recovery means err(�σ, σ∗) ≤ δ for a given δ ∈
(0, 1

2 ); exact recovery means err(�σ, σ∗) = 0 [10].

A. Z2 Synchronization and Censored Block Model

The Z2 model, being a simplified version of the angu-
lar/phase synchronization problem, is studied in [13], which
argues that exact recovery is possible if and only if I∗ > log n

n .
The work in [9] and [14] shows this optimal exact recov-
ery threshold is achieved by SDP and a spectral algorithm,
respectively. The work in [15], [16] considers low-rank matrix
estimation under a spiked Wigner model—of which Z2 is a
special case—and identifies the weak recovery threshold.

CBM is considered in [17], [18], which identifies sufficient
and necessary conditions for exact recovery. They also show
that SDP achieves a sub-optimal exact recovery threshold,
which is further improved to be optimal in [9], [18]. CBM
is a special case of the so-called Labelled SBM, whose weak
recovery threshold is studied in [19], [20]. Achieving tight
partial/weak recovery guarantees in CBM is challenging due
to the sparsity of the observations. A sub-optimal partial
recovery error bound can be achieved by a spectral algorithm
with trimming [21]. The work of [22] studies a sophisticated
spectral algorithm based on the non-backtracking operator or
Bethe Hessian, and shows that it achieves the optimal weak
recovery threshold.

For both Z2 and CBM, we establish for the first time that
SDP has the optimal error rates for partial recovery. Our results
also imply, as an immediate corollary, that SDP achieves the
optimal exact recovery threshold as well as a sub-optimal weak
recovery threshold.

B. Stochastic Block Model

SBM is arguably the most studied out of these three
models. Most related to us is a line of work that characterizes
minimax optimal error rates for partial recovery. For the binary
symmetric SBM, the work [4] establishes the aforementioned
minimax lower bound (4). They also provide an exponential-
time algorithm that achieves a matching upper bound (up
to an o(1) factor in the exponent). Much research effort
focuses on developing computationally feasible algorithms,

and identifying the minimax rates in more general settings
[23]–[29]. The monograph [30] provides a review on recent
work on this front. We note that this line of work does not
consider the SDP relaxation approach nor deliver robustness
guarantees as we do. Nevertheless, we will compare our results
with theirs after stating our main theorems.

For exact recovery under binary symmetric SBM with
p, q 	 log n

n (see Model 3 in Section III-B for the definitions
of p and q), the work in [31], [32] establishes the sufficient
and necessary condition (

√
p−√

q)2 > 2 log n
n . Follow-up work

develops efficient algorithms for exact recovery and considers
extensions to more general SBMs; see, e.g., [14], [33]–[36]. As
mentioned, our results imply sharp bounds for exact recovery.

Weak recovery under the binary symmetric SBM is most
relevant in the sparse regime p, q 	 1

n . Work of [20], [37],
[38] establishes that the necessary and sufficient condition
of weak recovery is n(p−q)2

p+q > 2. Subsequent work proves
similar phase transitions and shows that various algorithms
achieve weak recovery above the optimal threshold for the
SBM with k ≥ 2 and possibly unbalanced clusters; see, e.g.,
[39]–[46]. As discussed later, our results also imply weak
recovery guarantees with a sub-optimal constant.

C. Optimality and Robustness of SDP

For SBM, SDP has been proven to succeed in exact and
weak recovery above the corresponding optimal thresholds
(sometimes under additional assumptions). In particular, see
[8], [9], [47] for exact recovery, and [48] for weak recovery.
Prior to our work, SDP was not known to achieve the optimal
error rate between the exact and weak recovery regimes. Sub-
optimal polynomial rates are first proved in [2], later improved
to exponential in [3], and further generalized in [7], [49].

Robustness has been recognized as a distinct feature of
the SDP approach as compared to other more specialized
algorithms for SBMs. Work in this direction has established
robustness of SDP against random erasures [18], [50], atypical
node degrees [2] and adversarial corruptions [8], [48], [51],
[52]. The work in [6] investigates the relationship between
statistical optimality and robustness under monotone semiran-
dom models; we revisit this result in more details later.

Preliminary version of this work has appeared in [1], in
which error upper bounds for SBM are presented. The present
work proves that SDP achieves the Bayes error rates for a more
general class of models including Z2, CBM and SBM, as well
as their semirandom versions, under a unified framework. This
work also establishes matching minimax lower bounds for
Z2 and CBM.

III. PROBLEM SET-UP

In this section, we formally define the models and introduce
the SDP relaxation approach.

A. Notations

Vectors and matrices are denoted by bold letters. For a
vector u, ui and u(i) both denote its i-th entry. For a matrix
M, we let Mij denote its (i, j)-th entry, Tr(M) its trace, and
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�M�1 :=
	

i,j |Mij | its entry-wise �1 norm. We write M 
 0
if M is symmetric positive semidefinite. The trace inner
product between two matrices is �M,G� := Tr(M�G) =	

i,j MijGij . Denote by I and J the n × n identity matrix
and all-one matrix, respectively, and denote by 1 the all-one
column vector of length n.

Ber(μ) denotes the Bernoulli distribution with mean μ ∈
[0, 1]. For a positive integer i, let [i] := {1, 2, . . . , i}. For a real
number x, 
x� denotes its ceiling and �x� denotes its floor.
I{·} is the indicator function. For two non-negative sequences
{an} and {bn}, we write an = O(bn), bn = Ω(an) or an � bn

if there exists a universal constant C > 0 such that an ≤
Cbn for all n. We write an 	 bn if both an = O(bn) and
an = Ω(bn) hold. Asymptotic statements are with respect to
the regime n → ∞, in which case we write an = o(bn) and
bn = ω(an) if limn→∞ an/bn = 0.

B. Models

In this section, we formally describe four models for gener-
ating the observed matrix A from the unknown ground-truth
label vector σ∗ ∈ {±1}n.

In Z2 [9], each Aij is generated by adding Gaussian noise
to σ∗

i σ∗
j . Therefore, the matrix A contains noisy observations

of the true relative signs between each pair of nodes.
Model 1 (Z2 Synchronization): The observed matrix A ∈

Rn×n is symmetric with its entries {Aij , i ≤ j} generated
independently by

Aij ∼ N(σ∗
i σ∗

j , τ2),

where τ > 0 is allowed to scale with n.2

In CBM, each Aij is generated by flipping σ∗
i σ∗

j with
probability � and then erasing it with probability 1 − α. One
may interpret A as the edge-censored version of a noisy signed
network [17].

Model 2 (Censored Block Model): The observed matrix
A ∈ {0,±1}n×n is symmetric with its entries {Aij , i ≤ j}
generated independently by

Aij =

⎧⎪⎨⎪⎩
σ∗

i σ∗
j with probability (w.p.) α(1 − �),

−σ∗
i σ∗

j w.p. α�,

0 w.p. 1 − α,

where α ∈ (0, 1] is allowed to scale with n, and � ∈ (0, 1
2 ) is

a constant.
In SBM, each Aij is a Bernoulli random variable, whose

mean is higher if σ∗
i σ∗

j = 1. Therefore, A is the adjacency
matrix of a random graph in which nodes in the same
cluster are more likely to be connected than those in different
clusters [53].

Model 3 (Binary symmetric SBM): Suppose that the ground-
truth σ∗ ∈ {±1}n satisfies �σ∗,1� = 0. The observed matrix
A ∈ {0, 1}n×n is symmetric with its entries {Aij , i ≤ j}

2In this and the next three models, we assume that the diagonal entries
of A are random, which is inconsequential: these entries are independent of
the ground-truth σ∗, and they have no effect on the solutions of the SDP
relaxations (7) or (8) due to the diagonal constraints therein.

generated independently by

Aij ∼
�

Ber(p) if σ∗
i σ∗

j = 1,

Ber(q) if σ∗
i σ∗

j = −1,

where 0 < q < p < 1 are allowed to scale with n.
In both Model 1 (Z2) and Model 2 (CBM), there can be any

number of ±1’s in the ground-truth label vector σ∗ ∈ {±1}n.
In Model 3 (binary symmetric SBM), the cluster labels σ∗

are assumed to contain the same number of 1’s and −1’s,
so the two clusters have equal size. Despite their simple forms,
the above models have been of central importance in studying
fundamental limits of clustering problems [8], [9], [17], [20],
[31], [32], [37], [38], [48].

For the purpose of studying the robustness properties of SDP
relaxation, we consider a semirandom generalization of the
binary symmetric SBM. In this model, a so-called monotone
adversary, upon observing the random adjacency matrix A
generated from SBM and the ground-truth clustering σ∗,
modifies A by arbitrarily adding edges between nodes of the
same cluster and deleting edges between nodes of different
clusters.

Model 4 (Semirandom SBM): A monotone adversary
observes A and σ∗ from Model 3, picks an arbitrary set of
pairs of nodes L ⊂ {(i, j) ∈ [n] × [n] : i < j}, and outputs a
symmetric matrix ASR ∈ {0, 1}n×n such that for each i < j,

ASR
ij =

⎧⎪⎨⎪⎩
1 if (i, j) ∈ L, σ∗

i σ∗
j = 1,

0 if (i, j) ∈ L, σ∗
i σ∗

j = −1,

Aij , if (i, j) /∈ L.

Note that the set L is allowed to depend on the realization
of A.

Semirandom models have a long history with many vari-
ants [54]. Model 4 above has been considered in [5], [6]
for SBM. While seemingly revealing more information about
the underlying cluster structure, the semirandom model in
fact destroys many local structures of the basic SBM, thus
frustrating many algorithms that over-exploit such structures.
In contrast, SDP is robust against the monotone adversary
under Model 4, as we shall see in Section IV-C below.

Remark 2: One may define semirandom versions of Z2 and
CBM in an analogous fashion as above; that is, the adversary
may choose a set L and positive numbers {cij , i < j}, and
then change Aij and Aji to Aij +cijσ

∗
i σ∗

j for each (i, j) ∈ L.
It can be shown that SDP achieves the same performance
guarantees in these semirandom settings of Z2 and CBM as
in the original models. For conciseness we omit such details
and only focus on the semirandom extension of SBM.

For each model discussed above, we define a measure of
the signal-to-noise ratio (SNR):

I∗ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2τ2)−1, for Model 1,��

α(1 − �) −
√

α�
�2

, for Model 2,

−2 log
�√

pq for Models 3 and 4.

+
�

(1 − p)(1 − q)
�
,

(5)
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In each case, I∗ is a form of Renyi divergence of order 1
2

[55] between the distributions of Aij and Aij� with σ∗
ij =

−σ∗
ij� = 1. In particular, for Z2, I∗ is half of the Renyi

divergence (or equivalently, the Kullback–Leibler divergence)
between N(1, τ2) and N(−1, τ2). For CBM, we have I∗ ≈
− log(1−I∗) with the latter being half of the Renyi divergence
between two random variables H and −H , where H has
probability mass function α(1−�)·δ1+α�·δ−1+(1−α)·δ0 and
δa denotes the Dirac delta function centered at a.3 In SBM,
I∗ is the Renyi divergence between Ber(p) and Ber(q). These
divergences, and their first-order approximations (discussed
in Appendix A), are commonly used as SNR measures in
previous work on these models (e.g., [4], [9], [17]).

Finally, we define the following distance measure between
two vectors of cluster labels σ, σ� ∈ {±1}n:

err(σ, σ�) := min
g∈{±1}

1
n

�
i∈[n]

I{gσi �= σ�
i}.

In words, err(σ, σ�) is the fraction of nodes that are assigned
a different label under σ and σ�, modulo a global flipping of
signs. With σ∗ being the true labels, err(�σ, σ∗) measures
the relative error of the estimator �σ.

C. SDP Relaxation

The SDP formulations we consider can be derived as the
convex relaxation of the MLE of σ∗. Under Models 1 or 2,
the MLE �σmle is given by the solution of the discrete and
non-convex optimization problem

max
σ∈{±1}n

�
A, σσ�� . (6)

The MLE under Model 3 includes the extra constraint �σ,1� =
0 due to the balanced-cluster assumption. Derivation of the
MLE in this form is now standard; see for example [9], [13]
for Z2, [50] for CBM, and [12] for SBM. Now define the
lifted variable Y = σσ�, and observe that Y satisfies Y 
 0,
Yii = (σi)2 = 1 for i ∈ [n]. Dropping the constraints that Y
has rank one and binary entries, we obtain the following SDP
relaxation of the MLE (6) for Models 1 or 2:�Y = argmax

Y∈Rn×n

�A,Y�

s.t. Y 
 0,

Yii = 1, ∀i ∈ [n]. (7)

For Model 3, using the same reasoning and in addition replac-
ing the �σ,1� = 0 constraint by �Y,J� =

�
σσ�,11�� =

�σ,1�2 = 0, we arrive at the relaxation:�Y = argmax
Y∈Rn×n

�A,Y�

s.t. Y 
 0,

Yii = 1, ∀i ∈ [n],
�Y,J� = 0. (8)

We also use this SDP for the semirandom Model 4.

3In fact, in this case I∗ is the squared Hellinger distance between H
and −H .

The optimization problems (7) and (8) are standard SDPs
solvable in polynomial time. We remark that neither SDP
requires knowing the parameters of the data generating
processes (that is, τ2, α, �, p and q in Models 1–3).4 The
SDP (7) was considered in [9], [13] and [50] for studying the
exact recovery threshold in Z2 and CBM, respectively, and
the SDP (8) was considered in [8] for exact recovery under
the binary symmetric SBM. These formulations can be further
traced back to the work of [5] on SDP relaxation for MIN
BISECTION.

We consider the SDP solution �Y as an estimate of the
ground-truth matrix Y∗ := σ∗(σ∗)�, and seek to characterize
the accuracy of �Y in terms of the �1 error � �Y − Y∗�1.
Note that �Y is not necessarily a rank-one matrix of the form�Y = σσ�. To extract from �Y a vector of binary estimates
of cluster labels, we take the signs of the entries of the top
eigenvector of �Y (where the sign of 0 is 1, an arbitrary choice).
Letting �σsdp ∈ {±1}n be the vector obtained in this way,
we study the error of �σsdp as an estimate of the ground-truth
label vector σ∗, as measured by err(�σsdp, σ∗).

IV. MAIN RESULTS

We present our main results in this section. Henceforth,
let n̄ := n in Models 1 (Z2) and 2 (CBM), and n̄ :=
n
2 in Models 3 and 4 (SBM and its semirandom version).
To see why this definition of n̄ is natural, we note that in
Z2 and CBM, the cluster sizes (i.e., numbers of 1’s and
−1’s in σ∗) do not affect the hardness of the problem as the
distribution is symmetric, and hence n̄ is simply the number of
nodes; in binary symmetric SBMs, recovery is most difficult
when the clusters have equal size5—which is the setting we
consider—and accordingly n̄ is the cluster size.

A. Minimax Lower Bounds

Let �1(σ) denote the number of 1’s in σ. To state the lower
bounds, we consider the following parameter space:

Θ(n) :=

⎧⎪⎨⎪⎩
{±1}n

, for Models 1 and 2,�
σ ∈ {±1}n : for Model 3,

�1(σ) ∈
�

n
2β , nβ

2

��
,

(9)

where β is any number larger than 1+C/n with C > 0 being
a large enough numerical constant. For Z2 and CBM, Θ(n)
is the set of all possible cluster label vectors. For SBM, Θ(n)
consists of label vectors with (roughly) equal-sized clusters;
here we allow for a slight fluctuation in the cluster sizes in
SBM following [4].6

The following theorem gives the minimax lower bound for
each model.

Theorem 3 (Lower bound): For any constant c0 ∈ (0, 1),
the following holds for Model 1, Model 2, and Model 3 with

4The SDP (8) for SBM does require the knowledge of two equal-size
clusters.

5Otherwise one could recover the large cluster first.
6This assumption is not essential but makes the proof therein somewhat

simpler.
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0 < q < p < 1 − c0 (for Model 2 we additionally assume
I∗ = o(1)). If nI∗ → ∞ as n → ∞, then we have

inf
�σ

sup
σ∈Θ(n)

Eσ err(�σ, σ) ≥ exp
�
−
�
1 + o(1)

�
n̄I∗

�
,

where Eσ denotes expectation under the distribution of A
with σ being the ground truth, and the infimum is taken over
all estimators of the ground truth (i.e., measurable functions
of A).

For Models 1 and 2, the proof is given in Appendix B. For
Model 3, the above result is part of [4, Theorem 2.1].

B. Upper Bounds on the SDP Errors

We next provide our main results on the error rate of the
SDP relaxations (7) and (8). Define the following sublevel set
(or superlevel set to be precise):

Y(A) :=
�
Y ∈ Rn×n : �A,Y� ≥ �A,Y∗� , (10)

Y is feasible to the SDP
�
,

where feasibility is with respect to the program (7) for Model
1 or 2, and to the program (8) for Model 3 or 4. In words,
Y(A) is the set of feasible SDP solutions that attain an
objective value no worse than the ground-truth Y∗. Note that
Y(A) is non-empty as it contains Y∗. As mentioned, our
upper bounds in fact hold for any solution in Y(A). With
a slight abuse of notation, in the sequel we use �Y to denote
an arbitrary matrix in Y(A); accordingly, we let �σsdp denote
the corresponding vector of labels extracted from this �Y.

Our main theorem is a non-asymptotic bound on the error
rates of the SDP relaxations.

Theorem 4 (Upper Bound): For any constants c0, c1 ∈
(0, 1), there exist constants CI∗ , Ce, C

�
e > 0 such that the

following holds for Model 1, Model 2, and Model 3 with
0 < c0p ≤ q < p ≤ 1−c1. If nI∗ ≥ CI∗ , then with probability
at least 1−10 exp

�
−
√

log n
�

and for any �Y ∈ Y(A), we have

1
n
��Y − Y∗�1 ≤

�
n exp

�
−
�

1 − Ce

�
1

nI∗

�
n̄I∗

 !
,

err(�σsdp, σ∗) ≤ exp

�
−
�

1 − C�
e

�
1

nI∗

�
n̄I∗

 
.

The proof is given in Appendices C and E. Note the floor
operation in the first inequality above; consequently, we have
� �Y − Y∗�1 = 0 whenever the exponent is strictly less than
− logn. We later explore the implication of this fact for exact
recovery.

Remark 5: The assumption c0p ≤ q for Model 3 is common
in the literature on minimax rates [23], [24], [28], [29]. It
stipulates that p and q are on the same order (but their
difference can be vanishingly small). This is the regime where
the clustering problem is hard, and it is the regime we focus
on. The assumption arises from a technical step in our proof,
and it is currently not clear to us whether this assumption
is necessary. We would like to point out that in Section 5.1
of [23], a weaker minimax upper bound is obtained with this
assumption dropped.

Letting n → ∞ in Theorem 4, we immediately obtain the
following asymptotic result.

Corollary 6 (Upper bound, asymptotic): For any constants
c0, c1 ∈ (0, 1), the following holds for Model 1, Model 2, and
Model 3 with 0 < c0p ≤ q < p ≤ 1 − c1. If nI∗ → ∞, then
with probability 1 − o(1) and for any �Y ∈ Y(A), we have

1
n
� �Y − Y∗�1 ≤

"
n exp

�
−
�
1 − o(1)

�
n̄I∗

� #
,

err(�σsdp, σ∗) ≤ exp
�
−
�
1 − o(1)

�
n̄I∗

�
.

Comparing the upper bound in Corollary 6 with the mini-
max lower bound in Theorem 3, we see that the SDP achieves
the optimal error rate, up to a second-order o(1) term in the
exponent.7 Moreover, Theorem 4 provides an explicit, non-
asymptotic upper bound for the o(1) term in the exponent. This
bound, taking the form of O(1/

√
nI∗), yields second-order

characterization of various recovery thresholds and is strong
enough to provide non-trivial guarantees in the sparse graph
regime—these points are discussed in Section IV-D to follow.
We do not expect this O(1/

√
nI∗) bound to be information-

theoretic optimal, for reasons discussed in Section I-A.
As a passing note, the above error upper bounds also apply

to the MLE solution �σmle, since the optimality of �σmle to
the program (6) implies that (�σmle)(�σmle)� ∈ Y(A). In fact,
our proof of the upper bounds involves showing that the SDP
solutions closely approximate the MLE; we elaborate on this
point in Section V.

C. Robustness Under Semirandom Models

Our next result shows that the error rate of the SDP is
unaffected by passing to the semirandom model. Recall the
definition in Equation (10), so Y(ASR) is the sublevel set of
the SDP (8) with ASR as the input.

Theorem 7 (Semirandom SBM): Suppose that ASR is gen-
erated according to Model 4. The conclusions of Theorem 4
and Corollary 6 continue to hold for the program (8) with
Y(A) replaced by Y(ASR).

Proof: This theorem admits a short proof, thanks to the
validity of Theorem 4 for any �Y ∈ Y(A). Recall that ASR is
obtained by monotonically modifying the matrix A generated
from Model 3 (binary symmetric SBM). Let �Y be an arbitrary
element of Y(ASR). By definition of ASR and the feasibility
of �Y, we have for all i, j ∈ [n]�

ASR
ij ≥ Aij , �Yij − Y ∗

ij ≤ 0, if Y ∗
ij = 1,

ASR
ij ≤ Aij , �Yij − Y ∗

ij ≥ 0, if Y ∗
ij = −1.

The fact �Y has objective value no worse than Y∗ under
ASR, together with the above inequalities, implies that 0 ≤
�ASR, �Y − Y∗� ≤ �A, �Y − Y∗�. This further implies that�Y ∈ Y(A). Therefore, invoking Theorem 4 gives the desired
result.

7We note that Theorem 3 bounds the error in expectation and holds for
a parameter space containing σ∗ with slightly unequal-sized clusters. The
results in Theorem 4 and Corollary 6 are high-probability bounds. Extending
these upper bounds to the setting of slightly unequal-sized clusters is possible,
albeit tedious; we leave this to future work.
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Remark 8: As mentioned in Remark 2, one may define
semirandom versions of Models 1 (Z2) and 2 (CBM). It is easy
to see that the proof above applies to these models without
change. Therefore, the SDP approach is also robust under
semirandom Z2 and CBM.

As an immediate consequence of Theorem 7, we obtain
error bounds for a generalization of the standard SBM
(Model 3) with heterogeneous edge probabilities, where

Aij
i.i.d.∼

�
Ber(pij) if σ∗

i σ∗
j = 1,

Ber(qij) if σ∗
i σ∗

j = −1,

with 0 ≤ qij ≤ q < p ≤ pij ≤ 1.
Corollary 9 (Heterogeneous SBM): Under the above gen-

eralization of Model 3, the conclusions of Theorem 4 and
Corollary 6 continue to hold for the program (8).

Proof: The corollary follows from the same coupling
argument as in [3, Appendix V], which shows that the Hetero-
geneous SBM can be reduced to the semirandom Model 4.

The results above show that SDP is insensitive to monotone
modification and heterogeneous probabilities. We emphasize
that such robustness is by no means automatic. With non-
uniformity in the probabilities, the likelihood function no
longer has a known, rigid form, a property heavily utilized
in many algorithms. The monotone adversary can similarly
alter the graph structure by creating hotspots and short cycles.
Even worse, the adversary is allowed to make changes after
observing the realized graph,8 thus producing unspecified
dependency among all edges in the observed data and leading
to major obstacles for existing analysis of iterative algorithms.

We would like to mention that the work in [6] shows that the
semirandom model makes weak recovery strictly harder. While
not contradicting their results technically, the fact that our error
bounds remain unaffected under this model does demand a
closer look. We note that our bounds are optimal only up to
a second-order term in the exponent and consequently do not
attain the optimal weak recovery limit. Also, our robustness
results on error rates are tied to a specific form of SDP
analysis (using the sublevel set Y(A)). In comparison, for
exact recovery SDP is robust by design to the semirandom
model, as is well recognized in past work [5], [8], [56].

D. Consequences

Theorem 4 and Corollary 6 imply sharp sufficient conditions
for several types of recovery:

• Exact recovery: Whenever n̄I∗ ≥ (1 + δ) log n for
any constant δ > 0, we have � �Y − Y∗�1 = 0
by Corollary 6 (note the floor operation therein) and
hence SDP achieves exact recovery by itself without any
rounding/post-processing steps.

• Second-order refinement: Using the non-asymptotic
Theorem 4, we can obtain the following refinement of
the above result: exact recovery provided that n̄I∗

log n ≥
1 + C1√

log n
for some constant C1 > 0.

8We therefore strengthen the robustness results in the previous work [3],
which does not allow such adaptivity.

• Weak recovery: When n̄I∗ ≥ C for a sufficiently large
constant C, Theorem 4 ensures that err(�σsdp, σ∗) < 1

2
and hence SDP achieves weak recovery.

• Sparse regime: Theorem 4 ensures that SDP achieves an
arbitrarily small constant error when nI∗ is a sufficiently
large but finite constant. This corresponds to the sparse
graph regime with constant expected degrees, namely
α, p, q = Θ(1/n) in CBM and SBM. Many results
on minimax rates require nI∗, and hence the degrees,
to diverge (e.g., [23], [28]).

Moreover, these conditions remain sufficient under the semi-
random model. Below we specialize the above results to each
of the three models.

1) Z2 Synchronization: Recall that I∗ := 1
2τ2 and n̄ = n

under Model 1. Consequently, SDP achieves exact recovery if
τ2 ≤ n

2 log n+C
√

log n
. This is a refinement of the best existing

threshold τ2 ≤ n
(2+δ) log n in [9], [14].

We also have weak recovery by SDP if τ2 ≤ n
C , which

matches, up to constants, the optimal threshold τ2 < n
established in [15], [16].

2) Censored Block Model: Recall that I∗ := α
�√

1 − � −√
�
�2

and n̄ = n under Model 2. Consequently, SDP achieves
exact recovery if n

log nI∗ ≥ 1+ C√
log n

. This result is a second-
order improvement over the threshold n

log nI∗ ≥ 1+δ for SDP
established in the work [50]. The same work also proves that
exact recovery is impossible if n

log nI∗ < 1 − δ.
Noting that I∗ 	 α(1−2�)2 (cf. Fact 10(b) in Appendix A),

we also have weak recovery by SDP if nα(1−2�)2 ≥ C, which
matches, up to constants, the optimal threshold nα(1−2�)2 >
1 proved in [19], [20], [22].

3) Stochastic Block Model: Recall that I∗ :=
−2 log

�√
pq +

�
(1 − p)(1 − q)

�
and n̄ = n

2 under Model 3,
and note the equivalence I∗ = (1 + o(1))(

√
p − √

q)2 valid
for 0 < q 	 p = o(1). Consequently, SDP achieves exact
recovery if n(

√
p − √

q)2 ≥ (2 + δ) log n, recovering the
result established in [8], [9].

We also have the following refinement: exact recovery
provided that nI∗

log n ≥ 2 + C1√
log n

. This result is comparable to

the sufficient condition n(
√

p−√
q)2

log n ≥ 2+ C√
log n

+ω
�

1
log n

�
for

SDP established in [8], whereas the necessary and sufficient
condition for the optimal estimator (MLE) is n(

√
p−√

q)2

log n ≥
2 − log log n

log n + ω
�

1
log n

�
[31], [32].

Finally, noting that I∗ 	 (p − q)2/p (cf. Fact 11(b) in
Appendix A), we have weak recovery by SDP if n(p−q)2/p ≥
C. This condition matches, up to constants, the so-called
Kesten-Stigum (KS) threshold n(p − q)2/(p + q) > 2, which
is optimal [37]–[39], [57].

E. Comparison With Existing Results

In this section we focus on partial recovery under the
binary symmetric SBM (Model 3), and compare with the
existing work that derives sharp error rate bounds achievable
by polynomial-time algorithms. To be clear, the algorithms
considered in this line of work are very different from ours.
In particular, most existing results require a good enough
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initial estimate of the true clusters. Obtaining such an ini-
tial solution (typically using spectral clustering) is itself a
non-trivial task.

Using neighbor voting and variational inference algorithms,
the work in [23], [28] obtains an error bound of the same form
as our Corollary 6, though they do not provide non-asymptotic
results as in our Theorem 4. The work in [26] considers a
spectral algorithm and proves the error bound err(�σ, σ∗) ≤
exp

�
−(1 − δ)(

√
p −√

q)2 · n/2
�

for any constant δ > 0 if
np → ∞. Recalling I∗ = (1 + o(1))(

√
p−√

q)2, we find that
our Corollary 6 is better as we allow the δ term to vanish.
The recent work in [14] uses a novel perturbation analysis to
show that a very simple spectral algorithm achieves the error
bound in Corollary 6 under the assumption n

log n (
√

p−√
q)2 ≥

δ� for any constant δ� > 0; their assumption excludes the
sparse regime with p, q = o

�
log n

n

�
and is stronger than our

assumption nI∗ → ∞ in Corollary 6. Compared to the above
works, another strength of our results is that we provide an
explicit bound for the second-order term in the exponent; we
know of few error rate results (with the exception discussed
below) that offer this level of accuracy.

Concurrently to our work, the paper [29] establishes a
tight non-asymptotic error bound for an EM-type algorithm.
Translated to our notation, their bound takes the form

err(�σ, σ∗) ≤ exp
�
−
�

1 +
2

nI∗
log(np)

�
nI∗

2

�
,

which is valid under the assumption nI∗ � √
np � 1.

Their assumption is order-wise more restrictive than that in
our Theorem 4, but their error bound has a better second-
order term in the exponent. We do note that their algorithm is
fairly technical: it requires data partition and the leave-one-out
tricks to ensure independence, degree truncation to regularize
spectral clustering, and blackbox solvers for K-means and
matching problems. In comparison, the SDP approach is much
simpler conceptually.

Finally, we emphasize that we also provide robustness
guarantees under the monotone semirandom model and non-
uniform edge probabilities. In comparison, it is unclear if com-
parable robustness results can be established for the algorithms
above, as these algorithms and their analyses make substantial
use of the properties of the standard SBM, particularly the
complete independence among edges and the specific form of
the likelihood function.

V. PROOF OUTLINE

In this section we outline our proofs of the lower and upper
bounds. In the process we provide insights on how the error
rate e−n̄I∗

arises and why SDP achieves it.

A. Proof Outline of Theorem 3

The intuition behind the lower bound is relatively easy
to describe. To illustrate the idea, take as an example the
Z2 model, where Aij

i.i.d.∼ N(1, τ2), and assume that σ∗
i =

1, ∀i. It is not hard to see that the error fraction err(�σ, σ∗)
for any estimator �σ is lower bounded by the probability of
recovering the label σ∗

1 for the first node given true labels of

the other nodes; see the Lemma 12 for the precise argument.
For this one-node problem, the optimal Bayes estimate of σ∗

1

is given by the sign of the majority vote
	n

j=1 A1j :

�σ1 = arg max
σ∈{±1}

�
σ ·

�n

j=1
A1j

�
= sign

��n

j=1
A1j

�
;

(11)
see Lemma 13. It follows that the error probability of recov-
ering σ∗

1 = 1 is

P

��σ1 �= 1
�

= P

��n

j=1
A1j < 0

�
= exp

�
− (1 + o(1)) · nI(0)

�
,

where the last step can be justified in general by the large
deviation theory, with I(x) := supt>0[tx − log Eet(−A11)]
being the rate function (see, e.g., Cramer’s Theorem [58,
Theorem 2.2.3]). In our setting, a direct calculation suffices,
as is done in Lemma 14. The error exponent

I(0) = − inf
t>0

�
log Eet(−A11)

�
= I∗ (12)

is precisely our SNR measure, a quantity we will encounter
again in proving the upper bound.

The above intuition remains valid for CBM and SBM,
though the specific forms of the majority voting procedure and
the rate I∗ vary. The complete proof is given in Appendix B.

B. Proof Outline of Theorem 4

To prove the upper bound for SDP, we proceed in three
steps:

Step 1: As mentioned in Section I, we construct a diagonal
matrix D with Dii = σ∗

i

	
j Aijσ

∗
j , which takes the same

form as the “dual certificate” used in previous work. The
construction of D allows us to establish the basic inequality:

0 ≤
$
−D,PT⊥( �Y)

%
+
$
A − EA,PT⊥(�Y)

%
,

for any �Y ∈ Y(A); see the proof of Lemma 19 for the details
of this critical step. Here PT⊥ is an appropriate projection
operator that satisfies Tr

�
PT⊥(�Y)

�
= 1

n� �Y − Y∗�1, thus
exposing the �1 error of �Y that we seek to control.

Step 2: We proceed by showing that the second term
S2 := �A−EA,PT⊥( �Y)� in the basic inequality is negligible
compared to the first term �−D,PT⊥( �Y)�; see Proposition 20
for a quantitative version of this claim, whose proof involves
certain trimming argument in the case of CBM and SBM.
Dropping S2 from the basic inequality hence yields

0 ≤ �−D,PT⊥( �Y)� =
�n

i=1
(−Dii)bi, (13)

where bi :=
�
PT⊥( �Y)

�
ii

satisfies
	

i∈[n] bi = m := 1
n��Y −

Y∗�1.
Step 3: The bi’s take fractional values in general, but must

be bounded in [0, 4] (cf. 18). We use this fact to upper bound
the RHS of (13) by its worst-case value, hence obtaining

0 ≤
�n

i=1
(−Dii)bi � max

M⊆[n]
|M|=m

�
i∈M(−Dii). (14)
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This argument is reminiscent of the “order statistics” analysis
in [3], though here we provide a more fine-grained bound;
see Appendix C-D for details. The rest of this step, done
in Lemma 23, establishes a probabilistic bound for the RHS
of (14) and ultimately gives rise to the error exponent −I∗.
To illustrate the idea, we again consider Z2 with σ∗

i ≡ 1,
in which case Dii =

	
j∈[n] Aij . For a fixed set M with

|M| = m, the RHS of (14) can be controlled using the
Chernoff bound:

P

��
i∈M

��n

j=1
(−Aij)

�
> 0

�
≤ inf

t>0
E exp

�
t
�

i∈M

��n

j=1
(−Aij)

��
=
�

inf
t>0

E exp(−tA11)
�nm

= e−nmI∗
,

where the last two steps follow from independence and the
expression (12) for I∗. In the first equality above, we ignore
the dependence between symmetric entries of A for now and
note that a more careful calculation is able to deal with the
dependency (see Appendix D-G). By a union bound over all�

n
m

�
≈
�

n
m

�m
such M’s, we obtain

P

⎧⎪⎨⎪⎩ max
M⊆[n]
|M|=m

�
i∈M

��n

j=1
(−Aij)

�
> 0

⎫⎪⎬⎪⎭
≤
� n

m

�m

· e−nmI∗
=
�
elog(n/m)−nI∗�m

.

If log(n/m)−nI∗ < 0, then RHS above is � 1 and thus with
high probability the negation of (14) holds, a contradiction.
We therefore must have log(n/m) − nI∗ ≥ 0, which implies
the desired error bound m

n ≤ e−nI∗
. The second-order term

in the exponent comes from a more accurate calculation for
Steps 2 and 3.

The previous arguments are closely connected to our proof
for the lower bound outlined above. Note that the MLE of the
entire vector σ∗ = 1 is given by the “joint majority voting”
procedure

�σmle = arg max
σ∈{±1}n

��n

i=1
σi ·

��n

j=1
Aij

��
;

one should compare this equation with the “single-node major-
ity voting” in (11). The maximality of the above �σmle over
σ∗ = 1, as well as the fact that 1−�σmle

i ∈ {0, 2}, implies that

0 ≤
�n

i=1

�
1 − �σmle

i

�
·
��n

j=1
(−Aij)

�
� max

M⊆[n]
|M|=m

�
i∈M

(−Dii),

if we set m = 1
2

	n
i=1(1−�σmle

i ) = n·err(�σmle, σ∗). Note that
this inequality is the same as (14), so following the arguments
above shows that the MLE satisfies the same error bound
m
n ≤ e−nI∗

. We therefore see that the SDP solution closely
approximates the MLE in the above precise sense, and both
of them achieve the Bayes rate. The form of the rate e−nI∗

arises from a majority voting mechanism, in the proofs for
both lower and upper bounds.

Again, the above intuition remains valid for CBM and SBM,
though the calculation of the rate I∗ varies. The details of the
proof are given in Appendices C and E.

VI. DISCUSSION

In this paper, we analyze the error rates of the SDP
relaxation approach for clustering under several random graph
models, namely Z2, CBM and the binary symmetric SBM,
via a unified framework. We show that SDP achieves an
exponentially-decaying error with a sharp exponent, matching
the minimax lower bound for all three models. We also
show that these results continue to hold under monotone
semirandom models, demonstrating the robustness of SDP.

Immediate future directions include extensions to problems
with multiple and unbalanced clusters, as well as to closely
related models such as weighted SBM. It is also of interest
to see if better estimates of the second order term can be
obtained, and if there is a fundamental tradeoff between
statistical optimality and robustness. More broadly, it would
be interesting to explore the applications of the techniques
in this paper in analyzing SDP relaxations for other discrete
problems.

APPENDIX A
PRELIMINARIES

In this section we record several notations and facts that are
useful for subsequent proofs.

We first define a random variable H that encapsulates the
distributions of the three models:

• For Model 1 (Z2), let H ∼ N(1, τ2).
• For Model 2 (CBM), let H have probability mass function

α(1 − �) · δ1 + α� · δ−1 + (1 − α) · δ0, where δa denotes
the Dirac delta function centered at a.

• For Model 3 (SBM), let H = Y −Z , where Y ∼ Ber(p),
Z ∼ Ber(q), and Y, Z are independent.

It can be seen that under Model 1 or 2, we have Aij ∼ σ∗
i σ∗

j H
(here ∼ means equality in distribution); under Model 3,
we have Aii� − Aij ∼ H if σ∗

i = σ∗
i� = −σ∗

j .
Let t∗ be the minimizer of the moment generating function

t �→ Ee−tH , which has the explicit expression

t∗ :=

⎧⎪⎨⎪⎩
1
τ2 , for Model 1,
1
2 log 1−�

� , for Model 2,
1
2 log p(1−q)

q(1−p) , for Model 3.

(15)

Note that t∗ > 0. We later verify that Ee−tH ≈ e−I∗
for

all three models (see Facts 35, 36 and 37). Also define the
quantity

λ∗ :=

�
0 for Model 1 and 2,
1

2t∗ log 1−q
1−p , for Model 3,

(16)

which plays a role only in Model 3 (SBM).
Finally, for Model 2, we let p := α(1 − �) and q := α�;

this notation is chosen to bring out the similarity between
Models 2 and 3.
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We record several simple estimates for the above quantities
t∗ and λ∗ as well as the SNR measure I∗ defined in (5). The
proofs are given in Appendices A-A and A-B to follow.

Fact 10: Under Model 2 with the notation p := α(1 − �)
and q := α�, if 0 < q ≤ p ≤ 1, then
(a) t∗ ≤ 1−�

2� · p−q
p .

(b) I∗ ∈
�

(p−q)2

4p , (p−q)2

p

�
.

Fact 11: Under Model 3, if 0 < q < p < 1, then the
following hold.
(a) λ∗ ∈ (q, p).
(b) If in addition p ≤ 1 − c for some constant c ∈ (0, 1),

then I∗ 	 (p−q)2

p .
(c) If in addition p ≤ 1 − c and q ≥ c0p for some constants

c ∈ (0, 1), c0 ∈ (0, 1), then t∗ � p−q
p .

A. Proof of Fact 10

Recall the shorthands p := α(1− �) and q := α� introduced
for Model 2. For part (a) of the fact, by definition of t∗ in
Equation (15), we have

t∗ =
1
2

log
�

1 +
p − q

q

�
(i)

≤ p − q

2q

(ii)
=

1 − �

2�
· p − q

p
,

where step (i) holds since the fact that 1 + x ≤ ex for x ∈ R

implies log(1 + x) ≤ x for x > −1, and step (ii) holds by
the fact that q = �

1−�p.
For part (b), recalling the definition of I∗ in Equation (5),

we have

I∗ =

�√
p −√

q
�2 �√

p +
√

q
�2�√

p +
√

q
�2 =

(p − q)2

p + q + 2
√

pq
.

Some algebra shows that I∗ ≤ (p−q)2

p and I∗ ≥ (p−q)2

p+p+2p =
(p−q)2

4p .

B. Proof of Fact 11

For part (a), recalling the definition of λ∗ in Equation (16),
we obtain by direct calculation the identity

p − λ∗ =
�
log

p(1 − q)
q(1 − p)

�−1 �
p log

p

q
+ (1 − p) log

1 − p

1 − q

�
.

The quantity inside the second bracket on the RHS is positive,
as it is the KL divergence between Ber(p) and Ber(q) with
p �= q. We also have log p(1−q)

q(1−p) > 0 since 0 < q < p < 1.
It follows that p − λ∗ > 0 as claimed. A similar argument
shows that λ∗ − q > 0.

Part (b) is a partial result of [4, Lemma B.1].
For part (c), recall the definition t∗ := 1

2

�
log p

q + log 1−q
1−p

�
in Eq. (15). We consider two cases. If p

q ≥ 1−q
1−p , we have

t∗ ≤ log
p

q

(i)

≤ p

q
− 1

(ii)

≤ p − q

c0p
,

where step (i) holds since log(x) ≤ x − 1, ∀x > 0, and step
(ii) holds by assumption c0p ≤ q. If p

q ≤ 1−q
1−p , we have

t∗ ≤ log
1 − q

1 − p
≤ 1 − q

1 − p
− 1

(i)

≤ p − q

c
≤ p − q

cp
,

where step (i) holds by the assumption that p ≤ 1−c. In both
cases, we have t∗ � p−q

p as claimed.

APPENDIX B
PROOF OF THEOREM 3

In this section we prove Theorem 3 under Models 1 and 2,
following a similar strategy as in the proof of [4, Theorem 1.1].
We make use of the definitions and facts given in Appendix A.

For simplicity, in the sequel we write Θ ≡ Θ(n) := {±1}n.
Let μ be the uniform prior over all the elements in Θ. Define
the global Bayesian risk

Bφ

�
Θ, �σ� :=

1
|Θ|

�
σ∈Θ

Eσ err(�σ, σ),

and the local Bayesian risk for the first node

Bφ

�
Θ, �σ(1)

�
:=

1
|Θ|

�
σ∈Θ

Eσ err
��σ(1), σ(1)

�
.

In the above, the quantity err(�σ(1), σ(1)) denotes the loss
on the first node, defined as

err
��σ(1), σ(1)

�
:=

1
|Sσ(�σ)|

�
σ�∈Sσ(�σ)

I {σ�(1) �= σ(1)} ,

where

Sσ(�σ) :=
)

g�σ : g ∈ {±1},

1
n

�
i∈[n]

I{g�σi �= σi} = err(�σ, σ)
*

.

The following lemma shows that these risks are equal.
Lemma 12: Under Models 1 and 2, we have

inf
�σ

Bφ

�
Θ, �σ� = inf

�σ
Bφ

�
Θ, �σ(1)

�
.

Proof: The lemma essentially follows from the symme-
try/exchangeability property of Models 1 (Z2) and 2 (CBM).
Rigorous proof of this intuitive result is however quite techni-
cal, as the definition of clustering error involves a global sign
flipping. Fortunately, most of the work has been done in [4].
In particular, note that the parameter space Θ is closed under
permutation in the sense that for any label vector σ ∈ Θ and
any permutation π on [n], the new label vector σ� defined by
σ�(i) := σ(π−1(i)) also belongs to Θ. It can also be seen
that both Models 1 (Z2) and 2 (CBM) are homogeneous,
i.e., the distribution of each Aij is uniquely determined by
the sign of σ∗

i σ∗
j . Consequently, for Model 2 (CBM) this

lemma immediately follows from Lemma 2.1 in [4], as its
proof applies without change. For Model 1 (Z2) in which the
distribution of A is continuous, we note that the proof of
Lemma 2.1 in [4] continues to hold when summations therein
are replaced by appropriate integrations.

With the above lemma, it suffices to lower bound the local
Bayes risk. This task can be further reduced to computing the
tail probability of a certain sum of independent copies of the
random variable H defined in Appendix A. This is done in
the following lemma.
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Lemma 13: Let μ be the uniform prior over all elements in
Θ. Under Models 1 and 2, we have

Bφ

�
Θ, �σ(1)

�
≥ P

⎛⎝ �
i∈[n−1]

Zi ≥ 0

⎞⎠ ,

where {Zi} are i.i.d. copies of −H .
This lemma is analogous to Lemma 5.1 in [4]. We provide

the proof in Appendix B-A.
Finally, the lemma below provides an explicit lower bound

of the above tail probability in terms of the SNR measure I∗.
Lemma 14: Let {Zi} be i.i.d. copies of −H . For Model 1

and Model 2 with I∗ = o(1), if nI∗ → ∞, then there exists
ξ = o(1) such that

P

⎛⎝ 1
n − 1

�
i∈[n−1]

Zi ≥ 0

⎞⎠ ≥ exp [− (1 + ξ) (n − 1)I∗] .

This lemma is analogous to Lemma 5.2 in [4]. We
provide the proof in Appendix B-B for Model 1 (Z2) and in
Appendix B-C for Model 2 (CBM).

We are now ready to prove Theorem 3. Note that

inf
�σ

sup
σ∈Θ

Eσ err(�σ, σ) ≥ inf
�σ

Bφ(Θ, �σ),

since the Bayes risk lower bounds the minimax risk. To com-
plete the proof, we continue the above inequality by succes-
sively invoking Lemmas 12, 13 and 14.

A. Proof of Lemma 13

Recall that Bφ(Θ, �σ(1)) is defined as

Bφ

�
Θ, �σ(1)

�
:=

1
|Θ|

�
σ∈Θ

Eσ err
�
σ(1), �σ(1)

�
.

For each σ0 ∈ Θ, we generate a new assignment σ[σ0] based
on σ0 by setting σ[σ0](1) := −σ0(1) and σ[σ0](i) := σ0(i)
for all i ∈ [n] \ {1}. It can be seen that σ[σ0] ∈ Θ and the
Hamming distance between σ0 and σ[σ0] is 1. In addition, for
any σ1, σ2 ∈ Θ with σ1 �= σ2, we have σ[σ1] �= σ[σ2]. This
bijection implies that {σ[σ0] : σ0 ∈ Θ} = Θ. Consequently,
continuing from the last displayed equation we obtain

Bφ(Θ, �σ(1)) =
1
|Θ|

�
σ0∈Θ

1
2

�
Eσ0 err

��σ(1), σ0(1)
�

+ Eσ[σ0] err
��σ(1), σ[σ0](1)

��
,

whence

inf
�σ

Bφ(Θ, �σ(1)) ≥ 1
|Θ|

�
σ0∈Θ

1
2

inf
�σ

�
Eσ0 err

��σ(1), σ0(1)
�

+ Eσ[σ0] err
��σ(1), σ[σ0](1)

��
. (17)

We proceed to compute the infimum above for a given σ0 ∈
Θ. Let σ̃ be the Bayes estimator that attains the infimum.
Since σ0 and σ[σ0] only differ at the first node, we must
have σ̃(i) = σ[σ0](i) = σ0(i) for all i ∈ [n] \ {1}, and either
σ̃(1) = σ0(1) or σ̃(1) = σ[σ0](1). Now the problem is reduced

to a test between two distributions Pσ0 and Pσ[σ0]. Since the
prior μ is uniform, σ̃(1) is given by the likelihood ratio test

Pσ0(A)

Pσ[σ0](A) ≷ 1. The following lemma gives the explicit form of
this test. Here we let J0 := {u ∈ [n] \ {1} : σ0(u) = σ0(1)}
and J1 := {u ∈ [n] : σ0(u) = σ[σ0](1)}.9

Lemma 15: Let σ0 and σ[σ0] be defined as above. Under
Models 1 and 2, we have that

σ̃(1) =

�
σ0(1), if

	
u∈J0

A1u ≥
	

u∈J1
A1u,

σ[σ0](1), otherwise.

The lemma follows from a routine calculation of the like-
lihood. We give proof in Appendix B-A.1 for Model 1 (Z2)
and in Appendix B-A.2 for Model 2 (CBM).

From Lemma 15 we have

Eσ0 err
�
σ̃(1), σ0(1)

�
= Pσ0

� �
u∈J0

A1u <
�
u∈J1

A1u

�
, and

Eσ[σ0] err
�
σ̃(1), σ[σ0](1)

�
= Pσ[σ0]

� �
u∈J0

A1u ≥
�
u∈J1

A1u

�
.

Recalling the distribution of {A1u}, the definition of H

and that Zi
i.i.d.∼ −H , we see that both probabilities above

equal P
�	

i∈[n−1] Zi ≥ 0
�
. Combining with the bound (17),

we obtain the desired inequality inf
�σ Bφ(Θ, �σ(1)) ≥

P
�	

i∈[n−1] Zi ≥ 0
�
.

1) Proof of Lemma 15 for Model 1 (Z2): Since σ0 and
σ[σ0] only differ at the first node, the likelihood ratio

Pσ0(A)

Pσ[σ0](A) only depends on the first row and column of A.
In particular, recalling that {A1u} are Gaussian under Model 1,
we have

Pσ0(A)
Pσ[σ0](A)

=

/
u∈J0

exp
�
− (A1u − 1)2 /(2τ2)

�
/

u∈J0
exp

�
− (A1u + 1)2 /(2τ2)

�
×
/

u∈J1
exp

�
− (A1u+1)2 /(2τ2)

�
/

u∈J1
exp

�
− (A1u − 1)2/(2τ2)

�
=

exp
�
−
�	

u∈J0
(A1u−1)2+

	
u∈J1

(A1u + 1)2
�

/(2τ2)
�

exp
�
−
�	

u∈J0
(A1u + 1)2+

	
u∈J1

(A1u − 1)2
�
/(2τ2)

� .

Some algebra shows that

Pσ0(A)
Pσ[σ0](A)

≷ 1 ⇐⇒
�
u∈J0

A1u ≷
�
u∈J1

A1u.

The result follows from the fact that the likelihood ratio test
is Bayes-optimal for binary hypotheses under a uniform prior.

9In Lemma 15 and its proof, we adopt the convention that
�

u∈J f(u) = 0
and
�

u∈J f(u) = 1 if J = ∅.
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2) Proof of Lemma 15 for Model 2 (CBM): Similarly to
the previous section, we recall the distribution of {A1u} under
Model 2 to obtain

Pσ0(A)
Pσ[σ0](A)

=

/
u∈J0

[α(1 − �)]I{A1u=1}[α�]I{A1u=−1}/
u∈J0

[α(1 − �)]I{A1u=−1}[α�]I{A1u=1}

×
/

u∈J1
[α(1 − �)]I{A1u=−1}[α�]I{A1u=1}/

u∈J1
[α(1 − �)]I{A1u=1}[α�]I{A1u=−1} .

Since � ∈ (0, 1
2 ), some algebra shows that

Pσ0(A)
Pσ[σ0](A)

≷ 1 ⇐⇒
�
u∈J0

A1u ≷
�
u∈J1

A1u.

The result follows from the fact that the likelihood ratio test
is Bayes-optimal for binary hypotheses under a uniform prior.

B. Proof of Lemma 14 for Model 1 (Z2)

Let n� := n − 1, p(z) be the pdf of Z1, and M(t) be
the moment generating function of Z1. Since Z1 ∼ −H ∼
N(−1, τ2), we can compute M(t) = exp(−t + 1

2 t2τ2).
Recalling t∗ = 1

τ2 as defined in Equation (15) and the
definition of I∗ in Equation (5), we obtain

M (t∗) = exp
�
− 1

2τ2

�
= exp (−I∗) .

Let δ := (2nI∗)−
1
4 , Sn� :=

	
i∈[n�] Zi and Sn�(z) :=	

i∈[n�] zi. We have

P (Sn� ≥ 0)

≥
0
{z:Sn�(z)∈[0,n�δ]}

1
i∈[n�]

p(zi)dz

≥ (M (t∗))n�

exp (n�t∗δ)

0
{z:Sn�(z)∈[0,n�δ]}

1
i∈[n�]

exp (t∗zi) p(zi)
M (t∗)

dz,

where the last step holds since exp (n�t∗δ) ≥
exp

�
t∗
	

i∈[n�] zi

�
=

/
i∈[n�] exp (t∗zi) given that	

i∈[n�] zi = Sn�(z) ≤ n�δ. Let q(w) := exp(t∗w)p(w)
M(t∗)

and we have

P (Sn� ≥ 0) ≥ exp (−n�I∗) exp (−n�t∗δ)

×
0
{z:Sn�(z)∈[0,n�δ]}

1
i∈[n�]

q(zi)dz.

Note that q(w) is a pdf since
2

w
q(w)dw = 1 and q(w) ≥ 0

for any w. Let W1, W2, . . . , Wn� be i.i.d. random variables
with pdf q(w). We have

P (Sn� ≥ 0)

≥ exp (−n�t∗δ) P

�
1
n�

�
i∈[n�]

Wi ∈ [0, δ]
�

exp (−n�I∗)

=: Q1Q2 exp (−n�I∗) . (18)

1) Controlling Q1: It can be seen that t∗δ = 2I∗ ·(2nI∗)−
1
4

by the definitions of t∗ and δ. Therefore, for some constant
C� > 0 we have

Q1 ≥ exp

�
−C�

�
1

nI∗

� 1
4

n�I∗
 

.

2) Controlling Q2: Recall that p(w) is the pdf for
N(−1, τ2). A closer look at q(w) yields

q(w) = exp
� w

τ2

�
exp

�
1

2τ2

�
1√

2πτ2
exp

3
− (w + 1)2

2τ2

4

=
1√

2πτ2
exp

�
− w2

2τ2

�
.

Therefore, q(w) is the pdf for N(0, τ2). Define V :=
Var

�
1
n�
	

i∈[n�] Wi

�
and we have V = 1

n� Var (W1) = τ2

n� =
1

2n�I∗ .

Recall that δ := (2nI∗)−
1
4 and n� := n − 1. Using

Chebyshev’s inequality we have

P

⎛⎝555555 1
n�

�
i∈[n�]

Wi

555555 > δ

⎞⎠ ≤ V

δ2
≤ C√

nI∗
,

for some constant C > 0, where the second step holds by
n 	 n�. Therefore, there exist some constants CI∗ > 0 and
c� ∈ (0, 1) depending only on CI∗ such that

Q2 = P

⎛⎝ 1
n�

�
i∈[n�]

Wi ∈ [0, δ]

⎞⎠
=

1
2

⎛⎝1 − P

⎛⎝555555 1
n�

�
i∈[n�]

Wi

555555 > δ

⎞⎠⎞⎠ ≥ c�

when nI∗ ≥ CI∗ (implied by our assumption nI∗ → ∞).
3) Putting Together: Returning to Equation (18), we have

P (Sn� ≥ 0)

≥ c� · exp

�
−C�

�
1

nI∗

� 1
4

n�I∗
 
· exp [−n�I∗]

= exp

�
−
3

1 + C�
�

1
nI∗

� 1
4

+
1

n�I∗
log

1
c�

4
n�I∗

 
.

The desired inequality follows by taking ξ := C� � 1
nI∗

� 1
4 +

1
n�I∗ log 1

c� and noting that ξ = o(1) under our assumption
nI∗ → ∞.

C. Proof of Lemma 14 for Model 2 (CBM)

Let n� := n−1, p(z) be the probability mass function of Z1,
and M(t) be the moment generating function of Z1. Recall
that p := α(1 − �) and q := α�. Since Z1 ∼ −H , we can
compute M(t) = (1 − α) + pe−t + qet. Noting that α =
p + q and recalling t∗ = 1

2 log p
q as defined in Equation (15),

we obtain

M (t∗) = (1 − α) + 2
√

pq = 1 − I∗.
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Let δ := V
1
4 I∗

1
2 (t∗)−

1
2 , Sn� :=

	
i∈[n�] Zi and Sn�(z) :=	

i∈[n�] zi. We have

P (Sn� ≥ 0)

≥
�

{z:Sn�(z)∈[0,n�δ]}

1
i∈[n�]

p(zi)

≥ (M (t∗))n�

exp (n�t∗δ)

�
{z:Sn� (z)∈[0,n�δ]}

1
i∈[n�]

exp (t∗zi) p(zi)
M (t∗)

,

where the last step holds since exp (n�t∗δ) ≥
exp

�
t∗
	

i∈[n�] zi

�
=

/
i∈[n�] exp (t∗zi) given that	

i∈[n�] zi = Sn�(z) ≤ n�δ. Let q(w) := exp(t∗w)p(w)
M(t∗)

for w ∈ {−1, 0, 1} and we have

P (Sn� ≥ 0) ≥ exp (n� log(1 − I∗)) exp (−n�t∗δ)

×
�

{z:Sn�(z)∈[0,n�δ]}

1
i∈[n�]

q(zi).

Noting that q(w) is a pmf, we let W1, W2, . . . , Wn� be
i.i.d. random variables with pmf q(w). We have

P (Sn� ≥ 0) ≥ exp (−n�t∗δ) P

⎛⎝ 1
n�

�
i∈[n�]

Wi ∈ [0, δ]

⎞⎠
× exp (n� log(1 − I∗))

=: Q1Q2Q3. (19)

1) Controlling Q2: A closer look at q(w) yields

q(w) =

�
1

M(t∗)

√
pq, if w = 1 or w = −1,

1
M(t∗) (1 − α), if w = 0,

whence Var(W1) = 2
M(t∗)

√
pq. Define V :=

Var
�

1
n�
	

i∈[n�] Wi

�
and we have V = 1

n� Var (W1) =
2
√

pq

n�M(t∗) . We need the following estimates.
Lemma 16: If � ∈ (0, 1

2 ) is a constant and 0 < q < p ≤
1 − c for some constant c ∈ (0, 1), then there exist constants
C, C1 > 0 such that

V ≤ 4p

cn
,

V (t∗)2

I∗2 ≤ C

nI∗
, t∗

√
V ≤ C1

�
I∗

n
.

Proof: By Fact 10(b), we have I∗ ≤ (p−q)2

p ≤ p ≤ 1 − c
and therefore M (t∗) ≥ c. This implies

V ≤
4
√

pq

nM (t∗)
≤ 4p

cn
,

where the first step holds by n� = n − 1 ≥ 1
2n for n ≥ 2.

Furthermore, there exist some constants C, C�, C�� > 0 such
that

V (t∗)2

I∗2 ≤ C��
4p
cn

�
p−q

p

�2

�
(p−q)2

p

�2 = C� p

n(p − q)2
≤ C

nI∗
,

where the first step holds by Facts 10(a) and 10(b), and the
last step holds by Fact 10(b). Finally, we have

t∗
√

V ≤ C0
p − q

p

�
p

n
≤ C1

�
I∗

n

for some constants C0, C1 > 0, where the first step holds by
Fact 10(a) and the last step holds by Fact 10(b).

We return to controlling Q2. Recalling that δ :=
V

1
4 I∗

1
2 (t∗)−

1
2 and using Chebyshev’s inequality, we have

P

⎛⎝555555 1
n�

�
i∈[n�]

Wi

555555 > δ

⎞⎠ ≤ V

δ2
≤ C√

nI∗
,

for some constant C > 0, where the second step holds since
V
δ2 = t∗

√
V

I∗ � 1√
nI∗ by Lemma 16. Therefore, there exist

some constants CI∗ > 0 and c� ∈ (0, 1) that only depends on
CI∗ such that

Q2 = P

⎛⎝ 1
n�

�
i∈[n�]

Wi ∈ [0, δ]

⎞⎠
=

1
2

⎛⎝1 − P

⎛⎝555555 1
n�

�
i∈[n�]

Wi

555555 > δ

⎞⎠⎞⎠ ≥ c�

when nI∗ ≥ CI∗ (implied by our assumption nI∗ → ∞).
2) Controlling Q1: The last two inequalities of Lemma 16

implies that t∗δ =
�

I∗t∗
√

V �
�

I∗
6

I∗
n � I∗

�
1

nI∗
� 1

4 .

Therefore, for some constant C� > 0 we have

Q1 ≥ exp

�
−C�

�
1

nI∗

� 1
4

n�I∗
 

.

3) Controlling Q3: By Taylor’s theorem, we have log(1 −
I∗) = −I∗ − I∗2

2(1−u)2 for some u ∈ [0, I∗]. This implies that
when I∗ ≤ 1 − c0 for some constant c0 ∈ (0, 1), we have
log(1 − I∗) ≥ −I∗ − C2I

∗2 for some constant C2 ∈ (0, 1)
that only depends on c0. It follows that

Q3 ≥ exp [−(1 + C2I
∗)n�I∗] .

4) Putting Together: Returning to Equation (19), we obtain

P (Sn� ≥ 0) ≥ c� exp [−(1 + C2I
∗)n�I∗]

× exp
�
− C�

�
1

nI∗

� 1
4

n�I∗
�

= exp
�
−
�

1 + C2I
∗ + C�

�
1

nI∗

� 1
4

+
1

n�I∗
log

1
c�

�
n�I∗

�
.

The desired inequality follows by taking ξ := C2I
∗ +

C� � 1
nI∗

� 1
4 + 1

n�I∗ log 1
c� and noting that ξ = o(1) under our

assumptions I∗ = o(1) and nI∗ → ∞.

APPENDIX C
PROOF OF THE FIRST INEQUALITY IN THEOREM 4

Here we prove the first inequality in Theorem 4. The proof
of the second inequality is given in Appendix E.
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A. Preliminaries

Recall the definitions given in Appendix A. We intro-
duce some additional notations. For a matrix M, we let
�M�F :=

6	
i,j M2

ij denote its Frobenius norm, �M�op its

spectral norm (the maximum singular value), and �M�∞ :
= maxi,j |Mij | its entrywise �∞ norm. With another matrix
G of the same shape as M, we use M ≥ G to mean that
Mij ≥ Gij for all i, j.

Let U := 1√
n
σ∗; it can be seen that UU� = 1

nY∗

and in particular U is a singular vector of Y∗. Define the
projections PT (M) := UU�M + MUU� − UU�MUU�

and PT⊥(M) := M − PT (M) for any M ∈ Rn×n. Recall
that A is the observed matrix from Model 1, 2 or 3. For
any �Y in the sublevel set Y(A), we introduce the shorthand
γ := � �Y−Y∗�1 for the �1 error we aim to bound. Define the
shifted adjacency matrix A0 := A−λ∗J, where λ∗ is defined
in Equation (16), and the centered adjacency matrix (or noise
matrix) W := A−EA = A0 −EA0. Crucial to our analysis
is a “dual certificate” D, which is an n × n diagonal matrix
with diagonal matrices

Dii :=
�
j∈[n]

A0
ijY

∗
ij = σ∗

i

�
j∈[n]

A0
ijσ

∗
j , for each i ∈ [n].

See [9] for how D arises as a candidate solution to the dual
program of the SDPs (7) and (8), though we do not rely on
the explicit form of the dual program in the subsequent proof.

Let us record some facts about any feasible solution Y to
program (7) or (8).

Fact 17: For any Y feasible to program (7) or (8), we have⎧⎪⎨⎪⎩
Yij − Y ∗

ij = 0, if i = j,

Yij − Y ∗
ij ≤ 0, if Y ∗

ij = 1,

Yij − Y ∗
ij ≥ 0, if Y ∗

ij = −1.

Proof: Since Yii = 1 for i ∈ [n] and Y 
 0, we have
�Y�∞ = 1. The result follows from the fact that Y∗ ∈
{±1}n×n.

Fact 18: For any Y feasible to program (7) or (8), the fol-
lowing hold.
(a) PT⊥ (Y) 
 0 and Tr [PT⊥ (Y)] = γ

n .
(b) �PT⊥(Y)�∞ ≤ 4.

Proof: For part (a), note that PT⊥ (Y) = (I −
UU�)Y(I − UU�), which is positive semidefinite since
Y 
 0 by feasibility to program (7) or (8). We also have

Tr [PT⊥ (Y)]
(i)
= Tr

��
I − UU�� (Y − Y∗)

�
(ii)
= Tr

��
−UU�� (Y − Y∗)

�
=

1
n

Tr [(−Y∗) (Y − Y∗)] =
γ

n
,

where step (i) holds since trace is invariant under cyclic
permutations and the matrix I−UU� is idempotent, and step
(ii) holds since Y ∗

ii − Yii = 0 for i ∈ [n].
For part (b), the definition of PT⊥(·) and direct calculation

give

�PT⊥ (Y) �∞ ≤ �Y�∞ + �UU�Y�∞ + �YUU��∞
+ �UU�YUU��∞ ≤ 4,

where the last step holds because for all (i, j), (UU�)ij =
1
nY ∗

ij ∈ [− 1
n , 1

n ] and Yij ∈ [−1, 1].
We now proceed to the proof of the first inequality in

Theorem 4. Following the strategy outlined in Section V, we
perform the proof in three steps.

B. Step 1: Basic Inequality

As our first step, we establish the following critical basic
inequality.

Lemma 19: Any �Y ∈ Y(A) satisfies the inequality

0 ≤
$
−D,PT⊥(�Y)

%
+
$
W,PT⊥(�Y)

%
.

We prove this lemma in Appendix D-A.
With the basic inequality, we can reduce the problem of

bounding the error 1
nγ = 1

n� �Y−Y∗�1 to that of studying the
two random matrices D (the dual certificate) and W (the noise
matrix). In particular, recall that the matrix PT⊥(�Y) satisfies
Tr

�
PT⊥(�Y)

�
= 1

nγ and the other properties in Fact 18. The
rest of the proof relies only on these properties of PT⊥( �Y),
and it suffices to study how matrices with such properties
interact with D and W.

Henceforth we use S1 :=
$
−D,PT⊥( �Y)

%
and S2 :=$

W,PT⊥(�Y)
%

to denote the two terms on the RHS of the
basic inequality. As the next two steps of the proof, we first
control S2, and then derive the desired exponential error rate
by analyzing the sum S1 + S2.

C. Step 2: Controlling S2

The proposition below provides a bound on S2.
Proposition 20: Under the conditions of Theorem 4, with

probability at least 1 − 4√
n

, at least one of the following
inequalities holds:

γ

n
≤
�
n exp

�
−
3

1 − Ce

�
1

nI∗

4
n̄I∗

 !
,

S2 ≤ CS2

γ

n

�
1

nI∗
n̄I∗

t∗
,

where Ce > 0 and CS2 > 0 are numeric constants.
The proof of this proposition is model-dependent, and is given
in Appendices D-B, D-C and D-D for Models 1, 2 and 3,
respectively.

While technical in its form, Proposition 20 has a sim-
ple interpretation: either the desired exponential error bound
already holds, or S2 is bounded by a small quantity that
eventually dictates the second order term in the error exponent.
To proceed, we may assume that the second bound in Propo-
sition 20 holds. Plugging this bound into the basic inequality
in Lemma 19, we obtain that

0 ≤
$
−D,PT⊥( �Y)

%
7 89 :

S1

+CS2

γ

n
· 1
t∗

�
1

nI∗
n̄I∗. (20)
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D. Step 3: Analyzing S1 + S2

If γ = 0 then we are done, so we assume γ > 0 in the
sequel. To show that γ decays exponentially in I∗, we need a
simple pilot bound on γ that is polynomial in I∗.

Lemma 21: Suppose that τ > 0 for Model 1, nα ≥ 1 for
Model 2, and np ≥ 1 for Model 3. There exists a constant
Cpilot > 0 such that with probability at least 1 − 2(e/2)−2n,

γ ≤ Cpilot

�
n3

I∗
.

The proof is model-dependent, and is given in
Appendices D-E.1, D-E.2 and D-E.3 for Models 1, 2
and 3, respectively. We verify that the premise of Lemma 21
is satisfied: for Model 1 this is clear; for Models 2 and 3,
we have p ≥ (p−q)2

p � I∗ thanks to Facts 10(b) and 11(b)
(recall p := α(1 − �) in Model 2), and nI∗ ≥ CI∗ for some
large enough CI∗ > 0 under the premise of Theorem 4.

Now recall that the positive semidefinite matrix
PT⊥( �Y) has non-negative diagonal entries and satisfies

Tr
�
PT⊥(�Y)

�
= γ

n (Fact 18(a)). Define the (non-negative)
numbers

bi :=
�
PT⊥

� �Y��
ii

, bmax = 4,

β :=
1

bmax

�
i∈[n]

bi =
γ

bmaxn

and the random variables

Xi := −Dii, i ∈ [n], (21)

which is the i-th diagonal entry of the dual certificate D
defined in Appendix C-A. With the above notations, we have

S1 :=
$
−D,PT⊥(�Y)

%
=

�
i∈[n]

Xibi

= bmax

�
i∈[n]

Xi

�
bi

bmax

�
, (22)

where bi

bmax
∈ [0, 1] by Fact 18(b).

To proceed, we shall employ a technique that is reminiscent
of the “order statistics argument” in [3], [49]. Let X(1) ≥
X(2) ≥ · · · ≥ X(n) be the order statistics of {Xi}. Let C be a
constant to be chosen later. For ease of presentation, we define

shorthands η := C
6

1
nI∗ ,

� (m, c) :=
1
t∗

�
(1 + η) log

�ne

m

�
− (1 − cη)n̄I∗

�
, and

ϑ (c) := exp [−(1 − cη)n̄I∗] .

Below we consider two cases: β > 1 and 0 < β ≤ 1, where
we recall that β :=

	
i∈[n]

�
bi

bmax

�
= γ

bmaxn .
Case 1 (β > 1): In this case, the expression (22) implies

that

S1 ≤ bmax

⎡⎣ �
i∈[
β�]

X(i) + (β − �β�) X(�β
)

⎤⎦ .

Combining with Equation (20), we obtain that

0 ≤ S1 + CS2bmaxβ
1
t∗

�
1

nI∗
n̄I∗

≤ bmax

� �
i∈[
β�]

3
X(i) + CS2

1
t∗

�
1

nI∗
n̄I∗

4

+ (β − �β�)
3

X(�β
) + CS2

1
t∗

�
1

nI∗
n̄I∗

4 
.

When β is not an integer, the residual term above involving
(β − �β�) is cumbersome. Fortunately, the following simple
lemma (proved in Appendix D-F) allows us to take the integer
part of β.

Lemma 22: Suppose that β ∈ [1, n], and μ1 ≥ μ2 ≥ . . . ≥
μn are n fixed numbers. Define V (u) :=

	
i∈[
u�] μi + (u −

�u�)μ�u
. If 0 ≤ V (β), then 0 ≤ V (β0) for any β0 ∈ [1, β].
Letting β0 := �β� and invoking Lemma 22, we deduce from

the last displayed equation that

0 ≤ bmax

�
i∈[β0]

3
X(i) + CS2

1
t∗

�
1

nI∗
n̄I∗

4

= bmax

�
i∈[β0]

X(i) + bmaxβ0CS2

1
t∗

�
1

nI∗
n̄I∗

≤ bmax · max
M⊂[n]
|M|=β0

��
i∈M

Xi

?
+ bmaxβ0CS2

1
t∗

�
1

nI∗
n̄I∗.

The following lemma, proved in Appendix D-G, provides a
tight bound on the first sum above.

Lemma 23: Recall the definition of {Xi} in Equation (21).
Let C be any constant satisfying C ≥ 2

√
2. Let η :=

C
6

1
nI∗ and M be any positive number satisfying 1 ≤ M ≤

max
�
1, C

�
n
I∗
�

. If nI∗ ≥ CI∗ for some constant CI∗ ≥ 4,
then we have

max
M⊂[n]
|M|=m

��
i∈M

Xi

?

≤ 1
t∗
�
(1 + η)m log

�ne

m

�
− (1 − 2η)mn̄I∗

�
,

∀m = 1, 2, . . . , �M�
with probability at least 1 − 3 exp

�
−
√

log n
�
.

Set C = C�
pilot := Cpilot

bmax
and η = C

6
1

nI∗ . Note that

Lemma 21 ensures that β0 ≤ β ≤ C�
pilot

�
n
I∗ with high proba-

bility.10 Therefore, applying Lemma 23 with M = C�
pilot

�
n
I∗

and the above C, we obtain that with high probability,

0 ≤ β0 · � (β0, 2) + CS2

1
t∗

β0

�
1

nI∗
n̄I∗

= β0 · � (β0, 2) + β0
1
t∗

CS2

C�
pilot

ηn̄I∗

= β0 · �
3

β0, 2 +
CS2

C�
pilot

4
,

10We assume that C�
pilot

�
n
I∗ ≥ 1 here; if this is not true, we can skip to

the proof under case 0 < β ≤ 1 that is presented later.
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which implies 0 ≤ �
�
β0, 2 + CS2

C�
pilot

�
. Rearranging this inequal-

ity using the definition of �, we obtain

β0 ≤ en · exp
�
−

1 − (2 + CS2/C�
pilot)η

1 + η
n̄I∗

�
.

To simplify the last RHS, we use the following elementary
lemma.

Lemma 24: If 0 ≤ η ≤ 1
C0+1 for some C0 > 0, then

1−C0η
1+η ≥ 1 − (C0 + 1)η ≥ 0.

Proof: We have 1−C0η
1+η = 1− (1+C0)η

1+η

(a)

≥ 1−(1+C0)η
(b)

≥
0, where step (a) holds since η ≥ 0 and step (b) holds since
η ≤ 1

C0+1 .
The premise of Theorem 4, i.e., nI∗ ≥ CI∗ for CI∗

sufficiently large, implies that η ≤ 1
C0+1 for C0 := 2 + CS2

C�
pilot

.

Applying the above lemma gives 1−C0η
1+η ≥ 1 − (C0 + 1)η.

Combining with the last displayed equation, we obtain that

β0 ≤ en · ϑ
�
1 + C0

�
=⇒ β0 ≤

"
en · ϑ

�
1 + C0

�#
since β0 is an integer. Because γ

n = bmax · β ≤ bmax · 2β0, it
follows that

γ

n
≤ 2bmax

"
en · ϑ

�
1 + C0

�#
≤
"
2bmaxen · ϑ

�
1 + C0

�#
,

where in the last step we use the fact that c �x� ≤ �cx� for any
real number x ≥ 0 and integer c > 0.11 As long as nI∗ ≥ 1,

we have 1
nI∗ ≤

6
1

nI∗ and hence

γ

n
≤
"
n · exp

�
log(2bmaxe)

�
· ϑ
�
1 + C0

�#
≤
�
n · ϑ

3
1 + C0 +

1
C�

pilot
log(2bmaxe)

4!
.

Recalling the definition of ϑ, we see that we have proved the
first inequality in Theorem 4.

Case 2 (0 < β ≤ 1): In this case, continuing from the
expression (22), we have

S1 ≤ bmaxβ · X(1) ≤ bmaxβ · � (1, 2) ,

where in the last step we apply Lemma 23 with m = M = 1,

C = 2
√

2 and η = C
6

1
nI∗ . Combining with Equation (20),

we obtain that

0 ≤ bmaxβ · � (1, 2) + CS2

γ

n

1
t∗

�
1

nI∗
n̄I∗

= bmaxβ · � (1, 2) + bmaxβ
1
t∗

CS2

2
√

2
ηn̄I∗

= bmaxβ · �
�

1, 2 +
CS2

2
√

2

�
,

which implies �
�
1, 2 + CS2

2
√

2

�
≥ 0. Rearranging this inequal-

ity using the definition of �, we obtain

1 ≤ en · exp

�
−1 − (2 + CS2/2

√
2)η

1 + η
n̄I∗

 
.

11Proof: we have �cx� = �c �x� + (cx − c �x�)� ≥ �c �x�� = c �x� by
noting that cx − c �x� ≥ 0 and c �x� is an integer.

Applying Lemma 24 with C0 = 2 + CS2

2
√

2
gives 1−C0η

1+η ≥
1 − (C0 + 1)η. Combining with the last displayed equation,
we obtain

1 ≤ en · ϑ (C0 + 1) =⇒ 1 ≤ �en · ϑ (C0 + 1)� .

But we have γ
bmaxn = β ≤ 1 by the case assumption. It follows

that

γ

n
≤ bmax �en · ϑ (C0 + 1)� ≤ �bmaxen · ϑ (C0 + 1)� ,

where in the last step we use the fact that c �x� ≤ �cx� for
any real x ≥ 0 and integer c > 0. As long as nI∗ ≥ 1, we

have 1
nI∗ ≤

6
1

nI∗ and hence

γ

n
≤
"
n · exp

�
log(bmaxe)

�
· ϑ
�
1 + C0

�#
≤
@
n · ϑ

�
1 + C0 +

1
2
√

2
log(bmaxe)

�A
.

Recalling the definition of ϑ, we see that we have proved the
first inequality in Theorem 4.

APPENDIX D
PROOFS OF TECHNICAL LEMMAS IN APPENDIX C

A. Proof of Lemma 19

Recall the matrices W and D defined in Appendix C-A. Let
d := (D11, . . . , Dnn)� ∈ Rn be the vector of diagonal entries
of D. Note that Dσ∗ = σ∗ ◦ d = σ∗ ◦

�
σ∗ ◦ (A0σ∗)

�
=

A0σ∗, where ◦ denotes element-wise product. Therefore,
we have the identity

DY∗ = Dσ∗ (σ∗)� = A0σ∗ (σ∗)� = A0Y∗.

To prove the basic inequality, let us fix an arbitrary �Y ∈
Y(A) and observe that 0 ≤

$
A, �Y − Y∗

%
. On the other hand,

we have $
A, �Y − Y∗

%
=
$
A0 − D, �Y − Y∗

%
thanks to the following facts: (i) �Y−Y∗ has zero diagonal and
D is a diagonal matrix; (ii) for Models 1 and 2 we have A0 =
A; (iii) for Model 3 we have A0 = A−λ∗J but the program
(8) used for this model ensures that

$
J, �Y%

= �J,Y∗� = 0.

Using the equality DY∗ = A0Y∗ proved above, we obtain
that $

A, �Y − Y∗
%

=
$
A0 − D, �Y%

=
$
A0 − D,PT⊥( �Y)

%
+
$
A0 − D,PT ( �Y)

%
.

By definition of PT , we can write PT ( �Y) = σ∗u�+v (σ∗)�

for some u,v ∈ Rn, hence$
A0 − D,PT ( �Y)

%
=
�
A0 − D, σ∗u� + v (σ∗)�� = 0
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because Dσ∗ = A0σ∗. It follows that$
A, �Y − Y∗

%
=
$
A0 − D,PT⊥( �Y)

%
=
$
(EA − λ∗J) + W − D,PT⊥(�Y)

%
.

We shall prove later that$
EA − λ∗J,PT⊥( �Y)

%
= 0. (23)

Taking this identity as given, we obtain 0 ≤
$
A, �Y − Y∗

%
≤$

W − D,PT⊥(�Y)
%

, thereby completing the proof of
Lemma 19.

Proof of inequality (23): Under Models 1 and 2, we have
EA = cY∗ for some scalar c as well as λ∗ = 0 as chosen in
(16), hence$

EA − λ∗J,PT⊥(�Y)
%

= c
$
PT⊥(Y∗), �Y%

= 0

as desired. Under Model 3, we have the equalities

�EA − λ∗J,PT⊥ (Y)�
(a)
=

B
PT⊥

�
p − q

2
Y∗ +

p + q

2
J − λ∗J

�
, �YC

(b)
=
B

p + q

2
J − λ∗J, �YC

(c)
= 0,

where step (a) holds since EA = p−q
2 Y∗+ p+q

2 J and the pro-
jection PT⊥ is self-adjoint, step (b) holds since PT⊥(Y∗) = 0
and PT⊥(J) = J (because (I − UU�)J = (I − n−1Y∗)J =
J), and step (c) holds since

$
J, �Y%

= 0 by feasibility of the

matrix �Y ∈ Y(A) to the program (8).

B. Proof of Proposition 20 for Model 1 (Z2)

We shall make use of the following matrix inequality:

�G,M� ≤ �G�op Tr(M), ∀G, ∀M 
 0, (24)

which is due to the fact that for M 
 0, Tr(M) equals
the sum of its singular values. We also need the following
spectral norm bound, which is from a direct application of [59,
Theorem 2.11].

Lemma 25: We have �W�op ≤ (2 +
√

2)
√

τ2n with
probability at least 1 − e−n/2.

Turning to bounding S2, we have with probability at least
1 − e−n/2,

S2 :=
$
W,PT⊥( �Y)

%
(a)

≤ �W�op · Tr
�
PT⊥(�Y)

�
(b)

≤ 4τ
√

n · γ

n

(c)
= 4

√
2
γ

n

�
1

nI∗
nI∗

t∗
,

where step (a) follows from noting that PT⊥( �Y) 
 0 by
Fact 18(a) and applying inequality (24), step (b) holds by
Lemma 25 and Fact 18(a), and step (c) holds by definitions of
I∗ in Equation (5) and t∗ in Equation (15). Setting CS2 = 4

√
2

completes the proof of Proposition 20 for Z2.

C. Proof of Proposition 20 for Mode 2 (CBM)

Recall that S2 :=
$
PT⊥( �Y),W

%
. We control the right

hand side by splitting it into two parts, one involving a
trimmed version of W and the other the residual. This
technique is similar to those in [3], [28], but here we use
it for a different model.

a) Trimming: We consider an equivalent way of gener-
ating A under Mode 2 (CBM). Define a symmetric random
matrix G ∈ {±1}n×n such that Gii = 0 for i ∈ [n] and
{Gij : i < j} are generated independently as

Gij =

�
Y ∗

ij , w.p. 1 − �,

−Y ∗
ij , w.p. �.

The observed matrix A from Model 2 can be equivalently
generated by

Aij =

�
Gij , w.p. α,

0 w.p. 1 − α,
independently for i < j,

with Aii = 0 for i ∈ [n].12 We introduce a few additional
notations. For a vector v ∈ Rn, we let �v�0 denote the
number of nonzero entries in v. For a matrix M ∈ Rn×n,
we let Mup be obtained from M by zeroing out its lower
triangular entries, Mi,: and M:,j be the i-th row and j-th
column of M respectively, and we define the trimmed matrixDM := (MijI{�Mi,:�0 ≤ 40αn, �M:,j�0 ≤ 40αn})i,j∈[n].

With the above notations, we note that Aup and Gup are both
matrices with independent entries. We first record a series of
lemmas that are useful for our proof to follow. The first lemma
is a standard spectral norm bound for random matrices.

Lemma 26: Let M ∈ Rn×n be a random matrix whose
entries Mij are independent mean-zero random variables with
|Mij | ≤ C� for some constant C� ≥ 0. Then there exists a
constant C > 0 such that with probability at least 1 − 2e−n,
we have �M�op ≤ C

√
n.

Proof: Such a result is standard. For example, it follows
as a corollary of Theorem 4.4.5 in [60] with m = n, t =

√
n

and K ≤ C�� for some constant C� since �M�∞ ≤ C�.
The next lemma controls spectral norm of the trimmed

matrix �Aup.
Lemma 27: For some absolute constant C > 0, we have

P

�
��Aup − αGup�op ≥ C

√
αn

�
≤ 1

n3
.

Proof: Note that �Gup�∞ ≤ 1 surely. Applying [61,
Lemma 3.2] with m and � therein set to n and αn, we obtain
P(��Aup − αGup�op ≥ C

√
αn | Gup) ≤ 1

n3 for any Gup.13

Integrating out Gup yields the result.
The next two lemmas are known results in the literature and

control the “atypical” rows in a random matrix.
Lemma 28: Let M be an n × n random matrix whose

entries are independent Bernoulli random variables. Let λ ≥
maxi,j EMij . Define S := {i ∈ [n] :

	
j Mij ≥ 20nλ}

12As mentioned in Section III-B, it is inconsequential to change the diagonal
entries of A.

13 [61, Lemma 3.2] involves trimming rows and columns that contain more
than 2αn nonzero entries. A closer inspection of their proof reveals that their
bound still applies to our setting, albeit with a possibly larger constant C.
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and Z �
i :=

	
j MijI{i ∈ S}. Then with probability at least

1 − e−5nλ, we have�
i

Z �
i ≤ 20n2λe−5nλ.

Proof: The proof exactly follows that of [28, Lemma C.5],
with each Zi therein replaced by Z �

i and p therein replaced
by λ.14

Lemma 29: Let M be an n × n random matrix whose
entries are independent Bernoulli random variables. Let λ ≥
maxi,j EMij and ε ∈ (0, 1/2]. Consider the rows of M
with more than 21λn + 2 ln ε−1 ones. Then with probability
1− exp(−εn/2), those rows have at most εn ones altogether.

Proof: The proof exactly follows that of [62,
Lemma 8.1].15

With the last two lemmas, we can establish the following
result.

Lemma 30: Let M ∈ {0, 1}n×n be a binary matrix with
Mii = 0 for all i ∈ [n], and {Mij}i,j∈[n] being inde-
pendent Bernoulli random variables. Let p� := maxij EMij .
Define T := {i ∈ [n] :

	
j Mij ≥ 40np�}, Zi :=	

j |Mij − EMij | I{i ∈ T } and Z �
i :=

	
j MijI{i ∈ T }.

If p� ≥ C
n for a sufficiently large positive constant C, then

with probability at least 1 − 1√
n

, we have�
i

Zi ≤ 2
�

i

Z �
i ≤ 40n2p�e−5np�

.

Proof: Since
	

j MijI{i ∈ T } ≥ 40np�I{i ∈ T } by
definition of T , we have�

i

Zi ≤
�

i

�
j

MijI{i ∈ T } + np�
�

i

I{i ∈ T }

≤ 2
�

i

�
j

MijI{i ∈ T } = 2
�

i

Z �
i,

thereby proving the first inequality in the lemma. It remains
to show that the event B :=

�	
i Z �

i > 20n2p�e−5np�
�

holds
with low probability. Let us consider the following two cases.
Case 1. First we consider the case where np� ≥ 1

10 log n.
Applying Lemma 28 with λ therein set to 2p�,
we obtain that P{B} ≤ e−10np�

. Since np� ≥
1
10 log n, this probability is at most e− log n ≤ 1√

n
as claimed.

Case 2. Next we consider the case where C ≤ np� <
1
10 log n. Set ε = 20np�e−5np�

. Note that ε ∈ (0, 1/2]
and 21np� + 2 log ε−1 ≤ 40np� since p� ≥ C

n .
Applying Lemma 29 with the above ε and with λ
therein set to p, we obtain that

P{B} ≤ exp
�
−10n2p�e−5np��

≤ exp
�
−10Cne−

1
2 log n

�
= exp

�
−10C

√
n
�
≤ 1√

n
,

where the second step holds since np� < 1
10 log n.

14Inspecting their proof, we see that their bound holds without change for
matrices with independent entries.

15Inspecting their proof, we see that their bound holds without change when
the means of the Bernoulli are upper bounded by the same λ.

Putting together, we have shown that P{B} ≤ 1√
n

for p� ≥ C
n .

The proof is completed.
We are now ready to bound S2. Observe that

S2 = 2
$
PT⊥(�Y),Wup

%
= 2

$
PT⊥(�Y),

�
�Aup − E [Aup | G]

�
+ (E [Aup | G] − EAup) +

�
Aup −�Aup

�%
= 2

$
PT⊥(�Y),

�
�Aup − αGup

�
+ (αGup − αEGup)

+
�
Aup −�Aup

�%
(a)

≤ 2 Tr
�
PT⊥(�Y)

�
· ��Aup − αGup�op

+ 2α Tr
�
PT⊥( �Y)

�
· �Gup − EGup�op

+ 2�PT⊥(�Y)�∞�Aup −�Aup�1

(b)

≤ 2
γ

n
��Aup − αGup�op + 2α

γ

n
�Gup − EGup�op

+ 8�Aup −�Aup�1,

where step (a) follows noting that PT⊥(�Y) 
 0 (by
Fact 18(a)) and applying inequality (24), and step (b) holds
by Fact 18(a) and Fact 18(b).

We then apply Lemma 27 to bound ��Aup − αGup�op,
Lemma 26 to bound �Gup −EGup�op, and Lemma 30 to Aup

and (Aup)� to bound �Aup −�Aup�1 (we do so by setting
Mij = |Aup

ij | for i, j ∈ [n] and noting that {|Aup
ij |} are

independent Bernoulli random variables with means uij ≤ α).
Note that the assumption α ≥ C

n of Lemma 30 is satisfied
by the assumption of this proposition that nI∗ ≥ CI∗ for
some large enough CI∗ > 0 (since Fact 10(b) implies I∗ �
(p−q)2

p ≤ p ≤ α). It follows that with probability at least
1 − 4√

n
, there holds

S2 ≤ C0
γ

n

√
nα + C1n

2αe−5nα =: C0Q1 + C1Q2

for some constants C0, C1 > 0. It remains to bound Q1 and
Q2 above.

For Q1, Fact 10(b) implies that
√

I∗ ≤ C� p−q√
p for some

constant C� > 0 and therefore

Q1 = γ
p − q

p − q

�
p

n
≤ 1

C� γ(p − q)

�
1

nI∗
.

Bounding Q2 involves some elementary manipulation.
b) Controlling Q2: We record an elementary inequality.

Lemma 31: There exists a constant CI∗ ≥ 1 such that if
nI∗ ≥ CI∗ , then pe−5pn ≤ (p − q)e−5nI∗/2.

Proof: Note that pn ≥ (p − q)n ≥ (p−q)2

p n ≥ 1
C� nI∗ ≥

1
C� CI∗ for some constant C� > 0 by Fact 10(b). As long
as CI∗ is sufficiently large, we have pn

2 ≤ e5pn/2. These
inequalities imply that

p

p − q
≤ pn

2
≤ e5pn/2 ≤ e5(2p−I∗)n/2.

Multiplying both sides by (p − q)e−5pn yields the claimed
inequality.
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Equipped with the above bound, we are ready to bound Q2.

Let κ := e−(1−ξ)nI∗
where ξ := Ce

6
1

nI∗ for some constant
Ce > 0 such that �nκ� > 0. If γ

n = 0 or γ
n ≤ �nκ�, then

the first inequality in Proposition 20 holds and we are done.
It remains to consider the case γ

n > �nκ� > 0. We have that
�nκ� is a positive integer and γ > n �nκ� ≥ 1

2n2κ. Hence,

Q2 = αn2e−5αn

(a)

≤ 2pn2e−5pn

(b)

≤ 2(p − q)n2e−5nI∗/2

≤ 2(p − q)e−nI∗ · n2e−nI∗

(c)

≤ 2(p − q)e−nI∗ · n2κ

≤ 4(p − q)e−nI∗
· γ,

where step (a) holds since α = 1
1−�p and � ∈ [0, 1

2 ] imply
α ∈ [p, 2p], step (b) holds by Lemma 31, and step (c) holds
by definition of κ. Choosing CI∗ > 0 large enough so that

e−nI∗/2 ≤
6

1
nI∗ , we have Q2 ≤ 4γ(p − q)

6
1

nI∗ .
c) Putting together: Combining the above bounds for Q1

and Q2, we obtain that

S2 ≤ C2γ(p − q)

�
1

nI∗
= C2

γ

n

�
1

nI∗
n(p − q)

for some constant C2 > 0. Under the assumption 0 < q ≤
p ≤ 1, we have p − q ≤ C� I∗

t∗ · 1−�
� for some constant

C� > 0 by Facts 10(a) and 10(b). This completes the proof of
Proposition 20 for CBM.

D. Proof of Proposition 20 for Model 3 (SBM)

Similarly to the proof for Model 2, we control the RHS
of S2 =

$
PT⊥(�Y),W

%
by splitting it into two parts, one

involving a trimmed version of W and the other the residual.
This technique is similar to those in [3], [28], but here we
provide somewhat tighter bounds.

a) Trimming: We record a technical lemma concerning a
trimmed Bernoulli matrix

Lemma 32: Suppose M ∈ Rn×n is a random matrix with
zero on the diagonal and independent entries {Mij} with the
following distribution: Mij = 1 − pij with probability pij ,
and Mij = −pij with probability 1−pij . Let p� := maxij pij ,
and let DM be the matrix obtained from M by zeroing out
all the rows and columns having more than 40np� positive
entries. Then there exists some constant C > 0 such that with
probability at least 1 − 1

n2 ,

�DM�op ≤ C
�

np�

Proof: The claim follows from [3, Lemma 9] with σ2

therein set to p�.

Let Wup be obtained from W by zeroing out its lower
triangular entries. To bound S2, we observe that

S2 = 2
$
PT⊥(�Y),Wup

%
= 2

$
PT⊥(�Y), �Wup

%
+ 2

$
PT⊥( �Y),Wup − �Wup

%
(a)

≤ 2 Tr
�
PT⊥(�Y)

�
· ��Wup�op

+ 2�PT⊥(�Y)�∞�Wup − �Wup�1

(b)

≤ 2
γ

n
��Wup�op + 8�Wup − �Wup�1,

where step (a) follows from noting that PT⊥( �Y) 
 0 (by
Fact 18(a)) and applying inequality (24), and step (b) holds
by Facts 18(a) and 18(b). We then apply Lemma 32 to �Wup to
bound ��Wup�op, and apply Lemma 30 to Wup and (Wup)�

to bound �Wup −�Wup�1.16 Note that the assumption p� ≥ C
n

of Lemma 30 is satisfied by the assumption of this proposition
that nI∗ ≥ CI∗ for some large enough CI∗ > 0 (since Fact
11(b) implies I∗ � (p−q)2

p ≤ p). We conclude that with
probability at least 1 − 1

n2 − 2√
n

,

S2 ≤ C0
γ

n

√
np + C1n

2pe−5np =: C0Q1 + C1Q2

for some constants C0, C1 > 0. It remains to control Q1 and
Q2 above.

For Q1, note that Fact 11(b) implies
√

I∗ ≤ C� p−q√
p for

some constant C� > 0 and therefore

Q1 = γ
p − q

p − q

�
p

n
≤ 1

C� γ(p − q)

�
1

nI∗
.

Bounding Q2 involves some elementary manipulation.
b) Controlling Q2: We record an elementary inequality.

Lemma 33: There exists a constant CI∗ ≥ 1 such that if
nI∗ ≥ CI∗ , then pe−5pn/2 ≤ (p − q)e−5nI∗/4.

Proof: Note that pn ≥ (p − q)n ≥ (p−q)2

p n ≥ 1
C� nI∗ ≥

1
C� CI∗ for some constant C� > 0 by Fact 11(b). As long
as CI∗ is sufficiently large, we have pn

2 ≤ e5pn/4. These
inequalities imply that

p

p − q
≤ pn

2
≤ e5pn/4 ≤ e5(2p−I∗)n/4.

Multiplying both sides by (p − q)e−5pn/2 yields the claimed
inequality.

Equipped with the above bound, we are ready to bound

Q2. Let κ := e−(1−ξ)nI∗/2 where ξ := Ce

6
1

nI∗ for some
constant Ce > 0 such that �nκ� > 0. If γ

n = 0 or γ
n ≤ �nκ�,

then the first inequality in Proposition 20 holds and we are
done. It remains to consider the case γ

n > �nκ� > 0. We have
that �nκ� is a positive integer and γ > n �nκ� ≥ 1

2n2κ.

16Here, we assume that A has zero diagonal and therefore W also has
zero diagonal. This assumption is inconsequential to our proof as mentioned
in Section III-B.
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We therefore have

Q2 ≤ pn2e−5pn/2

(a)

≤ (p − q)n2e−5nI∗/4

≤ (p − q)e−nI∗/2 · n2e−(1−ξ)nI∗/2

≤ 2(p − q)e−nI∗/2 · γ
(b)

≤ 2γ(p − q)

�
1

nI∗
,

where step (a) is due to Lemma 33, and step (b) holds because
nI∗ ≥ CI∗ for CI∗ sufficiently large.

c) Putting together: Combining the above bounds for Q1

and Q2, we obtain that

S2 ≤ C2γ(p − q)

�
1

nI∗

for some constant C2 > 0. Under the assumption 0 < c0p ≤
q < p ≤ 1 − c1, we have p − q ≤ C�I∗

t∗ for a constant
C� > 0 by Facts 11(c) and 11(b). This completes the proof of
Proposition 20 for SBM.

E. Proof of Lemma 21

In this section, we establish the pilot bound in Lemma 21
under each of the three models.

1) Proof of Lemma 21 for Model 1 (Z2): Since �Y ∈ Y(A),
we have

0 ≤
$�Y − Y∗,A

%
=
$�Y − Y∗, EA

%
+
$�Y − Y∗,A − EA

%
.

By Fact 17 with Y = �Y and the fact that EA = Y∗, we have$�Y − Y∗, EA
%

= −γ. Combining, we have the bound γ ≤$�Y − Y∗,A− EA
%

. We proceed by controlling the RHS as

γ ≤ Tr(�Y) · �W�op + Tr(Y∗) · �W�op = 2n�W�op,

which follows inequality (24) applied to positive semidefinite
matrices �Y and Y∗ satisfying Tr( �Y) = Tr(Y∗) = n.
Applying the spectral norm bound in Lemma 25, we obtain
that with probability at least 1 − e−n/2,

γ ≤ 8n
√

τ2n = 4
√

2

�
n3

I∗
,

where the last step follows from the definition of I∗ in
Equation (5). The proof is completed.

2) Proof of Lemma 21 for Model 2 (CBM): Recall that we
have introduced the shorthands p := α(1 − �) and q := α�.
Since �Y ∈ Y(A), we have

0 ≤
$�Y − Y∗,A

%
=
$�Y − Y∗, EA

%
+
$�Y − Y∗,A − EA

%
.

By Fact 17 and the fact that EA = (p − q)Y∗, we have$�Y − Y∗, EA
%

= −(p − q)γ. Combining, we have the

bound γ ≤ 1
p−q

$�Y − Y∗,A − EA
%

. To control the RHS,
we compute$�Y − Y∗,A − EA

%
≤ 2 sup

Y�0, diag(Y)≤1

|�Y,A − EA�| .

Grothendieck’s inequality [63], [64] guarantees that

sup
Y�0, diag(Y)≤1

|�Y,A − EA�| ≤ KG�A− EA�∞→1

where KG denotes Grothendieck’s constant (0 < KG ≤
1.783) and

�A − EA�∞→1 := sup
x:�x�∞≤1

�(A − EA)x�1

= sup
y,z∈{±1}n

55y�(A− EA)z
55 .

Set v2 :=
	

1≤i≤j≤n Var(Aij) and note that
|Aij − EAij | ≤ 2 for i, j ∈ [n]. For each pair of fixed
vectors y, z ∈ {±1}n, the Bernstein inequality ensures that
for each number t ≥ 0,

P
�55y�(A − EA)z

55 > t
�
≤ 2 exp

)
− t2

2v2 + 4t/3

*
.

Setting t =
√

16nv2 + 8
3n gives

P

)55y�(A − EA)z
55 >

√
16nv2 +

8
3
n

*
≤ 2e−2n.

Applying the union bound and using the fact that v2 ≤
αn2+n

2 = p
1−� ·

n2+n
2 , we obtain that with probability at least

1 − 22n · 2e−2n = 1 − 2(e/2)−2n,

�A− EA�∞→1 ≤ 2
�

2
p

1 − �
(n3 + n2) +

8
3
n.

Combining pieces, we conclude that with probability at least
1 − 2(e/2)−2n,$�Y − Y∗,A− EA

%
≤ 8

�
2

p

1 − �
(n3 + n2) +

32
3

n;

whence

γ ≤ 1
p − q

�
8
�

2
p

1 − �
(n3 + n2) +

32
3

n

�
(a)

≤ 45
p − q

�
p

1 − �
n3

(b)

≤ 45
C�

E
n3

I∗(1 − �)
,

for some constant C� > 0, where step (a) holds by our
assumption p := α(1 − �) ≥ 1−�

n , and step (b) follows from
Fact 10(b). The proof is completed in view of the assumption
of Model 2 that � is a constant.

3) Proof of Lemma 21 for Model 3 (SBM): The proof
follows similar arguments as those in Appendix D-E.2. Since�Y ∈ Y(A), we have

0 ≤
$�Y − Y∗,A

%
(a)
=

B�Y − Y∗,A− p + q

2
J
C

=
B�Y − Y∗, EA − p + q

2
J
C

+
$�Y − Y∗,A− EA

%
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where step (a) holds since
$
J, �Y%

= �J,Y∗�. By Fact 17

and the fact that EA − p+q
2 J = p−q

2 Y∗, we haveB�Y − Y∗, EA − p + q

2
J
C

= −p − q

2
γ.

Therefore, we have the bound γ ≤ 2
p−q

$�Y − Y∗,A − EA
%

.

To control the RHS, we apply Grothendieck’s inequality [63],
[64] to obtain$�Y − Y∗,A − EA

%
≤ 2 sup

Y�0, diag(Y)≤1

|�Y,A − EA�|

≤ 2KG�A − EA�∞→1,

where KG is Grothendieck’s constant (0 < KG ≤ 1.783) and

�A− EA�∞→1 := sup
x:�x�∞≤1

�(A − EA)x�1

= sup
y,z∈{±1}n

55y�(A − EA)z
55 .

Set v2 :=
	

1≤i<j≤n Var(Aij). For each pair of fixed
vectors y, z ∈ {±1}n, the Bernstein inequality ensures that
for each number t ≥ 0,

P
�55y�(A − EA)z

55 > t
�
≤ 2 exp

)
− t2

2v2 + 4t/3

*
.

Setting t =
√

16nv2 + 8
3n gives

P

)55y�(A − EA)z
55 >

√
16nv2 +

8
3
n

*
≤ 2e−2n.

Applying the union bound and using the fact that v2 ≤ p(n2+
n)/2, we obtain that with probability at least 1−22n ·2e−2n =
1 − 2(e/2)−2n,

�A− EA�∞→1 ≤ 2
�

2p(n3 + n2) +
8
3
n.

Combining pieces, we conclude that with probability at least
1 − 2(e/2)−2n,

γ ≤ 2
p − q

· 2KG ·
�

2
�

2p(n3 + n2) +
8
3
n

�
(a)

≤ 45
�

pn3

p − q
≤ 45

C�

�
n3

I∗
,

for some constant C� > 0, where step (a) holds by our
assumption p ≥ 1

n and the last step follows from Fact 11(b).
The proof is completed.

F. Proof of Lemma 22

If μi ≥ 0 for all i ∈ [
β�], then the result follows
immediately. Now we assume that at least one of {μi} is
negative. Define w := argmin{i ∈ [
β�] : μi < 0} to be
the smallest index of negative μi. If β0 ∈ [1, w − 1], we have
V (β0) ≥ 0 since μi ≥ 0, ∀i ∈ [1, w − 1]. If β0 ∈ [w − 1, β],
we note that V is decreasing on [w − 1, β] since μi < 0,
∀i ∈ [w, 
β�], hence V (β0) ≥ V (β) ≥ 0. The proof is
completed.

G. Proof of Lemma 23

Recall that Xi := −Dii = −σ∗
i

	
j∈[n] A

0
ijσ

∗
j . For clarity

of exposition, we define the shorthands

Lm := max
M⊂[n], |M|=m

��
i∈M

Xi

 
, for m ∈ [�M�],

Lm,M :=
�
i∈M

Xi, for M ⊂ [n] with |M| = m,

Rm :=
1
t∗

�
(1 + η)m log

�ne

m

�
− (1 − 2η)mn̄I∗

�
,

for m ∈ [�M�],
Pm,M := P (Lm,M ≥ Rm) ,

for M ⊂ [n] with |M| = m,

Pm := P (∃M ⊂ [n], |M| = m : Lm,M ≥ Rm) ,

P := P (∃m ∈ [�M�] : Lm ≥ Rm) .

Our goal is to show that P ≤ 3 exp
�
−
√

log n
�
. We start

the proof by controlling Pm,M for a fixed M ⊂ [n] with
|M| = m.

1) A Closer Look at Lm,M: For fixed m and M, the quan-
tity Lm,M is the sum of mn random variables: Lm,M =	

j∈[mn] Vj . A technicality is that due to the symmetry of
the matrix A, there may exist some j �= j� ∈ [mn] such that
Vj and Vj� identify the same random variable. Let us define a
set to group together all such random variables. We set

J := {j ∈ [mn] : ∃j� ∈ [mn]\{j} s.t. Vj = Vj�} .

We also define the complement of J as J � := [mn]\J . Note
that

m1 :=
555J �

555 = mn − m2 + m, and

m2 :=
1
2
|J | =

m(m − 1)
2

.

It is not hard to see that {Vj : j ∈ J �} and half of {Vj : j ∈
J } are independent. Now we can write

Lm,M =
�
j∈J

Vj +
�

j∈J �

Vj .

2) Controlling Pm,M: Recall that t∗ defined in
Equation (15) satisfies t∗ > 0. Using the Chernoff bound,
we have

Pm,M = P (Lm,M ≥ Rm)
= P (exp (t∗Lm,M) ≥ exp (t∗Rm))

≤ exp (−t∗Rm) ·

⎡⎣E exp

⎛⎝t∗
�

j∈J �

Vj

⎞⎠⎤⎦
·

⎡⎣E exp

⎛⎝t∗
�
j∈J

Vj

⎞⎠⎤⎦
=: Q1Q2Q3.

It suffices to control Q1, Q2 and Q3. By definition of Rm,
we have

Q1 = exp
�
−(1 + η)m log

�ne

m

�
+ (1 − 2η)mn̄I∗

�
.
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As our main step, we show that the following bounds for Q2

and Q3 hold for all three models.
Lemma 34: Under the assumption in Lemma 23, we have

Q2 ≤ exp [−(1 − η)mn̄I∗] and Q3 = 1.

The proof of the lemma is model-dependent, and is given in
Appendices D-G.4, D-G.5 and D-G.6 for Models 1, 2 and 3,
respectively. Combining the above bounds for Q1, Q2 and Q3,
we obtain

Pm,M ≤ exp
�
−(1 + η)m log

�ne

m

�
+ (1 − 2η)mn̄I∗

�
· exp [−(1 − η)mn̄I∗] · 1

= exp
�
−(1 + η)m log

�ne

m

�
− ηmn̄I∗

�
.

3) Controlling Pm and P : Using the above bound on Pm,M
and applying the union bound, we have

Pm ≤
�

M⊂[n]:|M|=m

Pm,M

≤
�

n

m

�
exp

�
−(1 + η)m log

�ne

m

�
− ηmn̄I∗

�
(a)

≤ exp
�
−ηm log

�ne

m

�
− ηmn̄I∗

�
(b)

≤
�

exp

�
−C

�
1

nI∗
log

�ne

m

�
− C

2

√
nI∗

 ?m

,

where step (a) holds due to
�

n
m

�
≤
�

en
m

�m
, and step (b) holds

due to the definition that η := C
6

1
nI∗ and the fact that n̄ ≥ n

2 .

We proceed by considering two cases: (i) If m ≤
√

n, then

C

�
1

nI∗
log

�ne

m

�
+

C

2

√
nI∗

≥ C

2

�
2 log

�ne

m

�
≥
�

log n,

where the last step holds since C ≥ 2. We hence have Pm ≤�
exp

�
−
√

log n
��m

< 1
2 . (ii) If m >

√
n, then

C

�
1

nI∗
log

�ne

m

�
+

C

2

√
nI∗ ≥ C

2

√
nI∗ ≥ log 10

under the assumption in Lemma 23 that C ≥ 2
√

2 and
nI∗ ≥ CI∗ ≥ 4. We hence have Pm ≤ [exp (− log 10)]m =

1
10m . Combining the two cases and applying union bound,
we conclude that

P ≤
�

1≤m≤√
n

Pm +
�

√
n<m≤n

Pm

≤
�

1≤m<∞

�
exp

�
−
�

log n
��m

+ n · 1
10

√
n

≤
exp

�
−
√

log n
�

1 − exp
�
−
√

log n
� +

1
n

≤ 2 exp
�
−
�

log n
�

+ exp (− log n)

≤ 3 exp
�
−
�

log n
�

as desired. This completes the proof of Lemma 23.

4) Proof of Lemma 34 for Model 1 (Z2): Recall the random
variable H ∼ N(1, τ2) defined in Appendix A. We need the
following fact.

Fact 35: Under Model 1, we have the following identities

Eet∗(−H) = e−I∗
and Ee2t∗(−H) = 1.

Proof: Recall the definitions I∗ := (2τ2)−1 and t∗ :=
1
τ2 in Equations (5) and (15). The results follow from direct
calculation:

Eet∗(−H) = exp
�
−t∗ +

1
2
τ2 (t∗)2

�
= e−I∗

, and

Ee2t∗(−H) = exp
�
−2t∗ + 2τ2 (t∗)2

�
= 1.

To proceed, note that each of {Vj : j ∈ [mn]} is distributed
as −H .

Controlling Q2: We have

Q2 := E exp

⎡⎣t∗
�

j∈J �

Vj

⎤⎦
(a)
= exp [−m1I

∗]
= exp

�
−(mn − m2 + m)I∗

�
where step (a) follows from Fact 35. If 1 ≥ C

�
n
I∗ , then we

must have m = �M� = 1 and

Q2 = exp [−mnI∗] ≤ exp [−(1 − η)mnI∗] .

If 1 ≤ C
�

n
I∗ , then we have 1 ≤ M ≤ C

�
n
I∗ and

Q2 ≤ exp
�
−(mn − m2)I∗

�
≤ exp [−(1 − η)mnI∗]

where the last step holds since m ≤ M ≤ C
�

n
I∗ = nη.

Either way, we have the desired inequality.
Controlling Q3: Fact 35 directly implies the desired

equality:

Q3 := E exp

⎡⎣t∗
�
j∈J

Vj

⎤⎦ =
�

Ee2t∗V1

�m2

= 1.

5) Proof of Lemma 34 for Model 2 (CBM): Recall the
definition of the random variable H in Appendix A. We need
the following fact, whose proof is deferred to the end of this
section.

Fact 36: Under Model 2, we have the following identities

Eet∗(−H) = 1 − I∗ and Ee2t∗(−H) = 1.

To proceed, note that each of {Vj : j ∈ [mn]} is distributed
as −H .

Controlling Q2: We have

Q2 := E exp

⎡⎣t∗
�

j∈J �

Vj

⎤⎦
(a)
= (1 − I∗)m1

(b)
= exp

�
(mn − m2 + m) log(1 − I∗)

�
(c)

≤ exp
�
−(mn − m2 + m)I∗

�
(d)

≤ exp [−(1 − η)mnI∗] ,
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where step (a) follows from Fact 36, step (b) follows from the
fact that m1 = mn−m2+m, step (c) holds since log(1−x) ≤
−x, ∀x < 1, and step (d) holds since m ≤ M ≤ C

�
n
I∗ = nη

when 1 ≤ C
�

n
I∗ , or m = �M� = 1 when 1 ≥ C

�
n
I∗ . We

thus obtain the desired bound on Q2.
Controlling Q3: Fact 36 directly implies the desired

equality:

Q3 := E exp

⎡⎣t∗
�
j∈J

Vj

⎤⎦ =
�
Ee2t∗(−H)

�m2

= 1.

Proof of Fact 36: Recall the shorthands p := α(1−�) and
q := α� introduced for Model 2; note that α = p + q. Also
recall the definitions I∗ := (

�
α(1 − �) −

√
α�)2 = (

√
p −√

q)2 and t∗ := 1
2 log 1−�

� in Equations (5) and (15). The
results follow from direct calculation:

Eet∗(−H) = (1 − α) + pe−t∗ + qet∗

= (1 − α) + 2
√

pq = 1 − I∗,

and

Ee2t∗(−H) = (1 − α) + pe−2t∗ + qe2t∗

= (1 − α) + q + p = 1.

6) Proof of Lemma 34 for Model 3 (SBM): We record the
following fact, whose proof is deferred to the end of this
section.

Fact 37: Let Z ∼ Ber(q) and Y ∼ Ber(p). We have the
following identities

Eet∗ZEe−t∗Y = e−I∗
,�

Eet∗Z
� 1

2
�

Ee−t∗Y
�− 1

2
e−t∗λ∗

= 1,

Ee2t∗ZEe−2t∗Y = 1,�
Ee2t∗Z

� 1
2
�
Ee−2t∗Y

�− 1
2

e−2t∗λ∗
= 1.

Let {Zj}, {Z �
j}

i.i.d.∼ Ber(q) and independently

{Yj}, {Y �
j }

i.i.d.∼ Ber(p). Note that each of {Vj : j ∈ [mn]}
is distributed as either Z1 − λ∗ or −Y1 + λ∗. We define the
quantities

mp :=
555�j ∈ J � : Vj ∼ −Y1 + λ∗

�555 ,
mq :=

555�j ∈ J � : Vj ∼ Z1 − λ∗
�555 ,

m�
p :=

1
2
|{j ∈ J : Vj ∼ −Y1 + λ∗}| ,

m�
q :=

1
2
|{j ∈ J : Vj ∼ Z1 − λ∗}| .

Note that mp + mq =
555J �

555 = m1 := mn − m2 + m and

m�
p + m�

q = 1
2 |J | .

Controlling Q2: Expanding the definition of Q2, we have

Q2

= E exp

⎛⎝t∗
�

j∈[mq ]

(Zj − λ∗) − t∗
�

j∈[mp]

(Yj − λ∗)

⎞⎠
= e−t∗λ∗(mq−mp)

�
Eet∗Z1

�mq
�

Ee−t∗Y1

�mp

=
�
Eet∗Z1Ee−t∗Y1

� 1
2 mp+ 1

2 mq

×

⎛⎝�
Eet∗Z1

Ee−t∗Y1

� 1
2

e−t∗λ∗

⎞⎠mq−mp

.

By Fact 37, we can continue to write

Q2 ≤ exp
�
−
�

1
2
mp +

1
2
mq

�
I∗
�

≤ exp
�
−1

2
(mn − m2 + m)I∗

�
≤ exp

�
−(1 − η)

mn

2
I∗
�

,

where the last step holds since m ≤ M ≤ C
�

n
I∗ = nη when

1 ≤ C
�

n
I∗ , or m = �M� = 1 when 1 ≥ C

�
n
I∗ . We thus

obtain the desired bound on Q2.
Controlling Q3: Similar to controlling Q2, we compute

Q3

= E exp

⎛⎜⎝2t∗
�

j∈[m�
q]

(Z �
j − λ∗) − 2t∗

�
j∈[m�

p]
(Y �

j − λ∗)

⎞⎟⎠
= e−2t∗λ∗(m�

q−m�
p)
�

Ee2t∗Z�
1

�m�
q
�

Ee−2t∗Y �
1

�m�
p

=
�

Ee2t∗Z�
1Ee−2t∗Y �

1

� 1
2 m�

p+ 1
2 m�

q

×

⎛⎝3
Ee2t∗Z�

1

Ee−2t∗Y �
1

4 1
2

e−2t∗λ∗

⎞⎠m�
q−m�

p

= 1,

where the last step holds due to Fact 37.
Proof of Fact 37: Under Model 3, recall the definitions

I∗ := −2 log
�√

pq +
�

(1 − p)(1 − q)
�
, t∗ := 1

2 log p(1−q)
q(1−p)

and λ∗ := 1
2t∗ log 1−q

1−p in Equations (5), (15) and (16),
respectively. For the first equation, we compute

Eet∗ZEe−t∗Y

=
�
qet∗ + 1 − q

��
pe−t∗ + 1 − p

�
= pq + (1 − p)(1 − q) + q(1 − p)et∗ + p(1 − q)pe−t∗

= pq + (1 − p)(1 − q) + 2
�

pq(1 − p)(1 − q)

=
�√

pq +
�

(1 − p)(1 − q)
�2

= e−I∗
.
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For the second equation, noting that e2t∗λ∗
= 1−q

1−p , we
compute

Eet∗Z

Ee−t∗Y
· e−2t∗λ∗

=
qet∗ + 1 − q

pe−t∗ + 1 − p
· 1 − p

1 − q

=
q
6

p(1−q)
q(1−p) + 1 − q

p
6

q(1−p)
p(1−q) + 1 − p

· 1 − p

1 − q
= 1

and then take the square root of both sides. Finally, the remain-
ing two equations follow from e2t∗λ∗

= 1−q
1−p and the identities

Ee2t∗Z = qe2t∗ + 1 − q = q
p(1 − q)
q(1 − p)

+ 1 − q =
1 − q

1 − p
,

Ee−2t∗Y = pe−2t∗ + 1 − p = p
q(1 − p)
p(1 − q)

+ 1 − p =
1 − p

1 − q
.

APPENDIX E
PROOF OF THE SECOND INEQUALITY IN THEOREM 4

Fix any �Y ∈ Y(A). Note that �Y,Y∗ ∈ [−1, 1]n×n by
feasibility to the program (7) or (8). It follows that

� �Y − Y∗�2
F ≤ max

i,j∈[n]

�555�Yij − Y ∗
ij

555� ·
�

i,j∈[n]

555�Yij − Y ∗
ij

555
= 2��Y − Y∗�1.

Combining with the first inequality of Theorem 4, we obtain

� �Y − Y∗�2
F ≤ n2 · 2 exp

�
−
3

1 − Ce

�
1

nI∗

4
n̄I∗

 
=: n2 · ε.

Let v̂ be an eigenvector of �Y corresponding to the largest
eigenvalue with �v̂�2

2 = n. It can be seen that the largest
eigenvalue of Y∗ is n with σ∗ being the corresponding
eigenvector, and that all the other eigenvalues are 0. Because�Y = Y∗ + ( �Y −Y∗) and � �Y−Y∗�F ≤ √

εn, Davis-Kahan
theorem (see, e.g., [65, Corollary 3]) implies that

min
g∈{±1}

�gû− u∗�2 = 2
5555sin�θ

2

�5555 ≤ C
√

ε

for some absolute constant C > 0, where û and u∗ denote the
unit-norm eigenvectors associated with the largest eigenvalues
of �Y and Y∗, respectively, and θ ∈ [0, π

2 ] denotes the angle
between these two vectors. By definition v̂ =

√
nû and σ∗ =√

nu∗, we obtain that

min
g∈{±1}

�gv̂ − σ∗�2
2 ≤ C2εn.

We proceed by relating err(�σsdp, σ∗) to ming∈{±1} �gv −
σ∗�2

2. Without loss of generality, assume that the minimum
is attained by g = 1. Since �σsdp

i = sign(v̂i) by definition, we
have the bound

C2εn ≥ �v̂ − σ∗�2
2 ≥

�
i∈[n]

(v̂i − σ∗
i )2I{sign(v̂i) �= σ∗

i }

≥
�
i∈[n]

I{sign(v̂i) �= σ∗
i }

≥ n · err(�σsdp, σ∗).

We divide both sides of the above equation by n, and note
that the constant 2C2 can be absorbed into Ce under the
assumption that nI∗ ≥ CI∗ for CI∗ sufficiently large. The
result follows.
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