1 Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity Pengxiang Fan¹, Peipei Wang², Yann-Ru Lou¹, Bryan J. Leong², Bethany M. Moore², Craig A. 2 Schenck¹, Rachel Combs^{3†}, Pengfei Cao^{2,4}, Federica Brandizzi^{2,4}, Shin-Han Shiu^{2,5}, Robert L. 3 Last^{1,2*} 4 ¹Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 5 6 MI 48824 7 ²Department of Plant Biology, Michigan State University, East Lansing, MI 48824 ³Division of Biological Sciences, University of Missouri, Columbia, MO 65211 8 9 ⁴MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States, 10 East Lansing, MI 48824 ⁵Department of Computational Mathematics, Science, and Engineering, Michigan State 11 12 University, East Lansing, MI 48824 13 †Current address: Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 14 43210 15 *Corresponding Author: lastr@msu.edu 16 **Short title:** Plant Metabolic Evolution 17 Abstract (<150 words) 18 Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized 19 metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution 20 include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of 21 genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive 22 acylsugars, with sidechains that vary in length across the family. We describe a tomato gene 23 cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome 24 specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a 25 tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing

another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene

cluster and found that its phylogenetic distribution correlates with medium chain acylsugar

26

27

accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.

Introduction

Despite the enormous structural diversity of plant specialized metabolites, they are derived from a relatively small number of primary metabolites, such as sugars, amino acids, nucleotides, and fatty acids (Maeda, 2019). These lineage-, tissue- or cell- type specific specialized metabolites mediate environmental interactions, such as herbivore and pathogen deterrence or pollinator and symbiont attraction (Mithöfer and Boland, 2012; Pichersky and Lewinsohn, 2011). Specialized metabolism evolution is primarily driven by gene duplication (Moghe and Last, 2015; Panchy et al., 2016), and relaxed selection of the resulting gene pairs allows modification of cell- and tissue-specific gene expression and changes in enzymatic activity. This results in expanded substrate recognition and/or diversified product formation (Khersonsky and Tawfik, 2010; Leong and Last, 2017). The neofunctionalized enzymes can prime the origin and diversification of specialized metabolic pathways (Schenck and Last, 2019; Weng et al., 2012; Weng, 2014).

There are many examples of mechanisms that lead to novel enzymatic activities in specialized cell- or tissue-types, however, the principles that govern assembly of multi-enzyme specialized metabolic pathways are less well established. One appealing hypothesis involves the stepwise recruitment of pathway enzymes (Noda-Garcia et al., 2018). In rare cases, non-homologous specialized metabolic enzyme genes occur in proximity to each other in a genomic region, forming a biosynthetic gene cluster (Nützmann et al., 2016; Nützmann and Osbourn, 2014; Rokas et al., 2018). In recent years, an increasing number of specialized metabolic gene clusters (SMGCs) were experimentally identified or bioinformatically predicted in plants (Boutanaev et al., 2015; Castillo et al., 2013; Schläpfer et al., 2017). However, although most experimentally

characterized plant SMGCs are co-expressed, the majority of the bioinformatically predicted ones do not show coexpression under global network analysis (Wisecaver et al., 2017).

While examples of SMGCs are still relatively rare in plants, experimentally validated cases were reported for a surprisingly diverse group of pathways. These include terpenes (Chae et al., 2014; Prisic et al., 2004; Qi et al., 2004; Wilderman et al., 2004), cyclic hydroxamic acids (Frey et al., 1997), biosynthetically unrelated alkaloids (Itkin et al., 2013; Winzer et al., 2012), polyketides (Schneider et al., 2016), cyanogenic glucosides (Takos et al., 2011), and modified fatty acids (Jeon et al., 2020). However, whereas each cluster encodes multiple non-homologous enzymes of a biosynthetic pathway, evolution of their assembly is not well understood.

Acylsugars are a group of insecticidal (Leckie et al., 2016) and anti-inflammatory (Herrera-Salgado et al., 2005) chemicals mainly observed in glandular trichomes of Solanaceae species (Fan et al., 2019; Schuurink and Tissier, 2019). These specialized metabolites are sugar aliphatic esters with three levels of structural diversity across the Solanaceae family: acyl chain length, acylation position, and sugar core (Fan et al., 2019). The primary metabolites sucrose and aliphatic acyl-CoAs are the biosynthetic precursors of acylsucroses in plants as evolutionarily divergent as the cultivated tomato *Solanum lycopersicum* (Fan et al., 2016) (Figure 1), *Petunia axillaris* (Nadakuduti et al., 2017) and *Salpiglossis sinuata* (Moghe et al., 2017). The core tomato acylsucrose biosynthetic pathway involves four BAHD [BEAT, AHCT, HCBT, DAT (D'Auria, 2006)] family acylsucrose acyltransferases (*Sl-ASAT1* through *Sl-ASAT4*), which are specifically expressed in the type I/IV trichome tip cells (Fan et al., 2016; Schilmiller et al., 2015, 2012). These enzymes catalyze consecutive reactions utilizing sucrose and acyl-CoA substrates to produce the full set of cultivated tomato acylsucroses *in vitro* (Fan et al., 2016).

Co-option of primary metabolic enzymes contributed to the evolution of acylsugar biosynthesis and led to interspecific structural diversification across *Solanum* tomato clade. One example is an invertase-like enzyme originating from carbohydrate metabolism that generates

acylglucoses in the wild tomato *S. pennellii* through cleavage of the acylsucrose glycosidic bond (Leong et al., 2019). In another case, allelic variation of a truncated isopropylmalate synthase-like enzyme (IPMS3) − from branched chain amino acid metabolism − leads to acylsugar iC4/iC5 (2-methylpropanoic/3-methylbutanoic acid) acyl chain diversity in *S. pennellii* and *S. lycopersicum* (Ning et al., 2015). Acylsugar structural diversity is even more striking across the family. Previous studies revealed variation in acyl chain length (Ghosh et al., 2014; Liu et al., 2017; Moghe et al., 2017): *Nicotiana*, *Petunia* and *Salpiglossis* species were reported to accumulate acylsugars containing only short acyl chains (carbon number, C≤8). In contrast, some species in *Solanum* and other closely related genera produce acylsugars with medium acyl chains (C≥10). These results are consistent with the hypothesis that the capability to produce medium chain acylsugars varies across the Solanaceae family.

In this study, we identify a metabolic gene cluster on tomato chromosome 7 containing two non-homologous genes – acylsugar acyl-CoA synthetase (*AACS*) and acylsugar enoyl-CoA hydratase (*AECH*) – affecting medium chain acylsugar biosynthesis. Genetic and biochemical results show that the trichome enriched *AACS* and *AECH* are involved in generating medium chain acyl-CoAs, which are donor substrates for acylsugar biosynthesis. Genomic analysis revealed a syntenic region on chromosome 12, where the acylsucrose biosynthetic *Sl-ASATI* is located (Fan et al., 2016). Phylogenetic analysis of the syntenic regions in Solanaceae and beyond led to evolutionary reconstruction of the origin of the acylsugar gene cluster. We infer that sequential gene insertion facilitated emergence of this gene cluster in tomato. These results provide insights into specialized metabolic evolution through emergence of cell-type specific gene expression, the formation of metabolic gene clusters and illuminates additional examples of primary metabolic enzymes being co-opted into specialized metabolism.

Results

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

S. pennellii natural accessions (Mandal et al., 2020), as well as the S. lycopersicum M82 \times S. pennellii LA0716 chromosomal substitution introgression lines (ILs) (Eshed and Zamir, 1995), offer convenient resources to investigate interspecific genetic variation that affects acylsugar metabolic diversity (Mandal et al., 2020; Schilmiller et al., 2010). In a rescreen of ILs for S. pennellii genetic regions that alter trichome acylsugar profiles (Schilmiller et al., 2010), IL7-4 was found to accumulate increased C10 medium chain containing acylsugars compared with M82 (Figure 2, A and B). The genetic locus that contributes to the acylsugar phenotype was narrowed down to a 685 kb region through screening selected backcross inbred lines (BILs) (Ofner et al., 2016) that have recombination breakpoints on chromosome 7 (Figure 2C). Because tomato acylsucrose biosynthesis occurs in trichomes, candidate genes in this region were filtered based on their trichome-specific expression patterns. This analysis identified a locus containing multiple tandemly duplicated genes of three families – an acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECH), and BAHD acyltransferase. Our analysis (Moore et al., 2020) revealed coexpression of four Sl-ASATs (Fan et al., 2019) and three genes at the locus – Solyc07g043630, Solyc07g043660, and Solyc07g043680 (Supplementary file1 and Figure 2 — figure supplement 1). Expression of these three genes was trichome enriched (Figure 2D), and thus they were selected for further analysis.

The three candidate genes were tested for involvement in tomato acylsugar biosynthesis by making loss of function mutations using the CRISPR-Cas9 gene editing system. Two guide RNAs (gRNAs) were designed to target one or two exons of each gene to assist site-specific DNA cleavage by hCas (Brooks et al., 2014) (Figure 3 — figure supplement 1, A-C). In the self-crossed T1 progeny of stably transformed M82 plants, at least two homozygous mutants were obtained in *Solvc07g043630*, *Solvc07g043660*, and *Solvc07g043680* (Figure 3 — figure supplement 1, A-C).

fluorescent protein (CFP), hypothesizing that the targeting peptides reside at the N-terminus of

152

precursor proteins. When co-expressed in tobacco leaf epidermal cells, three CFP-tagged recombinant proteins co-localized with the mitochondrial marker MT-RFP (Nelson et al., 2007) (Figure 4A and Figure 4 — figure supplement 1A). To rule out the possibility of peroxisomal localization, we fused SI-AACS1, SI-AECH1, or Solyc07g043660 with N-terminus fused yellow fluorescent protein (YFP), considering that potential peroxisomal targeting peptides are usually located on the C-terminus (Brocard and Hartig, 2006). The expressed YFP-recombinant proteins were not co-localized with the peroxisomal marker RFP-PTS (Nelson et al., 2007) (Figure 4 — figure supplement 1B). Instead, they appeared distributed in the cytosol (Figure 4 — figure supplement 1B), presumably because the N-terminal YFP blocked the mitochondria targeting signal. Taken together, protein expression and co-localization analyses suggest that SI-AACS1, SI-AECH1, and Solvc07g043660 encode enzymes targeted to mitochondria.

SI-AACS1 belongs to a group of enzymes that activate diverse carboxylic acid substrates to produce acyl-CoAs. We hypothesized that SI-AACS1 uses medium chain fatty acids as substrates, because ablation of *SI-AACS1* eliminated acylsugars with medium acyl chains. To characterize the *in vitro* activity of SI-AACS1, we purified recombinant His-tagged proteins from *Escherichia coli*. Enzyme assays were performed by supplying fatty acid substrates with even carbon numbers from C2 through C18 (Figure 4B). The results showed that SI-AACS1 utilized fatty acid substrates with lengths ranging from C6 to C12, including those with a terminal branched carbon (iC10:0) or an unsaturated bond (*trans*-2-decenoic acid, C10:1) (Figure 4, B and C). However, no activity was observed with the 3-hydroxylated C12 and C14 fatty acids as substrates (Figure 4B). These results support our hypothesis that SI-AACS1 produces medium chain acyl-CoAs, which are *in vivo* substrates for acylsugar biosynthesis.

To test whether *Sl-AACS1* and *Sl-AECH1* can produce medium chain acyl-CoAs *in planta*, we transiently expressed these genes in *Nicotiana benthamiana* leaves using *Agrobacterium*-mediated infiltration (Sainsbury et al., 2009). It is challenging to directly measure plant acyl-

CoAs, due to their low concentration and separate organellar pools. We used an alternative approach and characterized membrane lipids, which are produced from acyl-CoA intermediates. We took advantage of the observation that *N. benthamiana* membrane lipids do not accumulate detectable acyl chains of 12 carbons or shorter. *N. benthamiana* leaves were infiltrated with constructs containing *Sl-AACS1* or *Sl-AECH1* individually, or together (Figure 4D). In contrast to the empty vector control, infiltration of *Sl-AECH1* led to detectable levels of C12 acyl chains in the leaf membrane lipid phosphatidylcholine (PC) (Figure 4D). We also observed increased C14 acyl chains in PC, phosphatidylglycerol (PG), sulfoquinovosyl diacylglycerol (SQDG), and digalactosyldiacylglycerol (DGDG) in *Sl-AECH1* infiltrated plants (Figure 4D and Figure 4—figure supplement 1C). These results suggest that *Sl-AECH1* participates in generation of medium chain acyl-CoAs *in planta*, which are channeled into lipid biosynthesis. No medium chain acylsugars were detected, presumably due to the lack of core acylsugar biosynthetic machinery in *N. benthamiana* mesophyll cells.

We asked whether the closest known homologs of *Sl-AECH1* from *Solanum* species can generate medium chain lipids when transiently expressed in *N. benthamiana*. Two SQDGs with C12 chains were monitored by LC/MS as peaks diagnostic of lipids containing medium chain fatty acids (Figure 4 — figure supplement 2, A and B). The results showed that only the putative *Sl-AECH1* orthologs *Sopen07g023250* (*Sp-AECH1*) and *Sq_c37194* (*Sq-AECH1*) – from *S. pennellii* and *S. quitoense* respectively – generated medium chain lipids in the infiltrated leaves (Figure 4 — figure supplement 2C). This confirms that not all ECHs can produce medium chain lipids and suggests that the function of *Sl-AECH1* evolved recently, presumably as a result of neofunctionalization after gene duplication (Figure 4 — figure supplement 2C).

AACS1 and AECH1 are evolutionarily conserved in the Solanum

Medium chain acylsugars were documented in *Solanum* species besides cultivated tomato, including *S. pennellii* (Leong et al., 2019), *S. nigrum* (Moghe et al., 2017), as well as the more

divergence of the tomato and eggplant lineage (Figure 5A).

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

We applied gene expression and genetic approaches to test the *in vivo* functions of ACS and ECH in selected Solanum species. To explore the expression pattern of S. pennellii ACS and ECH cluster genes, we performed RNA-seq analysis on trichomes and shaved stems to identify acylsugar biosynthetic candidates (Supplementary file2). The expression pattern of S. pennellii cluster genes is strikingly similar to S. lycopersicum: one ECH and two ACS genes are highly enriched in trichomes, including the orthologs of Sl-AACS1 and Sl-AECH1, Sp-AACS1 function (Sopen07g023200) was first tested by asking whether it can reverse the cultivated tomato sl-aacs1 mutant acylsugar phenotype. Indeed, Sp-AACS1 restored C12 containing acylsugars in the stably transformed sl-aacs1 plants (Figure 5 — figure supplement 1). To directly test Sp-AACS1 and Sp-AECH1 function, we used CRISPR-Cas9 to make single mutants in S. pennellii LA0716. No medium chain acylsugars were detected in T0 generation mutants with edits for each gene (Figure 5B and Figure 5 — figure supplement 2, A and C). Similar to the ACS-annotated Solyc07g043660 cultivated tomato mutant (Figure 3 — figure supplement 1D), deletion of S. pennellii ortholog Sopen07g023220 has no observed effects on S. pennellii trichome acylsugars (Figure 5 — figure supplement 2D).

The medium chain acylsugar producer *S. quitoense* (Hurney, 2018) was used for *AACS1* and *AECH1* functional analysis because of its phylogenetic distance from the tomato clade, it is in the *Solanum* Leptostemonum clade (including eggplant), and the fact that it produces medium chain acylsugars. We found trichome-enriched putative orthologs of *AACS1* and *AECH1* in the

228 transcriptome dataset of S. quitoense (Moghe et al., 2017), and tested their in vivo function 229 through virus-induced gene silencing (VIGS) (Figure 5 — figure supplement 2E). Silencing either 230 gene led to decreased total acylsugars (Figure 5C and Figure 5 — figure supplement 2F), which 231 correlated with the degree of expression reduction in each sample (Figure 5D). These results are 232 consistent with the hypothesis that Sq-AACS1 and Sq-AECH1 are involved in medium chain 233 acylsugar biosynthesis, because all acylsugars in S. quitoense carry two medium chains (Hurney, 234

236 237

235

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Evolution of the gene cluster correlates with the distribution of medium chain acylsugars across Solanaceae

Solanum clades inspired us to explore the evolutionary origins of the gene cluster.

2018). The importance of AACSI and AECHI in medium chain acylsugar biosynthesis in distinct

We sought to understand how the acylsugar gene cluster evolved and whether it correlates with the distribution of medium chain acylsugars across the Solanaceae family. Taking advantage of the available genome sequences of 13 species from Solanaceae and sister families, we analyzed the regions that are syntenic with the tomato acylsugar gene cluster (Figure 6 — figure supplement 1). This synteny was found in all these plants, including the most distantly related species analyzed, *Coffea canephora* (coffee, Rubiaceae) (Figure 6 — figure supplement 1). BAHD acyltransferases were the only genes observed in the syntenic regions both inside and outside the Solanaceae, in contrast to ECH and ACS, which are restricted to the family (Figure 6A and Figure 6 — figure supplement 1). Within the syntenic regions of the species analyzed, ECH homologs, including pseudogenes, are present in all Solanaceae except for *Capsicum* species, while ACS is more phylogenetically restricted, being found only in *Nicotiana* and Solanum (Figure 6A and Figure 6 — figure supplement 1).

We then performed phylogenetic analysis to reconstruct the evolutionary history of the ACS, ECH, and BAHD acyltransferase genes in the syntenic region (Figure 6). This analysis

revealed a model for the temporal order of emergence for the three types of genes, leading to their presence in the syntenic regions in extant Solanaceae plants (Figure 6B). We propose that the BAHD acyltransferase was the first of three genes that emerged before the divergence between Solanaceae and Rubiaceae, and was likely lost in Convolvulaceae. This hypothesis is based on the discovery of a BAHD acyltransferase pseudogene in the syntenic region of *C. canephora* (Figure 6A and Figure 6 — figure supplement 1), which is one of the closest *Coffea* sequences sister to the ASAT clade (Figure 6 — figure supplement 2 and Figure 6 — figure supplement 5). In our model, ECH was likely inserted into the syntenic region before the Solanaceae-specific whole genome duplication (WGD) event (Figure 6B and Figure 6 — figure supplement 3).

We propose that ACS was inserted into the synteny through segmental duplication (Bailey et al., 2002) (Figure 6 — figure supplement 4). However, whether ACS insertion happened before or after the Solanaceae-specific WGD event cannot be resolved by the phylogenetic analysis (Figure 6 — figure supplement 4). If the insertion happened before WGD, one ACS gene loss on chromosome 12 in *Solanum* — as well as two independent gene losses on chromosomes 7 and 12 in both *Petunia* (Figure 6 — figure supplement 4) and in *Salpiglossis sinuata* (Figure 6 — figure supplement 6) — should have happened. However, if the insertion happened after WGD, then only one gene loss in *Petunia* and *Salpiglossis* needs to be invoked (Figure 6 — figure supplement 6). The latter scenario is more likely based on the principle of parsimony.

Our ancestral state reconstruction inference supports the notion that the medium chain acylsugars co-emerged with the ACS/ECH genes in the syntenic regions in the common ancestor of *Solanum* (Figure 6 — figure supplement 7). This leads us to propose that the emergence of both ACS and ECH genes in the synteny was a prerequisite for the rise of medium chain acylsugars in Solanaceae species (Figure 6B). Consistent with the hypothesis, only short chain acylsugars were observed in *Petunia* (Liu et al., 2017) (Figure 6 — figure supplement 8), which

correlates with the absence of ACS homolog (Figure 6B). In contrast, medium chain acylsugars were detected throughout *Solanum* (Figure 6 — figure supplement 8), supported by the observation that both ACS and ECH homologs are present in extant *Solanum* species (Figure 6B). Interestingly, although *Nicotiana* species collectively have both ACS and ECH genes (Figure 6B), they do not produce medium chain acylsugars (Figure 6 — figure supplement 8) presumably due to gene losses. For example, the ECH homologs are pseudogenes in *N. benthamiana* and *N. tomentosiformis* (Figure 6A). These results show that the presence of both functional ACS and ECH genes are associated with the accumulation of medium chain acylsugars, supporting our hypothesis above.

Although no medium chain acylsugars were detected in *Nicotiana* species examined, the ACS and ECH genes may have been present in the syntenic region prior to divergence of *Solanum* and *Nicotiana*. This suggests that one or more species that diverged from the common ancestor of *Solanum* and *Nicotiana* could have medium chain acylsugars. To test this hypothesis, we extended the phenotypic analysis to six such Solanaceae genera (Figure 6 — figure supplement 8). Indeed, we found that species in *Jaltomata, Physalis, Iochroma, Atropa, and Hyoscyamus*, which diverged from the common ancestor with *Nicotiana* but before *Solanum*, have medium chain acylsugars (Figure 6 — figure supplement 8).

Discussion

This study identified a *S. lycopersicum* chromosome 7 synteny of ACS, ECH, and BAHD acyltransferase genes including two involved in medium chain acylsugar biosynthesis. The discovery of this locus was prompted by our observation of increased C10 containing acylsugars in tomato recombinant lines carrying this region from the wild tomato *S. pennellii* chromosome 7. *In vitro* biochemistry revealed that Sl-AACS1 produces acyl-CoAs using C6-C12 fatty acids as substrates. The function of *AACS1* and *AECH1* in cultivated and wild tomato medium chain acylsugar biosynthesis was confirmed by genome editing, and extended to the phylogenetically

distant *S. quitoense* using VIGS. The trichome tip cell-specific expression of these genes is similar to that of previously characterized acylsugar pathway genes (Fan et al., 2019).

There are increasing examples of plant specialized metabolic innovation evolving from gene duplication and neofunctionalization of primary metabolic enzymes (Maeda, 2019; Milo and Last, 2012; Moghe and Last, 2015; Zi et al., 2014). Recruitment of *Sl-AACS1* and *Sl-AECH1* from fatty acid metabolism provides new examples of 'hijacking' primary metabolic genes into acylsugar biosynthesis, in addition to an isopropylmalate synthase (*Sl-IPMS3*) and an invertase (*Sp-ASFF1*) (Leong et al., 2019; Ning et al., 2015). We hypothesize that both AACS1 and AECH1 participate in generation of medium chain acyl-CoAs, the acyl donor substrates for ASAT-catalyzed acylsugar biosynthesis. Indeed, Sl-AACS1 exhibits *in vitro* function consistent with this hypothesis, efficiently utilizing medium chain fatty acids as substrates to synthesize acyl-CoAs. Strikingly, Sl-AECH1 perturbs membrane lipid composition when transiently expressed in *N. benthamiana* leaves, generating unusual C12-chain membrane lipids.

These results suggest that evolution of trichome tip cell-specific gene expression potentiated the co-option of *AACSI* and *AECHI* in medium chain acylsugar biosynthesis. Analogous to trichomes producing medium chain acylsugars, seeds of phylogenetically diverse plants accumulate medium chain fatty acid storage lipids (Ohlrogge et al., 2018). In contrast, fatty acids with unusual structures, including those of medium chain lengths, are rarely found in membrane lipids, presumably because these would perturb membrane bilayer structure and function (Millar et al., 2000). For example, seed embryo-specific expression of three neofunctionalized enzyme variant genes in *Cuphea* species – an acyl-ACP thioesterase (Dehesh et al., 1996), a 3-ketoacyl-ACP synthase (Dehesh et al., 1998), and a diacylglycerol acyltransferase (Iskandarov et al., 2017) – lead to production of medium chain seed storage lipids (Voelker and Kinney, 2001). Trichome tip cell restricted expression of *AACSI* and *AECHI* represents an analogous example of diverting neofunctionalized fatty acid enzymes from general metabolism into cell-specific specialized

Page 14 of 51

metabolism. It is notable that we obtained evidence that SI-AACS1 and SI-AECH1 are targeted to mitochondria. Because the other characterized acylsugar biosynthetic enzymes – ASATs and SI-IPMS3 – appear to be cytoplasmic, these results suggest that medium chain acylsugar substrates are intracellularly transported within the trichome tip cell. It is worth noting that SI-AACS1 seems to show higher activity with C8 fatty acid than with C10 or C12 (Figure 4, B and C), while no C8 containing acylsugars were described in tomato trichomes (Ghosh et al., 2014). This suggests that C8 fatty acids are not synthesized in trichomes.

Beyond employing functional approaches, this study demonstrates the value of a combined comparative genomic and metabolomic analysis in reconstructing the evolutionary history of a gene cluster: in this case over tens of millions of years. We propose that the acylsugar gene cluster started with a 'founder' BAHD acyltransferase gene, followed by sequential insertion of ECH and ACS (Figure 6B). This *de novo* assembly process is analogous to evolution of the antimicrobial triterpenoid avenacin cluster in oat (Qi et al., 2006, 2004). There are two noteworthy features of our approach. First, reconstructing acylsugar gene cluster evolution in a phylogenetic context allows us to deduce cluster composition in extant species (Figure 6B). Second, it links cluster genotype with acylsugar phenotype and allows inference of acylsugar diversity across the Solanaceae (Figure 6 and Figure 6 — figure supplement 8).

The current architecture of the Solanaceae acylsugar synteny merely represents a snapshot of a genomic neighborhood that is dynamic, which echoes a recent study of triterpene biosynthetic gene clusters in the Brassicaceae (Liu et al., 2019; Peters, 2020). *De novo* assembly of the gene cluster was accompanied by gene duplication, transposition, pseudogenization, and deletion in different genera. In the case of non-acylsugar producer *Capsicum*, although phylogenetic analysis revealed putative *Sl-AACS1* and *Sl-AECH1* orthologous genes, they are not harbored in the syntenic region, probably due to translocation or assembly quality issues (Figure 6A and Figure 6—figure supplement 1). In *Nicotiana*, the ECH genes became pseudogenized (Figure 6B), which

is associated with lack of detectable plant medium chain acylsugars (Figure 6 — figure supplement 8). In tomatoes, the trichome expressed *Solyc07g043660* derives from a recent tandem duplication (Figure 6 — figure supplement 4), yet its deletion has no effect on trichome acylsugars (Figure 3 — figure supplement 1D). A parsimonious explanation is that *Solyc07g043660* is experiencing functional divergence, which may eventually lead to pseudogenization as observed for other genes in the syntenic region.

In this study, we identified an acylsugar SMGC in the context of a multiple chromosome syntenic region. This synteny resulted from WGD, and the acylsugar-related genes are co-expressed, and involved in the same metabolic pathway. This resembles the tomato steroidal alkaloid gene cluster consisting of eight genes that are dispersed into two syntenic chromosome regions (Itkin et al., 2013). In fact, this tomato alkaloid SMGC is located next to the acylsugar cluster (Figure 3 — figure supplement 2), which is reminiscent of two physically adjacent SMGCs in the fungus *Aspergillus* (Wiemann et al., 2013). Tomato steroidal alkaloids and acylsugars both serve defensive roles in plants, but are biosynthetically and structurally distinct and are stored in different tissues. This raises intriguing questions. Did the separation of acylsugar and alkaloid SMGCs into two chromosomes occur contemporaneously and by the same mechanism? Did this colocalization confer selective advantage through additive or synergistic effects of multiple classes of defensive metabolites? Answering these questions requires continued mining and functional validation of metabolic gene clusters across broader plant species and analysis of impacts of clustering in evolutionary and ecological contexts.

Materials and methods

Key Resources T	able			
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information

	T	Т	 	
gene (<i>Solanum</i> <i>lycopersicum</i> M82)	SI-AACS1	This paper	GeneBank: MT078737	Characterized and named in the results
gene (<i>Solanum</i> <i>lycopersicum</i> M82)	SI-AECH1	This paper	GeneBank: MT078736	Characterized and named in the results
gene (<i>Solanum</i> pennellii LA0716)	Sp-AACS1	This paper	GeneBank: MT078735	Characterized and named in the results
gene (<i>Solanum</i> pennellii LA0716)	Sp-AECH1	This paper	GeneBank: MT078734	Characterized and named in the results
gene (Solanum quitoense)	Sq-AACS1	This paper	GeneBank: MT078732	Characterized and named in the results
gene (Solanum quitoense)	Sq-AECH1	This paper	GeneBank: MT078731	Characterized and named in the results
gene (Solanum quitoense)	Sq_c35719	This paper	GeneBank: MT078733	Characterized and named in the results
Software, algorithm	Trimmomatic	http://www.usadell ab.org/cms/index. php?page=trimmo matic	RRID:SCR_0118 48	
Software, algorithm	TopHat	http://ccb.jhu.edu/ software/tophat/in dex.shtml	RRID:SCR_01303 5	
Software, algorithm	Cufflinks	http://cole- trapnell- lab.github.io/cuffli nks/cuffmerge/	RRID:SCR_01459 7	
Software, algorithm	MCScanX- transposed	http://chibba.p gml.uga.edu/ mcscan2/tran sposed/		
Software, algorithm	RAxML	https://github.com/ stamatak/standar d-RAxML	RRID:SCR_0060 86	
Software, algorithm	Mesquite	https://www.mesq uiteproject.org/	RRID:SCR_01799 4	

Plant materials and trichome metabolite extraction

The seeds of cultivated tomato *Solanum lycopersicum* M82 were obtained from the C.M. Rick Tomato Genetic Resource Center (http://tgrc/ucdvis.edu), RRID:SCR_014954. Tomato introgression lines (ILs) and tomato backcross inbred lines (BILs) were from Dr. Dani Zamir (Hebrew University of Jerusalem). The tomato seeds were treated with ½ strength bleach for 30 minutes and washed with de-ionized water three or more times before placing on wet filter paper in a Petri dish. After germination, the seedlings were transferred to peat-based propagation mix (Sun Gro Horticulture) and transferred to a growth chamber for two or three weeks under 16 h photoperiod, 28 °C day and 22 °C night temperatures, 50% relative humidity, and 300 μmol m⁻² s⁻¹ photosynthetic photon flux density. The youngest fully developed leaf was submerged in 1 mL extraction solution in a 1.5 mL screw cap tube and agitated gently for 2 min. The extraction solution contains acetonitrile/isopropanol/water (3:3:2) with 0.1% formic acid and 10 μM propyl-4-hydroxybenzoate as internal standard. The interactive protocol of acylsugar extraction is available in Protocols.io at http://dx.doi.org/10.17504/protocols.io.xj2fkqe.

DNA construct assembly and tomato transformation

Assembly of the CRISPR-Cas9 constructs was as described (Brooks et al., 2014; Leong et al., 2019). Two guide RNAs (gRNAs) were designed targeting one or two exons of each gene to be knocked out by the CRISPR-Cas9 system. The gRNAs were synthesized gene (gBlocks) by IDT (Integrated DNA Technologies, location) (Supplementary file3). For each CRISPR construct, two gBlocks and four plasmids from Addgene, pICH47742::2x35S-5'UTR-hCas9 (STOP)-NOST (Addgene no. 49771), pICH41780 (Addgene no. 48019), pAGM4723 (Addgene no. 48015),

395

396 397

398

399

400

401

402

403

404

406

405

407

408

409

410

411

412

413

414

415

416

417

418

Page 18 of 51

pICSL11024 (Addgene no. 51144), were mixed for DNA assembly using the Golden Gate assembly kit (NEB).

For *in plant*a tissue specific reporter gene analysis, 1.8 kb upstream of the annotated translational start site of Sl-AACS1 and Sl-AECH were amplified using the primer pairs SIAACS1-pro F/R and SIECH1-pro F/R (Supplementary file3). The amplicon was inserted into the entry vector pENTR/D-TOPO, followed by cloning into the GATEWAY vector pKGWFS7. For ectopically expressing Sp-AACS1 in the cultivated tomato CRISPR mutant sl-aacs1, Sp-AACSI gene including 1.8 kb upstream of the translational start site of Sp-AACSI was amplified using the primer pair SpAACS1-pro-gene F/R (Supplementary file3). The amplicon was inserted into the entry vector pENTR/D-TOPO, followed by cloning into the GATEWAY vector pK7WG.

The plant transformation of S. lycopersicum M82 and S. pennellii LA0716 was performed using the Agrobacterium tumefaciens strain AGL0 following published protocols (Leong et al., 2019; McCormick, 1997). The primers used for genotyping the S. lycopersicum M82 transgenic plants harboring pK7WG or pKGWFS7 construct are listed in Supplementary file3. For genotyping the S. lycopersicum M82 CRISPR mutants in the T1 generation, the sequencing primers listed in Supplementary file3 were used to amplify the genomic regions harboring the gRNAs and the resultant PCR products were sent for Sanger sequencing. For genotyping the S. pennellii LA0716 CRISPR mutants in the T0 generation, the sequencing primers listed in Supplementary file3 were used to amplify the genomic regions harboring the gRNAs. The resulting PCR products were cloned into the pGEM-T easy vector (Promega) and transformed into E. coli. Plasmids from at least six individual E. coli colonies containing the amplified products were extracted and verified by Sanger sequencing.

For protein subcellular targeting analysis, the open reading frame (ORF) of Sl-AACS1, Sl-AECH1,

Protein subcellular targeting in tobacco mesophyll cells

and Solvc07g043660 were amplified using the primers listed in Supplementary file3. These

amplicons were inserted into pENTR/D-TOPO respectively, followed by subcloning into the GATEWAY vectors pEarlevGate102 (no. CD3-684) and pEarlevGate104 (no. CD3-686), which were obtained from Arabidopsis Biological Resource Center (ABRC). For the pEarleyGate102 constructs, the CFP was fused to the C-terminal of the tested proteins. For the pEarleyGate104 constructs, the YFP was fused to the protein N-terminus. Transient expressing the tested proteins was performed following an established protocol (Batoko et al., 2000) with minor modifications. In brief, cultures of A. tumefaciens (strain GV3101) harboring the expression vectors were washed and resuspended with the infiltration buffer (20 mM acetosyringone, 50 mM MES pH 5.7, 0.5% glucose [w/v] and 2 mM Na₃PO₄) to reach OD_{600nm} = 0.05. Four-week-old tobacco (Nicotiana tabacum ev. Petit Havana) plants grew in 21°C and 8 h short-day conditions were infiltrated, and then maintained in the same growth condition for three days before being sampled for imaging. The GV3101 cultures containing the mitochondria marker MT-RFP (Nelson et al., 2007) were co-infiltrated to provide the control signals for mitochondrial targeting. In separate experiments, the GV3101 cultures containing the peroxisome marker RFP-PTS (Nelson et al., 2007) were co-infiltrated to provide the control signals for peroxisomal targeting.

Confocal Microscopy

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

A Nikon A1Rsi laser scanning confocal microscope and Nikon NIS-Elements Advanced Research software were used for image acquisition and handling. For visualizing GFP fluorescence in trichomes of the tomato transformants, the excitation wavelength at 488 nm and a 505- to 525-nm emission filter were used for the acquisition. For visualizing signals of fluorescence proteins in the tobacco mesophyll cells, CFP, YFP and RFP, respectively, were detected by excitation lasers of 443 nm, 513 nm, 561 nm and emission filters of 467-502 nm, 521-554 nm, 580-630 nm.

N. benthamiana transient gene expression and membrane lipid analysis

For *N. benthamiana* transient expression of *Sl-AACS1*, *Sl-AECH1*, and homologs of *AECH1*, the ORFs of these genes were amplified using primers listed in Supplementary file3, followed by

subcloning into pEAQ-HT vector using the Gibson assembly kit (NEB). Linearization of pEAQ-HT vector was performed by XhoI and AgeI restriction enzyme double digestion. A. tumefaciens (strain GV3101) harboring the pEAO-HT constructs were grown in LB medium containing 50 ug/mL kanamycin, 30 ug/mL gentamicin, and 50 ug/ml rifampicin at 30 °C. The cells were collected by centrifugation at 5000 g for 5 min and washed once with the resuspension buffer (10 mM MES buffer pH 5.6, 10 mM MgCl₂, 150 µM acetosyringone). The cell pellet was resuspended in the resuspension buffer to reach $OD_{600nm} = 0.5$ for each strain and was incubated at room temperature for 1 h prior to infiltration. Leaves of 4 to 5-week-old N. benthamiana grown under 16 h photoperiod were used for infiltration. Five days post infiltration, the infiltrated leaves

were harvested, ground in liquid nitrogen, and stored at -80 °C for later analysis.

The membrane lipid analysis was performed as previously described (Wang and Benning, 2011). In brief, the *N. benthamiana* leaf polar lipids were extracted in the organic solvent containing methanol, chloroform, and formic acid (20:10:1, v/v/v), separated by thin layer chromatography (TLC), converted to fatty acyl methylesters (FAMEs), and analyzed by gasliquid chromatography (GLC) coupled with flame ionization. The TLC plates (TLC Silica gel 60, EMD Chemical) were activated by ammonium sulfate before being used for lipid separation. Iodine vapor was applied to TLC plates after lipid separation for brief reversible staining. Different lipid groups on the TLC plates were marked with a pencil and were scraped for analysis. For LC/MS analysis, lipids were extracted using the buffer containing acetonitrile/isopropanol/water (3:3:2) with 0.1% formic acid and 10 μM propyl-4-hydroxybenzoate as the internal standard.

Protein expression and ACS enzyme assay

To express His-tagged recombinant protein Sl-AACS1, the full-length *Sl-AACS* ORF sequence was amplified using the primer pair SlAACS1-pET28_F/R (Supplementary file3) and was cloned into pET28b (EMD Millipore) using the Gibson assembly kit (NEB). The pET28b vector was

linearized by digesting with BamHI and XhoI to create overhangs compatible for Gibson assembly. The pET28b constructs were transformed into BL21 Rosetta cells (EMD Millipore). The protein expression was induced by adding 0.05 mM isopropyl β -D-1-thiogalactopyranoside to the cultures when the OD_{600nm} = 0.5. The *E. coli* cultures were further grown overnight at 16 °C, 120 rpm. The His-tagged proteins were purified by Ni-affinity gravity-flow chromatography using the Ni-NTA agarose (Oiagen) following the product manual.

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

Measurement of acvl-CoA synthetase activity was performed using minor modifications of the coupled enzyme assay described by Schneider et al. (Schneider et al., 2005). A multimode plate reader (PerkinElmer, mode EnVision 2104) compatible with the 96-well UV microplate was used for the assays. The fatty acid substrates were dissolved in 5% Triton X-100 (v/v) to make 5 mM stock solutions. The enzyme assay premix was prepared containing 0.1 M Tris-HCl (pH 7.5), 2 mM dithiothreitol, 5 mM ATP, 10 mM MgCl₂, 0.5 mM CoA, 0.8 mM NADH, 250 uM fatty acid substrate, 1 mM phosphoenolpyruvate, 20 units myokinase (Sigma-Aldrich, catalog no. M3003), 10 units pyruvate kinase (Roche, 10128155001), 10 units lactate dehydrogenase (Roche, 10127230001), and was aliquoted 95 µL each to the 96-well microplate. The reaction was started by adding 5 µL (1-2 µg) proteins. The chamber of the plate reader was set to 30 °C and the OD at 340 nm was recorded every 5 min for 40 min. Oxidation of NADH, which is monitored by the decrease of OD_{340nm}, was calculated using the NADH extinction coefficient 6.22 cm² µmol⁻¹. Every two moles of oxidized NADH is equivalent to one mole of acyl-CoA product generated in the reaction. To measure the parameters of enzyme kinetics, the fatty acid substrate concentration was varied from 0 to 500 µM, with NADH set at 1 mM. The fatty acid substrates, sodium acetate (C2:0), sodium butyrate (C4:0), sodium hexanoate (C6:0), sodium octanoate (C8:0), sodium decanoate (C10:0), sodium laurate (C12:0), sodium myristate (C14:0), sodium palmitate (C16:0), and sodium stearate (C18:0), were purchased from Sigma-Aldrich. Trans-2-decenoic acid (C10:1), 8-methylnonanoic acid (iC10:0), 3-hydroxy lauric acid (C12:OH), and 3-hydroxy myristic acid (C14:OH) were purchased from Cayman Chemical.

RNA extraction, sequencing, and differential gene expression analysis

Total RNA was extracted from trichomes isolated from stems and shaved stems of 7-week-old *S. pennellii* LA0716 plants using the RNAeasy Plant Mini kit (Qiagen) and digested with DNase I. A total of four RNA samples extracted from two tissues with two replicates were used for RNA sequencing. The sequencing libraries were prepared using the KAPA Stranded RNA-Seq Library Preparation Kit. Libraries went through quality control and quantification using a combination of Qubit dsDNA high sensitivity (HS), Applied Analytical Fragment Analyzer HS DNA and Kapa Illumina Library Quantification qPCR assays. The libraries were pooled and loaded onto one lane of an Illumina HiSeq 4000 flow cell. Sequencing was done in a 2x150bp paired end format using HiSeq 4000 SBS reagents. Base calling was done by Illumina Real Time Analysis (RTA) v2.7.6 and output of RTA was demultiplexed and converted to FastQ format with Illumina Bcl2fastq v2.19.1.

The paired end reads were filtered and trimmed using Trimmomatic v0.32 (A. M. Bolger et al., 2014) with the setting (LLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:30), and then mapped to the *S. pennellii* LA0716 genome v2.0 (A. Bolger et al., 2014) using TopHat v1.4 (Trapnell et al., 2009) with the following parameters: -p (threads) 8, -i (minimum intron length) 50, -I (maximum intron length) 5000, and -g (maximum hits) 20. The FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values for the genes were analyzed via Cufflinks v2.2 (Trapnell et al., 2010). For differential expression analysis, the HTseq package (Anders et al., 2015) in Python was used to get raw read counts, then Edge R version 3.22.5 (McCarthy et al., 2012) was used to compare read counts between trichome-only RNA and shaved stem RNA using a generalized linear model (glmQLFit).

VIGS and qRT-PCR

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

For VIGS analysis of Sq-AACS1 and Sq-AECH1 in S. quitoense, the fragments of these two genes, as well as the phytoene desaturase (PDS) gene fragment, were amplified using the primers listed in Supplementary file3, cloned into pTRV2-LIC (ABRC no. CD3-1044) using the ligationindependent cloning method (Dong et al., 2007), and transformed into A. tumefaciens (strain GV3101). The VIGS experiments were performed as described (Leong et al., 2020). In brief, the Agrobacterium strains harboring pTRV2 constructs, the empty pTRV2, or pTRV1 were grown overnight in separate LB cultures containing 50 µg/mL kanamycin, 10 µg/mL gentamicin, and 50 µg/ml rifampicin at 30 °C. The cultures were re-inoculated in the induction media (50 mM MES pH5.6, 0.5% glucose [w/v], 2 mM NaH₂PO₄, 200 µM acetosyringone) for overnight growth. The cells were harvested, washed, and resuspended in the buffer containing 10 mM MES, pH 5.6, 10 mM MgCl₂, and 200 μ M acetosyringone with the OD_{600nm} = 1. Different cultures containing pTRV2 constructs were mixed with equal volume of pTRV1 cultures prior to infiltration. The 2to 3-week-old young S. quitoense seedlings grown under 16 h photoperiod at 24 °C were used for infiltration: the two fully expanded cotyledons were infiltrated. Approximately three weeks post inoculation, the fourth true leaf of each infiltrated plant was cut in half for acylsugar quantification and gene expression analysis, respectively. The onset of the albino phenotype of the control group infiltrated with the PDS construct was used as a visual marker to determine the harvest time and leaf selection for the experimental groups. At least fourteen plants were analyzed for each construct. The trichome acylsugars were extracted using the solution containing acetonitrile/isopropanol/water (3:3:2) with 0.1% formic acid and 1 µM telmisartan as internal standard, following the protocol at http://dx.doi.org/10.17504/protocols.io.xj2fkqe.

The leaf RNA was extracted using RNeasy Plant Mini kits (Qiagen) and digested with DNase I. The first-strand cDNA was synthesized by Superscript II (Thermofisher Scientific) using total RNA as templates. Quantitative real-time PCR was performed to analyze the *Sq*-

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

AACSI or Sq-AECH1 mRNA in S. quitoense leaves using the primers listed in Supplementary file3. EF1α was used as a control gene. A QuantStudio 7 Flex Real-Time PCR System with Fast SYBR Green Master Mix (Applied Biosystems) was used for the analysis. The relative quantification method $(2^{-\Delta\Delta Ct})$ was used to evaluate the relative transcripts levels.

LC/MS analysis

Trichome acylsugars extracted from tomato IL and BILs were analyzed using a Shimadzu LC-20AD HPLC system connected to a Waters LCT Premier ToF mass spectrometer. Ten microliter samples were injected into a fused core Ascentis Express C18 column (2.1 mm × 10 cm, 2.7 µm particle size; Sigma-Aldrich) for reverse-phase separation with column temperature set at 40 °C. The starting condition was 90% solvent A (0.15% formic acid in water) and 10% solvent B (acetonitrile) with flow rate set to 0.4 mL/min. A 7 min linear elution gradient was used: ramp to 40% B at 1 min, then to 100% B at 5 min, hold at 100% B to 6 min, return to 90% A at 6.01 min and hold until 7 min.

For analyzing trichome acylsugars extracted from S. pennellii transgenic plants and membrane lipids from N. benthamiana, a Shimadzu LC-20AD HPLC system connected to a Waters Xevo G2-XS QToF mass spectrometer was used. The starting condition were 95% solvent A (10 mM ammonium formate, pH 2.8) and 5% solvent B (acetonitrile) with flow rate set to 0.3 mL/min. A 7 min linear elution gradient used for acylsugar analysis was: ramp to 40% B at 1 min, then to 100% B at 5 min, hold at 100% B to 6 min, return to 95% A at 6.01 min and hold until 7 min. A 12 min linear elution gradient used for the lipid analysis was: ramp to 40% B at 1 min, then to 100% B at 5 min, hold at 100% B to 11 min, return to 95% A at 11.01 min and hold until 12 min.

For analyzing trichome acylsugars extracted from other plants, a Waters Acquity UPLC was coupled to a Waters Xevo G2-XS OToF mass spectrometer. The starting condition was 95% solvent A (10 mM ammonium formate, pH 2.8) and 5% solvent B (acetonitrile) with flow rate set

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

to 0.3 mL/min. A 7 min linear elution gradient was: ramp to 40% B at 1 min, then to 100% B at 5 min, hold at 100% B to 6 min, return to 95% A at 6.01 min and held until 7 min. A 14 min linear elution gradient was: ramp to 35% B at 1 min, then to 85% B at 12 min, then to 100% B at 12.01 min, hold at 100% B to 13 min, return to 95% A at 13.01 min and held until 14 min.

For Waters LCT Premier ToF mass spectrometer, the MS settings of electrospray ionization in negative mode were: 2.5 kV capillary voltage, 100°C source temperature, 350°C desolvation temperature, 350 liters/h desolvation nitrogen gas flow rate, 10 V cone voltage, and mass range m/z 50 to 1500 with spectra accumulated at 0.1 seconds/function. Three collision energies (10, 40, and 80 eV) were used in separate acquisition functions to generate both molecular ion adducts and fragments. For Waters Xevo G2-XS QToF mass spectrometer, the MS settings of the negative ion-mode electrospray ionization were as follows: 2.00 kV capillary voltage, 100 °C source temperature, 350 °C desolvation temperature, 600 liters/h desolvation nitrogen gas flow rate, 35V cone voltage, mass range of m/z 50 to 1000 with spectra accumulated at 0.1 seconds/function. Three collision energies (0, 15, and 35 eV) were used in separate acquisition functions. The MS settings for positive ion-mode electrospray ionization were: 3.00 kV capillary voltage, 100 °C source temperature, 350 °C desolvation temperature, 600 liters/h desolvation nitrogen gas flow rate, 35V cone voltage, mass range of m/z 50 to 1000 with spectra accumulated at 0.1 seconds/function. Three collision energies (0, 15, and 45 eV) were used in separate acquisition functions. The Waters OuanLynx software was used to integrate peak areas of the selected ion relative to the internal standard. For quantification purpose, data collected with the lowest collision energy was used in the analysis.

Gene coexpression analysis

The publicly available tomato RNA-seq datasets and the methods used for normalizing FPKM, gene expression correlation analysis were described in a recent study (Moore et al., 2020). 926 RNA-seq Sequence Read Archive (SRA) files for tomato from 47 studies were downloaded from

National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/) (Table S6 in (Moore et al., 2020). Reads were filtered using Trimmomatic (A. M. Bolger et al., 2014) based on the sequence quality with default settings, and mapped to the tomato NCBI S. lycopersicum genome 2.5 using TopHat (Trapnell et al., 2009). Read files with <70% mapped reads were discarded. Fragments per kilobase of transcript per million mapped reads (FPKM) were calculated using Cufflinks (Trappell et al., 2010). The pipeline for FPKM calling was put in https://github.com/ShiuLab/RNAseq pipeline. The median FPKM of multiple replicates was used for each sample, resulting in FPKM values in 372 samples. To draw the heatmap of gene expression profiles, FPKM values of a gene across all the samples were scaled, where the maximum FPKM was scaled to 1, while the minimum value was 0. Synteny scan Protein sequences of annotated genes and the corresponding annotation files in General Feature Format (GFF) of 11 Solanaceae species, *Ipomoea trifida*, and *Coffea canephora* were downloaded from National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/genome/) or Solanaceae Genomics Network (SGN, https://solgenomics.net/). The GFF files contain the coordinates of annotated genes on assembled chromosomes or scaffolds. The sources and version numbers of sequences and GFF files used are: S. lycopersicum ITAG3.2 (SGN) and V2.5 (NCBI), S. pennellii SPENNV200 (NCBI) and v2.0 (SGN), S. tuberosum V3.4 (SGN), S. melongena r2.5.1 (SGN), Capsicum annuum L. zunla-1 V2.0 (SGN), C. annuum var. glabriusculum V2.0 (SGN), Nicotiana attenuata NIATTr2 (SGN), N. tomentosiformis V01 (NCBI), N. benthamiana V1.0.1 (SGN), Petunia axillaris V1.6.2 (SGN), P. inflata V1.0.1 (SGN), I. trifida V1.0 (NCBI), and C. canephora Vx (SGN). To hypothesize the evolutionary history of genes in the acylsugar gene cluster, putative pseudogenes, which are homologs to protein-coding genes but with predicted premature

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

stops/frameshifts and/or protein sequence truncation, were also identified for each species as

described (Wang et al., 2018). Protein sequences from *Arabidopsis thaliana*, *Oryza sativa*, and *S. lycopersicum* were used as queries in the searches against the genomic regions of target species using TBLASTN (Altschul et al., 1990). The intergenic genomic sequences were identified as potential pseudogenes using the pipeline from as previously described (Campbell et al., 2014; Zou et al., 2009). If one of the six-frame translated sequences of the intergenic genomic sequences had significant similarity to annotated protein sequences, and had premature stops/frameshifts and/or were truncated (<30% of functional paralogs), the gene was defined as a pseudogene.

Genome-wide syntenic analysis was conducted using annotated protein-coding genes and putative pseudogenes from all the species with MCScanX-transposed (Wang et al., 2013) as described (Wang et al., 2018). The MCScanX-based analysis did not lead to a syntenic block of acylsugar gene cluster on chromosome 7 of *S. melongena* r2.5.1, which can be due to true absence, issues with genome assembly, or lack of coverage. To verify this, protein sequences of *S. lycopersi*cum genes in genomic blocks on chromosome 7 were searched against an updated *S. melongena* genome from The Eggplant Genome Project (http://ddlab.dbt.univr.it/eggplant/) that led to the identification of the synteny.

Phylogenetic tree building

Homologous genes of *Sl-AACS1* (ACS), *Sl-AECH1*(ECH), and *Solyc07g043670* (BAHD acyltransferase) were obtained through BLAST (Altschul et al., 1990) search from the genomes of 11 Solanaceae species, *Ipomoea trifida*, and *Coffea canephora* with an Expect value threshold of 1e-5. To simply the phylogenetic tree, sequences which are distantly related to the target genes were removed, and the remained sequences were used to rebuild the phylogenetic trees. The amino acid sequences were aligned using MUSCLE (Edgar, 2004) with the default parameters. The phylogenetic trees were built using the maximum likelihood method with 1000 bootstrap replicates. The trees were generated using RAxML/8.0.6 (Stamatakis, 2014) with the following parameters: -f a -x 12345 -p 12345 -# 1000 -m PROTGAMMAAUTO --auto-prot=bic, and were

shown with midpoint rooting. The final sequence alignments used to generate the phylogenetic trees were provided in Supplementary file 5.

Ancestral trait reconstruction

Ancestral trait state reconstruction was conducted using the maximum likelihood model Mk1 in Mesquite 3.6 (Massidon and Maddison, 2018). Four traits were inferred for their ancestral states. They are the presence of medium chain acylsugars, presence of ACS genes in the synteny, presence of ECH genes in the synteny, and presence of both ACS and ECH genes in the synteny. The phylogeny of Solanaceae species was based on a previous study (Sarkinen et al., 2013).

Acylsugar acyl chain composition analysis by GC-MS

Acyl chains were characterized from the corresponding fatty acid ethyl esters following transesterification of acylsugar extractions as previously reported (Ning et al., 2015). Plants were grown for 4-8 weeks and approximately ten leaves were extracted for 3 minutes in 10 mL of 1:1 isopropanol:acetonitrile with 0.01% formic acid. Extractions were dried to completeness using a rotary evaporator and then 300 μ L of 21% (v/v) sodium ethoxide in ethanol (Sigma) was added and incubated for 30 minutes with gentle rocking and vortexing every five minutes and 400 μ L hexane was added and vortexed for 30 seconds. To the hexane layer, 500 μ L of saturated sodium chloride in water was added and vortexed to facilitate a phase separation. After phase separation, the top hexane layer was transferred to a new tube. The phase separation by addition of 500 μ L hexane was repeated twice, with the final hexane layer transferred to a 2 mL glass vial with a glass insert.

The fatty acid ethyl esters were analyzed using an Agilent 5975 single quadrupole GC-MS equipped with a 30-m, 0.25-mm internal diameter fused silica column with a 0.25-µm film thickness VF5 stationary phase (Agilent). Injection of 1 µL of each hexane extract was performed using splitless mode. The gas chromatography program was as follows: inlet temperature, 250°C;

initial column temperature, 70°C held for 2 min; ramped at 20°C/min until 270°C, then held at 270°C 3 min. The helium carrier gas was used with 70 eV electron ionization. Acvl chain type was determined through NIST Version 2.3 library matches of the mass spectra of the corresponding ethyl ester and relative abundances were determined through integrating the corresponding peak area over the total acvl chain peak area. **Acknowledgements**: We thank the C.M. Rick Tomato Genetics Resource Center (University of California Davis, CA USA) for providing tomato seeds, Zamir lab in Hebrew University of Jerusalem for providing tomato ILs and BILs seeds. We acknowledge Dr. Kun Wang and Dr. Christoph Benning for their helpful guidance in lipid analysis. We thank Krystle Wiegert-Rininger and Cornelius Barry for their help in RNA sequencing and Dr. Kent Chapman from University of North Texas for helpful discussions. We acknowledge Kathleen Imre and Sara Haller for their help with tomato transformation. We thank the MSU Center for Advanced Microscopy and RTSF Mass Spectrometry and Metabolomics Core Facilities for their support with LC/MS analysis. Funding: This work was supported by the US National Science Foundation (NSF) Plant Genome Research Program grant IOS-1546617 to R.L.L and S.H.S; NSF grant DEB-1655386 and the U.S. Department of Energy Great Lakes Bioenergy Research Center (BER DE-SC0018409) to S.H.S: NSF grant MCB1727362 and AgBioResearch to F.B. This publication was made possible by a predoctoral training award to B.J.L. from Grant Number T32-GM110523 from the National Institute of General Medical Sciences of the National Institutes of Health. R.C. was supported by the Plant Genomics at MSU REU Program funded in part by NSF 1757043. C.A.S. was supported

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

Competing interests: The authors declare that they have no competing interests.

by a postdoctoral fellowship from the NSF IOS-PGRP-1811055.

Data and materials availability: All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials. The RNA-seq reads were deposited in
the National Center for Biotechnology Information Sequence Read Archive under the accession
number PRJNA605501. The following materials require a material transfer agreement: pEAQ-HT
pK7WG, pKGWFS7, pEarleyGate102, pEarleyGate104, pTRV2-LIC, pICH47742::2x35S-
5'UTR-hCas9(STOP)-NOST, pICH41780, pAGM4723, and pICSL11024. Requests for
biological materials or data should be submitted to R.L.L. at lastr@msu.edu.
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.
J Mol Biol 215 :403–410. doi:10.1016/S0022-2836(05)80360-2
Anders S, Pyl PT, Huber W. 2015. HTSeq — A Python framework to work with high-throughput
sequencing data. Bioinformatics 31:166–169. doi:10.1093/bioinformatics/btu638
Bailey JA, Gu Z, Clark RA, Reinert K, Samonte R V., Schwartz S, Adams MD, Myers EW, Li
PW, Eichler EE. 2002. Recent segmental duplications in the human genome. Science.
doi:10.1126/science.1072047
Batoko H, Zheng HQ, Hawes C, Moore I. 2000. A Rab1 GTPase is required for transport between
the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants.
Plant Cell 12:2201-2218. doi:10.1105/tpc.12.11.2201
Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S,
Sorensen I, Lichtenstein G, Fich EA, Conte M, Keller H, Schneeberger K, Schwacke R,
Ofner I, Vrebalov J, Xu Y, Osorio S, Aflitos SA, Schijlen E, Jimenez-Gomez JM, Ryngajllo
M, Kimura S, Kumar R, Koenig D, Headland LR, Maloof JN, Sinha N, van Ham RCHJ,
Lankhorst RK, Mao L, Vogel A, Arsova B, Panstruga R, Fei Z, Rose JKC, Zamir D, Carrari
F, Giovannoni JJ, Weigel D, Usadel B, Fernie AR. 2014. The genome of the stress-tolerant

714	wild tomato species Solanum pennellii. Nat Genet 46:1034–1038. doi:10.1038/ng.3046
715	Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence
716	data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170
717	Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ, Osbourn A. 2015.
718	Investigation of terpene diversification across multiple sequenced plant genomes. Proc Natl
719	Acad Sci USA 112:E81–E88. doi:10.1073/pnas.1419547112
720	Brocard C, Hartig A. 2006. Peroxisome targeting signal 1: Is it really a simple tripeptide?
721	Biochim Biophys Acta - Mol Cell Res 1763:1565–1573. doi:10.1016/j.bbamcr.2006.08.022
722	Brooks C, Nekrasov V, Lippman ZB, Van Eck J. 2014. Efficient gene editing in tomato in the
723	first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-
724	associated9 system. Plant Physiol 166:1292-1297. doi:10.1104/pp.114.247577
725	Buchanan, B. B. Gruissem, W. Jones RL. 2015. Biochemistry and Molecular Biology of Plants,
726	2ND ed. Rockville, MD: American Society of Plant Physiologists.
727	Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE, Lei J, Achawanantakun R,
728	Jiao D, Lawrence CJ, Ware D, Shiu SH, Childs KL, Sun Y, Jiang N, Yandell M. 2014.
729	MAKER-P: A Tool kit for the rapid creation, management, and quality control of plant
730	genome annotations. Plant Physiol 164:513-524. doi:10.1104/pp.113.230144
731	Castillo DA, Kolesnikova MD, Matsuda SPT. 2013. An effective strategy for exploring unknown
732	metabolic pathways by genome mining. J Am Chem Soc 135:5885-5894.
733	doi:10.1021/ja401535g
734	Chae L, Kim T, Nilo-Poyanco R, Rhee SY. 2014. Genomic signatures of specialized metabolism
735	in plants. Science 344 :510–513. doi:10.1126/science.1252076
736	D'Auria JC. 2006. Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol
737	9:331–340. doi:10.1016/j.pbi.2006.03.016
738	Dehesh K, Edwards P, Fillatti JA, Slabaugh M, Byrne J. 1998. KAS IV: A 3-ketoacyl-ACP

739	synthase from Cuphea sp. is a medium chain specific condensing enzyme. Plant J 15:383-
740	390. doi:10.1046/j.1365-313X.1998.00218.x
741	Dehesh K, Jones A, Knutzon DS, Voelker TA. 1996. Production of high levels of 8:0 and 10:0
742	fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from
743	Cuphea hookeriana. Plant J 9:167–172. doi:10.1046/j.1365-313X.1996.09020167.x
744	Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP. 2007. A ligation-
745	independent cloning tobacco rattle virus vector for high-throughput virus-induced gene
746	silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol
747	145 :1161–1170. doi:10.1104/pp.107.107391
748	Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high
749	throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340
750	Eshed Y, Zamir D. 1995. An introgression line population of Lycopersicon pennellii in the
751	cultivated tomato enables the identification and fine mapping of yield-associated QTL.
752	Genetics 141:1147–1162.
753	Fan P, Leong BJ, Last RL. 2019. Tip of the trichome: evolution of acylsugar metabolic diversity
754	in Solanaceae. Curr Opin Plant Biol 49:8-16. doi:10.1016/j.pbi.2019.03.005
755	Fan P, Miller AM, Schilmiller AL, Liu X, Ofner I, Jones AD, Zamir D, Last RL. 2016. In vitro
756	reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic
757	network. <i>Proc Natl Acad Sci</i> 113 :E239–E248. doi:10.1073/pnas.1517930113
758	Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A,
759	Meeley RB, Briggs SP, Simcox K, Gierl A. 1997. Analysis of a chemical plant defense
760	mechanism in grasses. Science 277:696-699. doi:10.1126/science.277.5326.696
761	Ghosh B, Westbrook TC, Jones AD. 2014. Comparative structural profiling of trichome
762	specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar
763	profiles revealed by UHPLC/MS and NMR. Metabolomics 10:496-507.

764	doi:10.1007/s11306-013-0585-y 585 [pii]
765	Herrera-Salgado Y, Va L, Rios Y, Alvarez L. 2005. Myo-inositol-Derived glycolipids with anti-
766	inflammatory activity from Solanum lanceolatum. J Nat Prod 68:1031-1036.
767	Hurney SM. 2018. Strategies for profiling and discovery of acylsugar specialized metabolites.
768	Michigan State University.
769	Iskandarov U, Silva JE, Kim HJ, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. 2017. A
770	specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid
771	content of Cuphea seed oil. Plant Physiol 174:97–109. doi:10.1104/pp.16.01894
772	Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky
773	S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP,
774	Aharoni A. 2013. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated
775	by clustered genes. Science 341:175-179. doi:10.1126/science.1240230
776	Jeon JE, Kim J-G, Fischer CR, Mehta N, Dufour-Schroif C, Wemmer K, Mudgett MB, Sattely E.
777	2020. A pathogen-responsive gene cluster for highly modified fatty acids in tomato. Cell
778	180 :176-187.e19. doi:10.1016/j.cell.2019.11.037
779	Khersonsky O, Tawfik DS. 2010. Enzyme promiscuity: a mechanistic and evolutionary
780	perspective. Annu Rev Biochem 79:471–505. doi:10.1146/annurev-biochem-030409-143718
781	Leckie BM, D'Ambrosio DA, Chappell TM, Halitschke R, De Jong DM, Kessler A, Kennedy GG
782	Mutschler MA. 2016. Differential and synergistic functionality of acylsugars in suppressing
783	oviposition by insect herbivores. PLoS One 11:e0153345. doi:10.1371/journal.pone.0153345
784	Leong BJ, Hurney SM, Fiesel PD, Moghe GD, Jones AD, Last RL. 2020. Specialized metabolism
785	in a non-model nightshade: trichome acylinositol biosynthesis. Plant Physiol.
786	doi:10.1104/pp.20.00276
787	Leong BJ, Last RL. 2017. Promiscuity, impersonation and accommodation: evolution of plant
788	specialized metabolism. Curr Opin Struct Biol 47:105–112. doi:10.1016/j.sbi.2017.07.005

789	Leong BJ, Lybrand DB, Lou YR, Fan P, Schilmiller AL, Last RL. 2019. Evolution of metabolic
790	novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild
791	tomato. Sci Adv 5:eaaw3754. doi:10.1126/sciadv.aaw3754
792	Liu X, Enright M, Barry CS, Jones AD. 2017. Profiling, isolation and structure elucidation of
793	specialized acylsucrose metabolites accumulating in trichomes of <i>Petunia</i> species.
794	Metabolomics 13:1-10. doi:10.1007/s11306-017-1224-9
795	Liu Z, Suarez Duran HG, Harnvanichvech Y, Stephenson MJ, Schranz ME, Nelson D, Medema
796	MH, Osbourn A. 2019. Drivers of metabolic diversification: how dynamic genomic
797	neighbourhoods generate new biosynthetic pathways in the Brassicaceae. New Phytol.
798	doi:10.1111/nph.16338
799	Maeda HA. 2019. Evolutionary diversification of primary metabolism and its contribution to
800	plant chemical diversity. Front Plant Sci 10:881. doi:10.3389/fpls.2019.00881
801	Mandal S, Ji W, McKnight TD. 2020. Candidate gene networks for acylsugar metabolism and
802	plant defense in wild tomato Solanum pennellii. Plant Cell 32:81–99.
803	doi:10.1105/tpc.19.00552
804	Massidon WP, Maddison DR. 2018. Mesquite: A modular system for evolutionary analysis.
805	Version 3.4. http://www.mesquiteproject.org. doi:10.1017/CBO9781107415324.004
806	McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-
807	Seq experiments with respect to biological variation. <i>Nucleic Acids Res</i> 40 :4288–4297.
808	doi:10.1093/nar/gks042
809	McCormick S. 1997. Transformation of tomato with Agrobacterium tumefaciens In: Lindsey K,
810	editor. Plant Tissue Culture Manual. Dordrecht: Springer Netherlands. doi:10.1007/978-94-
811	009-0103-2
812	Millar AA, Smith MA, Kunst L. 2000. All fatty acids are not equal: Discrimination in plant
813	membrane lipids. Trends Plant Sci 5:95–101. doi:10.1016/S1360-1385(00)01566-1

814	Milo R, Last RL. 2012. Achieving diversity in the face of constraints: Lessons from metabolism.
815	Science 336:1663–1667. doi:10.1126/science.1217665
816	Mithöfer A, Boland W. 2012. Plant defense against herbivores: Chemical aspects. Annu Rev Plant
817	Biol 63:431–450. doi:10.1146/annurev-arplant-042110-103854
818	Moghe G, Last RL. 2015. Something old, something new: Conserved enzymes and the evolution
819	of novelty in plant specialized metabolism. <i>Plant Physiol</i> 169 :1512–1523.
820	doi:10.1104/pp.15.00994
821	Moghe GD, Leong BJ, Hurney S, Jones AD, Last RL. 2017. Evolutionary routes to biochemical
822	innovation revealed by integrative analysis of a plant-defense related specialized metabolic
823	pathway. eLife 6:e28468. doi:10.7554/eLife.28468
824	Moore BM, Wang P, Fan P, Lee A, Leong B, Lou Y-R, Schenck CA, Sugimoto K, Last R, Lehti-
825	Shiu MD, Barry CS, Shiu S-H. 2020. Within and cross species predictions of plant
826	specialized metabolism genes using transfer learning. bioRxiv.
827	doi:10.1101/2020.01.13.112102
828	Nadakuduti SS, Uebler JB, Liu X, Jones AD, Barry CS. 2017. Characterization of trichome-
829	expressed BAHD acyltransferases in Petunia axillaris reveals distinct acylsugar assembly
830	mechanisms within the Solanaceae. Plant Physiol 175:36-50. doi:10.1104/pp.17.00538
831	Nelson BK, Cai X, Nebenführ A. 2007. A multicolored set of in vivo organelle markers for co-
832	localization studies in Arabidopsis and other plants. <i>Plant J</i> 51 :1126–1136.
833	doi:10.1111/j.1365-313X.2007.03212.x
834	Ning J, Moghe GD, Leong B, Kim J, Ofner I, Wang Z, Adams C, Jones AD, Zamir D, Last RL.
835	2015. A feedback insensitive isopropylmalate synthase affects acylsugar composition in
836	cultivated and wild tomato. Plant Physiol 160:1821–1835. doi:10.1104/pp.15.00474
837	Noda-Garcia L, Liebermeister W, Tawfik DS. 2018. Metabolite-enzyme coevolution: From
838	single enzymes to metabolic pathways and networks. <i>Annu Rev Biochem</i> 87 :187–216.

839	doi:10.1146/annurev-biochem-062917-012023
840	Nützmann HW, Huang A, Osbourn A. 2016. Plant metabolic clusters – from genetics to genomics.
841	New Phytol 211:771–789. doi:10.1111/nph.13981
842	Nützmann HW, Osbourn A. 2014. Gene clustering in plant specialized metabolism. Curr Opin
843	Biotechnol 26:91–99. doi:10.1016/j.copbio.2013.10.009
844	Ofner I, Lashbrooke J, Pleban T, Aharoni A, Zamir D. 2016. Solanum pennellii backcross inbred
845	lines (BILs) link small genomic bins with tomato traits. Plant J 87:151–160.
846	doi:10.1111/tpj.13194
847	Ohlrogge J, Thrower N, Mhaske V, Stymne S, Baxter M, Yang W, Liu J, Shaw K, Shorrosh B,
848	Zhang M, Wilkerson C, Matthäus B. 2018. PlantFAdb: a resource for exploring hundreds of
849	plant fatty acid structures synthesized by thousands of plants and their phylogenetic
850	relationships. <i>Plant J</i> 96 :1299–1308. doi:10.1111/tpj.14102
851	Panchy N, Lehti-Shiu MD, Shiu S-H. 2016. Evolution of gene duplication in plants. <i>Plant Physiol</i>
852	171:2294–2316. doi:10.1104/pp.16.00523
853	Peters RJ. 2020. Doing the gene shuffle to close synteny: dynamic assembly of biosynthetic gene
854	clusters. New Phytol. doi:10.1111/nph.16631
855	Pichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. <i>Annu</i>
856	Rev Plant Biol 62:549–566. doi:10.1146/annurev-arplant-042110-103814
857	Prisic S, Xu M, Wilderman PR, Peters RJ. 2004. Rice contains two disparate ent-copalyl
858	diphosphate synthases with distinct metabolic functions. <i>Plant Physiol</i> 136 :4228–4236.
859	doi:10.1104/pp.104.050567
860	Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A. 2004. A gene cluster for secondary
861	metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proc Natl
862	Acad Sci USA 101:8233-8238. doi:10.1073/pnas.0401301101
863	Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller

H, Lesot A, Melton R, Osbourn A. 2006. A different function for a member of an ancient
and highly conserved cytochrome P450 family: From essential sterols to plant defense. Proc
Natl Acad Sci USA 103:18848-18853. doi:10.1073/pnas.0607849103
Rokas A, Wisecaver JH, Lind AL. 2018. The birth, evolution and death of metabolic gene clusters
in fungi. Nat Rev Microbiol 16:731-744. doi:10.1038/s41579-018-0075-3
Sainsbury F, Thuenemann EC, Lomonossoff GP. 2009. PEAQ: Versatile expression vectors for
easy and quick transient expression of heterologous proteins in plants. $Plant\ Biotechnol\ J$
7:682–693. doi:10.1111/j.1467-7652.2009.00434.x
Sarkinen T, Bohs L, Olmstead RG, Knapp S, Särkinen T, Bohs L, Olmstead RG, Knapp S. 2013.
A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated
1000-tip tree. BMC Evol Biol 13:214. doi:10.1186/1471-2148-13-214
Schenck CA, Last RL. 2019. Location, location! cellular relocalization primes specialized
metabolic diversification. FEBS J. doi:10.1111/febs.15097
Schilmiller A, Shi F, Kim J, Charbonneau AL, Holmes D, Daniel Jones A, Last RL. 2010. Mass
spectrometry screening reveals widespread diversity in trichome specialized metabolites of
tomato chromosomal substitution lines. <i>Plant J</i> 62 :391–403. doi:10.1111/j.1365-
313X.2010.04154.x
Schilmiller AL, Charbonneau AL, Last RL. 2012. Identification of a BAHD acetyltransferase that
produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci USA 109:16377-82.
doi:10.1073/pnas.1207906109
Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, Jones AD, Last RL. 2015. Functionally
divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar
metabolite diversity in Solanum trichomes. Plant Cell 27:1002–1017.
doi:10.1105/tpc.15.00087
Schläpfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R,

889	Bernard T, Kahn D, Rhee SY. 2017. Genome-wide prediction of metabolic enzymes,
890	pathways, and gene clusters in plants. Plant Physiol 173:2071–2059.
891	doi:10.1104/pp.16.01942
892	Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink
893	E, Stuible HP. 2005. A new type of peroxisomal acyl-coenzyme a synthetase from
894	Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of
895	jasmonic acid. <i>J Biol Chem</i> 280 :13962–13972. doi:10.1074/jbc.M413578200
896	Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M, Uauy C, Von
897	Wettstein-Knowles P. 2016. The <i>Cer-cqu</i> gene cluster determines three key players in a β -
898	diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp
899	Bot 67:2715–2730. doi:10.1093/jxb/erw105
900	Schuurink R, Tissier A. 2019. Glandular trichomes: micro-organs with model status? New Phytol
901	225 :2251–2266. doi:10.1111/nph.16283
902	Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of
903	large phylogenies. <i>Bioinformatics</i> 30 :1312–1313. doi:10.1093/bioinformatics/btu033
904	Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S,
905	Tabata S, Jørgensen K, Møller BL, Rook F. 2011. Genomic clustering of cyanogenic
906	glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the
907	repeated evolution of this chemical defence pathway. Plant J 68:273–286.
908	doi:10.1111/j.1365-313X.2011.04685.x
909	Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: Discovering splice junctions with RNA-Seq.
910	Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120
911	Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ,
912	Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated
913	transcripts and isoform switching during cell differentiation. <i>Nat Biotechnol</i> 28 :511–515.

914	doi:10.1038/nbt.1621
915	Voelker T, Kinney AJ. 2001. Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant
916	Physiol Plant Mol Biol 52 :335–361. doi:10.1146/annurev.arplant.52.1.335
917	Wang P, Moore BM, Panchy NL, Meng F, Lehti-Shiu MD, Shiu SH. 2018. Factors influencing
918	gene family size variation among related species in a plant family, Solanaceae. Genome Biol
919	Evol 10:2596–2613. doi:10.1093/gbe/evy193
920	Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: Detecting transposed gene duplications
921	based on multiple colinearity scans. <i>Bioinformatics</i> 29 :1458–1460.
922	doi:10.1093/bioinformatics/btt150
923	Wang Z, Benning C. 2011. Arabidopsis thaliana polar glycerolipid profiling by thin layer
924	chromatography (TLC) coupled with gas-liquid chromatography (GLC). J Vis Exp 2-7.
925	doi:10.3791/2518
926	Weng J-K, Philippe RN, Noel JP. 2012. The rise of chemodiversity in plants. <i>Science</i> 336 :1667–
927	1670. doi:10.1126/science.1217411
928	Weng JK. 2014. The evolutionary paths towards complexity: A metabolic perspective. New
929	Phytol 201 :1141–1149. doi:10.1111/nph.12416
930	Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CCC, Keller NP. 2013. Prototype of an
931	intertwined secondary-metabolite supercluster. <i>Proc Natl Acad Sci USA</i> 110 :17065–17070.
932	doi:10.1073/pnas.1313258110
933	Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ. 2004. Identification of syn-pimara-7,15-
934	diene synthase reveals functional clustering of terpene synthases involved in rice
935	phytoalexin/allelochemical biosynthesis. Plant Physiol 135:2098–2105.
936	doi:10.1104/pp.104.045971
937	Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE
938	Walker C, Bowser TA, Graham IA. 2012. A papaver somniferum 10-gene cluster for

synthesis of the anticancer alkaloid noscapine. Science 6089:1704–1708.
doi:10.1126/science.1220757
Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A. 2017. A global
coexpression network approach for connecting genes to specialized metabolic pathways in
plants. Plant Cell 29:944–959. doi:10.1105/tpc.17.00009
Zi J, Mafu S, Peters RJ. 2014. To gibberellins and beyond! Surveying the evolution of
(di)terpenoid metabolism. Annu Rev Plant Biol 65:259–286. doi:10.1146/annurev-arplant-
050213-035705
Zou C, Lehti-Shiu MD, Thibaud-Nissen F, Prakash T, Buell CR, Shiu SH. 2009. Evolutionary
and expression signatures of pseudogenes in Arabidopsis and rice. <i>Plant Physiol</i> 151 :3–15.
doi:10.1104/pp.109.140632
Main Figure Legends
Figure 1. Primary metabolites are biosynthetic precursors of tomato trichome acylsugars. In
cultivated tomatoes, the trichome acylsucroses are synthesized by four SI-ASATs using the primary
metabolites – sucrose and different types of acyl-CoAs – as substrates. In this study we provide evidence
that medium chain fatty acids are converted to acyl-CoAs by an acyl-CoA synthetase for medium chain
acylsugar biosynthesis.
Figure 2. Mapping of a genetic locus related to acylsugar variations in tomato interspecific
introgression lines. (A) Electrospray ionization negative (ESI ⁻) mode, base-peak intensity (BPI) LC/MS
chromatogram of trichome metabolites from cultivated tomato S. lycopersicum M82 and introgression line
IL7-4. The orange bars highlight two acylsugars that have higher abundance in IL7-4 than in M82. For the
acylsucrose nomenclature, "S" refers to a sucrose backbone, "3:22" means three acyl chains with twenty-
two carbons in total. The length of each acyl chain is shown in the parentheses. (B) Peak area percentage
of seven major trichome acylsugars in M82 and IL7-4. The sum of the peak area percentage of each
acylsugar is equal to 100% in each sample. The data is shown for three plants ± SEM. **p < 0.01, Welch
two-sample <i>t</i> test. <i>Figure 2</i> — <i>source data 1</i> includes values for the analysis. (C) Mapping the genetic

967 locus contributing to the IL7-4 acylsugar phenotype using selected backcross inbred lines (BILs) that have 968 recombination break points within the introgression region of IL7-4. (D) Narrowing down candidate genes 969 in the locus using trichome/stem RNA-seg datasets generated from previous study (Ning et al., 2015). A 970 region with duplicated genes of three types – acyl-CoA synthetase (ACS), BAHD acyltransferase, and 971 enoyl-CoA hydratase (ECH) – is shown. The red-blue color gradient provides a visual marker to rank the 972 expression levels represented by Fragments Per Kilobase of transcript per Million mapped reads (FPKM). 973 Coexpression analysis of tomato ACS, ECH, and BAHD acyltransferase family genes is shown in Figure 2 974

— figure supplement 1.

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

Figure 3. CRISPR/Cas9-mediated gene knockout of tomato SI-AACS1 or SI-AECH1 eliminates detectable medium chain containing acylsugars. (A) Combined LC/MS extracted ion chromatograms of trichome metabolites from CRISPR mutants sl-aacs1 and sl-aech1. The medium chain acylsugars that are not detected in the two mutants are denoted by pairs of vertical dotted lines. Figure 3 — figure supplement 1 describes the design of the qRNAs and details of the gene edits. (B) Quantification of seven major trichome acylsugars in sl-aacs1 and sl-aech1 mutants. Two independent T2 generation transgenic lines for each mutant were used for analysis. The peak area/internal standard (IS) normalized by leaf dry weight (DW) is shown from six plants ± SEM. Figure 3 — source data 1 includes values for the analysis. (C) Confocal fluorescence images showing that GFP fluorescence driven by SI-AACS1 or SI-AECH1 is located in the tip cells of type I/IV trichomes. Their tissue specific expressions are similar to SI-ASAT1 (Fan et al., 2016), which locates in a chromosome 12 region that is syntenic to the locus containing SI-AACS1 and SI-AECH1. Figure 3 — figure supplement 2 provides the detailed information of the syntenic region. SI-AACS1, SI-AECH1, and SI-ASAT1 are the only gene models with demonstrated functions in acylsugar biosynthesis.

Figure 4. Functional analysis of SI-AACS1 and SI-AECH1 in N. benthamiana and recombinant SI-AACS1 enzyme analysis. (A) Confocal images of co-expression analysis in tobacco leaf epidermal cells using C-terminal CFP-tagged either SI-AACS1 or SI-AECH1 and the mitochondrial marker MT-RFP. Arrowheads point to mitochondria that are indicated by MT-RFP fluorescent signals. Scale bar equals 10 μm. Figure 4 — figure supplement 1B describes that the expressed YFP-recombinant proteins were not co-localized with the peroxisomal marker RFP-PTS (B) Aliphatic fatty acids of different chain lengths were used as the substrates to test SI-AACS1 acyl-CoA synthase activity. Mean amount of acyl-CoAs generated 996 (nmol r 997 measu 998 activity 999 (PC), v 1000 leaves 1001 shown 1002 and 18 1003 was pe

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

(nmol min⁻¹ mg⁻¹ proteins) was used to represent enzyme activities. The results are from three measurements ± SEM. *Figure 4* — *source data 1* includes values for the measurements. (**C**) Enzyme activity of SI-AACS1 for six fatty acid substrates. (**D**) Identification of membrane lipid phosphatidylcholine (PC), which contains medium acyl chains, following transient expression of *SI-AECH1* in *N. benthamiana* leaves. The results from expressing *SI-AACS1* and co-expressing both *SI-AECH1* and *SI-AACS1* are also shown. Mole percentage (Mol %) of the acyl chains from membrane lipids with carbon number 12, 14, 16, and 18 are shown for three biological replicates ± SEM. *p < 0.05, **p < 0.01. Welch two-sample *t* test was performed comparing with the empty vector control. *Figure 4* — *source data 2* includes values for the lipid analysis. Acyl groups of the same chain lengths with saturated and unsaturated bonds were combined in the calculation. *Figure 4* — *figure supplement 2* shows that the putative *SI-AECH1* orthologs from *S. pennellii* and *S. quitoense* generated medium chain lipids in the infiltrated leaves.

Figure 5. AACS1 and AECH1 are evolutionarily conserved in Solanum plants. (A) A conserved syntenic genomic region containing AACS1 and AECH1 was found in three selected Solanum species. Nodes representing estimated dates since the last common ancestors (Sarkinen et al., 2013) shown on the left. The closest homologs of AACS1 and AECH1 in Solanum quitoense are shown without genomic context because the genes were identified from RNA-seg and genome seguences are not available. The lines connect genes representing putative orthologs across the four species. The trichome/stem RNA-seq data of two biological S. pennellii replicates are summarized (Supplementary file2) for genes in the syntenic region. The red-blue color gradient provides a visual marker to rank the expression levels in FPKM. Structures of representative medium chain acylsugars from S. quitoense (acylinositol, 14:26) (Hurney, 2018) and S. pennellii (acylglucose, G3:19) (Leong et al., 2019) are on the right. Figure 5 figure supplement 1 shows that stable Sp-AACS1 transformation of the M82 CRISPR mutant sl-aacs1 restores C12 containing acylsugars (B) CRISPR/Cas9-mediated gene knockout of Sp-AACS1 or Sp-AECH1 in S. pennellii produce no detectable medium chain containing acylsugars. The ESI⁺ mode LC/MS extracted ion chromatograms of trichome metabolites are shown for each mutant. The m/z 127.01 (left panel) corresponds to the glucopyranose ring fragment that both acylsucroses and acylglucoses generate under high collision energy positive-ion mode. The m/z 155.14 (center panel) and 183.17 (right panel) correspond to the acylium ions from acylsugars with chain length of C10 and C12, respectively. Figure 5 — figure supplement 2A-C describes the design of the gRNAs and the detailed information of gene edits. (C) Silencing Sq-AACS1 (Sq-c34025) or Sq-AECH1 (Sq-c37194) in S. quitoense using VIGS leads to

reduction of total acylsugars. The peak area/internal standard (IS) normalized by leaf dry weight was shown from sixteen plants ± SEM. ***p < 0.001, Welch two-sample *t* test. *Figure 5 — figure supplement* **2E and 2F** describes the VIGS experimental design and the representative LC/MS extracted ion chromatograms of *S. quitoense* major acylsugars. (**D**) Reduced gene expression of *Sq-AACS1* or *Sq-AECH1* correlates with decreased acylsugar levels in *S. quitoense*. The qRT-PCR gene expression data are plotted with acylsugar levels of the same leaf as described in *Figure 5 — figure supplement 2E*. **Figure 5 — source data 1** includes raw data for the *S. quitoense* VIGS experiments.

Figure 6. Evolution of the acylsugar gene cluster is associated with acylsugar acyl chain diversity across the Solanaceae family. (A) The acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup species *Ipomea trifida* (Convolvulaceae) and *Coffea canephora* (Rubiaceae). This is a simplified version adapted from *Figure 6 — figure supplement 1*. Only genes from the three families – ACS (blue), BAHD acyltransferase (green), and ECH (orange) – are shown. For information about the syntenic region size in each species refer to *Figure 6 — figure supplement 1* and *Supplementary file 4*. (B) The evolutionary history of the acylsugar gene cluster and its relation to the acylsugar phenotypic diversity. The evolution of BAHD acyltransferase genes is inferred based on *Figure 6 — figure supplement 2* and *Figure 6 — figure supplement 5*. ECH genes based on *Figure 6 — figure supplement 4* and *Figure 6 — figure supplement 6*. The temporal order for the emergence for the three types of genes are shown in the colored boxes on the left: green box (BAHD acyltransferase), orange box (ECH), blue box (ACS). The yellow star represents the Solanaceae-specific WGD. Structures of representative short and medium chain acylsugars were shown on the right. *Figure 6 — figure supplement 8* describes distribution of acylsugar acyl chains with different lengths in species across the Solanaceae family.

Legends for supplementary figures and files

Figure 2 — figure supplement 1. Expression profiles of tomato ACS, ECH, and BAHD acyltransferase family genes used for phylogenetic analysis in this study. Each column represents one transcriptomic profiling dataset generated by RNA-seq analysis using samples from the cultivated tomato (*S. lycopersicum*). A total of 372 RNA-seq datasets were used for the analysis as described in the previous study (Moore et al., 2020). The normalized FPKM value of each gene across all the 372 datasets was illustrated by the color scale. The maximum FPKM value was set to 1 (red), while the minimum FPKM

value was 0 (blue). The datasets generated using tomato root hairs (first column) or trichomes (second column) were indicated by arrows. Genes (y-axis) and expression datasets (x-axis) were both grouped using hierarchical clustering. Genes involved in acylsugar biosynthesis, such as *SI-ASATs*, *SI-AACS1*, and *SI-AECH1*, were clustered together, which are highlighted by the orange box. Hierarchical clustering also revealed another group of genes that are root hair-specific as pointed out by the purple box. The gene ID was colored based on which gene family it belongs. Blue: ACS genes; red: ECH genes; green: BAHD acyltransferase genes.

Figure 3 — figure supplement 1. CRISPR-Cas9-mediated gene knockouts in cultivated tomato *S. lycopersicum*. The gRNAs targeting *SI-AACS1* (**A**), *SI-AECH1*(**B**), and *Solyc07g043660* (**C**) in cultivated tomato are highlighted with red lines and text. Two pairs of gRNAs were designed that target *SI-AECH1*, which were followed by two trials of plant transformation. DNA sequences of the self-crossed T1 generation transgenic lines carrying homozygous gene edits are shown beneath the gene model. Dotted rectangle boxes highlight edited sequences. (**D**) Electrospray ionization negative (ESI) mode, LC/MS extracted ion chromatograms of seven major trichome acylsugars of the CRISPR mutant *solyc07g043660* and the M82 parent.

Figure 3 — figure supplement 2. The syntenic region of cultivated tomato *S. lycopersicum* chromosome 7 and 12 harboring the acylsugar and steroidal glycoalkaloid gene clusters. The gene models are represented by rectangles, with pseudogenes labeled with dotted lines. The lines linking the gene models of the two chromosomes denote putative orthologous genes in the synteny. GAME genes involved in glycoalkaloid metabolism were previously reported (Itkin et al., 2013).

Figure 4 — figure supplement 1. Characterization of cluster genes using leaf transient expression: protein subcellular targeting and impacts on lipid metabolism. (A) Confocal images of co-expression analysis in *N. tabacum* leaf epidermal cells using C-terminal CFP-tagged Solyc07g043660 and the mitochondrial marker MT-RFP. Arrowheads point to mitochondria that are indicated by MT-RFP fluorescent signals. White bar equals 10 μm. (B) Confocal images of co-expression analysis in *N. tabacum* leaf epidermal cells using N-terminal YFP-tagged SI-AACS1, SI-AECH1, or Solyc07g043660, and the peroxisomal marker RFP-PTS. Arrowheads point to peroxisomes that are indicated by RFP-PTS fluorescent signals. Bar equals 10 μm. (C) *N. benthamiana* leaf membrane lipid acyl chain composition. The results from infiltrating *SI-AACS1* or *SI-AECH1* individually, and infiltrating *SI-AECH1* and *SI-AACS1*

together are shown. The lipid abbreviations are: phosphatidylglycerol (PG), sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG), phosphtatidylinositols (PI), and phosphtatidylethanolamine (PE). Mole percentage (Mol %) of the acyl chains from membrane lipids with carbon number 12, 14, 16, and 18 are shown for three biological replicates ± SE. *p < 0.05, **p < 0.01. Welch two-sample *t* test was performed comparing each experimental with the empty vector control. PI and PE lipids were adjacent on the TLC plates and were pooled for analysis. Acyl groups of the same chain lengths with saturated and unsaturated bonds were combined in the calculation.

Figure 4 — figure supplement 2. The closest homologs of *SI-AECH1* from other *Solanum* species generate medium chain lipids when transiently expressed in *N. benthamiana*. (A) ESI mode, LC/MS extracted ion chromatograms of two SQDGs with C12 as peaks diagnostic of lipids containing medium chain fatty acids. (B) Mass spectra of two SQDGs contain C12 acyl chain. Fragmentation of SQDG (16:0, 12:0) and SQDG (18:3, 12:0) in ESI mode revealed the fragment ion C12 fatty acid (*m/z*: 199.17) and the SQDG head group (*m/z*: 225.0). (C) Among the *SI-AECH1* homologs tested, *Sopen07g023250* (*Sp-AECH1*) and *Sq_c37194* (*Sq-AECH1*), from *S. pennellii* and *S. quitoense* respectively, generated medium chain SQDG in the infiltrated leaves. The close homologs of *SI-AECH1* in *S. lycopersicum*, *S. pennellii*, and *S. quitoense*, which also have trichome expressions, were used to build the phylogenetic tree. The nucleotide sequences were aligned with MEGA7 (www.megasoftware.net) using the default MUSCLE algorithm. The T92+G maximum likelihood model was selected for phylogenetic tree construction from 24 different nucleotide substitution models based on the lowest Bayesian Information Criterion. The bootstrap values were obtained with 1000 replicates. The closest *SI-AECH1* Arabidopsis homolog *AT1G06550* serves as an outgroup.

Figure 5 — figure supplement 1. Stable *Sp-AACS1* transformation of the M82 CRISPR mutant *sl-aacs1* restores C12 containing acylsugars. (A) ESI mode, LC/MS extracted ion chromatograms are shown for seven major acylsugar peaks extracted from trichome of *S. lycopersicum* M82, *sl-aacs1*, and two independent T0 generation suppressed *sl-aacs1* transgenic lines expressing *Sp-AACS1* under its own promoter. (B) Peak area percentage of seven major trichome acylsugars of the suppression transgenic plants. The sum of the peak area percentage of each acylsugar equals to 100%. The results of acylsugar peak area percentage were calculated from six independent T0 transgenic lines ± SE.

Figure 5 — figure supplement 2. Functional analysis of AACS1 and AECH1 in S. pennellii and S. quitoense via CRISPR-Cas9 system and VIGS, respectively. The design of gRNAs targeting wild tomato S. pennellii LA0716 Sp-AACS1 (A). Sopen07a023250 (B), and Sp-AECH1 (C) is highlighted with red lines and text. The transgenic T0 generation carrying chimeric or biallelic gene edits are shown beneath the gene model. DNA sequence of the gene edits was obtained through Sanger sequencing of cloned plant DNA fragments. The gene edits are highlighted with dotted rectangular boxes. (**D**) ESI[†] mode, LC/MS extracted ion chromatograms shown for C10 (m/z: 155.14) and C12 (m/z: 183.17) fatty acid ions corresponding to medium chain trichome acylsugars extracted from the CRISPR mutants sopen07g023220 and the S. pennellii LA0716 parent. (E) Experimental design of VIGS in S. quitoense. A control group silencing the PDS genes was performed in parallel with the experimental groups. The onset of the albino phenotype of the control group was used as a visual marker to determine the harvest time and leaf selection in the experimental groups. The fourth true leaves were harvested and cut in half for gene expression analysis and acylsugar quantification, respectively. (F) ESI mode, LC/MS extracted ion chromatograms of six major acylsugars of S. quitoense for the experimental group. The three LC/MS chromatograms show representative acylsugar profiles of the empty vector control plants and the VIGS plants targeting Sq-AACS1 and Sq-AECH1.

Figure 6 — figure supplement 1. Syntenic regions containing the acylsugar gene cluster. The species name and chromosome/scaffold identifier are indicated with *S. lycopersinum* in blue font. Rectangle: protein-coding gene (solid line) or pseudogene (dotted line) colored according to the type of genes. Line connecting two genes: putative orthologous genes. Numbers underneath chromosomes: chromosome coordinates in million bases (Mb). The gene ID and location information used to generate the synteny figure is provided in **Supplementary file 4**.

Figure 6 — figure supplement 2. Analysis of the evolutionary history of the BAHD acyltransferases in the syntenic regions in different Solanaceae species. (A) Phylogenetic tree of BAHD acyltransferases homologous to *Solyc07g043670*. Genes colored with green and labeled with green rectangles are from the syntenic regions of Solanaceae species shown in panel (B). Genes marked with stars have been biochemically tested involved in acylsugar biosynthesis in previous studies. (B) The acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup species *Ipomea trifida* (Convolvulaceae) and *Coffea canephora* (Rubiaceae). (C) Reconciled evolutionary history of BAHD

acyltransferases based on panel (A) and (B). The colors of the branches correspond to different lineages shown in panel (A). Grey branch means enzymes from that lineage could not be found through BLAST and may have been lost. Numbers in the circle indicate the nodes in the phylogenetic tree as shown in panel A. The inferred evolutionary events were shown next to the nodes. Grey box highlighted the evolutionary history of the genes in the syntenic region. Before the Solanaceae specific whole genome duplication (WGD) events, the BAHD acyltransferase gene was tandemly duplicated. The WGD events resulted in at least two genomic regions (Chr07 and Chr12), each containing two BAHD acyltransferase genes. Before the divergence of *Solanum*, *Nicotiana*, and *Petunia* species, one of the tandem copies in Chr12 region was lost, and only orthologs of *SI-ASAT1* was retained. The question mark next to *Petunia* denotes the inconsistence of the phylogenetic relationship and the chromosome location of the gene *Pa-B816* with an unknow mechanism.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

Figure 6 — figure supplement 3. Analysis of the evolutionary history of the ECH genes in the syntenic regions in different Solanaceae species. (A) Phylogenetic tree of ECH genes homologous to SI-AECH1. Genes colored with orange and labeled with orange rectangles are from the syntenic regions of Solanaceae species shown in panel (B). Genes marked with stars have been tested involved in acylsugar biosynthesis. (B) The acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup species Ipomea trifida (Convolvulaceae) and Coffea canephora (Rubiaceae). (C) Reconciled evolutionary history of ECH enzyme based on panel (A) and (B). The colors of the branches correspond to different lineages shown in panel A. Grey branch means enzymes from that lineage could not be found through BLAST and may have been lost. Numbers in the circle indicate the nodes in the phylogenetic tree as shown in panel (A). The inferred evolutionary events were shown next to the nodes. Grey box highlighted the evolutionary history of the genes in the syntenic regions. Before the Solanaceae specific WGD events, an ECH was inserted into the syntenic region through unknown mechanism. After the WGD events, there was one ECH gene in each syntenic region on Chr07 and Chr12. Before the divergence of Solanum. Nicotiana, and Petunia species, the ECH gene on Chr07 had experienced a tandem duplication event, leading to two branches on the phylogenetic tree. During the speciation, the ECH gene on Chr12 was deleted from the genome in the most recent common ancestor of Nicotiana and Solanum after divergent from Petunia, while one of the tandem duplicates on Chr07 was lost in Petunia.

Figure 6 — figure supplement 4. Analysis of the evolutionary history of the ACS genes in the syntenic regions in different Solanaceae species. (A) Phylogenetic tree of ACS genes homologous to SI-AACS1. Genes colored with blue and labeled with blue rectangles are from the syntenic regions of Solanaceae species shown in panel (B). Genes marked with stars have been tested involved in acylsugar biosynthesis. (B) The acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup species Ipomea trifida (Convolvulaceae) and Coffea canephora (Rubiaceae). (C) Reconciled evolutionary history of ACS enzyme based on panel (A) and (B). The colors of the branches correspond to different lineages shown in panel (A). Grey branch means enzymes from that lineage could not be found through BLAST and may have been lost. Numbers in the circle indicate the nodes in the phylogenetic tree as shown in panel A. The inferred evolutionary events were shown next to the nodes. A tandem duplication event happened before the Solanaceae specific WGD events, leading to two adjacent ACS genes on Chr02 (Solyc02g082880 and Solyc02g082870), which were placed on two independent lineages in the phylogenetic tree. Solyc02g082870 had gone through two rounds of WGD events, supported by the observation that Solvc02q082870 and Solvc03q032210 are located in corresponding syntenic blocks. Solvc02g082880 may have experienced the segmental duplication, resulting in the ACS gene on Chr07. which had experienced another two rounds of tandem duplication in the common ancestor of Solanum species (SI-AACS1, Solyc07q043660, and Solyc07q043640). However, whether the segmental duplication event happened before or after the Solanaceae specific WGD events cannot be well resolved by the phylogenetic analysis. Two hypotheses were proposed as shown in the grey boxes. If the insertion happened before WGD, two independent gene loss events on chromosomes 7 and 12 should have happened in Petunia (Hypothesis 2). If the insertion happened after WGD, only one gene loss in Petunia was supposed to have happened (Hypothesis 1). Note that node 4 in (A) leads to two clades, one without any Petunia ACS homolog (darker blue) and the other with Petunia homologs (cyan). With regard to the timing of the duplication event leading to these two clades, it was likely before the split between the Petunia and the tomato/tobacco lineages where one Petunia loss event occurred (darker blue). If it was after the split, the presence of a *Petunia* gene would need to be explained by a gene gain through horizontal gene transfer or other means (cyan) - a far less likely scenario than a gene loss.

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

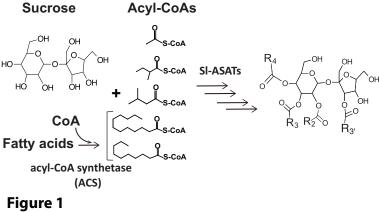
1196

1197

1198

Figure 6 — figure supplement 5. Phylogenetic analysis of the BAHD acyltransferase. The BAHD acyltransferase pseudogene (*Cc-BAHD-pseu*) in the corresponding syntenic region (Figure 6) of *Coffea canephora* is one of the closest *Coffea* sequences sister to the ASAT clade. It indicates that the BAHD

acyltransferase gene was the first to harbor in this syntenic region before the divergence between Solanaceae and Rubiaceae. The translated amino acid sequence of *Cc-BAHD-pseu* was aligned with sequences used in Figure 6A of a previous study (Moghe et al., 2017) using MUSCLE. The phylogenetic trees were built using the maximum likelihood method with 1000 bootstrap replicates. The tree was generated using RAxML/8.0.6 with the following parameters: -f a -x 12345 -p 12345 -# 1000 -m PROTGAMMAAUTO --auto-prot=bic, and was shown with the midpoint rooting. Genes colored with green are from the focused syntenic regions. Genes marked with stars have been biochemically tested involved in acylsugar biosynthesis in previous studies.


Figure 6 — figure supplement 6. Additional evolutionary analysis of ACS genes in the syntenic regions to understand when the segmental duplication event happened. (A) SI-AACS1 homologs obtained from Salpiglossis sinuate trichome transcriptome dataset (Moghe et al., 2017) were added for additional phylogenetic analysis. Genes colored with blue are from the syntenic regions of Solanaceae species Only the lineage derived by the number (4) evolutionary event as depicted in Figure 6 – figure supplement 5 was shown. (B) If the insertion happened before WGD, one gene loss on Solanum chromosome 12, as well as two independent gene losses on chromosomes 7 and 12 should have happened in Petunia and in Salpiglossis sinuate (Hypothesis 2). However, if the insertion happened after WGD, then only one gene loss event in Petunia and Salpiglossis was supposed to have happened (Hypothesis 1). The latter scenario is more likely due to the principle of parsimony.

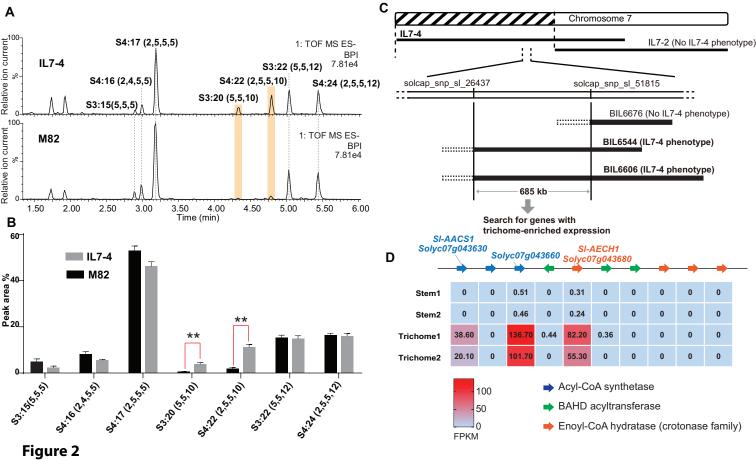

Figure 6 — **figure supplement 7. Ancestral trait state reconstruction analysis.** Four traits were inferred for their ancestral states using the maximum likelihood model Mk1 in Mesquite 3.6. They are the presence of medium chain acylsugars, presence of ACS in the synteny, presence of ECH in the synteny, and presence of both ACS and ECH in the synteny. The proportional likelihoods were shown in each diverging node in the ball charts.

Figure 6 — figure supplement 8. Phylogenetic distribution of acylsugar acyl chains with different lengths across the Solanaceae family. (A) The collated results of acylsugar acyl chain distribution across different Solanaceae species. Red rectangles indicate detectable acyl chains in the acylsugars produced in the tested species and white rectangles indicate no detectable signals. The data source where the results are derived is listed on the right. (B) Results of acylsugar acyl chain characterization of selected

Solanaceae species. Mole percentage (Mol %) of acylsugar acyl chains with different lengths were
obtained from GC/MS analysis of fatty acid ethyl esters.
Supplementary file 1. Co-expression analysis of tomato genes from ACS, ECH, and BAHD
acyltransferase families used for phylogenetic analysis in this study. The values of Pearson's
correlation coefficient of the expression profiles between any of the two genes were shown in the table.
The coefficient values were generated using the FPKM values of these genes in the 372 RNA-seq
samples as shown in Figure 2-supplemental figure 1. The orange box highlights a group of co-expressed
genes involved in acylsugar biosynthesis, such as SI-ASATs, SI-AACS1, and SI-AECH1. The purple box
points out another group of co-expressed genes that are root hair specific.
Supplementary file 2. Gene expression levels of all analyzed transcripts in Solanum pennellii
LA0716. logFC: log2 fold change in stem trichomes versus shaved stems. logCPM: log (counts per million)
in trichomes versus shaved stems. The F and Q-value test the significance of differential expression via a
quasi- general linear model. The values noted in the sample columns represent the FPKM (Fragments Per
Kilahan of taga arist as Millian as an ada a da anda an da a da a da a
Kilobase of transcript per Million mapped reads) analyzed via Cufflinks.
Supplementary file 3. Synthesized gene fragments and primers used in this study.
Supplementary file 3. Synthesized gene fragments and primers used in this study.
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1.
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1. Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for Figure 6 — figure supplements 2, 3, 4, 5, 6.
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1. Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for Figure 6 — figure supplements 2, 3, 4, 5, 6. Figure 2 — source data 1. Data used to make Figure 2B. Peak area percentage of seven major trichome
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1. Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for Figure 6 — figure supplements 2, 3, 4, 5, 6.
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1. Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for Figure 6 — figure supplements 2, 3, 4, 5, 6. Figure 2 — source data 1. Data used to make Figure 2B. Peak area percentage of seven major trichome
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1. Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for Figure 6 — figure supplements 2, 3, 4, 5, 6. Figure 2 — source data 1. Data used to make Figure 2B. Peak area percentage of seven major trichome acylsugars in M82 and IL7-4.
Supplementary file 3. Synthesized gene fragments and primers used in this study. Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure supplement 1. Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for Figure 6 — figure supplements 2, 3, 4, 5, 6. Figure 2 — source data 1. Data used to make Figure 2B. Peak area percentage of seven major trichome acylsugars in M82 and IL7-4. Figure 3 — source data 1. Data used to make Figure 3B. Quantification of seven major trichome

1252 Figure 4 — source data 2. Data used to make Figure 4D and Figure 4-figure supplement 1C. N. 1253 benthamiana leaf membrane lipid acyl chain composition. 1254 Figure 5 — source data 1. Data used to make Figure 5C and 5D. Silencing Sq-AACS1 or Sq-AECH1 in S. 1255 quitoense using VIGS leads to reduction of total acylsugars. 1256

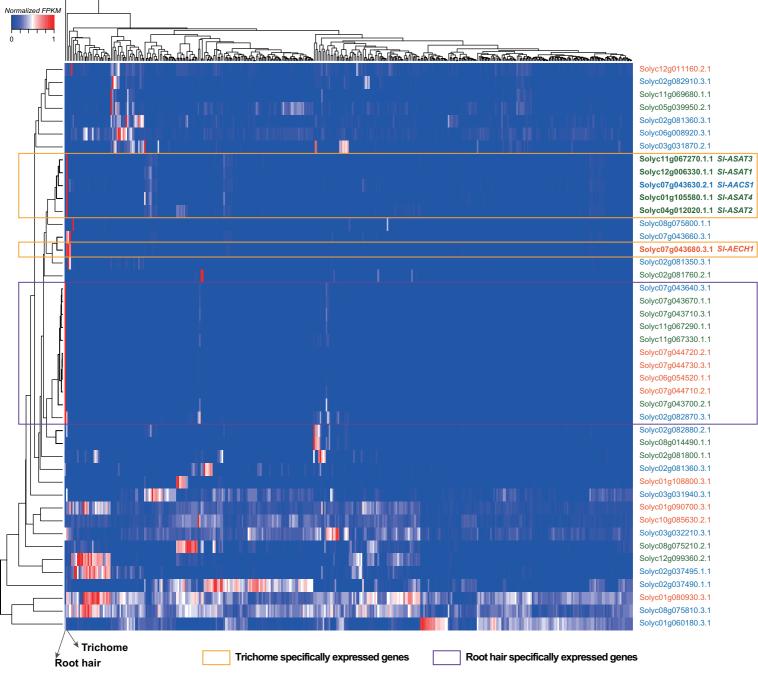


Figure 2 — figure supplement 1

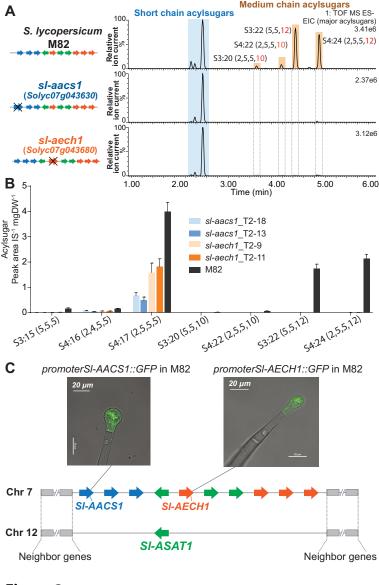


Figure 3

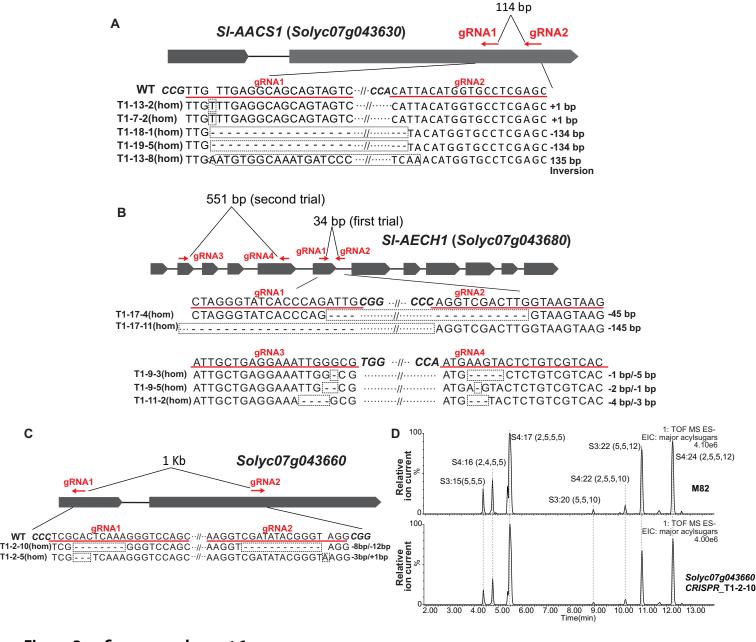


Figure 3 — figure supplement 1

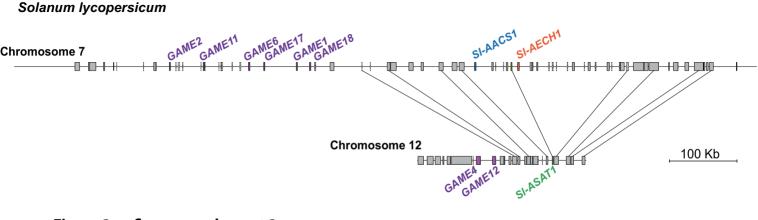


Figure 3 — figure supplement 2

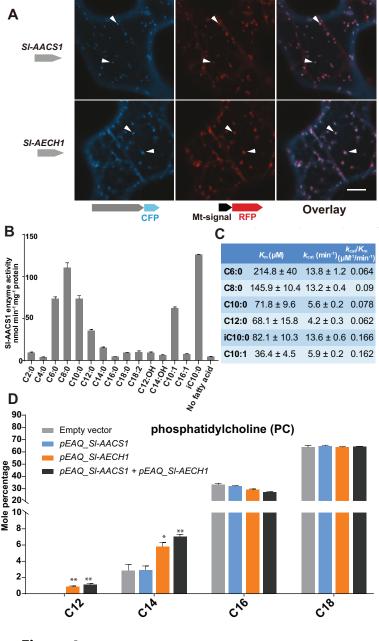


Figure 4

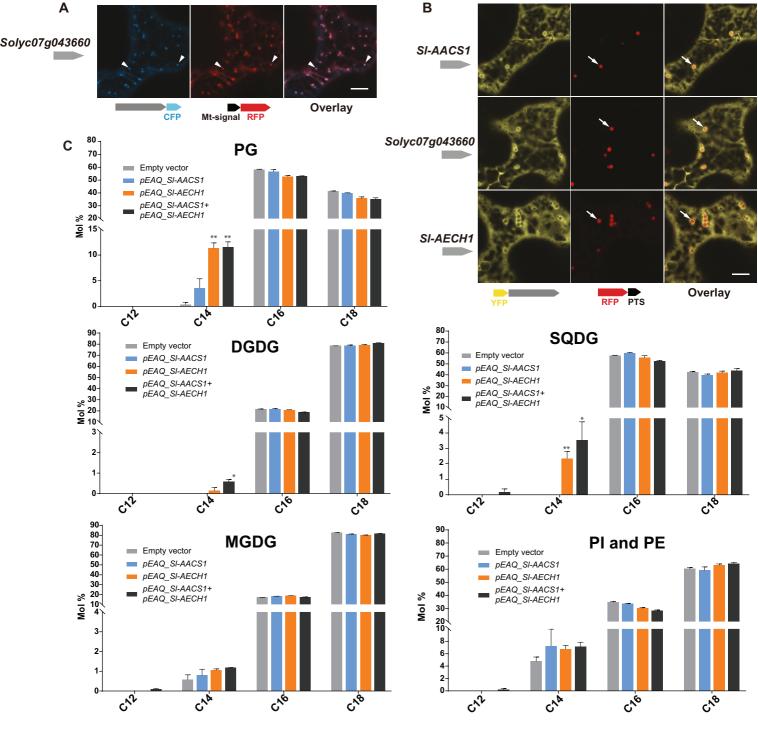


Figure 4 — figure supplement 1

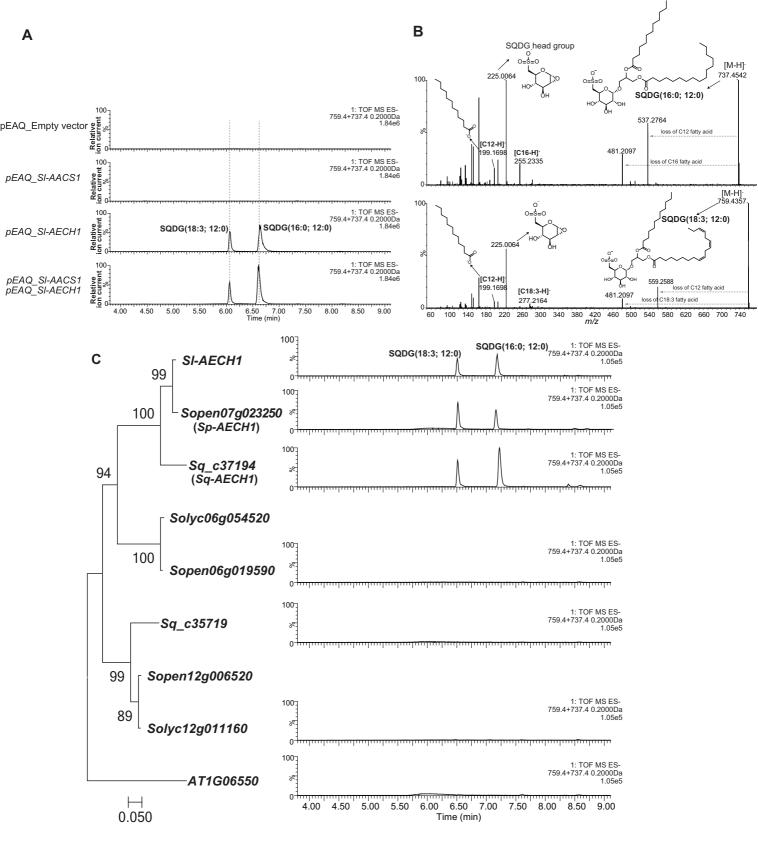
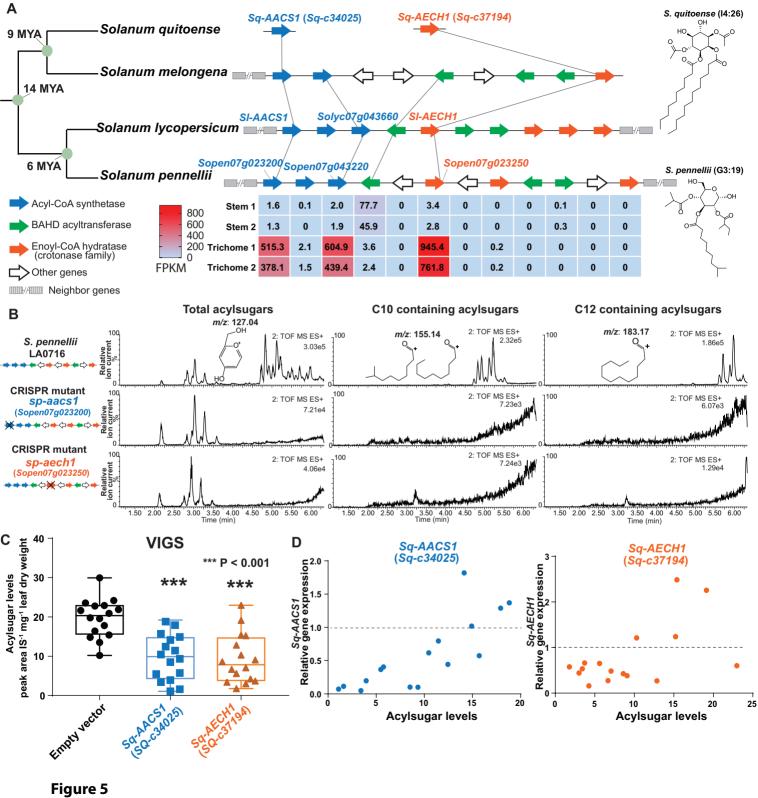



Figure 4 — figure supplement 2

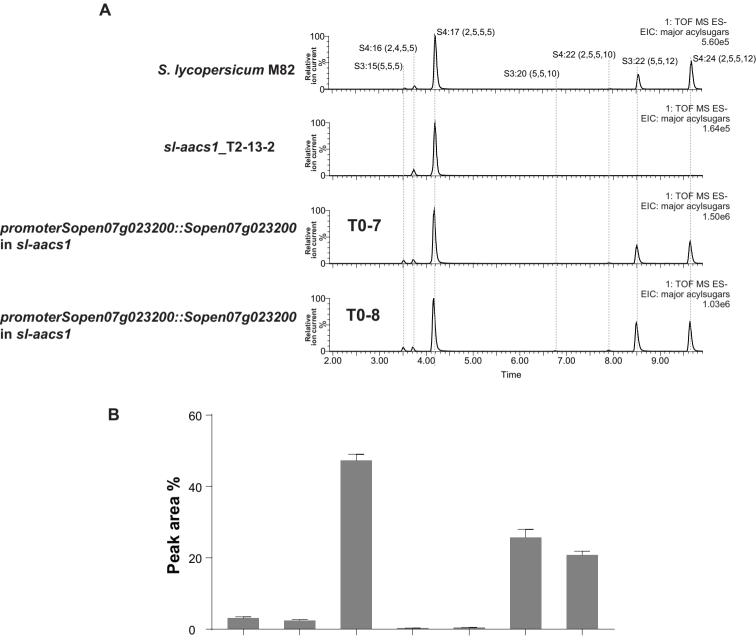


Figure 5 — figure supplement 1

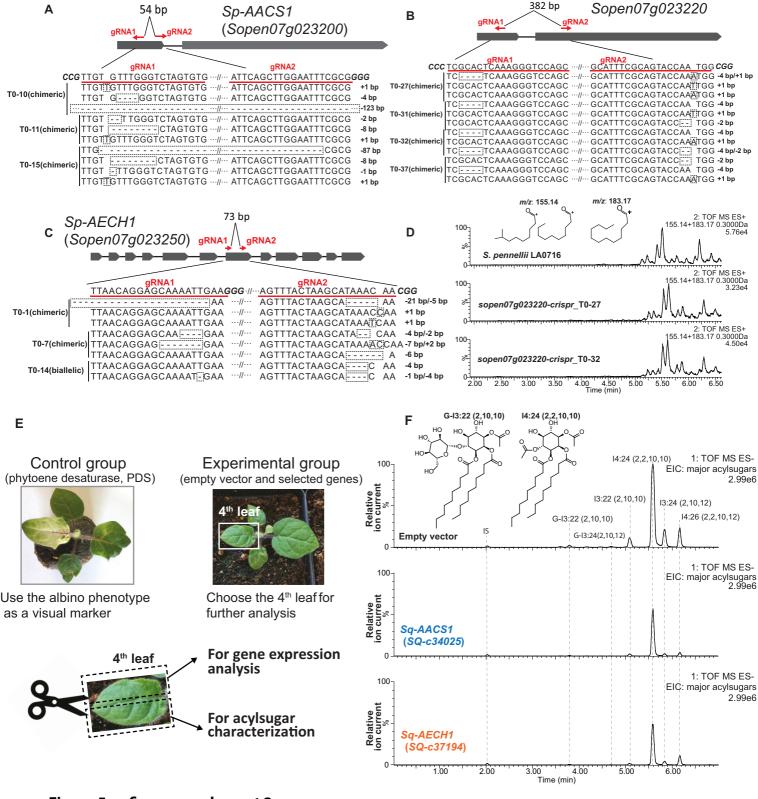


Figure 5 — figure supplement 2

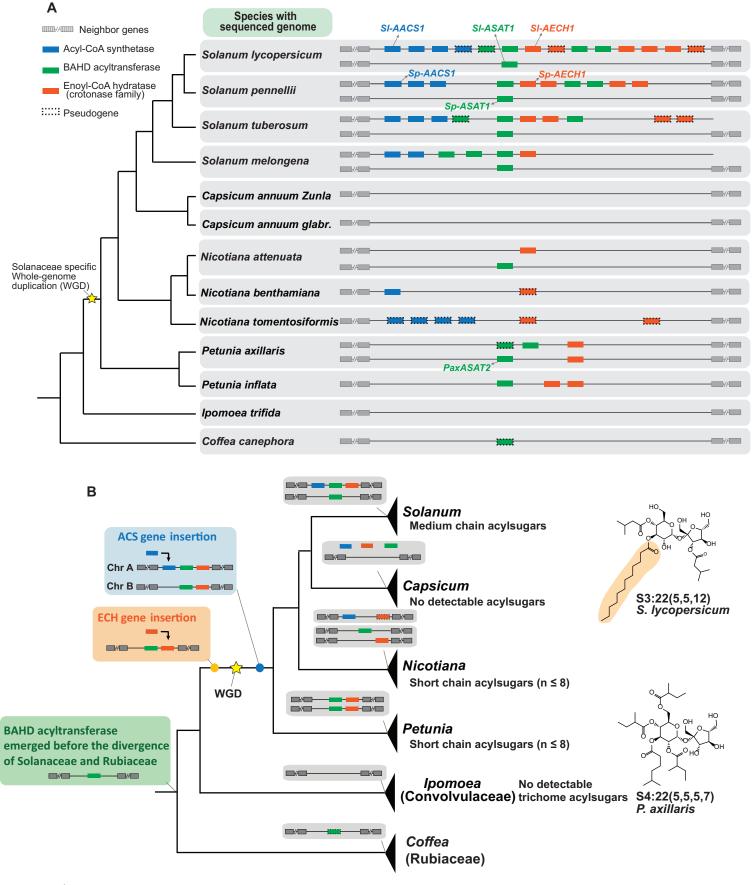
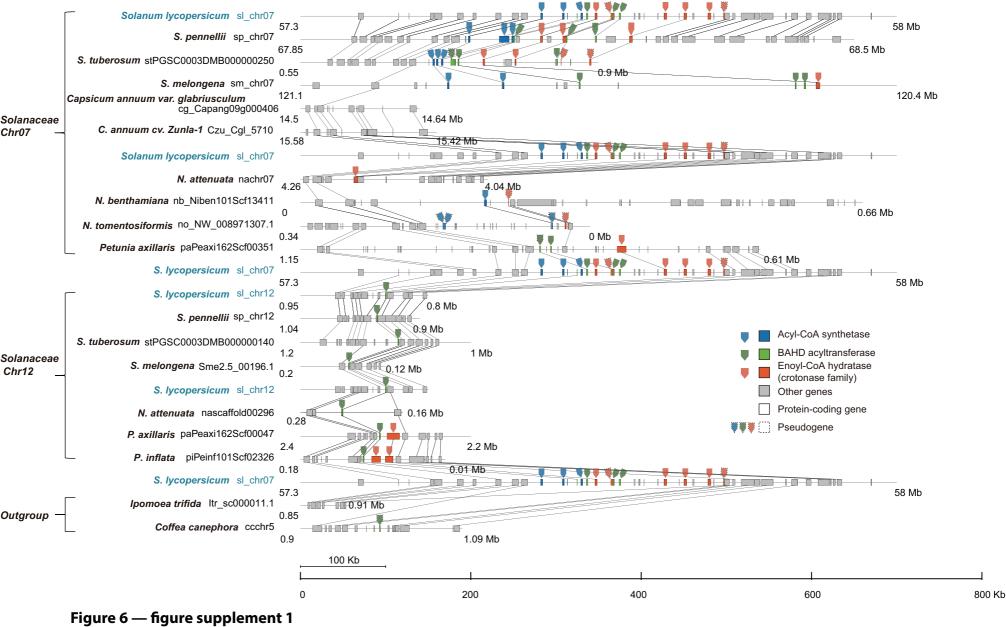



Figure 6

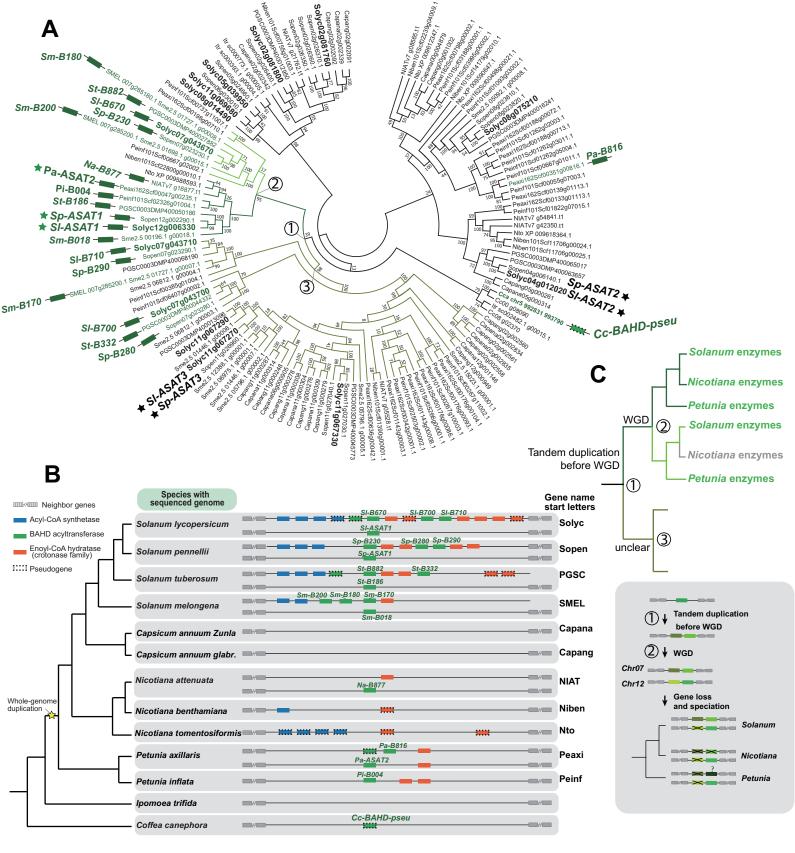


Figure 6 — figure supplement 2

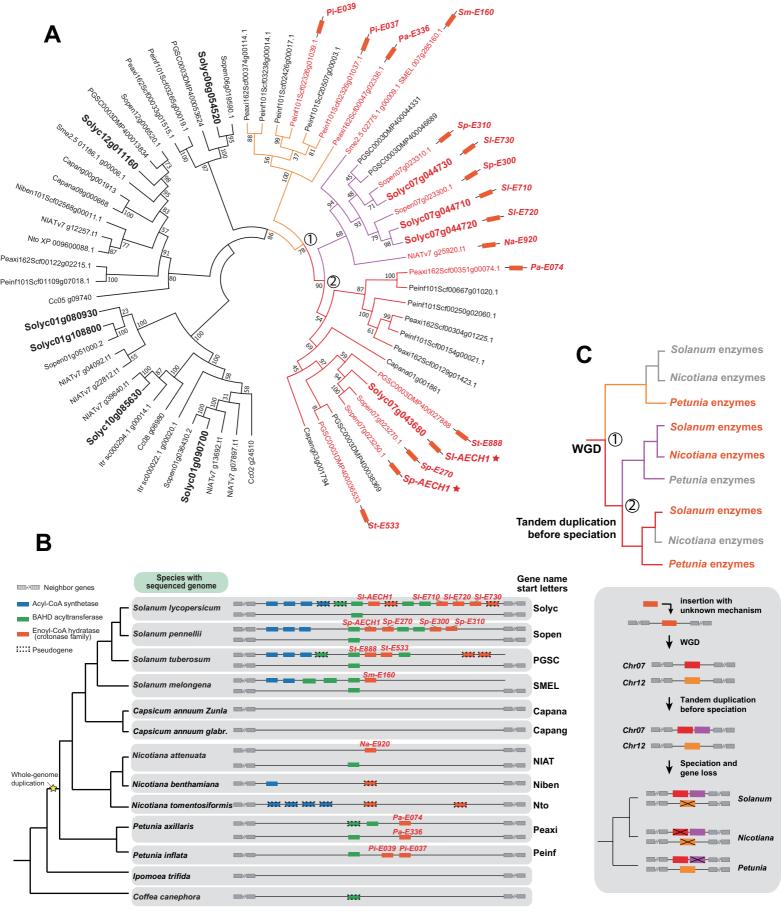
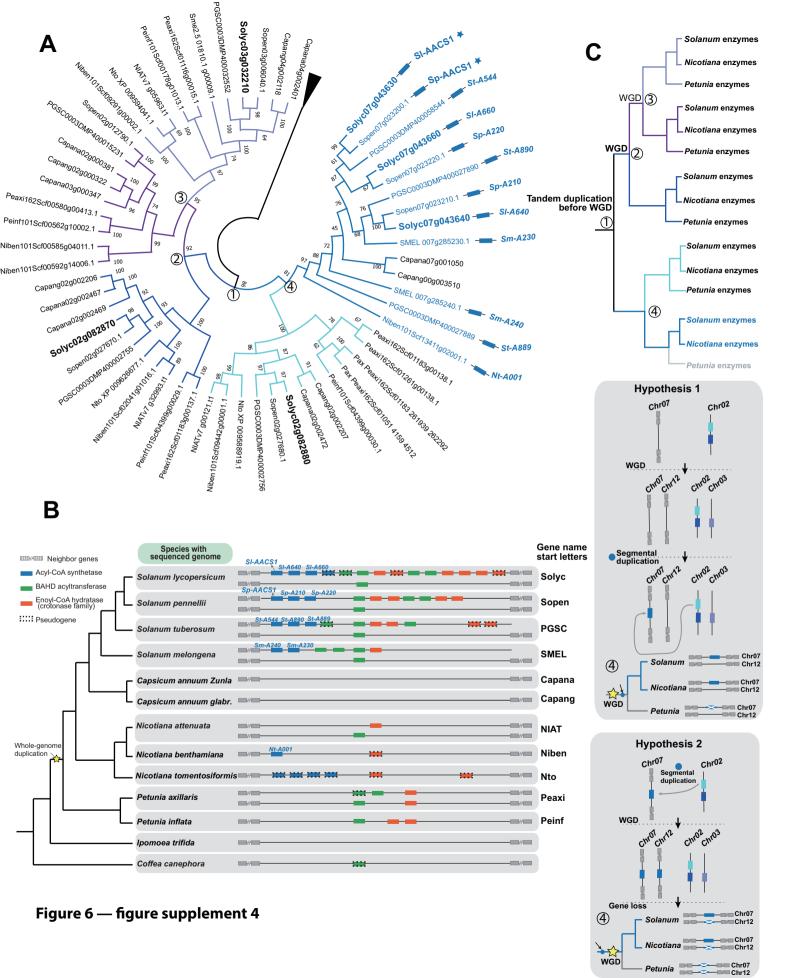



Figure 6 — figure supplement 3

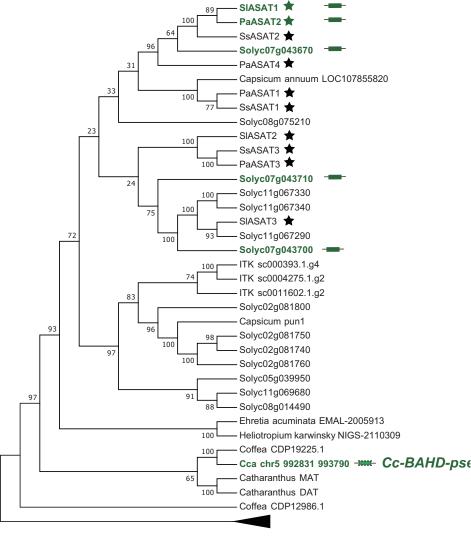


Figure 6 — figure supplement 5

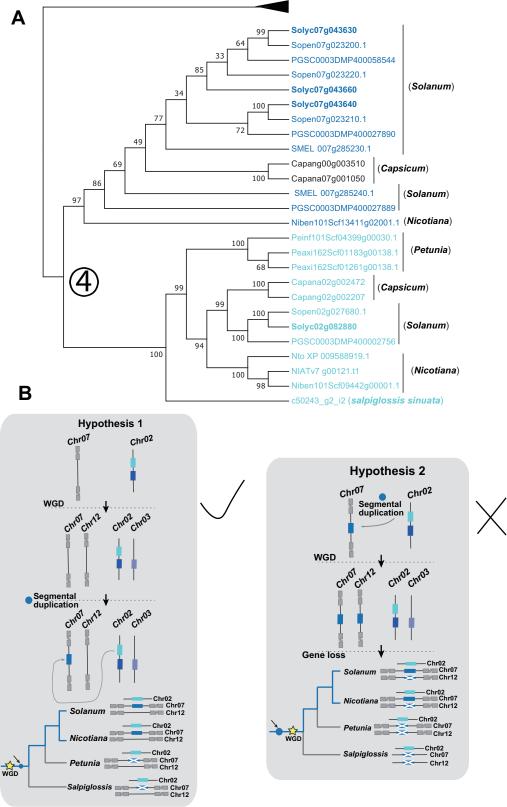


Figure 6 — figure supplement 6

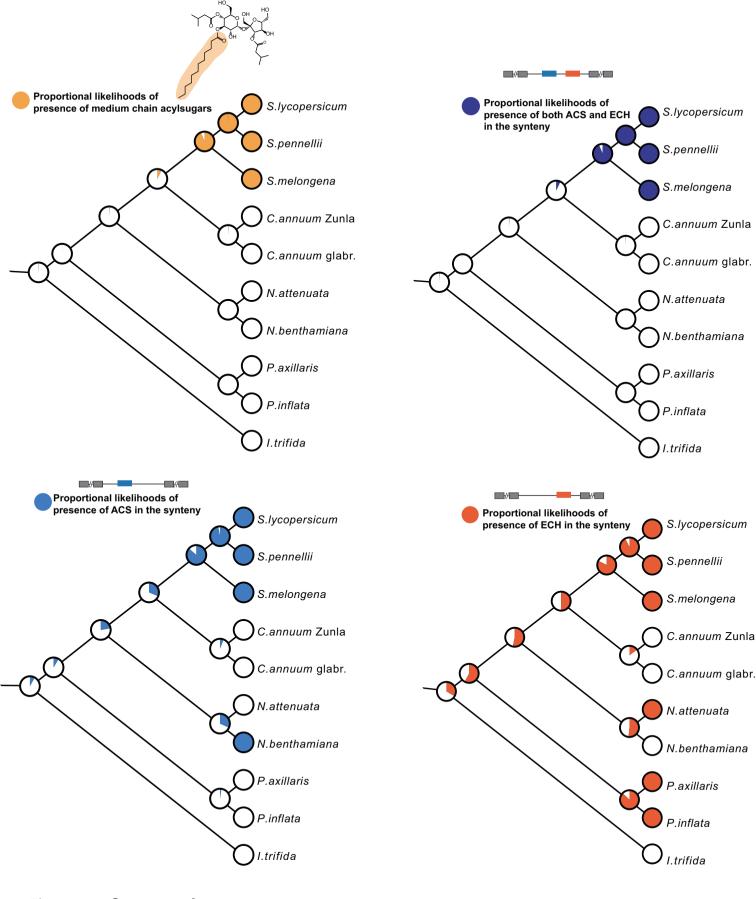


Figure 6 — figure supplement 7

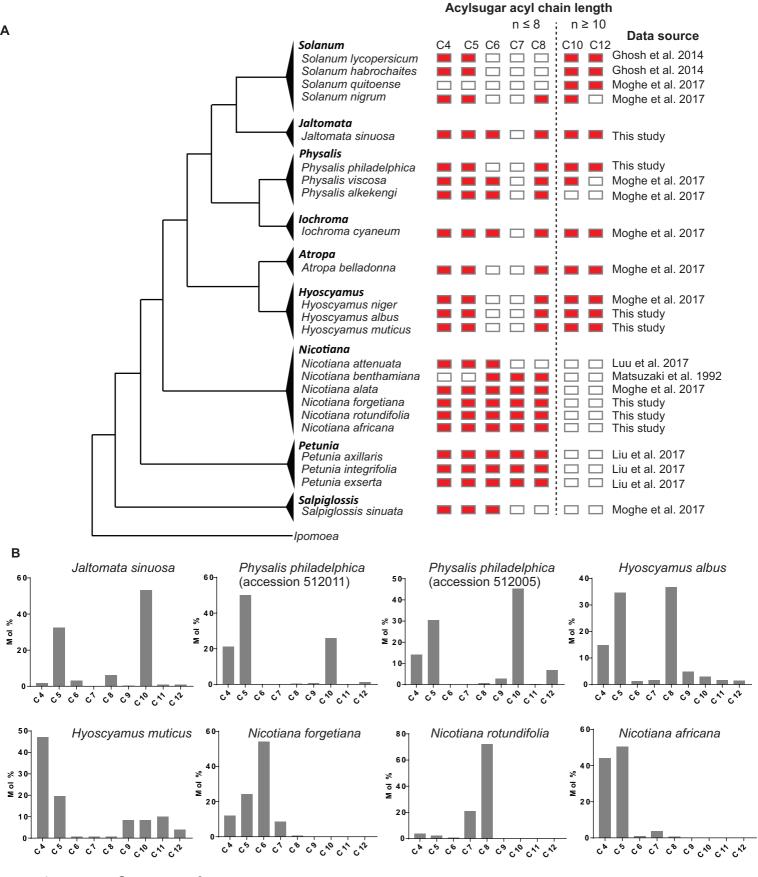


Figure 6 — figure supplement 8