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Abstract (<150 words)

Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized
metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution
include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of
genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive
acylsugars, with sidechains that vary in length across the family. We describe a tomato gene
cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome
specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a
tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing
another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene

cluster and found that its phylogenetic distribution correlates with medium chain acylsugar
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accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene

cluster evolution and cell-type specific metabolite diversity.

Introduction

Despite the enormous structural diversity of plant specialized metabolites, they are derived from a
relatively small number of primary metabolites, such as sugars, amino acids, nucleotides, and
fatty acids (Maeda, 2019). These lineage-, tissue- or cell- type specific specialized metabolites
mediate environmental interactions, such as herbivore and pathogen deterrence or pollinator and
symbiont attraction (Mithofer and Boland, 2012; Pichersky and Lewinsohn, 2011). Specialized
metabolism evolution is primarily driven by gene duplication (Moghe and Last, 2015; Panchy et
al., 2016), and relaxed selection of the resulting gene pairs allows modification of cell- and tissue-
specific gene expression and changes in enzymatic activity. This results in expanded substrate
recognition and/or diversified product formation (Khersonsky and Tawfik, 2010; Leong and Last,
2017). The neofunctionalized enzymes can prime the origin and diversification of specialized

metabolic pathways (Schenck and Last, 2019; Weng et al., 2012; Weng, 2014).

There are many examples of mechanisms that lead to novel enzymatic activities in
specialized cell- or tissue-types, however, the principles that govern assembly of multi-enzyme
specialized metabolic pathways are less well established. One appealing hypothesis involves the
stepwise recruitment of pathway enzymes (Noda-Garcia et al., 2018). In rare cases, non-
homologous specialized metabolic enzyme genes occur in proximity to each other in a genomic
region, forming a biosynthetic gene cluster (Niitzmann et al., 2016; Niitzmann and Osbourn, 2014;
Rokas et al., 2018). In recent years, an increasing number of specialized metabolic gene clusters
(SMGCs) were experimentally identified or bioinformatically predicted in plants (Boutanaev et

al., 2015; Castillo et al., 2013; Schlédpfer et al., 2017). However, although most experimentally
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characterized plant SMGCs are co-expressed, the majority of the bioinformatically predicted ones

do not show coexpression under global network analysis (Wisecaver et al., 2017).

While examples of SMGC:s are still relatively rare in plants, experimentally validated
cases were reported for a surprisingly diverse group of pathways. These include terpenes (Chae et
al., 2014; Prisic et al., 2004; Qi et al., 2004; Wilderman et al., 2004), cyclic hydroxamic acids
(Frey et al., 1997), biosynthetically unrelated alkaloids (Itkin et al., 2013; Winzer et al., 2012),
polyketides (Schneider et al., 2016), cyanogenic glucosides (Takos et al., 2011), and modified
fatty acids (Jeon et al., 2020). However, whereas each cluster encodes multiple non-homologous

enzymes of a biosynthetic pathway, evolution of their assembly is not well understood.

Acylsugars are a group of insecticidal (Leckie et al., 2016) and anti-inflammatory
(Herrera-Salgado et al., 2005) chemicals mainly observed in glandular trichomes of Solanaceae
species (Fan et al., 2019; Schuurink and Tissier, 2019). These specialized metabolites are sugar
aliphatic esters with three levels of structural diversity across the Solanaceae family: acyl chain
length, acylation position, and sugar core (Fan et al., 2019). The primary metabolites sucrose and
aliphatic acyl-CoAs are the biosynthetic precursors of acylsucroses in plants as evolutionarily
divergent as the cultivated tomato Solanum lycopersicum (Fan et al., 2016) (Figure 1), Petunia
axillaris (Nadakuduti et al., 2017) and Salpiglossis sinuata (Moghe et al., 2017). The core tomato
acylsucrose biosynthetic pathway involves four BAHD [BEAT, AHCT, HCBT, DAT (D’Auria,
2006)] family acylsucrose acyltransferases (S/-ASAT1 through SI-ASAT4), which are specifically
expressed in the type I/IV trichome tip cells (Fan et al., 2016; Schilmiller et al., 2015, 2012).
These enzymes catalyze consecutive reactions utilizing sucrose and acyl-CoA substrates to

produce the full set of cultivated tomato acylsucroses in vitro (Fan et al., 2016).

Co-option of primary metabolic enzymes contributed to the evolution of acylsugar
biosynthesis and led to interspecific structural diversification across Solanum tomato clade. One

example is an invertase-like enzyme originating from carbohydrate metabolism that generates
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acylglucoses in the wild tomato S. pennellii through cleavage of the acylsucrose glycosidic bond
(Leong et al., 2019). In another case, allelic variation of a truncated isopropylmalate synthase-like
enzyme (IPMS3) — from branched chain amino acid metabolism — leads to acylsugar iC4/iC5 (2-
methylpropanoic/3-methylbutanoic acid) acyl chain diversity in S. pennellii and S. lycopersicum
(Ning et al., 2015). Acylsugar structural diversity is even more striking across the family.
Previous studies revealed variation in acyl chain length (Ghosh et al., 2014; Liu et al., 2017,
Moghe et al., 2017): Nicotiana, Petunia and Salpiglossis species were reported to accumulate
acylsugars containing only short acyl chains (carbon number, C<8). In contrast, some species in
Solanum and other closely related genera produce acylsugars with medium acyl chains (C>10).
These results are consistent with the hypothesis that the capability to produce medium chain

acylsugars varies across the Solanaceae family.

In this study, we identify a metabolic gene cluster on tomato chromosome 7 containing
two non-homologous genes — acylsugar acyl-CoA synthetase (44CS) and acylsugar enoyl-CoA
hydratase (4ECH) — affecting medium chain acylsugar biosynthesis. Genetic and biochemical
results show that the trichome enriched A4ACS and AECH are involved in generating medium
chain acyl-CoAs, which are donor substrates for acylsugar biosynthesis. Genomic analysis
revealed a syntenic region on chromosome 12, where the acylsucrose biosynthetic SI-ASAT] is
located (Fan et al., 2016). Phylogenetic analysis of the syntenic regions in Solanaceae and beyond
led to evolutionary reconstruction of the origin of the acylsugar gene cluster. We infer that
sequential gene insertion facilitated emergence of this gene cluster in tomato. These results
provide insights into specialized metabolic evolution through emergence of cell-type specific
gene expression, the formation of metabolic gene clusters and illuminates additional examples of

primary metabolic enzymes being co-opted into specialized metabolism.

Results
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Identification of a metabolic gene cluster that affects tomato trichome medium chain

acylsugar biosynthesis

S. pennellii natural accessions (Mandal et al., 2020), as well as the S. [ycopersicum M82 x S.
pennellii LAO716 chromosomal substitution introgression lines (ILs) (Eshed and Zamir, 1995),
offer convenient resources to investigate interspecific genetic variation that affects acylsugar
metabolic diversity (Mandal et al., 2020; Schilmiller et al., 2010). In a rescreen of ILs for S.
pennellii genetic regions that alter trichome acylsugar profiles (Schilmiller et al., 2010), IL7-4
was found to accumulate increased C10 medium chain containing acylsugars compared with M82
(Figure 2, A and B). The genetic locus that contributes to the acylsugar phenotype was narrowed
down to a 685 kb region through screening selected backcross inbred lines (BILs) (Ofner et al.,
2016) that have recombination breakpoints on chromosome 7 (Figure 2C). Because tomato
acylsucrose biosynthesis occurs in trichomes, candidate genes in this region were filtered based
on their trichome-specific expression patterns. This analysis identified a locus containing multiple
tandemly duplicated genes of three families — an acyl-CoA synthetase (ACS), enoyl-CoA
hydratase (ECH), and BAHD acyltransferase. Our analysis (Moore et al., 2020) revealed co-
expression of four S/-ASATs (Fan et al., 2019) and three genes at the locus — Solyc07g043630,
Solyc07g043660, and Solyc07g043680 (Supplementary filel and Figure 2 — figure supplement
1). Expression of these three genes was trichome enriched (Figure 2D), and thus they were

selected for further analysis.

The three candidate genes were tested for involvement in tomato acylsugar biosynthesis
by making loss of function mutations using the CRISPR-Cas9 gene editing system. Two guide
RNAs (gRNAs) were designed to target one or two exons of each gene to assist site-specific DNA
cleavage by hCas (Brooks et al., 2014) (Figure 3 — figure supplement 1, A-C). In the self-crossed
T1 progeny of stably transformed M82 plants, at least two homozygous mutants were obtained in

Solyc07g043630, Solyc07g043660, and Solyc07g043680 (Figure 3 — figure supplement 1, A-C),
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and these were analyzed for leaf trichome acylsugar changes. Altered acylsugar profiles were
observed in the ACS-annotated Solyc07g043630 or ECH-annotated Solyc07g043680 mutants
(Figure 3, A and B), but not in the ACS-annotated Solyc07g043660 mutant (Figure 3 — figure
supplement 1D). Despite carrying mutations in distinctly annotated genes (ACS or ECH), the two
mutants exhibited the same phenotype — no detectable medium acyl chain (C10 or C12)
containing acylsugars (Figure 3, A and B). We renamed Solyc07g043630 as acylsugar acyl-CoA
synthetase 1 (SI-AACSI) and Solyc07g043680 as acylsugar enoyl-CoA hydratase 1 (SI-FAECH1)

based on this analysis.

Further genomic analysis revealed that SI-44CS1 and SI-AECH belong to a syntenic region
shared with a locus on chromosome 12, where SI-ASAT1 is located (Figure 3C and Figure 3 —
figure supplement 2). SI-ASAT1 is specifically expressed in trichome tip cells and encodes the
enzyme catalyzing the first step of tomato acylsucrose biosynthesis (Fan et al., 2016). This led us
to test the cell-type expression pattern of SI-4ACSI and SI-AECH]I. Like SI-ASAT1I, the promoters
of both genes drove GFP expression in the trichome tip cells of stably transformed M82 plants
(Figure 3C). This supports our hypothesis that SI-44ACS1 and SI-AECH1 are involved in tomato
trichome acylsugar biosynthesis. Taken together, we identified a metabolic gene cluster involved

in medium chain acylsugar biosynthesis, which is composed of two cell-type specific genes.

In vitro analysis of SI-AACS1 and SI-AECH1 implicates their roles in medium chain acyl-

CoA metabolism

ACS and ECH are established to function in multiple cell compartments for the metabolism of
acyl-CoA (Buchanan, B. B. Gruissem, W. Jones, 2015), the acyl donor substrates for ASAT
enzymes. We sought to understand the organelle targeting of SI-AACS1 and SI-AECHI, to
advance our knowledge of acylsugar machinery at the subcellular level. We constructed
expression cassettes of SI-AACS1, SI-AECHI and Solyc07g043660 with C-terminal cyan

fluorescent protein (CFP), hypothesizing that the targeting peptides reside at the N-terminus of
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precursor proteins. When co-expressed in tobacco leaf epidermal cells, three CFP-tagged
recombinant proteins co-localized with the mitochondrial marker MT-RFP (Nelson et al., 2007)
(Figure 4A and Figure 4 — figure supplement 1A). To rule out the possibility of peroxisomal
localization, we fused SI-AACS1, SI-AECH1, or Solyc07g043660 with N-terminus fused yellow
fluorescent protein (YFP), considering that potential peroxisomal targeting peptides are usually
located on the C-terminus (Brocard and Hartig, 2006). The expressed YFP-recombinant proteins
were not co-localized with the peroxisomal marker RFP-PTS (Nelson et al., 2007) (Figure 4 —
figure supplement 1B). Instead, they appeared distributed in the cytosol (Figure 4 — figure
supplement 1B), presumably because the N-terminal YFP blocked the mitochondria targeting
signal. Taken together, protein expression and co-localization analyses suggest that SI-A4ACS1, Si-

AECHI, and Solyc07g043660 encode enzymes targeted to mitochondria.

SI-AACSI1 belongs to a group of enzymes that activate diverse carboxylic acid substrates to
produce acyl-CoAs. We hypothesized that SI-AACS1 uses medium chain fatty acids as substrates,
because ablation of SI-4ACS1 eliminated acylsugars with medium acyl chains. To characterize the
in vitro activity of SI-AACS1, we purified recombinant His-tagged proteins from Escherichia coli.
Enzyme assays were performed by supplying fatty acid substrates with even carbon numbers from
C2 through C18 (Figure 4B). The results showed that SI-AACS1 utilized fatty acid substrates
with lengths ranging from C6 to C12, including those with a terminal branched carbon (iC10:0) or
an unsaturated bond (#rans-2-decenoic acid, C10:1) (Figure 4, B and C). However, no activity
was observed with the 3-hydroxylated C12 and C14 fatty acids as substrates (Figure 4B). These
results support our hypothesis that SI-AACS1 produces medium chain acyl-CoAs, which are in

vivo substrates for acylsugar biosynthesis.

To test whether SI-AACS1 and SI-AECH can produce medium chain acyl-CoAs in planta,
we transiently expressed these genes in Nicotiana benthamiana leaves using Agrobacterium-

mediated infiltration (Sainsbury et al., 2009). It is challenging to directly measure plant acyl-
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CoAs, due to their low concentration and separate organellar pools. We used an alternative
approach and characterized membrane lipids, which are produced from acyl-CoA intermediates.
We took advantage of the observation that N. benthamiana membrane lipids do not accumulate
detectable acyl chains of 12 carbons or shorter. N. benthamiana leaves were infiltrated with
constructs containing SI-AACS1 or SI-AECH] individually, or together (Figure 4D). In contrast to
the empty vector control, infiltration of SI-AECH1 led to detectable levels of C12 acyl chains in
the leaf membrane lipid phosphatidylcholine (PC) (Figure 4D). We also observed increased C14
acyl chains in PC, phosphatidylglycerol (PG), sulfoquinovosyl diacylglycerol (SQDG), and
digalactosyldiacylglycerol (DGDG) in SI-AECH1 infiltrated plants (Figure 4D and Figure 4 —
figure supplement 1C). These results suggest that SI-AECH participates in generation of medium
chain acyl-CoAs in planta, which are channeled into lipid biosynthesis. No medium chain
acylsugars were detected, presumably due to the lack of core acylsugar biosynthetic machinery in

N. benthamiana mesophyll cells.

We asked whether the closest known homologs of SI-AECH 1 from Solanum species can
generate medium chain lipids when transiently expressed in N. benthamiana. Two SQDGs with
C12 chains were monitored by LC/MS as peaks diagnostic of lipids containing medium chain
fatty acids (Figure 4 — figure supplement 2, A and B). The results showed that only the putative
SI-AECH|1 orthologs Sopen07g023250 (Sp-AECH]I) and Sq ¢37194 (Sq-AECHI) — from S.
pennellii and S. quitoense respectively — generated medium chain lipids in the infiltrated leaves
(Figure 4 — figure supplement 2C). This confirms that not all ECHs can produce medium chain
lipids and suggests that the function of SI-AECH1 evolved recently, presumably as a result of

neofunctionalization after gene duplication (Figure 4 — figure supplement 2C).
AACS1 and AECHI] are evolutionarily conserved in the Solanum

Medium chain acylsugars were documented in Solanum species besides cultivated tomato,

including S. pennellii (Leong et al., 2019), S. nigrum (Moghe et al., 2017), as well as the more
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distantly related S. quitoense (Hurney, 2018) and S. lanceolatum (Herrera-Salgado et al., 2005).
We hypothesized that evolution of A4CS1 and AECH] contributed to medium chain acylsugar
biosynthesis in Solanum. As a test, we analyzed the genomes of Solanum species other than
cultivated tomato. Indeed, the acylsugar related synteny containing ACS and ECH was found in
both S. pennellii and S. melongena (eggplant), suggesting that the cluster assembly evolved before

divergence of the tomato and eggplant lineage (Figure 5A).

We applied gene expression and genetic approaches to test the in vivo functions of ACS and
ECH in selected Solanum species. To explore the expression pattern of S. pennellii ACS and ECH
cluster genes, we performed RNA-seq analysis on trichomes and shaved stems to identify
acylsugar biosynthetic candidates (Supplementary file2). The expression pattern of S. pennellii
cluster genes is strikingly similar to S. lycopersicum: one ECH and two ACS genes are highly
enriched in trichomes, including the orthologs of SI-4ACS1 and SI-AECH 1. Sp-AACSI function
(Sopen072023200) was first tested by asking whether it can reverse the cultivated tomato s/-aacsi
mutant acylsugar phenotype. Indeed, Sp-44CS1 restored C12 containing acylsugars in the stably
transformed s/-aacs! plants (Figure 5 — figure supplement 1). To directly test Sp-44CS1 and Sp-
AECH]1 function, we used CRISPR-Cas9 to make single mutants in S. pennellii LA0716. No
medium chain acylsugars were detected in TO generation mutants with edits for each gene (Figure
5B and Figure 5 — figure supplement 2, A and C). Similar to the ACS-annotated
Solyc07g043660 cultivated tomato mutant (Figure 3 — figure supplement 1D), deletion of S.
pennellii ortholog Sopen07g023220 has no observed effects on S. pennellii trichome acylsugars

(Figure 5 — figure supplement 2D).

The medium chain acylsugar producer S. quitoense (Hurney, 2018) was used for A4CS1 and
AECH] functional analysis because of its phylogenetic distance from the tomato clade, it is in the
Solanum Leptostemonum clade (including eggplant), and the fact that it produces medium chain

acylsugars. We found trichome-enriched putative orthologs of A4CS1 and AECH|1 in the
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transcriptome dataset of S. quitoense (Moghe et al., 2017), and tested their in vivo function
through virus-induced gene silencing (VIGS) (Figure 5 — figure supplement 2E). Silencing either
gene led to decreased total acylsugars (Figure 5C and Figure 5 — figure supplement 2F), which
correlated with the degree of expression reduction in each sample (Figure 5D). These results are
consistent with the hypothesis that Sq-44CS1 and Sqg-AECH1 are involved in medium chain
acylsugar biosynthesis, because all acylsugars in S. quitoense carry two medium chains (Hurney,
2018). The importance of AACSI and AECHI in medium chain acylsugar biosynthesis in distinct

Solanum clades inspired us to explore the evolutionary origins of the gene cluster.

Evolution of the gene cluster correlates with the distribution of medium chain acylsugars

across Solanaceae

We sought to understand how the acylsugar gene cluster evolved and whether it correlates with
the distribution of medium chain acylsugars across the Solanaceae family. Taking advantage of
the available genome sequences of 13 species from Solanaceae and sister families, we analyzed
the regions that are syntenic with the tomato acylsugar gene cluster (Figure 6 — figure
supplement 1). This synteny was found in all these plants, including the most distantly related
species analyzed, Coffea canephora (coffee, Rubiaceae) (Figure 6 — figure supplement 1).
BAHD acyltransferases were the only genes observed in the syntenic regions both inside and
outside the Solanaceae, in contrast to ECH and ACS, which are restricted to the family (Figure
6A and Figure 6 — figure supplement 1). Within the syntenic regions of the species analyzed,
ECH homologs, including pseudogenes, are present in all Solanaceae except for Capsicum
species, while ACS is more phylogenetically restricted, being found only in Nicotiana and

Solanum (Figure 6A and Figure 6 — figure supplement 1).

We then performed phylogenetic analysis to reconstruct the evolutionary history of the

ACS, ECH, and BAHD acyltransferase genes in the syntenic region (Figure 6). This analysis
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revealed a model for the temporal order of emergence for the three types of genes, leading to their
presence in the syntenic regions in extant Solanaceae plants (Figure 6B). We propose that the
BAHD acyltransferase was the first of three genes that emerged before the divergence between
Solanaceae and Rubiaceae, and was likely lost in Convolvulaceae. This hypothesis is based on the
discovery of a BAHD acyltransferase pseudogene in the syntenic region of C. canephora (Figure
6A and Figure 6 — figure supplement 1), which is one of the closest Coffea sequences sister to
the ASAT clade (Figure 6 — figure supplement 2 and Figure 6 — figure supplement 5). In our
model, ECH was likely inserted into the syntenic region before the Solanaceae-specific whole

genome duplication (WGD) event (Figure 6B and Figure 6 — figure supplement 3).

We propose that ACS was inserted into the synteny through segmental duplication (Bailey
et al., 2002) (Figure 6 — figure supplement 4). However, whether ACS insertion happened before
or after the Solanaceae-specific WGD event cannot be resolved by the phylogenetic analysis
(Figure 6 — figure supplement 4). If the insertion happened before WGD, one ACS gene loss on
chromosome 12 in Solanum — as well as two independent gene losses on chromosomes 7 and 12
in both Petunia (Figure 6 — figure supplement 4) and in Salpiglossis sinuata (Figure 6 — figure
supplement 6) — should have happened. However, if the insertion happened after WGD, then only
one gene loss in Petunia and Salpiglossis needs to be invoked (Figure 6 — figure supplement 6).

The latter scenario is more likely based on the principle of parsimony.

Our ancestral state reconstruction inference supports the notion that the medium chain
acylsugars co-emerged with the ACS/ECH genes in the syntenic regions in the common ancestor
of Solanum (Figure 6 — figure supplement 7). This leads us to propose that the emergence of
both ACS and ECH genes in the synteny was a prerequisite for the rise of medium chain
acylsugars in Solanaceae species (Figure 6B). Consistent with the hypothesis, only short chain

acylsugars were observed in Petunia (Liu et al., 2017) (Figure 6 — figure supplement 8), which
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correlates with the absence of ACS homolog (Figure 6B). In contrast, medium chain acylsugars
were detected throughout Solanum (Figure 6 — figure supplement 8), supported by the
observation that both ACS and ECH homologs are present in extant Solanum species (Figure 6B).
Interestingly, although Nicotiana species collectively have both ACS and ECH genes (Figure 6B),
they do not produce medium chain acylsugars (Figure 6 — figure supplement 8) presumably due
to gene losses. For example, the ECH homologs are pseudogenes in N. benthamiana and N.
tomentosiformis (Figure 6A). These results show that the presence of both functional ACS and
ECH genes are associated with the accumulation of medium chain acylsugars, supporting our

hypothesis above.

Although no medium chain acylsugars were detected in Nicotiana species examined, the
ACS and ECH genes may have been present in the syntenic region prior to divergence of
Solanum and Nicotiana. This suggests that one or more species that diverged from the common
ancestor of Solanum and Nicotiana could have medium chain acylsugars. To test this hypothesis,
we extended the phenotypic analysis to six such Solanaceae genera (Figure 6 — figure
supplement 8). Indeed, we found that species in Jaltomata, Physalis, lochroma, Atropa, and
Hyoscyamus, which diverged from the common ancestor with Nicotiana but before Solanum,

have medium chain acylsugars (Figure 6 — figure supplement 8).

Discussion

This study identified a S. lycopersicum chromosome 7 synteny of ACS, ECH, and BAHD
acyltransferase genes including two involved in medium chain acylsugar biosynthesis. The
discovery of this locus was prompted by our observation of increased C10 containing acylsugars
in tomato recombinant lines carrying this region from the wild tomato S. pennellii chromosome 7.
In vitro biochemistry revealed that SI-AACS1 produces acyl-CoAs using C6-C12 fatty acids as
substrates. The function of AACSI1 and AECH]1 in cultivated and wild tomato medium chain

acylsugar biosynthesis was confirmed by genome editing, and extended to the phylogenetically
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distant S. quitoense using VIGS. The trichome tip cell-specific expression of these genes is
similar to that of previously characterized acylsugar pathway genes (Fan et al., 2019).

There are increasing examples of plant specialized metabolic innovation evolving from gene
duplication and neofunctionalization of primary metabolic enzymes (Maeda, 2019; Milo and Last,
2012; Moghe and Last, 2015; Zi et al., 2014). Recruitment of SI-44ACS1 and SI-AECH1 from fatty
acid metabolism provides new examples of ‘hijacking’ primary metabolic genes into acylsugar
biosynthesis, in addition to an isopropylmalate synthase (S/-/PMS3) and an invertase (Sp-ASFF1)
(Leong et al., 2019; Ning et al., 2015). We hypothesize that both AACS1 and AECHI1 participate
in generation of medium chain acyl-CoAs, the acyl donor substrates for ASAT-catalyzed
acylsugar biosynthesis. Indeed, SI-AACSI1 exhibits in vitro function consistent with this
hypothesis, efficiently utilizing medium chain fatty acids as substrates to synthesize acyl-CoAs.
Strikingly, SI-AECHI1 perturbs membrane lipid composition when transiently expressed in V.
benthamiana leaves, generating unusual C12-chain membrane lipids.

These results suggest that evolution of trichome tip cell-specific gene expression potentiated
the co-option of AACSI and AECH1 in medium chain acylsugar biosynthesis. Analogous to
trichomes producing medium chain acylsugars, seeds of phylogenetically diverse plants
accumulate medium chain fatty acid storage lipids (Ohlrogge et al., 2018). In contrast, fatty acids
with unusual structures, including those of medium chain lengths, are rarely found in membrane
lipids, presumably because these would perturb membrane bilayer structure and function (Millar
et al., 2000). For example, seed embryo-specific expression of three neofunctionalized enzyme
variant genes in Cuphea species — an acyl-ACP thioesterase (Dehesh et al., 1996), a 3-ketoacyl-
ACP synthase (Dehesh et al., 1998), and a diacylglycerol acyltransferase (Iskandarov et al., 2017)
— lead to production of medium chain seed storage lipids (Voelker and Kinney, 2001). Trichome
tip cell restricted expression of A4CS/ and AECH represents an analogous example of diverting

neofunctionalized fatty acid enzymes from general metabolism into cell-specific specialized
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metabolism. It is notable that we obtained evidence that SI-AACS1 and SI-AECHI1 are targeted to
mitochondria. Because the other characterized acylsugar biosynthetic enzymes — ASATs and SI-
IPMS3 — appear to be cytoplasmic, these results suggest that medium chain acylsugar substrates
are intracellularly transported within the trichome tip cell. It is worth noting that SI-AACS1 seems
to show higher activity with C8 fatty acid than with C10 or C12 (Figure 4, B and C), while no C8
containing acylsugars were described in tomato trichomes (Ghosh et al., 2014). This suggests that
C8 fatty acids are not synthesized in trichomes.

Beyond employing functional approaches, this study demonstrates the value of a combined
comparative genomic and metabolomic analysis in reconstructing the evolutionary history of a
gene cluster: in this case over tens of millions of years. We propose that the acylsugar gene
cluster started with a ‘founder’ BAHD acyltransferase gene, followed by sequential insertion of
ECH and ACS (Figure 6B). This de novo assembly process is analogous to evolution of the
antimicrobial triterpenoid avenacin cluster in oat (Qi et al., 2006, 2004). There are two
noteworthy features of our approach. First, reconstructing acylsugar gene cluster evolution in a
phylogenetic context allows us to deduce cluster composition in extant species (Figure 6B).
Second, it links cluster genotype with acylsugar phenotype and allows inference of acylsugar
diversity across the Solanaceae (Figure 6 and Figure 6 — figure supplement 8).

The current architecture of the Solanaceae acylsugar synteny merely represents a snapshot of
a genomic neighborhood that is dynamic, which echoes a recent study of triterpene biosynthetic
gene clusters in the Brassicaceae (Liu et al., 2019; Peters, 2020). De novo assembly of the gene
cluster was accompanied by gene duplication, transposition, pseudogenization, and deletion in
different genera. In the case of non-acylsugar producer Capsicum, although phylogenetic analysis
revealed putative SI-AACS1 and SI-AECH 1 orthologous genes, they are not harbored in the
syntenic region, probably due to translocation or assembly quality issues (Figure 6A and Figure 6

— figure supplement 1). In Nicotiana, the ECH genes became pseudogenized (Figure 6B), which
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351 is associated with lack of detectable plant medium chain acylsugars (Figure 6 — figure

352 supplement 8). In tomatoes, the trichome expressed Solyc07g043660 derives from a recent

353 tandem duplication (Figure 6 — figure supplement 4), yet its deletion has no effect on trichome
354 acylsugars (Figure 3 — figure supplement 1D). A parsimonious explanation is that

355 Solyc07g043660 is experiencing functional divergence, which may eventually lead to

356 pseudogenization as observed for other genes in the syntenic region.

357 In this study, we identified an acylsugar SMGC in the context of a multiple chromosome
358 syntenic region. This synteny resulted from WGD, and the acylsugar-related genes are co-

359 expressed, and involved in the same metabolic pathway. This resembles the tomato steroidal
360 alkaloid gene cluster consisting of eight genes that are dispersed into two syntenic chromosome
361 regions (Itkin et al., 2013). In fact, this tomato alkaloid SMGC is located next to the acylsugar
362 (luster (Figure 3 — figure supplement 2), which is reminiscent of two physically adjacent

363 SMGCs in the fungus Aspergillus (Wiemann et al., 2013). Tomato steroidal alkaloids and

364 acylsugars both serve defensive roles in plants, but are biosynthetically and structurally distinct
365 and are stored in different tissues. This raises intriguing questions. Did the separation of acylsugar
366 and alkaloid SMGCs into two chromosomes ocecur contemporaneously and by the same

367 mechanism? Did this colocalization confer selective advantage through additive or synergistic
368 effects of multiple classes of defensive metabolites? Answering these questions requires

369 continued mining and functional validation of metabolic gene clusters across broader plant

370 species and analysis of impacts of clustering in evolutionary and ecological contexts.

371

Materials and methods

Key Resources Table

Reagent type Designation Source or Identifiers Additional
(species) or reference information
resource
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gene (Solanum SI-AACS1 This paper GeneBank: Characterized
lycopersicum MTO78737 and named in
M82) the results
gene (Solanum SI-AECH1 This paper GeneBank: Characterized
lycopersicum MTO078736 and named in
M82) the results
gene (Solanum Sp-AACS1 This paper GeneBank: Characterized
pennellii LAO716) MTO078735 and named in
the results
gene (Solanum Sp-AECH1 This paper GeneBank: Characterized
pennellii LAQO716) MT078734 and named in
the results
gene (Solanum Sq-AACS1 This paper GeneBank: Characterized
quitoense) MT078732 and named in
the results
gene (Solanum Sq-AECH1 This paper GeneBank: Characterized
quitoense) MTOQ78731 and named in
the results
gene (Solanum Sq_¢35719 This paper GeneBank: Characterized
quitoense) MTO078733 and named in
the results

Software, algorithm

Trimmomatic

http://www.usadell
ab.org/cms/index.
php?page=trimmo
matic

RRID:SCR_0118
48

Software, algorithm TopHat http://ccb.jhu.edu/ | RRID:SCR_01303
software/tophat/in | 5
dex.shtml
Software, algorithm http://cole- RRID:SCR_01459
Cufflinks trapnell- 7
lab.github.io/cuffli
nks/cuffmerge/
Software, algorithm http://chibba.p
MCScanX- gml.uga.edu/
mcscan2/tran
transposed
sposed/
Software, algorithm https://github.com/ | RRID:SCR_0060
RAxML stamatak/standar | 86
d-RAxXML
Software, algorithm https://www.mesq | RRID:SCR_01799
Mesquite uiteproject.org/ 4
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Plant materials and trichome metabolite extraction

The seeds of cultivated tomato Solanum lycopersicum M82 were obtained from the C.M. Rick

Tomato Genetic Resource Center (http://tgrc/ucdvis.edu), RRID:SCR_014954. Tomato

introgression lines (ILs) and tomato backcross inbred lines (BILs) were from Dr. Dani Zamir
(Hebrew University of Jerusalem). The tomato seeds were treated with 2 strength bleach for 30
minutes and washed with de-ionized water three or more times before placing on wet filter paper
in a Petri dish. After germination, the seedlings were transferred to peat-based propagation mix
(Sun Gro Horticulture) and transferred to a growth chamber for two or three weeks under 16 h
photoperiod, 28 °C day and 22 °C night temperatures, 50% relative humidity, and 300 pmol m™ s’
! photosynthetic photon flux density. The youngest fully developed leaf was submerged in 1 mL
extraction solution in a 1.5 mL screw cap tube and agitated gently for 2 min. The extraction
solution contains acetonitrile/isopropanol/water (3:3:2) with 0.1% formic acid and 10 uM propyl-
4-hydroxybenzoate as internal standard. The interactive protocol of acylsugar extraction is

available in Protocols.io at http://dx.doi.org/10.17504/protocols.io.xj2fkqe.
DNA construct assembly and tomato transformation

Assembly of the CRISPR-Cas9 constructs was as described (Brooks et al., 2014; Leong et al.,
2019). Two guide RNAs (gRNAs) were designed targeting one or two exons of each gene to be
knocked out by the CRISPR-Cas9 system. The gRNAs were synthesized gene (gBlocks) by IDT
(Integrated DNA Technologies, location) (Supplementary file3). For each CRISPR construct, two
gBlocks and four plasmids from Addgene, pICH47742::2x35S-5'"UTR-hCas9 (STOP)-NOST

(Addgene no. 49771), pICH41780 (Addgene no. 48019), pAGM4723 (Addgene no. 48015),
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pICSL11024 (Addgene no. 51144), were mixed for DNA assembly using the Golden Gate

assembly kit (NEB).

For in planta tissue specific reporter gene analysis, 1.8 kb upstream of the annotated
translational start site of SI-44ACS1 and SI-AECH were amplified using the primer pairs
SIAACS1-pro_F/R and SIECH1-pro_F/R (Supplementary file3). The amplicon was inserted into
the entry vector pPENTR/D-TOPO, followed by cloning into the GATEWAY vector pPKGWFS7.
For ectopically expressing Sp-44ACS! in the cultivated tomato CRISPR mutant s/-aacs1, Sp-
AACSI gene including 1.8 kb upstream of the translational start site of Sp-44CSI was amplified
using the primer pair SpAACS1-pro-gene F/R (Supplementary file3). The amplicon was inserted

into the entry vector pENTR/D-TOPO, followed by cloning into the GATEWAY vector pK7WG.

The plant transformation of S. lycopersicum M82 and S. pennellii LA0716 was performed
using the Agrobacterium tumefaciens strain AGLO following published protocols (Leong et al.,
2019; McCormick, 1997). The primers used for genotyping the S. [ycopersicum M82 transgenic
plants harboring pK7WG or pPKGWFS7 construct are listed in Supplementary file3. For
genotyping the S. lycopersicum M82 CRISPR mutants in the T1 generation, the sequencing
primers listed in Supplementary file3 were used to amplify the genomic regions harboring the
gRNAs and the resultant PCR products were sent for Sanger sequencing. For genotyping the S.
pennellii LA0716 CRISPR mutants in the TO generation, the sequencing primers listed in
Supplementary file3 were used to amplify the genomic regions harboring the gRNAs. The
resulting PCR products were cloned into the pGEM-T easy vector (Promega) and transformed
into E. coli. Plasmids from at least six individual E. coli colonies containing the amplified

products were extracted and verified by Sanger sequencing.

Protein subcellular targeting in tobacco mesophyll cells

For protein subcellular targeting analysis, the open reading frame (ORF) of SI-AACS1, SI-AECH ],

and Solyc07g043660 were amplified using the primers listed in Supplementary file3. These

Page 18 of 51



419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

amplicons were inserted into pENTR/D-TOPO respectively, followed by subcloning into the
GATEWAY vectors pEarleyGate102 (no. CD3-684) and pEarleyGate104 (no. CD3-686), which
were obtained from Arabidopsis Biological Resource Center (ABRC). For the pEarleyGate102
constructs, the CFP was fused to the C-terminal of the tested proteins. For the pEarleyGate104
constructs, the YFP was fused to the protein N-terminus. Transient expressing the tested proteins
was performed following an established protocol (Batoko et al., 2000) with minor modifications.
In brief, cultures of A. tumefaciens (strain GV3101) harboring the expression vectors were
washed and resuspended with the infiltration buffer (20 mM acetosyringone, 50 mM MES pH 5.7,
0.5% glucose [w/v] and 2 mM Na3POy,) to reach ODgyonm = 0.05. Four-week-old tobacco
(Nicotiana tabacum cv. Petit Havana) plants grew in 21°C and 8 h short-day conditions were
infiltrated, and then maintained in the same growth condition for three days before being sampled
for imaging. The GV3101 cultures containing the mitochondria marker MT-RFP (Nelson et al.,
2007) were co-infiltrated to provide the control signals for mitochondrial targeting. In separate
experiments, the GV3101 cultures containing the peroxisome marker RFP-PTS (Nelson et al.,

2007) were co-infiltrated to provide the control signals for peroxisomal targeting.

Confocal Microscopy

A Nikon A1Rsi laser scanning confocal microscope and Nikon NIS-Elements Advanced Research
software were used for image acquisition and handling. For visualizing GFP fluorescence in
trichomes of the tomato transformants, the excitation wavelength at 488 nm and a 505- to 525-nm
emission filter were used for the acquisition. For visualizing signals of fluorescence proteins in
the tobacco mesophyll cells, CFP, YFP and RFP, respectively, were detected by excitation lasers

0of 443 nm, 513 nm, 561 nm and emission filters of 467-502 nm, 521-554 nm, 580-630 nm.

N. benthamiana transient gene expression and membrane lipid analysis

For N. benthamiana transient expression of SI-AACS1, SI-AECH 1, and homologs of AECH 1, the

OREFs of these genes were amplified using primers listed in Supplementary file3, followed by
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subcloning into pEAQ-HT vector using the Gibson assembly kit (NEB). Linearization of pEAQ-
HT vector was performed by Xhol and Agel restriction enzyme double digestion. A. tumefaciens
(strain GV3101) harboring the pPEAQ-HT constructs were grown in LB medium containing 50
pg/mL kanamycin, 30 pg/mL gentamicin, and 50 pg/ml rifampicin at 30 °C. The cells were
collected by centrifugation at 5000 g for 5 min and washed once with the resuspension buffer (10
mM MES buffer pH 5.6, 10 mM MgCl,, 150 uM acetosyringone). The cell pellet was
resuspended in the resuspension buffer to reach ODgyonm = 0.5 for each strain and was incubated
at room temperature for 1 h prior to infiltration. Leaves of 4 to 5-week-old N. benthamiana grown
under 16 h photoperiod were used for infiltration. Five days post infiltration, the infiltrated leaves

were harvested, ground in liquid nitrogen, and stored at -80 °C for later analysis.

The membrane lipid analysis was performed as previously described (Wang and Benning,
2011). In brief, the N. benthamiana leaf polar lipids were extracted in the organic solvent
containing methanol, chloroform, and formic acid (20:10:1, v/v/v), separated by thin layer
chromatography (TLC), converted to fatty acyl methylesters (FAMEs), and analyzed by gas-
liquid chromatography (GLC) coupled with flame ionization. The TLC plates (TLC Silica gel 60,
EMD Chemical) were activated by ammonium sulfate before being used for lipid separation.
Iodine vapor was applied to TLC plates after lipid separation for brief reversible staining.
Different lipid groups on the TLC plates were marked with a pencil and were scraped for analysis.
For LC/MS analysis, lipids were extracted using the buffer containing
acetonitrile/isopropanol/water (3:3:2) with 0.1% formic acid and 10 pM propyl-4-

hydroxybenzoate as the internal standard.

Protein expression and ACS enzyme assay

To express His-tagged recombinant protein SI-AACS1, the full-length S/-44CS ORF sequence
was amplified using the primer pair SIAACS1-pET28 F/R (Supplementary file3) and was cloned

into pET28b (EMD Millipore) using the Gibson assembly kit (NEB). The pET28b vector was
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linearized by digesting with BamHI and Xhol to create overhangs compatible for Gibson
assembly. The pET28b constructs were transformed into BL21 Rosetta cells (EMD Millipore).
The protein expression was induced by adding 0.05 mM isopropyl f-D-1-thiogalactopyranoside

to the cultures when the ODgoonm = 0.5. The E. coli cultures were further grown overnight at 16 °C,
120 rpm. The His-tagged proteins were purified by Ni-affinity gravity-flow chromatography

using the Ni-NTA agarose (Qiagen) following the product manual.

Measurement of acyl-CoA synthetase activity was performed using minor modifications
of the coupled enzyme assay described by Schneider et al. (Schneider et al., 2005). A multimode
plate reader (PerkinElmer, mode EnVision 2104) compatible with the 96-well UV microplate was
used for the assays. The fatty acid substrates were dissolved in 5% Triton X-100 (v/v) to make 5
mM stock solutions. The enzyme assay premix was prepared containing 0.1 M Tris-HCI (pH 7.5),
2 mM dithiothreitol, 5 mM ATP, 10 mM MgCl,, 0.5 mM CoA, 0.8 mM NADH, 250 uM fatty
acid substrate, I mM phosphoenolpyruvate, 20 units myokinase (Sigma-Aldrich, catalog no.
M3003), 10 units pyruvate kinase (Roche, 10128155001), 10 units lactate dehydrogenase (Roche,
10127230001), and was aliquoted 95 pL each to the 96-well microplate. The reaction was started
by adding 5 pL (1-2 pg) proteins. The chamber of the plate reader was set to 30 °C and the OD at
340 nm was recorded every 5 min for 40 min. Oxidation of NADH, which is monitored by the
decrease of ODj340nm, Was calculated using the NADH extinction coefficient 6.22 cm? umol'l.
Every two moles of oxidized NADH is equivalent to one mole of acyl-CoA product generated in
the reaction. To measure the parameters of enzyme kinetics, the fatty acid substrate concentration
was varied from 0 to 500 uM, with NADH set at 1 mM. The fatty acid substrates, sodium acetate
(C2:0), sodium butyrate (C4:0), sodium hexanoate (C6:0), sodium octanoate (C8:0), sodium
decanoate (C10:0), sodium laurate (C12:0), sodium myristate (C14:0), sodium palmitate (C16:0),

and sodium stearate (C18:0), were purchased from Sigma-Aldrich. Trans-2-decenoic acid (C10:1),

Page 21 of 51



493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

8-methylnonanoic acid (iC10:0), 3-hydroxy lauric acid (C12:OH), and 3-hydroxy myristic acid

(C14:0H) were purchased from Cayman Chemical.
RNA extraction, sequencing, and differential gene expression analysis

Total RNA was extracted from trichomes isolated from stems and shaved stems of 7-week-old S.
pennellii LAO716 plants using the RNAeasy Plant Mini kit (Qiagen) and digested with DNase 1.
A total of four RNA samples extracted from two tissues with two replicates were used for RNA
sequencing. The sequencing libraries were prepared using the KAPA Stranded RNA-Seq Library
Preparation Kit. Libraries went through quality control and quantification using a combination of
Qubit dsDNA high sensitivity (HS), Applied Analytical Fragment Analyzer HS DNA and Kapa
[llumina Library Quantification qPCR assays. The libraries were pooled and loaded onto one lane
of an Illumina HiSeq 4000 flow cell. Sequencing was done in a 2x150bp paired end format using
HiSeq 4000 SBS reagents. Base calling was done by Illumina Real Time Analysis (RTA) v2.7.6
and output of RTA was demultiplexed and converted to FastQ format with Illumina Bcl2fastq

v2.19.1.

The paired end reads were filtered and trimmed using Trimmomatic v0.32 (A. M. Bolger
et al., 2014) with the setting (LLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:30), and then mapped to the S. pennellii LA0716 genome
v2.0 (A. Bolger et al., 2014) using TopHat v1.4 (Trapnell et al., 2009) with the following
parameters: -p (threads) 8, -i (minimum intron length) 50, -I (maximum intron length) 5000, and -
g (maximum hits) 20. The FPKM (Fragments Per Kilobase of transcript per Million mapped reads)
values for the genes were analyzed via Cufflinks v2.2 (Trapnell et al., 2010). For differential
expression analysis, the HTseq package (Anders et al., 2015) in Python was used to get raw read

counts, then Edge R version 3.22.5 (McCarthy et al., 2012) was used to compare read counts

between trichome-only RNA and shaved stem RNA using a generalized linear model (glmQLFit).
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VIGS and qRT-PCR

For VIGS analysis of Sq-AACS1 and Sq-AECH]1 in S. quitoense, the fragments of these two genes,
as well as the phytoene desaturase (PDS) gene fragment, were amplified using the primers listed
in Supplementary file3, cloned into pTRV2-LIC (ABRC no. CD3-1044) using the ligation-
independent cloning method (Dong et al., 2007), and transformed into 4. fumefaciens (strain
GV3101). The VIGS experiments were performed as described (Leong et al., 2020). In brief, the
Agrobacterium strains harboring pTRV2 constructs, the empty pTRV2, or pTRV1 were grown
overnight in separate LB cultures containing 50 pg/mL kanamycin, 10 pg/mL gentamicin, and 50
pg/ml rifampicin at 30 °C. The cultures were re-inoculated in the induction media (50 mM MES
pHS5.6, 0.5% glucose [w/v], 2 mM NaH,POy4, 200 uM acetosyringone) for overnight growth. The
cells were harvested, washed, and resuspended in the buffer containing 10 mM MES, pH 5.6, 10
mM MgCl,, and 200 uM acetosyringone with the ODgoonmy = 1. Different cultures containing
pTRV?2 constructs were mixed with equal volume of pTRV1 cultures prior to infiltration. The 2-
to 3-week-old young S. guitoense seedlings grown under 16 h photoperiod at 24 °C were used for
infiltration: the two fully expanded cotyledons were infiltrated. Approximately three weeks post
inoculation, the fourth true leaf of each infiltrated plant was cut in half for acylsugar
quantification and gene expression analysis, respectively. The onset of the albino phenotype of
the control group infiltrated with the PDS construct was used as a visual marker to determine the
harvest time and leaf selection for the experimental groups. At least fourteen plants were analyzed
for each construct. The trichome acylsugars were extracted using the solution containing
acetonitrile/isopropanol/water (3:3:2) with 0.1% formic acid and 1 pM telmisartan as internal

standard, following the protocol at http://dx.doi.org/10.17504/protocols.io.xj2tkqe.

The leaf RNA was extracted using RNeasy Plant Mini kits (Qiagen) and digested with
DNase I. The first-strand cDNA was synthesized by Superscript II (Thermofisher Scientific)

using total RNA as templates. Quantitative real-time PCR was performed to analyze the Sg-
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AACSI or Sq-AECHI mRNA in S. quitoense leaves using the primers listed in Supplementary
file3. EFla was used as a control gene. A QuantStudio 7 Flex Real-Time PCR System with Fast
SYBR Green Master Mix (Applied Biosystems) was used for the analysis. The relative

quantification method (2*“") was used to evaluate the relative transcripts levels.
LC/MS analysis

Trichome acylsugars extracted from tomato IL and BILs were analyzed using a Shimadzu LC-
20AD HPLC system connected to a Waters LCT Premier ToF mass spectrometer. Ten microliter
samples were injected into a fused core Ascentis Express C18 column (2.1 mm x 10 cm, 2.7 um
particle size; Sigma-Aldrich) for reverse-phase separation with column temperature set at 40 °C.
The starting condition was 90% solvent A (0.15% formic acid in water) and 10% solvent B
(acetonitrile) with flow rate set to 0.4 mL/min. A 7 min linear elution gradient was used: ramp to
40% B at 1 min, then to 100% B at 5 min, hold at 100% B to 6 min, return to 90% A at 6.01 min

and hold until 7 min.

For analyzing trichome acylsugars extracted from S. pennellii transgenic plants and
membrane lipids from N. benthamiana, a Shimadzu LC-20AD HPLC system connected to a
Waters Xevo G2-XS QToF mass spectrometer was used. The starting condition were 95% solvent
A (10 mM ammonium formate, pH 2.8) and 5% solvent B (acetonitrile) with flow rate set to 0.3
mL/min. A 7 min linear elution gradient used for acylsugar analysis was: ramp to 40% B at 1 min,
then to 100% B at 5 min, hold at 100% B to 6 min, return to 95% A at 6.01 min and hold until 7
min. A 12 min linear elution gradient used for the lipid analysis was: ramp to 40% B at 1 min,
then to 100% B at 5 min, hold at 100% B to 11 min, return to 95% A at 11.01 min and hold until

12 min.

For analyzing trichome acylsugars extracted from other plants, a Waters Acquity UPLC
was coupled to a Waters Xevo G2-XS QToF mass spectrometer. The starting condition was 95%

solvent A (10 mM ammonium formate, pH 2.8) and 5% solvent B (acetonitrile) with flow rate set
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to 0.3 mL/min. A 7 min linear elution gradient was: ramp to 40% B at 1 min, then to 100% B at 5
min, hold at 100% B to 6 min, return to 95% A at 6.01 min and held until 7 min. A 14 min linear
elution gradient was: ramp to 35% B at 1 min, then to 85% B at 12 min, then to 100% B at 12.01

min, hold at 100% B to 13 min, return to 95% A at 13.01 min and held until 14 min.

For Waters LCT Premier ToF mass spectrometer, the MS settings of electrospray
ionization in negative mode were: 2.5 kV capillary voltage, 100°C source temperature, 350°C
desolvation temperature, 350 liters/h desolvation nitrogen gas flow rate, 10 V cone voltage, and
mass range m/z 50 to 1500 with spectra accumulated at 0.1 seconds/function. Three collision
energies (10, 40, and 80 eV) were used in separate acquisition functions to generate both
molecular ion adducts and fragments. For Waters Xevo G2-XS QToF mass spectrometer, the MS
settings of the negative ion-mode electrospray ionization were as follows: 2.00 kV capillary
voltage, 100 °C source temperature, 350 °C desolvation temperature, 600 liters/h desolvation
nitrogen gas flow rate, 35V cone voltage, mass range of m/z 50 to 1000 with spectra accumulated
at 0.1 seconds/function. Three collision energies (0, 15, and 35 eV) were used in separate
acquisition functions. The MS settings for positive ion-mode electrospray ionization were: 3.00
kV capillary voltage, 100 °C source temperature, 350 °C desolvation temperature, 600 liters/h
desolvation nitrogen gas flow rate, 35V cone voltage, mass range of m/z 50 to 1000 with spectra
accumulated at 0.1 seconds/function. Three collision energies (0, 15, and 45 eV) were used in
separate acquisition functions. The Waters QuanLynx software was used to integrate peak areas
of the selected ion relative to the internal standard. For quantification purpose, data collected with

the lowest collision energy was used in the analysis.

Gene coexpression analysis

The publicly available tomato RNA-seq datasets and the methods used for normalizing FPKM,
gene expression correlation analysis were described in a recent study (Moore et al., 2020). 926

RNA-seq Sequence Read Archive (SRA) files for tomato from 47 studies were downloaded from
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National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/) (Table S6
in (Moore et al., 2020). Reads were filtered using Trimmomatic (A. M. Bolger et al., 2014) based
on the sequence quality with default settings, and mapped to the tomato NCBI S. lycopersicum
genome 2.5 using TopHat (Trapnell et al., 2009). Read files with <70% mapped reads were
discarded. Fragments per kilobase of transcript per million mapped reads (FPKM) were calculated
using Cufflinks (Trapnell et al., 2010). The pipeline for FPKM calling was put in
https://github.com/ShiuLab/RNAseq pipeline. The median FPKM of multiple replicates was used
for each sample, resulting in FPKM values in 372 samples. To draw the heatmap of gene
expression profiles, FPKM values of a gene across all the samples were scaled, where the

maximum FPKM was scaled to 1, while the minimum value was 0.
Synteny scan

Protein sequences of annotated genes and the corresponding annotation files in General Feature
Format (GFF) of 11 Solanaceae species, [pomoea trifida, and Coffea canephora were downloaded
from National Center for Biotechnology Information (NCBI,

https://www.ncbi.nlm.nih.gov/genome/) or Solanaceae Genomics Network (SGN,

https://solgenomics.net/). The GFF files contain the coordinates of annotated genes on assembled

chromosomes or scaffolds. The sources and version numbers of sequences and GFF files used are:
S. lycopersicum ITAG3.2 (SGN) and V2.5 (NCBI), S. pennellii SPENNV200 (NCBI) and v2.0
(SGN), S. tuberosum V3.4 (SGN), S. melongena 12.5.1 (SGN), Capsicum annuum L. zunla-1
V2.0 (SGN), C. annuum_var. glabriusculum V2.0 (SGN), Nicotiana attenuata NIATTr2 (SGN),
N. tomentosiformis VO1 (NCBI), N. benthamiana V1.0.1 (SGN), Petunia axillaris V1.6.2 (SGN),

P. inflata V1.0.1 (SGN), L. trifida V1.0 (NCBI), and C. canephora Vx (SGN).

To hypothesize the evolutionary history of genes in the acylsugar gene cluster, putative
pseudogenes, which are homologs to protein-coding genes but with predicted premature

stops/frameshifts and/or protein sequence truncation, were also identified for each species as
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described (Wang et al., 2018). Protein sequences from Arabidopsis thaliana, Oryza sativa, and S.
lycopersicum were used as queries in the searches against the genomic regions of target species
using TBLASTN (Altschul et al., 1990). The intergenic genomic sequences were identified as
potential pseudogenes using the pipeline from as previously described (Campbell et al., 2014; Zou
et al., 2009). If one of the six-frame translated sequences of the intergenic genomic sequences had
significant similarity to annotated protein sequences, and had premature stops/frameshifts and/or

were truncated (<30% of functional paralogs), the gene was defined as a pseudogene.

Genome-wide syntenic analysis was conducted using annotated protein-coding genes and
putative pseudogenes from all the species with MCScanX-transposed (Wang et al., 2013) as
described (Wang et al., 2018). The MCScanX-based analysis did not lead to a syntenic block of
acylsugar gene cluster on chromosome 7 of S. melongena 12.5.1, which can be due to true absence,
issues with genome assembly, or lack of coverage. To verify this, protein sequences of S.
lycopersicum genes in genomic blocks on chromosome 7 were searched against an updated S.

melongena genome from The Eggplant Genome Project (http://ddlab.dbt.univr.it/eggplant/) that

led to the identification of the synteny.

Phylogenetic tree building

Homologous genes of SI-AACS1 (ACS), SI-AECHI(ECH), and Solyc07g043670 (BAHD
acyltransferase) were obtained through BLAST (Altschul et al., 1990) search from the genomes of
11 Solanaceae species, Ipomoea trifida, and Coffea canephora with an Expect value threshold of
le-5. To simply the phylogenetic tree, sequences which are distantly related to the target genes
were removed, and the remained sequences were used to rebuild the phylogenetic trees. The
amino acid sequences were aligned using MUSCLE (Edgar, 2004) with the default parameters.
The phylogenetic trees were built using the maximum likelihood method with 1000 bootstrap
replicates. The trees were generated using RAXML/8.0.6 (Stamatakis, 2014) with the following

parameters: -fa -x 12345 -p 12345 -# 1000 -m PROTGAMMAAUTO --auto-prot=bic, and were
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shown with midpoint rooting. The final sequence alignments used to generate the phylogenetic

trees were provided in Supplementary file 5.

Ancestral trait reconstruction

Ancestral trait state reconstruction was conducted using the maximum likelithood model Mk1 in
Mesquite 3.6 (Massidon and Maddison, 2018). Four traits were inferred for their ancestral states.
They are the presence of medium chain acylsugars, presence of ACS genes in the synteny,
presence of ECH genes in the synteny, and presence of both ACS and ECH genes in the synteny.

The phylogeny of Solanaceae species was based on a previous study (Sarkinen et al., 2013).

Acylsugar acyl chain composition analysis by GC-MS

Acyl chains were characterized from the corresponding fatty acid ethyl esters following
transesterification of acylsugar extractions as previously reported (Ning et al., 2015). Plants were
grown for 4-8 weeks and approximately ten leaves were extracted for 3 minutes in 10 mL of 1:1
isopropanol:acetonitrile with 0.01% formic acid. Extractions were dried to completeness using a
rotary evaporator and then 300 pL of 21% (v/v) sodium ethoxide in ethanol (Sigma) was added
and incubated for 30 minutes with gentle rocking and vortexing every five minutes and 400 pL
hexane was added and vortexed for 30 seconds. To the hexane layer, 500 puL of saturated sodium
chloride in water was added and vortexed to facilitate a phase separation. After phase separation,
the top hexane layer was transferred to a new tube. The phase separation by addition of 500 uL
hexane was repeated twice, with the final hexane layer transferred to a 2 mL glass vial with a

glass insert.

The fatty acid ethyl esters were analyzed using an Agilent 5975 single quadrupole GC-MS
equipped with a 30-m, 0.25-mm internal diameter fused silica column with a 0.25-um film
thickness VF5 stationary phase (Agilent). Injection of 1 pL of each hexane extract was performed

using splitless mode. The gas chromatography program was as follows: inlet temperature, 250°C,;
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initial column temperature, 70°C held for 2 min; ramped at 20°C/min until 270°C, then held at
270°C 3 min. The helium carrier gas was used with 70 eV electron ionization. Acyl chain type
was determined through NIST Version 2.3 library matches of the mass spectra of the
corresponding ethyl ester and relative abundances were determined through integrating the

corresponding peak area over the total acyl chain peak area.
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Main Figure Legends

Figure 1. Primary metabolites are biosynthetic precursors of tomato trichome acylsugars. In
cultivated tomatoes, the trichome acylsucroses are synthesized by four SI-ASATSs using the primary
metabolites — sucrose and different types of acyl-CoAs — as substrates. In this study we provide evidence
that medium chain fatty acids are converted to acyl-CoAs by an acyl-CoA synthetase for medium chain

acylsugar biosynthesis.

Figure 2. Mapping of a genetic locus related to acylsugar variations in tomato interspecific
introgression lines. (A) Electrospray ionization negative (ESI') mode, base-peak intensity (BPI) LC/MS
chromatogram of trichome metabolites from cultivated tomato S. lycopersicum M82 and introgression line
IL7-4. The orange bars highlight two acylsugars that have higher abundance in IL7-4 than in M82. For the
acylsucrose nomenclature, “S” refers to a sucrose backbone, “3:22” means three acyl chains with twenty-
two carbons in total. The length of each acyl chain is shown in the parentheses. (B) Peak area percentage
of seven major trichome acylsugars in M82 and IL7-4. The sum of the peak area percentage of each
acylsugar is equal to 100% in each sample. The data is shown for three plants £+ SEM. **p < 0.01, Welch

two-sample t test. Figure 2 — source data 1 includes values for the analysis. (C) Mapping the genetic
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locus contributing to the IL7-4 acylsugar phenotype using selected backcross inbred lines (BILs) that have
recombination break points within the introgression region of IL7-4. (D) Narrowing down candidate genes
in the locus using trichome/stem RNA-seq datasets generated from previous study (Ning et al., 2015). A
region with duplicated genes of three types — acyl-CoA synthetase (ACS), BAHD acyltransferase, and
enoyl-CoA hydratase (ECH) — is shown. The red-blue color gradient provides a visual marker to rank the
expression levels represented by Fragments Per Kilobase of transcript per Million mapped reads (FPKM).
Coexpression analysis of tomato ACS, ECH, and BAHD acyltransferase family genes is shown in Figure 2

— figure supplement 1.

Figure 3. CRISPR/Cas9-mediated gene knockout of tomato SI-AACS1 or SI-AECH1 eliminates
detectable medium chain containing acylsugars. (A) Combined LC/MS extracted ion chromatograms
of trichome metabolites from CRISPR mutants s/-aacs1 and sl-aech1. The medium chain acylsugars that
are not detected in the two mutants are denoted by pairs of vertical dotted lines. Figure 3 — figure
supplement 1 describes the design of the gRNAs and details of the gene edits. (B) Quantification of
seven major trichome acylsugars in sl-aacs? and sl-aech1 mutants. Two independent T2 generation
transgenic lines for each mutant were used for analysis. The peak area/internal standard (IS) normalized
by leaf dry weight (DW) is shown from six plants + SEM. Figure 3 — source data 1 includes values for the
analysis. (C) Confocal fluorescence images showing that GFP fluorescence driven by SI-AACS1 or SI-
AECHT1 is located in the tip cells of type I/IV trichomes. Their tissue specific expressions are similar to S/-
ASATT (Fan et al., 2016), which locates in a chromosome 12 region that is syntenic to the locus containing
SI-AACS1 and SI-AECH1. Figure 3 — figure supplement 2 provides the detailed information of the
syntenic region. SI-AACS1, SI-AECH1, and SI-ASAT1 are the only gene models with demonstrated

functions in acylsugar biosynthesis.

Figure 4. Functional analysis of SI-AACS1 and SI-AECH1 in N. benthamiana and recombinant Sl-
AACS1 enzyme analysis. (A) Confocal images of co-expression analysis in tobacco leaf epidermal cells
using C-terminal CFP-tagged either SI-AACS1 or SI-AECH1 and the mitochondrial marker MT-RFP.
Arrowheads point to mitochondria that are indicated by MT-RFP fluorescent signals. Scale bar equals 10
um. Figure 4 — figure supplement 1B describes that the expressed YFP-recombinant proteins were not
co-localized with the peroxisomal marker RFP-PTS (B) Aliphatic fatty acids of different chain lengths were

used as the substrates to test SI-AACS1 acyl-CoA synthase activity. Mean amount of acyl-CoAs generated
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(nmol min” mg'1 proteins) was used to represent enzyme activities. The results are from three
measurements + SEM. Figure 4 — source data 1 includes values for the measurements. (C) Enzyme
activity of SI-AACS1 for six fatty acid substrates. (D) Identification of membrane lipid phosphatidylcholine
(PC), which contains medium acyl chains, following transient expression of SIFAECH1 in N. benthamiana
leaves. The results from expressing SI-FAACS1 and co-expressing both SIFAECH1 and SI-AACS1 are also
shown. Mole percentage (Mol %) of the acyl chains from membrane lipids with carbon number 12, 14, 16,
and 18 are shown for three biological replicates + SEM. *p < 0.05, **p < 0.01. Welch two-sample t test
was performed comparing with the empty vector control. Figure 4 — source data 2 includes values for
the lipid analysis. Acyl groups of the same chain lengths with saturated and unsaturated bonds were
combined in the calculation. Figure 4 — figure supplement 2 shows that the putative SI-F-AECH1

orthologs from S. pennellii and S. quitoense generated medium chain lipids in the infilirated leaves.

Figure 5. AACS7 and AECH1 are evolutionarily conserved in Solanum plants. (A) A conserved
syntenic genomic region containing AACS71 and AECH1 was found in three selected Solanum species.
Nodes representing estimated dates since the last common ancestors (Sarkinen et al., 2013) shown on
the left. The closest homologs of AACS7 and AECH1 in Solanum quitoense are shown without genomic
context because the genes were identified from RNA-seq and genome sequences are not available. The
lines connect genes representing putative orthologs across the four species. The trichome/stem RNA-seq
data of two biological S. pennellii replicates are summarized (Supplementary file2) for genes in the
syntenic region. The red-blue color gradient provides a visual marker to rank the expression levels in
FPKM. Structures of representative medium chain acylsugars from S. quitoense (acylinositol, 14:26)
(Hurney, 2018) and S. pennellii (acylglucose, G3:19) (Leong et al., 2019) are on the right. Figure 5 —
figure supplement 1 shows that stable Sp-AACS1 transformation of the M82 CRISPR mutant sl-aacs1
restores C12 containing acylsugars (B) CRISPR/Cas9-mediated gene knockout of Sp-AACS1 or Sp-
AECH1 in S. pennellii produce no detectable medium chain containing acylsugars. The ESI"” mode LC/MS
extracted ion chromatograms of trichome metabolites are shown for each mutant. The m/z 127.01 (left
panel) corresponds to the glucopyranose ring fragment that both acylsucroses and acylglucoses generate
under high collision energy positive-ion mode. The m/z 155.14 (center panel) and 183.17 (right panel)
correspond to the acylium ions from acylsugars with chain length of C10 and C12, respectively. Figure 5
— figure supplement 2A-C describes the design of the gRNAs and the detailed information of gene edits.

(C) Silencing Sq-AACS1 (Sq-c34025) or Sq-AECH1 (Sq-c37194) in S. quitoense using VIGS leads to
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reduction of total acylsugars. The peak area/internal standard (IS) normalized by leaf dry weight was
shown from sixteen plants + SEM. ***p < 0.001, Welch two-sample t test. Figure 5 — figure supplement
2E and 2F describes the VIGS experimental design and the representative LC/MS extracted ion
chromatograms of S. quitoense major acylsugars. (D) Reduced gene expression of Sq-AACS1 or Sq-
AECH1 correlates with decreased acylsugar levels in S. quitoense. The qRT-PCR gene expression data
are plotted with acylsugar levels of the same leaf as described in Figure 5 — figure supplement 2E.

Figure 5 — source data 1 includes raw data for the S. quitoense VIGS experiments.

Figure 6. Evolution of the acylsugar gene cluster is associated with acylsugar acyl chain diversity
across the Solanaceae family. (A) The acylsugar gene cluster syntenic regions of 11 Solanaceae
species and two outgroup species Ipomea trifida (Convolvulaceae) and Coffea canephora (Rubiaceae).
This is a simplified version adapted from Figure 6 — figure supplement 1. Only genes from the three
families — ACS (blue), BAHD acyltransferase (green), and ECH (orange) — are shown. For information
about the syntenic region size in each species refer to Figure 6 — figure supplement 1 and
Supplementary file 4. (B) The evolutionary history of the acylsugar gene cluster and its relation to the
acylsugar phenotypic diversity. The evolution of BAHD acyltransferase genes is inferred based on Figure
6 — figure supplement 2 and Figure 6 — figure supplement 5. ECH genes based on Figure 6 —
figure supplement 3. ACS genes based on Figure 6 — figure supplement 4 and Figure 6 — figure
supplement 6. The temporal order for the emergence for the three types of genes are shown in the
colored boxes on the left: green box (BAHD acyltransferase), orange box (ECH), blue box (ACS). The
yellow star represents the Solanaceae-specific WGD. Structures of representative short and medium chain
acylsugars were shown on the right. Figure 6 — figure supplement 8 describes distribution of acylsugar

acyl chains with different lengths in species across the Solanaceae family.

Legends for supplementary figures and files

Figure 2 — figure supplement 1. Expression profiles of tomato ACS, ECH, and BAHD
acyltransferase family genes used for phylogenetic analysis in this study. Each column represents
one transcriptomic profiling dataset generated by RNA-seq analysis using samples from the cultivated
tomato (S. lycopersicum). A total of 372 RNA-seq datasets were used for the analysis as described in the
previous study (Moore et al., 2020). The normalized FPKM value of each gene across all the 372 datasets

was illustrated by the color scale. The maximum FPKM value was set to 1 (red), while the minimum FPKM
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value was 0 (blue). The datasets generated using tomato root hairs (first column) or trichomes (second
column) were indicated by arrows. Genes (y-axis) and expression datasets (x-axis) were both grouped
using hierarchical clustering. Genes involved in acylsugar biosynthesis, such as SI-ASATs, SI-AACS1, and
SI-AECH1, were clustered together, which are highlighted by the orange box. Hierarchical clustering also
revealed another group of genes that are root hair-specific as pointed out by the purple box. The gene ID
was colored based on which gene family it belongs. Blue: ACS genes; red: ECH genes; green: BAHD

acyltransferase genes.

Figure 3 — figure supplement 1. CRISPR-Cas9-mediated gene knockouts in cultivated tomato S.
lycopersicum. The gRNAs targeting SI-AACS1 (A), SIFAECH1(B), and Solyc07g043660 (C) in cultivated
tomato are highlighted with red lines and text. Two pairs of gRNAs were designed that target SI-AECH1,
which were followed by two trials of plant transformation. DNA sequences of the self-crossed T1
generation transgenic lines carrying homozygous gene edits are shown beneath the gene model. Dotted
rectangle boxes highlight edited sequences. (D) Electrospray ionization negative (ESI’) mode, LC/MS
extracted ion chromatograms of seven major trichome acylsugars of the CRISPR mutant solyc079g043660

and the M82 parent.

Figure 3 — figure supplement 2. The syntenic region of cultivated tomato S. lycopersicum
chromosome 7 and 12 harboring the acylsugar and steroidal glycoalkaloid gene clusters. The gene
models are represented by rectangles, with pseudogenes labeled with dotted lines. The lines linking the
gene models of the two chromosomes denote putative orthologous genes in the synteny. GAME genes

involved in glycoalkaloid metabolism were previously reported (ltkin et al., 2013).

Figure 4 — figure supplement 1. Characterization of cluster genes using leaf transient expression:
protein subcellular targeting and impacts on lipid metabolism. (A) Confocal images of co-expression
analysis in N. tabacum leaf epidermal cells using C-terminal CFP-tagged Solyc07g043660 and the
mitochondrial marker MT-RFP. Arrowheads point to mitochondria that are indicated by MT-RFP
fluorescent signals. White bar equals 10 um. (B) Confocal images of co-expression analysis in N. tabacum
leaf epidermal cells using N-terminal YFP-tagged SI-AACS1, SI-AECH1, or Solyc07g043660, and the
peroxisomal marker RFP-PTS. Arrowheads point to peroxisomes that are indicated by RFP-PTS
fluorescent signals. Bar equals 10 um. (C) N. benthamiana leaf membrane lipid acyl chain composition.

The results from infiltrating SI-FAACST or SI-AECH1 individually, and infiltrating SI-FAECH1 and SI-AACS1
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together are shown. The lipid abbreviations are: phosphatidylglycerol (PG), sulfoquinovosyl diacylglycerol
(SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG), phosphtatidylinositols
(PI), and phosphtatidylethanolamine (PE). Mole percentage (Mol %) of the acyl chains from membrane
lipids with carbon number 12, 14, 16, and 18 are shown for three biological replicates + SE. *p < 0.05, **p
< 0.01. Welch two-sample f test was performed comparing each experimental with the empty vector
control. Pl and PE lipids were adjacent on the TLC plates and were pooled for analysis. Acyl groups of the

same chain lengths with saturated and unsaturated bonds were combined in the calculation.

Figure 4 — figure supplement 2. The closest homologs of SI-AECH1 from other Solanum species
generate medium chain lipids when transiently expressed in N. benthamiana. (A) ESI" mode, LC/MS
extracted ion chromatograms of two SQDGs with C12 as peaks diagnostic of lipids containing medium
chain fatty acids. (B) Mass spectra of two SQDGs contain C12 acyl chain. Fragmentation of SQDG (16:0,
12:0) and SQDG (18:3, 12:0) in ESI" mode revealed the fragment ion C12 fatty acid (m/z: 199.17) and the
SQDG head group (m/z: 225.0). (C) Among the SI-AECH1 homologs tested, Sopen07g023250 (Sp-
AECHT1) and Sq_c37194 (Sq-AECH1), from S. pennellii and S. quitoense respectively, generated medium
chain SQDG in the infiltrated leaves. The close homologs of SI-FAECH1 in S. lycopersicum, S. pennellii,
and S. quitoense, which also have trichome expressions, were used to build the phylogenetic tree. The
nucleotide sequences were aligned with MEGA7 (www.megasoftware.net) using the default MUSCLE
algorithm. The T92+G maximum likelihood model was selected for phylogenetic tree construction from 24
different nucleotide substitution models based on the lowest Bayesian Information Criterion. The bootstrap
values were obtained with 1000 replicates. The closest SIFAECH1 Arabidopsis homolog AT1G06550

serves as an outgroup.

Figure 5 — figure supplement 1. Stable Sp-AACS1 transformation of the M82 CRISPR mutant s/-
aacs1 restores C12 containing acylsugars. (A) ESI" mode, LC/MS extracted ion chromatograms are
shown for seven major acylsugar peaks extracted from trichome of S. lycopersicum M82, sl-aacs1, and
two independent TO generation suppressed sl-aacs? transgenic lines expressing Sp-AACS1 under its own
promoter. (B) Peak area percentage of seven major trichome acylsugars of the suppression transgenic
plants. The sum of the peak area percentage of each acylsugar equals to 100%. The results of acylsugar

peak area percentage were calculated from six independent TO transgenic lines + SE.
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Figure 5 — figure supplement 2. Functional analysis of AACS7 and AECH1 in S. pennellii and S.
quitoense via CRISPR-Cas9 system and VIGS, respectively. The design of gRNAs targeting wild
tomato S. pennellii LAO716 Sp-AACS1 (A), Sopen07g023250 (B), and Sp-AECH1 (C) is highlighted with
red lines and text. The transgenic TO generation carrying chimeric or biallelic gene edits are shown
beneath the gene model. DNA sequence of the gene edits was obtained through Sanger sequencing of
cloned plant DNA fragments. The gene edits are highlighted with dotted rectangular boxes. (D) ESI" mode,
LC/MS extracted ion chromatograms shown for C10 (m/z: 155.14) and C12 (m/z: 183.17) fatty acid ions
corresponding to medium chain trichome acylsugars extracted from the CRISPR mutants
sopen07g023220 and the S. pennellii LAO716 parent. (E) Experimental design of VIGS in S. quitoense. A
control group silencing the PDS genes was performed in parallel with the experimental groups. The onset
of the albino phenotype of the control group was used as a visual marker to determine the harvest time
and leaf selection in the experimental groups. The fourth true leaves were harvested and cut in half for
gene expression analysis and acylsugar quantification, respectively. (F) ESI"mode, LC/MS extracted ion
chromatograms of six major acylsugars of S. quitoense for the experimental group. The three LC/MS
chromatograms show representative acylsugar profiles of the empty vector control plants and the VIGS

plants targeting Sq-AACS1 and Sq-AECH1.

Figure 6 — figure supplement 1. Syntenic regions containing the acylsugar gene cluster. The
species name and chromosome/scaffold identifier are indicated with S. lycopersinum in blue font.
Rectangle: protein-coding gene (solid line) or pseudogene (dotted line) colored according to the type of
genes. Line connecting two genes: putative orthologous genes. Numbers underneath chromosomes:
chromosome coordinates in million bases (Mb). The gene ID and location information used to generate the

synteny figure is provided in Supplementary file 4.

Figure 6 — figure supplement 2. Analysis of the evolutionary history of the BAHD acyltransferases
in the syntenic regions in different Solanaceae species. (A) Phylogenetic tree of BAHD
acyltransferases homologous to Solyc07g043670. Genes colored with green and labeled with green
rectangles are from the syntenic regions of Solanaceae species shown in panel (B). Genes marked with
stars have been biochemically tested involved in acylsugar biosynthesis in previous studies. (B) The
acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup species Ipomea

trifida (Convolvulaceae) and Coffea canephora (Rubiaceae). (C) Reconciled evolutionary history of BAHD
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acyltransferases based on panel (A) and (B). The colors of the branches correspond to different lineages
shown in panel (A). Grey branch means enzymes from that lineage could not be found through BLAST and
may have been lost. Numbers in the circle indicate the nodes in the phylogenetic tree as shown in panel A.
The inferred evolutionary events were shown next to the nodes. Grey box highlighted the evolutionary
history of the genes in the syntenic region. Before the Solanaceae specific whole genome duplication
(WGD) events, the BAHD acyltransferase gene was tandemly duplicated. The WGD events resulted in at
least two genomic regions (Chr07 and Chr12), each containing two BAHD acyltransferase genes. Before
the divergence of Solanum, Nicotiana, and Petunia species, one of the tandem copies in Chr12 region was
lost, and only orthologs of SI-FASAT1 was retained. The question mark next to Petunia denotes the
inconsistence of the phylogenetic relationship and the chromosome location of the gene Pa-B8716 with an

unknow mechanism.

Figure 6 — figure supplement 3. Analysis of the evolutionary history of the ECH genes in the
syntenic regions in different Solanaceae species. (A) Phylogenetic tree of ECH genes homologous to
SI-AECH1. Genes colored with orange and labeled with orange rectangles are from the syntenic regions of
Solanaceae species shown in panel (B). Genes marked with stars have been tested involved in acylsugar
biosynthesis. (B) The acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup
species Ipomea trifida (Convolvulaceae) and Coffea canephora (Rubiaceae). (C) Reconciled evolutionary
history of ECH enzyme based on panel (A) and (B). The colors of the branches correspond to different
lineages shown in panel A. Grey branch means enzymes from that lineage could not be found through
BLAST and may have been lost. Numbers in the circle indicate the nodes in the phylogenetic tree as
shown in panel (A). The inferred evolutionary events were shown next to the nodes. Grey box highlighted
the evolutionary history of the genes in the syntenic regions. Before the Solanaceae specific WGD events,
an ECH was inserted into the syntenic region through unknown mechanism. After the WGD events, there
was one ECH gene in each syntenic region on Chr07 and Chr12. Before the divergence of Solanum,
Nicotiana, and Petunia species, the ECH gene on Chr07 had experienced a tandem duplication event,
leading to two branches on the phylogenetic tree. During the speciation, the ECH gene on Chr12 was
deleted from the genome in the most recent common ancestor of Nicotiana and Solanum after divergent

from Petunia, while one of the tandem duplicates on ChrQ7 was lost in Petunia.
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Figure 6 — figure supplement 4. Analysis of the evolutionary history of the ACS genes in the
syntenic regions in different Solanaceae species. (A) Phylogenetic tree of ACS genes homologous to
SI-AACS1. Genes colored with blue and labeled with blue rectangles are from the syntenic regions of
Solanaceae species shown in panel (B). Genes marked with stars have been tested involved in acylsugar
biosynthesis. (B) The acylsugar gene cluster syntenic regions of 11 Solanaceae species and two outgroup
species Ipomea trifida (Convolvulaceae) and Coffea canephora (Rubiaceae). (C) Reconciled evolutionary
history of ACS enzyme based on panel (A) and (B). The colors of the branches correspond to different
lineages shown in panel (A). Grey branch means enzymes from that lineage could not be found through
BLAST and may have been lost. Numbers in the circle indicate the nodes in the phylogenetic tree as
shown in panel A. The inferred evolutionary events were shown next to the nodes. A tandem duplication
event happened before the Solanaceae specific WGD events, leading to two adjacent ACS genes on
Chr02 (Solyc029082880 and Solyc02g082870), which were placed on two independent lineages in the
phylogenetic tree. Solyc029082870 had gone through two rounds of WGD events, supported by the
observation that Solyc02g082870 and Solyc03g032210 are located in corresponding syntenic blocks.
Solyc029082880 may have experienced the segmental duplication, resulting in the ACS gene on Chr07,
which had experienced another two rounds of tandem duplication in the common ancestor of Solanum
species (SI-AACS1, Solyc079g043660, and Solyc07g043640). However, whether the segmental duplication
event happened before or after the Solanaceae specific WGD events cannot be well resolved by the
phylogenetic analysis. Two hypotheses were proposed as shown in the grey boxes. If the insertion
happened before WGD, two independent gene loss events on chromosomes 7 and 12 should have
happened in Petunia (Hypothesis 2). If the insertion happened after WGD, only one gene loss in Petunia
was supposed to have happened (Hypothesis 1). Note that node 4 in (A) leads to two clades, one without
any Petunia ACS homolog (darker blue) and the other with Petfunia homologs (cyan). With regard to the
timing of the duplication event leading to these two clades, it was likely before the split between the
Petunia and the tomato/tobacco lineages where one Petunia loss event occurred (darker blue). If it was
after the split, the presence of a Petunia gene would need to be explained by a gene gain through

horizontal gene transfer or other means (cyan) - a far less likely scenario than a gene loss.

Figure 6 — figure supplement 5. Phylogenetic analysis of the BAHD acyltransferase. The BAHD
acyltransferase pseudogene (Cc-BAHD-pseu) in the corresponding syntenic region (Figure 6) of Coffea

canephora is one of the closest Coffea sequences sister to the ASAT clade. It indicates that the BAHD
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1199 acyltransferase gene was the first to harbor in this syntenic region before the divergence between

1200  Solanaceae and Rubiaceae. The translated amino acid sequence of Cc-BAHD-pseu was aligned with
1201 sequences used in Figure 6A of a previous study (Moghe et al., 2017) using MUSCLE. The phylogenetic
1202 trees were built using the maximum likelihood method with 1000 bootstrap replicates. The tree was

1203  generated using RAXML/8.0.6 with the following parameters: -f a -x 12345 -p 12345 -# 1000 -m

1204 PROTGAMMAAUTO --auto-prot=bic, and was shown with the midpoint rooting. Genes colored with green
1205 are from the focused syntenic regions. Genes marked with stars have been biochemically tested involved

1206  in acylsugar biosynthesis in previous studies.

1207  Figure 6 — figure supplement 6. Additional evolutionary analysis of ACS genes in the syntenic
1208  regions to understand when the segmental duplication event happened. (A) SI-AACS7 homologs
1209  obtained from Salpiglossis sinuate trichome transcriptome dataset (Moghe et al., 2017) were added for
1210 additional phylogenetic analysis. Genes colored with blue are from the syntenic regions of Solanaceae
1211  species Only the lineage derived by the number (4) evolutionary event as depicted in Figure 6 — figure
1212 supplement 5 was shown. (B) If the insertion happened before WGD, one gene loss on Solanum

1213 chromosome 12, as well as two independent gene losses on chromosomes 7 and 12 should have

1214 happened in Petunia and in Salpiglossis sinuate (Hypothesis 2). However, if the insertion happened after
1215 WGD, then only one gene loss event in Petunia and Salpiglossis was supposed to have happened

1216  (Hypothesis 1). The latter scenario is more likely due to the principle of parsimony.

1217  Figure 6 — figure supplement 7. Ancestral trait state reconstruction analysis. Four traits were
1218 inferred for their ancestral states using the maximum likelihood model Mk1 in Mesquite 3.6. They are the
1219 presence of medium chain acylsugars, presence of ACS in the synteny, presence of ECH in the synteny,
1220 and presence of both ACS and ECH in the synteny. The proportional likelihoods were shown in each

1221  diverging node in the ball charts.

1222 Figure 6 — figure supplement 8. Phylogenetic distribution of acylsugar acyl chains with different

1223 lengths across the Solanaceae family. (A) The collated results of acylsugar acyl chain distribution
1224 across different Solanaceae species. Red rectangles indicate detectable acyl chains in the acylsugars
1225 produced in the tested species and white rectangles indicate no detectable signals. The data source where

1226 the results are derived is listed on the right. (B) Results of acylsugar acyl chain characterization of selected
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1228
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1234
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1241
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1243

1244
1245

1246
1247

1248
1249

1250
1251

Solanaceae species. Mole percentage (Mol %) of acylsugar acyl chains with different lengths were

obtained from GC/MS analysis of fatty acid ethyl esters.

Supplementary file 1. Co-expression analysis of tomato genes from ACS, ECH, and BAHD
acyltransferase families used for phylogenetic analysis in this study. The values of Pearson’s
correlation coefficient of the expression profiles between any of the two genes were shown in the table.
The coefficient values were generated using the FPKM values of these genes in the 372 RNA-seq
samples as shown in Figure 2-supplemental figure1. The orange box highlights a group of co-expressed
genes involved in acylsugar biosynthesis, such as SI-ASATs, SI-AACS1, and SI-AECH1. The purple box

points out another group of co-expressed genes that are root hair specific.

Supplementary file 2. Gene expression levels of all analyzed transcripts in Solanum pennellii
LAO0716. logFC: log2 fold change in stem trichomes versus shaved stems. logCPM: log (counts per million)
in trichomes versus shaved stems. The F and Q-value test the significance of differential expression via a
quasi- general linear model. The values noted in the sample columns represent the FPKM (Fragments Per

Kilobase of transcript per Million mapped reads) analyzed via Cufflinks.

Supplementary file 3. Synthesized gene fragments and primers used in this study.

Supplementary file 4. The date used to generate the synteny figure shown in Figure 6 — figure

supplement 1.

Supplementary file 5. The sequence alignment documents used to generate the phylogenetic trees for

Figure 6 — figure supplements 2, 3, 4, 5, 6.

Figure 2 — source data 1. Data used to make Figure 2B. Peak area percentage of seven major trichome

acylsugars in M82 and IL7-4.

Figure 3 — source data 1. Data used to make Figure 3B. Quantification of seven major trichome

acylsugars in the CRISPR mutants sl-aacs? and sl-aech1, as well as the parent M82.

Figure 4 — source data 1. Data used to make Figure 4B. Aliphatic fatty acids of different chain lengths

were used as the substrates to test SI-AACS1 acyl-CoA synthase activity.
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1252
1253

1254
1255
1256

Figure 4 — source data 2. Data used to make Figure 4D and Figure 4-figure supplement 1C. N.

benthamiana leaf membrane lipid acyl chain composition.

Figure 5 — source data 1. Data used to make Figure 5C and 5D. Silencing Sq-AACS1 or Sq-AECH1 in S.

quitoense using VIGS leads to reduction of total acylsugars.
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114 bp

gRNA1 A gRNA2
—

SI-AACS1 (Solyc07g043630)

gRNA1 gRNA2 !

WT CCGTTG TTGAGGCAGCAGTAGTC-//-CCACATTACATGGTGCCTCGAGC

T1-13-2(hom) TTGiTTGAGGCAGCAGTAGTC [ CATTACATGGTGCCTCGAGC +1 bp
T1-7-2(hom) TTGTTTGAGGCAGCAGTAGTC:/[---- CATTACATGGTGCCTCGAGC +1 bp

T1-18-1(hom) TTGi- - - - - = - - -TACATGGTGCCTCGAGC-134 bp
T1-19-5(hom) TTGi- = - = = = = - - T ACATGGTGCCTCGAGC -134 bp
T1-13-8(hom) TTGAATGTGGCAAATGATCCC /" "TCAKACATGGTGCCTCGAGC 135 bp

Inversion

551 bp (second trial)

34 bp (first trial)
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RNA1 RNA2
« T8

—/gRNA3  gRNA

wcw ...... U/ gg.cw
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54 bp

gRNAT_,

Sp-AACS1
(Sopen07g023200)

gRNA2

-7 gRNA1 \ gRNA2

CCGTTGT GTTTGGGTCTAGTGTG -//- ATTCAGCTTGGAATTTCGCGGGG

TTGTIGTTTGGGTCTAGTGTG /I~ ATTCAGCTTGGAATTTCGCG
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