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Abstract We introduce diffraction-based interaction-free measurements. In contrast with previous work where
a set of discrete paths is engaged, good-quality interaction-free measurements can be realized with a continuous
set of paths, as is typical of optical propagation. If a bomb is present in a given spatial region—so sensitive that a
single photon will set it off—its presence can still be detected without exploding it. This is possible because, by
not absorbing the photon, the bomb causes the single photon to diffract around it. The resulting diffraction pattern
can then be statistically distinguished from the bomb-free case. We work out the case of single- versus double-slit
in detail, where the double-slit arises because of a bomb excluding the middle region.

Keywords Interaction-free measurement · Bomb-detection · Diffraction · Double-slit · Zeno effect

1 Introduction

The first example of a quantum interaction-free measurement (IFM) was given by Elitzur and Vaidman in 1993
[1]. Their famous “bomb tester” is a Mach–Zehnder interferometer which may or may not have a malicious object
(“bomb”) blocking one interferometer arm. In the absence of the blockage, one output detector is “dark” (never
clicks) due to destructive interference of the two interferometer arms. If the blockage is present, interference between
the two arms is lost, and the previously dark detector has some chance of clicking. Those photons that hit the dark
detector inform the observer that the blockage is present, although such photons must have avoided the blockage in
order to arrive at the detector in the first place. Thus, the blockage’s presence may be ascertained in an “interaction-
free” manner. Since Elitzur and Vaidman’s original proposal, strides have been made to improve the efficiency using
the quantum Zeno effect [2], achieve counterfactual communication (whereby two parties exchange information
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146 S. Rogers et al.

without exchanging particles) [3,4], image in an interaction-free manner [5,6], compute the outcome of a quantum
gate without running the gate (counterfactual computation) [7–9], and gauge the extent to which these protocols
may be considered truly “interaction-free” [10–12].

From the work of Feynman [13,14], we know that probabilities in quantum mechanics may be seen as arising
from a summation of probability amplitudes over histories with identical initial and final boundary conditions. In an
interaction-freemeasurement, histories that meet some intermediate condition (i.e., those inwhich a particle touches
the bomb en route to the objective) are excluded, altering the summation of amplitudes and thereby unlocking new
possibilities (i.e., causing previously dark detectors to fire). Given the generality of Feynman’s sum over histories,
interaction-free measurements should be possible in a variety of contexts. In this paper, we consider interaction-free
measurements based on diffraction. The essential effect investigated here is that a bomb, by excluding possible
paths a particle can take without blowing it up, causes the quantum wave to diffract, resulting in a new interference
pattern which can be distinguished from the no-bomb case.

In Sect. 2, we describe a simple experiment with a bomb and a slit, in which the bomb can be detected in the IFM
manner. Using a 1-D model, we study two possible measurements and their efficiencies. Section 2 also contains a
brief subsection on how the photon’s momentum changes in the measurement. In Sect. 3, we analyze the role of
the time-response of the bomb, and show that it must not be perfect if the bomb is to have some finite chance of
exploding. We discuss possible implications for the interaction-free nature of the measurement.

2 Bomb-induced double-slit

2.1 Position measurements

The primary system we use to demonstrate diffraction-based IFM is a single photon moving toward a detection
screen and an opaque screen with a slit, allowing the photon to pass. The slit may or may not contain a thin bar-
shaped detector (“bomb”) in the middle of it (see Fig. 1). This makes the apparatus act like a double-slit if the bomb
is present, and a single slit if the bomb is not. We tune our apparatus so that the single-slit interference pattern that
results if the bomb is not present contains zeros (points the photon cannot reach). These are analogous to the dark
port in the Elitzur–Vaidman protocol. Putting the bomb in place gives the photon a chance to land on these zeros
(while still avoiding the bomb). A detection at one of these zeros would be a sign that the bomb is definitely present
and constitute an interaction-free measurement.

From a Bayesian perspective, photons that do not land on these zeros are also informative. Given some prior that
the bomb is present P(Bomb), finding the photon at a position x causes our posterior belief in the bomb’s presence
to be (applying Bayes’ rule):

P(Bomb|x) = P(x |Bomb)P(Bomb)

P(x |Bomb)P(Bomb) + P(x |No Bomb)P(No Bomb)
. (1)

P(x |Bomb) and P(x |No Bomb) are the probability density functions for the photon to be found in x conditional
on the bomb being present and not present, respectively, and should behave as double- and single-slit intensities at
x , respectively. The priors P(Bomb) and P(No Bomb) sum to 1; for simplicity, we assume the person using the
bomb-tester knows (or, less strongly, believes) that either the bomb is present in the middle of the slit with known
dimensions, or is not present. We could certainly analyze situations where the observer using the bomb-tester is less
certain of the bomb’s potential position and dimensions, but we refrain from doing so here so as not to detract from
the primary aims of the manuscript. That the photon provides information regardless of whether it lands exactly on a
zero is important, since the probability of landing on this region of zero area is zero. From a practical standpoint, we
care that measurement results are capable of raising our posterior satisfactorily close to 1, so as to have a confident
diagnosis of the bomb being present.

We model the photon’s transverse degree of freedom as a 1-D quantum system subject to the paraxial free-space

Hamiltonian Ĥ = h̄k̂2x
2k0

c, where k0 is the wavenumber in the propagation direction ẑ, x is the transverse coordinate,
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Diffraction-based interaction-free measurements 147

Fig. 1 The probability that a photon reaches a point x2 on the back screen is computed by a sum of probability amplitudes for the
various paths leading to x2. If the bomb (red) is present, paths through it are excluded from the summation, affecting the result and
potentially allowing the photon to land on some point it otherwise could not. A similar diagram is used in Ref. [13], p. 48

and k̂x = −i ∂̂
∂x is the scaled momentum operator in the transverse direction. Associated to this Hamiltonian is the

evolution operator Ûl = e−i k̂2x l/2k0 , where l is the distance traveled by the photon in the z-direction [15]. The matrix

element 〈x ′| Ûl |x〉 =
√

k0
2π il e

ik0(x ′−x)2

2l is the probability amplitude for the photon to travel from x to x ′ (as it travels
l in the z-direction). We may think of the photon’s journey as consisting of two parts. In the first part, the photon
travels a distance l1 in the z-direction and arrives at the plane of the slit. If the photon reaches an opening in the
screen and avoids the bomb, the photon’s journey has a second part of interest to us, in which the photon travels a
distance l2 in the z-direction to a detection screen. The slit, bomb, and detection screen are all parallel to the x-axis
(see Fig. 1).

A history is a sequence of coordinates (x0, x1, x2) that specifies where the photon starts, passes the slit plane,
and arrives at the detection screen. Each history has associated with it some probability amplitude K (x0, x1, x2) =
〈x2| Ûl2 |x1〉 〈x1| Ûl1 |x0〉 〈x0|�〉, where |�〉 is the photon’s transverse quantum state. The total probability amplitude
for arriving at x2 is obtained by integrating the probability amplitudes for all possible histories ending in x2. If the
bomb is not present, the total probability amplitude is

〈x2|�〉No Bomb =
∫ w/2

−w/2
dx1

∫ ∞

−∞
dx0 〈x2| Ûl2 |x1〉 〈x1| Ûl1 |x0〉 〈x0|�〉 , (2)

and the probability density function for reaching x2 is P(x2|No Bomb) = | 〈x2|�〉No Bomb |2. w is the width of the
slit. If the bomb is present, the result is

〈x2|�〉Bomb = 〈x2|�〉No Bomb −
∫ b/2

−b/2
dx1

∫ ∞

−∞
dx0 〈x2| Ûl2 |x1〉 〈x1| Ûl1 |x0〉 〈x0|�〉 ,

= 〈x2|�〉No Bomb − 〈x2|�〉Excluded ,

(3)

where the second term refers to histories that involve the photon passing through the bomb (these are excluded since
theywould cause the bomb to detect the photon and explode), and b is the length of the bomb. The probability density
function for reaching x2 in this case is P(x2|Bomb) = | 〈x2|�〉Bomb |2. We note that, as written in Eqs. (2) and (3),
〈x2|�〉No Bomb and 〈x2|�〉Bomb are un-normalized wavefunctions.

∫ ∞
−∞ dx2 | 〈x2|�〉No Bomb |2 is the probability that

the photon reaches the back screen if the bomb is not present, and
∫ ∞
−∞ dx2 | 〈x2|�〉Bomb |2 is the probability that

the photon reaches the back screen if the bomb is present.
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The probabilities depend on the initial position–space wavefunction 〈x0|�〉. In general, the integrals in Eqs. (2)
and (3) will be difficult to evaluate. The simplest case is when l1 is very long, so that the wavefunction has time to
broaden and become effectively constant over the slit (

∫ ∞
−∞ dx0 〈x1| Ûl1 |x0〉 〈x0|�〉 � Z for all x1 ∈ (−w/2, w/2)

and some complex constant Z ). This is effectively the plane wave limit. In this limit, Eq. (2) reduces to

〈x2|�〉No Bomb = Z
∫ w/2

−w/2
dx1

√
k0

2π il2
e
ik0(x1−x2)2

2l2 ,

= Z̃
∫ √

k0
πl2

(w
2 −x2)

√
k0
πl2

(− w
2 −x2)

dt eiπ t
2/2,

= Z̃

{
C
[√ k0

πl2

(w

2
− x2

) ]
− C

[√ k0
πl2

(
−w

2
− x2

) ]

+ iS
[√ k0

πl2

(w

2
− x2

) ]
− iS

[√ k0
πl2

(
−w

2
− x2

) ]}
,

(4)

where empirically irrelevant normalization factors have been absorbed into Z̃ . C and S are the Fresnel integrals:
C(x) = ∫ x

0 dt cos π t2
2 and S(x) = ∫ x

0 dt sin π t2
2 [16]. The second term in Eq. (3) is of the same form, and can thus

be evaluated the same way. Similar calculations occur in Refs. [17] and [18].
Sample results for our bomb-tester are shown in Fig. 2. The results demonstrate clearly that there exist points

x2 with both zero probability amplitude when the bomb is not present and nonzero probability amplitude when the
bomb is present, provided one tunes the lengths in the problem appropriately. This suffices to show that there is an
analogue of the dark port of the original Elitzur–Vaidman bomb-tester present in our protocol.

The standard efficiency measure for an IFM protocol is η = P(Dark|Bomb)
P(Dark|Bomb)+P(Explosion|Bomb) [2]. However, since

the dark ports of our protocol are points in a continuum, this measure gives zero. Instead we define a measure based
on how likely a single photon detection is to cause our posterior (Eq. 1) to exceed some threshold T :

η̃(T, P(Bomb)) =
∫ ∞
−∞ dx2 P(x2|Bomb)�(P(Bomb|x2) − T )∫ ∞

−∞ dx2 P(x2|Bomb)�(P(Bomb|x2) − T ) + P(Explosion|Bomb)
, (5)

where � is the Heaviside function. This is, notably, dependent on both prior and threshold. For the parameters in
Fig. 2, a prior P(Bomb) = 0.5, and a threshold T = 0.99, we calculated η̃ ≈ 2.1%. This corresponds to about
47 bombs exploding per one detected in the IFM manner (where by ‘detected’ we mean the observer believes the
bomb exists with at least 99% certainty).

One may think of this section as having described a sort of classification algorithm: if a single-photon position
measurement causes our posterior belief in the bomb’s presence to be greater than a certain threshold, classify the
slit as containing the bomb. We likewise classify a slit as not containing a bomb if a single-photon test causes our
posterior belief in the bomb’s absence to be greater than the same threshold. If a single photon hits the back screen
but does not cause our posterior to be in either of these extremes, the test is inconclusive. For T 	= 1, our classifier
will make some mistakes, classifying empty slits as bomb-containing and bomb-containing slits as empty. We can
test our classification algorithm using rejection sampling to see how accurate our classifier is.

At this point, we are not so much interested in how often the bomb explodes relative to how often we obtain
useful results. We are more interested in how accurately our classifier tells a regular double-slit and single-slit apart.
This is still a two-hypothesis test, where the dimensions of the bodies are known. Drawing samples from the PDFs
of Fig. 2, with x-axes expanded out to ± 106λ and bins of width 10λ (a typical region where the posterior exceeds
99% is then about forty bins wide), we subjected double-slits and single-slits to single-photon tests. The classifier,
using a threshold of 99%, successfully classified 25,625 (2.14%) of the 1,197,851 double-slits. 266 double-slits were
incorrectly classified as single-slits. The remaining double-slits were each probed by a photon but the results were
inconclusive. 98.97% of the classifier’s claims were accurate in this case. Of 600,439 single-slits, 16,494 (2.75%)
were correctly classified, 42 were incorrectly classified as double-slits, and the remaining slits tested inconclusively.
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Fig. 2 Intensities at the back screen in units such that I (0) = 1 without the bomb (top). Posterior belief in the bomb’s presence given
a single photon detection at x2 and a prior of 0.5 (bottom). The lengths chosen were, in units of λ = 2π

k0
, w = 1000, b = 500, and

l2 = 6 × 106. The plane wave limit described in Eq. (4) was used (and since b
w

= 0.5, the bomb should explode 50% of the time the
photon reaches the slit). For IFM purposes, the most important values of x2 are those for which the single-slit pattern (top, blue) goes
to zero; at these points, the posterior goes to one

99.75% of the classifier’s claims were accurate in this case. This leads us to estimate that if equal numbers of double-
and single-slits were tested, the classifier would be correct about 99.7% of the times that it claims to see a double-slit.
By the same reasoning, it would be correct about 99.2% of the times that it claims to see a single-slit.

Lastly, we would like to clarify that while we can correctly classify single-slits as not containing bombs with
this protocol, this is not done in the IFM manner (the proposed bomb region is probed by photons which cannot be
said to have avoided that region).

2.2 Optimal measurements

The full quantum formalism describes the results of measurements other than position measurements. Using these,
the bomb-induced double-slit may, in theory, be made as efficient as the original Elitzur–Vaidman bomb-tester. To
see this explicitly, consider the wavefunction of the photon at the slit, 〈x1|�〉. As previously stated, it is effectively
constant over the slit in the plane wave limit (unless the bomb is present). If the bomb is present, and does not
explode, the wavefunction collapses to zero where the bomb is, and is constant over the rest of the slit.

〈x1|�〉No Bomb =
⎧
⎨
⎩

√
1
w

|x | ≤ w/2,

0 |x | > w/2,
(6)

〈x1|�〉Bomb =
⎧
⎨
⎩
0 |x | < b/2, |x | > w/2,√

1
w−b b/2 ≤ |x | ≤ w/2.

(7)

For clarification, Eqs. (6) and (7) use a different convention from that of Sect. 2.1. Equations (6) and (7) describe
normalized wavefunctions; they assume it is known that the photon is in the slit and fails to set off any bomb which
might be there. By contrast, 〈x2|�〉No Bomb and 〈x2|�〉Bomb of Eqs. (2) and (3) are not normalized wavefunctions;
they are reduced because the photon has a probability of hitting the opaque part of the screen and a probability of
setting off the bomb (〈x2|�〉No Bomb has a larger norm than 〈x2|�〉Bomb in Eqs. 2, 3).
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150 S. Rogers et al.

Fig. 3 The wavefunction at the slit, if the bomb is present, is a sum of two orthogonal terms. The effect of the bomb (when it does
not explode) is to cause |�〉No Bomb to collapse to |�〉Bomb. This gives the state a nonzero projection onto |�〉, which it did not have
previously

There is a third wavefunction of interest:

〈x1|�〉 =

⎧
⎪⎪⎨
⎪⎪⎩

−
√

w−b
wb |x | < b/2,√
b

w(w−b) b/2 ≤ |x | ≤ w/2,

0 |x | > w/2.

(8)

|�〉 is like the dark port in the Elitzur–Vaidman bomb-tester. It is orthogonal to the wavefunction that results if
the bomb is not present:

∫ ∞
−∞ dx1 〈�|x1〉 〈x1|�〉No Bomb = 0, but not to the wavefunction that results if the bomb

is present:
∫ ∞
−∞ dx1 〈�|x1〉 〈x1|�〉Bomb =

√
b
w
. The wavefunction 〈x1|�〉Bomb is simply the superposition of the

other two wavefunctions (see Fig. 3):

〈x1|�〉Bomb =
√

w − b

w
〈x1|�〉No Bomb +

√
b

w
〈x1|�〉 . (9)

This holds for later times as well: 〈x2|�〉Bomb =
√

w−b
w

〈x2|�〉No Bomb +
√

b
w

〈x2|�〉, since unitary evolution
preserves inner products.

In the optimal IFM protocol, one measures whether the photon is in the state |�〉No Bomb or |�〉 (Ref. [19]
discusses holographic techniques which might be applied to perform this). If the photon is found in the state |�〉,
one concludes that the bomb is present, since the result would be impossible otherwise. Conditioned on the photon
arriving at the slit opening and the bomb not exploding, the result |�〉No Bomb occurs with probability

w−b
w

and the
result |�〉 occurs with probability b

w
. The IFM efficiency is

η = P(|�〉 |Bomb)

P(|�〉 |Bomb) + P(Explosion|Bomb)
= (1 − b

w
) b
w

(1 − b
w

) b
w

+ b
w

= 1 − b
w

2 − b
w

, (10)

for 0 < b
w

< 1. As a function of b
w
, η has no maximum, but approaches the lowest upper bound 1

2 as b
w

→ 0.
This corresponds to a situation in which P(|�〉) ≈ P(Explosion) = b

w
� 1 (conditioned on the photon making

it to the slit opening in the first place); |�〉 and explosions are both unlikely, but equally so. Naturally, η → 0 as
b
w

→ 1, since P(Explosion) → 1 and P(|�〉) → 0. In the original Elitzur–Vaidman bomb-tester, the efficiency
was η = 1−R

2−R , where R is the reflectivity of the beam splitters used [2], so that the efficiencies of the two protocols

are equal if b
w

= R.

2.3 The momentum picture

When the bomb does not explode, and the position–space wavefunction updates from that of Eq. (6) to that of
Eq. (7), the momentum–space wavefunction also changes. The Fourier transforms of these piecewise constant
wavefunctions are easily computed:

〈kx |�〉No Bomb =
√

w

2π
sinc

(
kxw

2

)
, (11)
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Fig. 4 Themomentumdistributionwhich results if the bomb is present (and does not explode) is distinct from themomentumdistribution
that results if the bomb is not present. The bomb “kicks” the photon in this sense. Due to symmetry, the average momentum is zero
regardless. However, the with-bomb distribution tends to yield a greater magnitude |kx |. The PDFs are normalized so that the no-bomb
distribution is 1 at kx = 0. The transverse momentum is given in units of the z-momentum k0. Parameters are those used in Fig. 2

and

〈kx |�〉Bomb =
√

1

2π(w − b)

[
w sinc

(
kxw

2

)
− b sinc

(
kxb

2

)]
. (12)

The momentum distributions corresponding to these two wavefunctions, | 〈kx |�〉No Bomb |2 and | 〈kx |�〉Bomb |2, are
shown in Fig. 4. Like the dark ports in the Elitzur–Vaidman protocol, there are transverse momenta that become
accessible when the bomb is present (there are zeros of the no-bomb distribution which are not zeros of the
bomb distribution). In this sense, the bomb “kicks” the photon, even when the photon avoids it. We note that this
momentum change is a feature of any measurement protocol which checks if the photon of Eq. (6) is in the region
(−b/2, b/2). Without a detailed Hamiltonian description of the measurement procedure used, the mechanism by
which the momentum changes is unspecified.

Momentum-conserving scattering traditionally occurs via repulsive interaction potentials that depend on the
distances between the involved objects. The effect of such potentials on the photon is not investigated here, but we
note that the bomb’s momentum should be sufficiently uncertain that interference of the two open slits is not lost
in the presence of such a potential. This is important since such a potential would shift the bomb momentum to the
right if the photon passes on the left, and shift the bomb momentum to the left if the photon passes on the right; a
high degree of entanglement would result if the bomb momentum were not sufficiently uncertain, destroying the
double-slit interference pattern. The single-slit patterns we would obtain if the bomb’s momentum were too precise
would not necessarily make IFM impossible, but our double-slit calculation would be inapplicable.

3 The role of time

Throughout this paper, we have treated the bomb as though it interacts with the photon at a specific instant; the
instant the photon reaches the slit plane, the bomb checks if the photon is in its space, and explodes accordingly. This
treatment suffices to demonstrate the essential concepts of diffraction-based IFM, but ignores certain interesting
phenomena.

Had we modeled the photon as a 2-D or 3-D quantum system, we would have had to account for the fact that its
wavefunction technically has non-vanishing tails. In particular, the photon wavefunction is nonzero where the bomb
is (at, essentially, all times). The situation is one in which the photon and bomb are constantly coupled, determining
whether or not the bomb should explode based on how much the photon wavefunction overlaps with the bomb, and
updating the photon wavefunction accordingly (zeroing it out temporarily in the bomb region if the bomb does not
explode).

For concreteness, suppose we model the bomb as a measuring device which checks if the photon is in its space
at equal intervals 	t . If the bomb does not find the photon, the photon wavefunction goes to zero in the bomb
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152 S. Rogers et al.

region. Before the next measurement, the photon has some time to develop an amplitude in the bomb region. If 	t
is very short, however, this amplitude will be small. In fact, the probability that the photon is ever found in the bomb
region goes to zero as 	t → 0. This is a manifestation of the quantum Zeno effect, whereby a quantum system
is prevented from leaving an eigenspace of an observable by the constant measurement of that observable [20]. A
number of sources have noted this effect before; a detector which measures too often acts like an infinite potential
barrier [21,22]. Our treatment in Sect. 2 ignores slit and bomb thickness. If these have a thickness δ, then δ/c
becomes a relevant timescale in our problem, since this is the natural time it takes the photon to pass. To absorb the
photon with the “common-sense” probability, the bomb should measure at intervals 	t < δ/c but not 	t � δ/c.
This way, complications due to the Zeno effect are avoided.

We have seen that, in order for the bomb to explode at all, its measurement ratemust be finite. This leaves open the
possibility for the photon to pass through the bomb between measurements (e.g., on timescales much shorter than
δ/c) without setting it off. In the bomb-induced double-slit, if δ � b, an overwhelming majority of paths through
the bomb will be of length δ or greater (too long for speed-c photons to pass undetected), so that the contribution
from these “undetected photon” histories will have little to no effect on the interference pattern. However, the claim
that the photon definitely avoided the bomb region is affected; the bomb not exploding is consistent with the photon
passing through it on some short time scale. Lastly, we note that this problem is not unique to diffraction-based
IFM, since the bombs in other IFM protocols must also be deficient at some level in order to have some chance
of exploding (this point was realized differently by the authors of [11], who noted that the bomb should not be
sensitive to momentum kicks on the order of its own quantum fluctuations 	p).

4 Conclusion

We have shown how interaction-free measurements can be applied to systems with a continuum of paths. An
effect present in such systems is that, by measuring the particle’s position, the bomb naturally alters the particle’s
momentum state. In the particular case of the bomb-induced double-slit, we showed that the IFM efficiency can
match that of the original Elitzur–Vaidman bomb-tester, provided one chooses the appropriate measurement basis.
While we have focused in this paper on a bomb with a predetermined and known shape, we stress the overall
conclusions may be generalized to a bomb of arbitrary shape. The presence of such a bomb may be detected,
provided it does not explode, if a prepared photon experiences an anomalously large momentum kick, such that
further propagation causes the photon to register at an unlikely position on the screen, relative to the initial waveform
of the prepared photon. We have also considered the role of the finite time-response of the bomb, which affects the
claim that the probe particle completely avoided the bomb region. However, finite time-response of the bomb does
not prevent us from detecting the bomb without exploding it, and is relevant in other IFM protocols as well. Thus,
diffraction-based interaction-free measurements are as interaction-free as previous interaction-free measurements.
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