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ABSTRACT: Pyrimidines are almost unreactive partners in
Diels—Alder cycloadditions with alkenes and alkynes, and only
reactions under drastic conditions have previously been ’
reported. We describe how 2-hydrazonylpyrimidines, easily
obtained in two steps from commercially available 2-

NHNH

halopyrimidines, can be exceptionally activated by trifluoro- ~_

acetylation. This allows a Diels—Alder cycloaddition under N

very mild reaction conditions, leading to a large diversity of / ) \N

aza-indazoles, a ubiquitous scaffold in medicinal chemistry.  Gongensation CN , Diels-Alder
This reaction is general and scalable and has an excellent then \ N/)—N\ then
functional group tolerance. A straightforward synthesis of a Activation ‘\/ d retro-Diels-Alder

key intermediate of Bayer’s Vericiguat illustrates the potential
of this cycloaddition strategy. Quantum mechanical calcu-

— (T
|

lations show how the simple N-trifluoroacetylation of 2-hydrazonylpyrimidines distorts the substrate into a transition-state-like
geometry that readily undergoes the intramolecular Diels—Alder cycloaddition.

B INTRODUCTION

Cycloaddition reactions are unique tools that enable the rapid
elaboration of complex scaffolds with control over regio- and
stereochemistry. Applications of these pericyclic reactions, and
in particular the Diels—Alder cycloaddition, can be found in
natural products synthesis and the preparation of pharmaceuti-
cally relevant molecules.”” From a strategic standpoint, the
inverse-electron-demand Diels—Alder cycloaddition of azines
1° is of great interest, as it generates nitrogen-containing
heterocycles 2, a pr1v11eged scaffold in life-science research and
industry (Scheme 1a).°”® High reactivity is generally observed
with an increasing number of nitrogen atoms in the azine,
which reduces the aromaticity of the 67 system and also
favorably influences both distortion and interaction energies
required to reach the transition state of the Diels—Alder
cycloaddition.” 1,2,4,5-Tetrazines is a prototypical example of a
highly reactive aza-diene that reacts with a diversity of
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dienophiles, especially electron-rich, under mild conditions.’
This rapid Diels—Alder reaction is central to numerous
chemical biology studies and drug activation chemistries.'*™"
Triazines can also be reactive as aza-dienes, as demonstrated by
studies by Boger'”'* and applications in chemical biology by
Prescher.”

By contrast, near the other end of the azine spectrum,
pyrimidines stand as unreactive 47 partners.”'®'” Seminal
studies by Neunhoeffer'® and van der Plas'**° demonstrated
some decades ago that the lack of reactivity of pyrimidines 3 in
inter- or intramolecular Diels—Alder cycloadditions has to be
overcome by an exceptionally reactive dienophile (e.g.,
ynammes1821 %) or harsh reaction conditions (up to 280
°C in batch® and 310 °C in continuous flow™>) and long
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Scheme 1. Diels—Alder Cycloadditions of 2-Hydrazonylpyrimidines: An Entry to Relevant N-Containing Heterocycles
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reaction times (up to several days) (Scheme 1b).*® The scope
of these early studies remained very limited, and only a handful
of applications were reported.”®

Because of their low reactivity, the potential of the Diels—
Alder cycloadditions of pyrimidines remains untapped. If the
reactivity challenge posed by pyrimidines could be met, it
would be of high significance in terms of heterocyclic
chemistry and would constitute a fertile ground for theoretical
explanation. Indeed, pyrimidines are small building blocks that
possess key advantages: a large collection of structurally diverse
pyrimidines is accessible at a low price, which stands in sharp
contrast with the triazines or tetrazines (see Supporting
Information).

We have discovered that 2-hydrazonopyrimidines 7 can be
activated toward Diels—Alder cycloaddition under mild
conditions (20 or 60 °C, microwave irradiation or classical
heating, Scheme 1c), in sharp contrast with previous
observations about pyrimidine reactivity. The corresponding
cycloadducts are aza-indazoles 8, obtained in a straightforward
three-step sequence from 2-halopyrimidines § that are
commercially available, inexpensive, and structurally diverse
chemicals. 7-Aza-indazoles 8 are relevant nitrogen-containing
heterocycles’” that can be found in the marketed drugs
Adempas (9, Bayer’®), Vericiguat (10, Bayer and Merck &

Co.,”” actually in phase III clinical trials), and BMT-145027
(11, Bristol-Myers Squibb®°). This conceptually new approach
to the synthesis of 7-aza-indazoles 8 has a very wide scope, is
amenable to a one-pot procedure, and could be performed on a
gram scale. We also report quantum mechanical calculations of
this Diels—Alder reaction that shed light on the exceptional
activation of the 2-hydrazonopyrimidines 7. Indeed, this
phenomenon can be explained by the formation of an
activated conformer, s-cis,Z-7, that is distorted into a
transition-state-like geometry (Scheme 1d). After Diels—
Alder cycloaddition, a spontaneous retro-Diels—Alder reaction
and hydrolysis of the activating group deliver the desired 7-aza-
indazole 8. The nature of the activating group is thus central to
prevent N-cyclization to the corresponding pyrazole 1§
(Scheme 1e),*"** to pre-organize the system through
conformational equilibria, and to dramatically increase the
reactivity (and thus functional group tolerance) of the overall
process.

B RESULTS AND DISCUSSION

Unsubstituted pyrimidines are particularly challenging sub-
strates: the intramolecular cycloaddition of N-(but-3-yn-1-
yl)pyrimidin-2-amines into 7-aza-indolines at 210 °C was
reported to only lead to decomposition.”® The hydrazone 7
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was found to undergo very slow and inefficient intramolecular
Diels—Alder reactions. We thus screened activating groups that
could be easily introduced on the hydrazone 7 to enhance
reactivity.”* Trifluoroacetic anhydride (TFAA) was identified
as the optimal N-acylating agent, allowing a clean cyclo-
addition of model substrate 16 into 7-aza-indazole 18 at room
temperature in THF in the presence of 3-pentanone as a
formonitrile trap™ (Scheme 2). This dramatic increase in

Scheme 2. Diels—Alder Cycloadditions of Pyrimidines
under Mild Conditions
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[17, CCDC 1903453] [19, CCDC 1903455]

reactivity of pyrimidines in Diels—Alder cycloaddition is
unprecedented and opens new avenues in terms of synthetic
applications. Further optimization of the reaction temperature
and time with hydrazone 17 demonstrated that a complete
conversion to 19 could be obtained in only 10 min at 60 °C
under microwave irradiation. This latter set of conditions was
selected for the exploration of the scope of this Diels—Alder/
retro-Diels—Alder cycloaddition (Table 1).

This new method efficiently converts unsubstituted
pyrimidines into reactive aza-dienes upon treatment with
TFAA, leading to 7-aza-indazoles 20 and 21 in 93% yield
(Table 1). S-Bromopyrimidines are symmetrical pyrimidines
that delivered 7-aza-indazoles 22 and 23 possessing an alkyl or
cycloalkyl group on the 3-position in 76—81% yield. With
unsymmetrical aza-dienes such as 4-trifluoromethyl-pyrimi-
dines, 7-aza-indazoles 24—27 were obtained in 78—90% yield.
Although two pathways could be envisaged for the retro-
Diels—Alder cycloaddition,*® a single cycloadduct was
observed in each case in the crude reaction mixture.

The largest number of examples involve substituted S-fluoro-
pyrimidines, leading to aza-indazoles 29—48 in good to
excellent yields. Systematic variations of the electronic and
steric natures of the R!, R? and R® substituents of the
cycloaddition precursor demonstrated that a broad range of
motifs and functional groups are tolerated, leading to a unique
collection of 7-aza-indazoles. Aromatic and heteroaromatic
groups could be introduced on the 3- or 4-position of the
cycloadduct, as in 29 (87%), 36 (63%), 41 (99%), and 42
(64%). Halo-substituted aromatics are also compatible with
the process, as shown by 35 obtained in 88% yield. The latter
is poised for metal-catalyzed cross-coupling, leading to further
chemical diversity. Esters can be present in the 3-position of
the 7-aza-indazoles (32 67%, 40 85%) as well as n-alkyl (19

83%, 42 64%), cycloalkyl (30 65%, 43 83%, 44 94%), or
saturated N-heterocycles such as a piperidin-4-yl motif in 45
(70%).

To further expand the chemical space in these series, the
synthesis of 7-aza-indazoles with two classes of substituents
frequently used in drug design was studied. Cycloadducts 46
and 47, possessing a C3-bicyclo[1.1.1]pentane as a relevant
mimic of a para-disubstituted aromatic group,’”** were
obtained in good yields (86% and 89%, respectively). Finally,
we investigated spirocyclic substituents, as their reduced
lipophilicity, their high sp®/sp® carbon atoms ratio, and their
intrinsic positioning of bond vectors make them attractive rigid
scaffolds for medicinal chemistry;*” the 7-aza-indazole 48 was
obtained in 74% yield as a single compound.

Density functional theory (DFT) calculations were carried
out to understand the origin of the activation of pyrimidines.
Gas-phase geometry optimization was carried out at the M06-
2X/6-31G(d) level of theory, followed by single-point energy
calculations using 6-311+G(d,p) basis set with a CPCM
solvation model. Studies of the pyrimidine—alkyne cyclo-
additions revealed that the Diels—Alder reaction is the rate-
determining step, while the following retro-Diels—Alder
reaction has a low activation barrier and is significantly
exergonic with the release of formonitrile (Supporting
Information).>® Based on the broad scope of this reaction,
we first studied the impact of N-trifluoroacetylation on the
activation of three simplified pyrimidines, 49, 50, and 51
(Scheme 3).

Scheme 3a shows the transition-state structures involved in
these reactions, with the forming bond lengths labeled (in A)
and the activation energies shown below (in kcal/mol). The 4-
trifluoromethyl and S-fluoro groups on the pyrimidine scaffold
lower the activation energy slightly (0—2 kcal/mol, TS3 and
TSS vs TS1). On the other hand, the N-trifluoroacetyl group
has an enormous impact, decreasing the reaction barriers by
12—14 kcal/mol (TS2, TS4, and TS6 vs TS1, TS3, and TSS,
respectively). To understand the N-trifluoroacetyl effect, we
studied the corresponding intermolecular reactions and
analyzed the results with the distortion/interaction model
(Scheme 3b). The 3-trifluoromethyl group, S-fluoro atom, and
N-trifluoroacetyl group lower the activation barriers by 2—3
kcal/mol by improving interaction energies. Analysis of the
molecular orbital energies (Supporting Information) showed
that the N-trifluoroacetyl group lowers the energy of the
second lowest unoccupied molecular orbital (LUMO+1),
which interacts with the highest occupied molecular orbital
(HOMO) of alkyne, increasing the stabilizing interaction
energy due to charge transfer in this inverse-electron-demand
Diels—Alder reaction. However, in the intermolecular cyclo-
addition case, the activation from trifluoroacetyl group is small
(~2 kcal/mol), far less than in the intramolecular cyclo-
addition case.

To explain the origin of this powerful effect for the
intramolecular reaction, we propose a two-phase model,
dividing the intramolecular reaction into pre-organization
and cycloaddition phases (Scheme 4a). The pre-organization
phase refers to the process in which the reactant undergoes
conformational change from the ground state to a reactive state
where the aza-diene and the dienophile (pyrimidine and alkyne
in this case) are close in proximity in order to react. These
conformational changes can be described through the dihedral
angle 6 and the degree of pyramidalization ¢ of the NI-

DOI: 10.1021/jacs.9b07037
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Table 1. Scope of the Diels—Alder Cycloaddition”
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N
F F F
X X X
N H N N H
44, 94% 18, 87% 45, 70% 46, 86% 47, 89% 48, 74%
[X-RAY] [X-RAY] [X-RAY]

“Reaction conditions: 2-hydrazonopyrimidine (1 equiv), 3-pentanone (3 equiv), TFAA (1.5 equiv) in THF ([0.2 M]) at 60 °C (microwave
irradiation, 150 W, ramp time: 4S s) for 10 min. Yields were determined after chromatography on silica gel. X-ray crystallographic structures were

obtained for 19, 45, 46, and 47. Boc = tert-butoxycarbonyl.

nitrogen atom (Scheme 4b). The cycloaddition phase refers to
the actual bond-forming/cleavage process.

As shown in Scheme 4c, the ground-state structure of 2-
hydrazonopyrimidine Sla adopts a planar geometry (6 = 0°).
This extended geometry is supported by X-ray crystallography
of alkynyl-pyrimidine 17 (Scheme 2).

Bringing the triple bond closer to the pyrimidine moiety
costs 7.6 kcal/mol, and even in the reactive state, the triple
bond of Sla orients away from the perfectly perpendicular

position (6 = 143° and ¢ = 144°). However, when an N-

trifluoracetyl group is present, as in 51b, due to the steric
repulsion between the pyrimidine N and carbonyl O, the triple
bond is naturally positioned over the pyrimidine moiety,
perfectly in position for the cycloaddition reaction (6 = 0° and
@ = 180°). In this case, the ground state is also the reactive
state. In addition, in the cycloaddition phase, the N-
trifluoroacetyl group further lowers the activation barrier by
5.8 kcal/mol due to the larger interaction energy.

This DFT study shows that the N-trifluoroacetyl group pre-
organizes the triple bond, not only changing the s-trans

15904 DOI: 10.1021/jacs.9b07037
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Scheme 3. Density Functional Theory Calculations”

a) Transition state structures and computed activation energies for the non-activated (R = H) and for the activated (R = COCF3) cases

TS1,R=H
[ I
N -
SN [rds+72s] 4 }—;Tvﬁﬁ
LN fo—a or
NTN =
(AG* = 40.6, AH? = 36.5, -TAS? = -4.1)
TS3,R=H

NN 7~
fN\ [n4s+n2s] o

B — or

Foc” NN S
i) “~\
50 1

(40.6, 36.7, -3.9)

TS5, R=H

S I
P [rds+r2s] 7N
DS ,{’27 o o

TS2, R = COCF,

retro-[n4s+n2s] | XN
_ N
N7 N
52 R
(AG” = 27.3, AH* = 24.0, -TAS* = -3.3)
TS4, R = COCF3
A [
{'27 \2.08 retro-[rn4s+n2s] XN
— {- — 4 ¢ | _ N
Q ‘,’ { F,c” N7 N
4 . R
"y 53
(26.6, 23.5,-3.1)
TS6, R = COCF4
retro-[n4s+n2s] F AN
- 5 ‘ A N
NTTN
54 R

b) Distortion/Interaction analysis on the intermolecular Diels-Alder cycloadditions reactions of substituted pyrimidines with propyne
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“In panel a, AG¥, AH¥, and —TAS* are given in red, blue, and black, respectively, in kcal/mol. In panel b, the sum of the distortion energy of
pyrimidine (blue arrow), distortion energy of propyne (green arrow), and interaction energy (red arrow) gives the activation energy of the process

(black arrow). Energies are in kcal/mol.

hydrazone conformation to s-cis but also rotating the Ar—N
bond so that the hydrazone is perpendicular to the diazine,
placing the alkyne in perfect position for cycloaddition. The
activation by the N-trifluoroacetyl group is thus due to the
electronic substituent effect, pre-organization, and more
favorable entropy.

To gain further insights into the reaction mechanism, the
cycloaddition reaction of 16 was followed by '°F NMR in THF
at 20 °C for 24 h (Scheme Sa). A clean transformation of 16
into its trifluoroacetylated analog 61 was observed almost
instantaneously, followed by the slow formation of 63 and its

15905

hydrolyzed counterpart 18 due to traces of water. Tricyclic
intermediate 62 was not observed, nor was protonated 63 or
18. The measured half-life is about 8 h, which corresponds to
an activation free energy of 23.3 kcal/mol, according to the
Eyring equation and first-order rate law. The computed
activation free energy from DFT calculations is 24.2 kcal/
mol, close to experimental data.

From a practical point of view, this Diels—Alder cyclo-
addition of 2-hydrazonopyrimidines is amenable to gram scale
in a one-pot process, as demonstrated with the synthesis of 22
in 81% yield from commercially available compounds (Scheme

DOI: 10.1021/jacs.9b07037
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Scheme 4. Pre-organization Phase and Cycloaddition Phase during the Intramolecular Diels—Alder Reaction of Pyrimidine®

a) Two distinct phases are proposed for the intramolecular cycloadditions of
2-hydrazonopyrimidines
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5b). S-Bromo-2-chloropyrimidine 64 can be transformed into
the corresponding S-bromo-2-hydrazinopyrimidine 65 in
quantitative yield using hydrazine monohydrate in ethanol at
60 °C for 40 min. Crude 65 could then be reacted with
commercial ynone 66 using a catalytic amount of trifluoro-
acetic acid (S mol%) in THF at 60 °C (classical heating) for
20 min. When the hydrazone formation is complete, TFAA
and 3-pentanone are added. After 1 h at 60 °C, the 7-aza-
indazole 22 is obtained as the only product in the crude
reaction mixture; after purification by silica gel chromatog-
raphy, 6.2 g of analytically pure 22 could be obtained.

The relevance of this extraordinary reactivity of 2-
hydrazonopyrimidines in Diels—Alder reactions under mild

conditions was further explored with the synthesis of an
intermediate to Vericiguat (BAY 1021189 from Bayer), a
soluble guanylate cyclase (sGC) stimulator for the treatment of
chronic heart failure in Phase III clinical trials (Scheme 5c¢).*®
Vericiguat possesses a 7-aza-indazole scaffold substituted by a
2-fluorobenzyl on N1, a pyrimidine motif on C3, and a fluorine
atom on CS5; this compound could be obtained in five steps
according to the Bayer medicinal chemistry route. In contrast,
the latter was obtained in this work in only three steps
(including a one-pot reaction) from commercially available
compounds 67 and 68.

The one-pot condensation/domino Diels—Alder reaction
proceeds smoothly at 60 °C (classical heating) and yields a

DOI: 10.1021/jacs.9b07037
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Scheme 5. NMR Insights, Gram-Scale One-Pot Reaction,
and Synthetic Applications

a) "9F NMR insights of the Diels-Alder cycloaddition of 16
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67 68 2. BuNF | 69, quant. (crude)
(commercial) (commercial) THF,0°C,2h
-CO,Me
HoN HN 2
N ) NH,
CO,Et NN
2-F-BnBr F. 6 ste F.
X ps
Cs,C04 \ N oD | A N

N/ N’ (known) Z~N

DMF N

20 °

(1)hC 70, 67% \\D 8, Vericiguat\\Q
(N4/N, = 60:40) (Phase lll)

single compound that is treated with tetrabutylammonium
fluoride in THF at 0 °C. The disubstituted 7-aza-indazole 69 is
finally converted to 70 using 2-fluorobenzyl bromide and
cesium carbonate in DMF at room temperature in 67% yield
(N1/N2 benzylation ratio = 60:40). This synthesis of 72
requires only a single chromatography at the very last step.

B CONCLUSIONS

Pyrimidines are intrinsically unreactive aza-dienes in Diels—
Alder cycloadditions, and this lack of reactivity under mild
conditions has hampered the access to a diversity of original
nitrogen-containing heterocycles from these simple, inex-

pensive, and structurally diverse building blocks. We show
that 2-hydrazonopyrimidines can be profoundly activated using
a simple trifluoroacetyl group, leading to a domino Diels—
Alder/retro-Diels—Alder cycloaddition even at room temper-
ature. This reaction is general, presents an excellent functional
group tolerance, and can be scaled up on a gram scale in a
convenient one-pot process. A straightforward synthesis of a
key intermediate of Bayer’s Vericiguat, a soluble guanylate
cyclase (sGC) stimulator for the treatment of chronic heart
failure in Phase III clinical trials, illustrates the potential of this
cycloaddition strategy. Central to this method is the impressive
lowering of the activation energy of the Diels—Alder reaction,
which was analyzed by density functional theory calculations,
including an application of the distortion/interaction—
activation strain model to intramolecular reactions. The
trifluoroacetyl activating group pre-organizes the cycloaddition
precursor, electronically activates the aza-diene, and confers a
favorable entropy on the transition state of the Diels—Alder
cycloaddition.
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