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ON DEFORMATIONS OF COMPACT FOLIATIONS

MATIAS DEL HOYO AND RUI LOJA FERNANDES

(Communicated by Jiaping Wang)

Abstract. We combine classic stability results for foliations with recent re-
sults on deformations of Lie groupoids and Lie algebroids to provide a cohomo-
logical characterization for rigidity of compact Hausdorff foliations on compact
manifolds.

1. Introduction

A foliation F on a manifold M is compact Hausdorff if its leaves are compact and
its orbit space is Hausdorff. If F is compact Hausdorf, then its holonomy groups
are finite and, by Reeb stability [8], a small saturated neighborhood of any leaf L is
equivalent to its linearization. If M is connected, then the leaves without holonomy
are all diffeomorphic to a generic leaf L0, and they comprise a dense open set.

We say that a foliation F is rigid if any 1-parameter deformation F̃ of it is
obtained from the trivial deformation by conjugating with an isotopy of M . In
this note we use Lie groupoids and Lie algebroids [13] to give a simple proof of
the following fundamental result, illustrating the power of this formalism in classic
problems of differential geometry and topology.

Theorem 1.1. Let M be a compact connected manifold, and let F be a compact
Hausdorff foliation of M . Then F is rigid if and only if its generic leaf L0 satisfies
H1(L0) = 0.

A foliation is the same as a Lie algebroid with injective anchor map. Such an
algebroid is integrable and admits two canonical integrations. One is themonodromy
groupoid Mon(F) ⇒ M , which has arrows the homotopy classes of paths within a
leaf. The other is the holonomy groupoid Hol(F) ⇒ M , which has arrows germs
of transverse diffeomorphisms induced by a path. Hol(F) ⇒ M is the smallest
integration and it is a quotient of Mon(F) ⇒ M , which is the largest source
connected integration.

Our proof of Theorem 1.1 combines classic results such as Reeb and Thurston sta-
bility [8, 14], with new results on rigidity of Lie groupoids, obtained independently
in [5] (which uses cohomological methods) and in [7] (which uses Riemannian met-
rics on Lie groupoids). We will see later how the condition in the theorem can be
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understood in terms of deformation cohomology [4, 5], and this leads to a second
proof of the theorem using a Moser’s trick argument for Lie algebroid deformations.

Although Theorem 1.1 deals with deformations, i.e., with smooth curves on the
moduli space of foliations, it is closely related with the stability results for foliations
obtained by Epstein-Rosenberg [9] and Hamilton [10]. In these works, the authors
topologize the space of foliations using the Cr-topology and obtain criteria for any
nearby foliation to be isomorphic to the given foliation. The precise relationship
between those works and our contribution is rather delicate, and we leave it to be
explored elsewhere.

2. Some preliminaries

Given M a manifold and F a compact Hausdorff foliation, each leaf L has finite
holonomy group H, and we can find a small transverse T to L at x such that H
acts on T by diffeomorphisms. The Reeb Stability Theorem insures the existence
of a saturated open U ⊃ L and a foliated diffeomorphism φ : U → (L̃ × T )/H,

where L̃ → L is the regular covering corresponding to H, L̃ × T is foliated by the
second projection, and H acts diagonally. Proofs and further details can be found
in [8].

This can be seen as a linearization theorem: the normal bundle to a leaf ν(L) → L
is foliated by the linear holonomy group H ′, and if L′ → L is the covering space
corresponding to H ′, then we can recover ν(L) ∼= (L′×R

q)/H ′. Then Reeb stability
can be rephrased by saying that if a leaf L is compact and has finite holonomy H,
then H agrees with the linear holonomy H ′, and there is a tubular neighborhood
φ : ν(L) → U ⊂ M defining a foliated diffeomorphism with a saturated open.

The local model provides a neat description of the holonomy groupoid of a com-
pact Hausdorff foliation Hol(FU ) ⇒ U restricted to the open U , as the quotient of

the submersion groupoid L̃ × L̃ × T ⇒ L̃ × T by the action of H. In particular,
Hol(FU ) is Hausdorff, and the source map is locally trivial with compact fibers,
hence proper. Note that the source-fibers identify with the generic leaf L0. This
yields a characterization of compact Hausdorff foliations in terms of their holonomy
groupoid.

Proposition 2.1 (Cf. [3, Thm. 2.4.2]). A foliation F on M is compact Hausdorff
if and only if its holonomy groupoid Hol(F) ⇒ M is Hausdorff and source-proper.

By a deformation of a foliation F parametrized by some interval 0 ∈ I ⊂ R we
mean a foliation F̃ on the cylinder M × I that is tangent to the slices M × t and
that restricts to F on M × 0. Two deformations are equivalent if, after restricting
to a smaller interval J , they are related by a diffeomorphism fibered over J . A
deformation F̃ is trivial if it is equivalent to the product foliation F × 0I . A
foliation admitting only trivial deformations is called rigid.

Foliations can be seen as Lie algebroids with injective anchor map. Given A a
Lie algebroid over M , a Lie algebroid deformation Ã is a Lie algebroid structure
on the vector bundle A × 0I over the cylinder M × I such that the image of the
anchor map ρ(Ã) is included in TM × 0I and such that the central fiber Ã|M×0 is
the original algebroid. Equivalent deformations and rigidity are defined as before.
Since the injectivity of the anchor map is an open condition we get the following:

Lemma 2.2 (Cf. [4]). If M is compact, then any Lie algebroid deformation Ã of
a foliation F is equivalent to a foliation deformation.
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Similarly, given G ⇒ M a Lie groupoid, a Lie groupoid deformation is a Lie
groupoid structure G × I ⇒ M × I over the cylinder whose orbits are included in
the slices M × t and such that it restricts to the original groupoid at time 0. Note
that we are deforming the structure maps’ source, target, multiplication, unit, and
inverse, but keeping the manifolds of objects and arrows constant. Equivalences
and rigidity are defined as before. Recently, the rigidity of compact Lie groupoids
has been established independently in [5], using a deformation cohomology theory
for Lie groupoids, and in [7], using the theory of Riemannian Lie groupoids:

Theorem 2.3 ([5, Thm. 7.4], [7, Thm. 5.0.3]). A compact, Hausdorff, Lie groupoid
G ⇒ M is rigid.

Starting with a foliation F , any groupoid deformation of Hol(F) yields a defor-
mation of F by differentiation, but the inverse procedure of integrating deforma-
tions is more subtle. Even though a deformation, viewed as a foliation F over the
cylinder, can be integrated to its holonomy or monodromy groupoid, its integration
may not be a deformation as defined above. For instance, the arrow manifold may
differ from the cylinder Hol(F)× I, as shown in the following example.

Example 2.4 (Cf. [12]). Let L be a compact manifold with H1(L) �= 0 and let F
be the foliation on L× S

1 given by the second projection. The forms εω + dθ and
dε, where [ω] �= 0 ∈ H1(L), define a foliation deformation F̃ on L× S

1 × I tangent
to the fibers of the projection L × S

1 × I → I, (x, θ, ε) �→ ε. This deformation is
non-trivial: if ε �= 0, then the leaves of Fε are non-trivial coverings of L. When
integrating the deformation to the holonomy groupoid, Hol(F̃) ⇒ L× S

1 × I, this
is not a groupoid deformation, for the manifold of arrows is not constant in time,
namely, Hol(F̃) �= Hol(F) × I. In fact, note that at ε = 0 the holonomy groupoid

Hol(F) = L×L×S
1 ⇒ L×S

1 is compact. However, for ε �= 0 the groupoid Hol(F̃ε)
does not have compact source fibers and hence is not compact.

3. Proof of main theorem

GivenM a manifold, F a foliation, and F̃ a foliation deformation, we can identify
a leaf L of F with the leaf L× 0 of F̃ and compare both holonomies by restricting
to M × 0 a local transverse T̃ to L× 0 at (x, 0) within M × I:

r : HolL×0(F̃) → HolL(F).

This map is clearly onto, and it is an isomorphism for a trivial deformation, but
it might have a non-trivial kernel K, as in Example 2.4, where K = Z. Thurston
stability asserts that if a compact leaf satisfies H1(L) = 0, then either it has trivial
holonomy or it has non-trivial linear holonomy. Next we use a variant of it to show
that K = 0 for compact Hausdorff foliations.

Proposition 3.1. If M is compact, F is compact Hausdorff, and H1(L0) = 0,

then r gives a group isomorphism HolL×0(F̃) = HolL(F) for any leaf L of F .

Proof. Let us first show that the restriction map r : HolL×0(F̃) → HolL(F) induces

an isomorphism on the linear holonomies dr : dHolL×0(F̃) → dHolL(F) or, equiv-
alently, that the kernel K ′ of dr is trivial. Using coordinates (x, t) with x in M and
t ∈ I, we can represent the linear holonomy of a loop γ as a matrix as below:

d[γ] =

[
dr[γ] v[γ]
0 1

]
.
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It follows from the local model and Reeb stability that the fundamental group
of the generic leaf π1(L0) is the kernel of the projection π1(L) → HolL(F) =
dHolL(F). Therefore, there is an epimorphism π1(L0) → K ′. If K ′ were not
trivial, then the formula γ �→ v[γ] would define a non-trivial group homomorphism
π1(L0) → R

n, which is absurd, since H1(L0) = 0.
Suppose now that L ∼= L0 is a generic leaf or, equivalently, that HolL(F) = 0.

Then, the linear holonomy of F̃ at L × 0 is also trivial, and we can conclude that
HolL×0(F̃) = 0 by Thurston stability [14, Thm. 2].

Finally, when L is any leaf, we can reduce to the previous case by first restricting
our attention to a small tubular neighborhood U of L and then considering the
covering space p : Ũ → U corresponding to π1(L0) ⊂ π1(L). The pullback foliations

p∗F and p× id∗I F̃ have trivial holonomy at L̃ = p−1(L) and L̃× 0, respectively, so
we can apply Thurston stability as in the previous case. �

We can use the previous proposition to integrate a foliation deformation to a
groupoid deformation if we use the holonomy groupoid.

Proposition 3.2. Let F be a compact Hausdorff foliation on a compact connected
manifold M whose generic leaf L0 satisfies H1(L0) = 0. If F̃ is a deformation of

F , then the restriction F̃ |M×J to a smaller interval J ⊂ I is a compact Hausdorff

foliation, and its holonomy groupoid Hol(F̃ |M×J) is a groupoid deformation.

Proof. By Proposition 3.1 we have that every leaf of F̃ at time zero is compact with
finite holonomy; hence it admits a local linear model. By Reeb stability, the orbit
space (M×I)/F̃ is Hausdorff around L×0, and by compactness of M , it is so after

restricting the cylinder to M × J , with J ⊂ I a smaller interval. Hence F̃|M×J

is a compact Hausdorff foliation, and its holonomy groupoid Hol(F̃) ⇒ M × J

is Hausdorff and source-proper. The identification Hol(F̃) ∼= Hol(F) × J fibered
over J follows from a semi-local version of the Ehresmann theorem, namely, the
linearization of the source map around M × 0 ⊂ M × J [6, Cor. 5.14]. �

We can now use rigidity of compact Lie groupoids to give a simple proof of
rigidity of compact Hausdorff foliations:

Proof of Theorem 1.1. If the generic leaf L0 satisfies H1(L0) = 0 and F̃ is a de-

formation of F , then, by Proposition 3.2, the groupoid Hol(F̃) can be regarded as
a proper groupoid deformation of the compact groupoid Hol(F) ⇒ M . Hence, by

Theorem 2.3, Hol(F̃) is locally trivial, and so is the deformation F̃ .
If the generic leaf L0 satisfiesH

1(L0) �= 0, we can adapt Example 2.4 to construct
a non-trivial deformation. Let B be a small ball with coordinates t1, . . . , tk and
define F̃ on L×B× I by the forms ελ(t)ω+dt1, dt2, . . . , dtk, where λ is such that
λ(0) = 1 and λ(t) = 0 for t close to ∂B. This is a non-trivial deformation of the
product foliation on L×B that remains constant on the border. We can copy this
deformation in a foliated tubular neighborhood L ⊂ T ⊂ M of a generic leaf of F
and extend it outside T stationarily. �

4. The cohomological proof

A cohomological approach to deformations of Lie groupoids and Lie algebroids
has been developed in [4, 5]. Every Lie algebroid A has a deformation complex
Cdef(A), which can be defined as the cohomology of A with coefficients on the
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adjoint representation (in general, a representation up to homotopy [1]). Every Lie
algebroid deformation {Aε : ε ∈ I} of A yields a cocycle

c0 =
d

dε

∣∣∣∣
ε=0

[, ]ε ∈ C2
def(A),

and its class [c0] ∈ H2
def(A) is invariant by equivalences of deformations [4].

When A = F is a foliation on M , the adjoint representation is quasi-isomorphic
to the representation F � ν(F) on the normal bundle given by the Bott connec-
tion, and the deformation cohomology of F agrees with the shifted Lie algebroid
cohomology with coefficients, namely, H•

def(F) ∼= H•−1(F , ν(F)). This way, given

a deformation F̃ = {Fε : ε ∈ I} the class [c0] ∈ H2
def(F) constructed by Crainic and

Moerdijk corresponds to the deformation cohomology class investigated by Heistch
[11]. Namely, the class of the F-foliated cocycle with values in ν given by:

(4.1) c0(v) := π⊥
0

(
d

dε

∣∣∣∣
ε=0

πε(v)

)
, v ∈ F ,

where πε : TM → Fε and π⊥
ε : TM → ν(Fε) are orthogonal projections relative to

some Riemannian metric.
Crainic and Moerdijk also established a cohomological characterization for trivial

deformations when the base manifold M is compact. In the case of foliations, a
deformation F̃ = {Fε : ε ∈ I} of a foliation F = F0 is trivial if and only if the
classes

ct(v) := π⊥
t

(
d

dε

∣∣∣∣
ε=t

πε(v)

)
, v ∈ Ft,

vanish smoothly with respect to t (cf. [4, Thm. 2]).

Remark 4.1. Let us discuss in more detail the smooth vanishing of the classes ct.
The normal bundle to the total foliation F̃ has a subbundle given by

K = ker(π : ν(F̃) → TI) = (TM × 0I)/F̃ .

The action F̃ � ν(F̃) given by the Bott connection∇ preservesK, and this leads to

a complex (C•(F̃ ,K), δ). The classes ct define together a global class c ∈ C1(F̃ ,K)
determined by i∗t c = ct for all t, where it : M × {t} → M × I is the inclusion.

The classes ct to vanish smoothly with respect to t means that [c] ∈ H1(F̃ ,K) is
trivial or, equivalently, that there is a vector field X on M × I tangent to the slices
M × {t} such that δ(X mod F̃) = c. The flow of such a time-dependent vector

field X = {Xt} gives an isotopy trivializing F̃ (cf. [4, Thm. 2]).

Given G ⇒ M a Lie groupoid, AG its Lie algebroid, and E → M a vector bundle
endowed with a representation of G, there is an induced representation AG � E by
differentiation, and the corresponding Lie groupoid and Lie algebroid cohomology
are related by the so-called Van Est map

VE : H•(G,E) → H•(AG, E).

If the source-fibers have trivial first cohomology, then it follows from a standard
spectral sequence argument that VE is an isomorphism on degree 1 [2, Thm. 4].

Proposition 4.2. Let F be a compact Hausdorff foliation on a compact connected
manifold M whose generic leaf L0 satisfies H1(L0) = 0. Then H2

def(F) = 0, and
more generally, H1(F , E) = 0 for any representation F � E.
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Proof. Consider the Van Est map corresponding to G = Hol(F) acting over some
vector bundle E. Since the source-fibers of the holonomy groupoid identify with
the generic leaf L0, it follows from [2, Thm. 4] that H1(Hol(F), E) ∼= H1(F , E).
By Proposition 2.1, Hol(F) is a proper groupoid, so its positive cohomology groups
vanish for any coefficients [2, Prop. 1]. This proves the second statement. The first
one follows from the isomorphism H2

def(F) ∼= H1(F , ν(F)) ([4, Prop. 4]). �

Note that the first statement of the previous proposition can also be proven by
directly comparing the deformation cohomology of the foliation and its holonomy
groupoid, as in [5, Thms. 6.1 and 10.1]. Although the statements there demand the
source-fibers to be simply connected, the vanishing of the cohomology is enough.

The fundamental fact behind the main theorem is that the holonomy groupoid of
a deformation F̃ of a compact Hausdorff foliation is a source-proper groupoid over
some restricted cylinder M × J , and therefore the slices F̃t are also compact Haus-
dorff. Once this is established, as in Proposition 3.2, we can give a cohomological
version of the proof of the main theorem.

Cohomological proof of Theorem 1.1. Let F̃ be a deformation of a compact Haus-
dorff foliation F with H1(L0) = 0. By Proposition 3.2 the restriction F̃ |M×J is also
compact, Hausdorff, for some J ⊂ I, and hence so is Ft for each t ∈ J . By Propo-
sition 4.2, the deformation cohomology of Ft vanishes for t ∈ J . It follows that
the deformation cohomology classes [ct] ∈ H2

def(Ft) all vanish for t ∈ J . We claim
that, moreover, these classes vanish smoothly with respect to t ∈ J . As discussed
in Remark 4.1, this means that [c] ∈ H1(F̃ |M×J ,K|M×J) is trivial. But again by

Proposition 4.2, the whole group H1(F̃ |M×J ,K|M×J) is trivial. The result now fol-
lows by an algebroid version of Moser’s trick: a primitive of c is a time-dependent
vector field X = {Xt} which gives an isotopy trivializing F̃ (see [4, Thm. 2]). �
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