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ABSTRACT: The mechanism of the aza-Diels−Alder reaction
catalyzed by tetraalkylammonium or trialkylsulfonium salts is
explored with density functional theory. Favorable electrostatic
interactions between the dienophile and the charged catalyst
stabilize the highly polar transition state, leading to lower free
energy barriers and higher dipole moments. Endo selectivity is
predicted for both uncatalyzed and catalyzed systems. We also
computationally evaluate the effects of oriented external electric
fields (EEFs) on the same aza-Diels−Alder reaction, demonstrat-
ing that very strong EEFs would be needed to achieve the catalytic
strength of these cationic catalysts.

■ INTRODUCTION
External electric fields (EEFs) are being explored with great
interest as a means to lower chemical reaction barriers (Figure
1).1 To achieve catalysis, the EEF must be oriented to

maximize favorable Coulombic interactions with a polar
transition state (TS). In the 1990s, Wilcox’s studies of ion-
pair effects on reaction rates and selectivities demonstrated
how electrostatic fields could influence the rates of reactions
with polar TSs,2 including cycloadditions.2c,g More recently,
theoretical studies have demonstrated the potential of
electrostatic catalysis to enhance reaction rates and selectiv-
ities,3 and a number of experimental examples in addition to
Wilcox’s have emerged, including the use of ion pairs to alter

gold-catalyzed cyclizations3g,h and the application of oriented
electric fields on Diels−Alder and other reactions.4 Currently,
most methods involve the application of strong EEFs in
conjunction with molecular immobilization through surface
chemistry techniques.4 An alternative approach is to use ionic
catalysts to generate intense local oriented fields in the vicinity
of the reactants (Figure 1).2,5 This approach is akin to
enzymatic catalysis, which often relies on the electrostatic
effects of strategically located charged or polar functional
groups.6

In 2015, Maruoka and co-workers demonstrated tetraalky-
lammonium salt catalysis in Mannich-type reactions (Scheme
1a).7 Shortly after, the authors reported the application of
tetraalkylammonium and trialkylsulfonium salts as catalysts for
the aza-Diels−Alder reactions between imine 1 and Dani-
shefsky’s diene 2 (Scheme 1b).8 The yield for desilylated aza-
Diels−Alder adduct 3 was improved from 4% without the
catalyst to 67% with 4a. Replacing the iodide counterion in 4a
with the noncoordinating BArF anion further improved the
yield to 89%. Trialkylsulfonium salts were more effective
catalysts for this transformation than tetraalkylammonium
salts. NMR titration experiments suggested association of the
onium catalysts with the imine (dienophile), but no further
evidence was obtained regarding the detailed reaction
mechanism or the origins of catalysis. We performed a
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Figure 1. EEFs and charged catalysts most likely to stabilize polar
Diels−Alder TSs.
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computational study with density functional theory (DFT)

quantum mechanics to elucidate the mechanism of the aza-

Diels−Alder reaction between 1 and 2 and provide insight into

how the onium catalysts lower the reaction barriers. The

simple structures of the onium catalysts also facilitated a

comparison of rate effects to that predicted for EEFs.

■ COMPUTATIONAL METHODS
DFT calculations were performed using Gaussian 09, revision D.01.9

Geometry optimizations and frequency calculations were performed
at the ωB97X-D/6-31G(d) level of theory10 with the conductor-like
polarizable continuum model (CPCM)11 using dichloromethane (ε =
8.9) to incorporate solvation effects. A pruned (99,590) grid
(specified by the keyword int = ultrafine) was used for optimizations
to minimize directional variations in calculated free energy

Scheme 1. Mannich and Aza-Diels−Alder Reactions Catalyzed by Ammonium and Sulfonium Salts

Figure 2. (a) Free energy profile of the aza-Diels−Alder reaction between imine 1 and Danishefsky’s diene 2. Interatomic distances are in Å.
Energies are in kcal/mol. (b) Calculated TSs for the aza-Diels−Alder reaction between 1 and 2. (c) Calculated endo/exo adduct ratios for the aza-
Diels−Alder reaction of 2 with differently substituted imines.
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corrections.12 Thermal contributions to free energies were calculated
from vibrational frequencies using the quasi-rigid rotor harmonic
oscillator approach of Grimme13 and Head-Gordon’s enthalpy
corrections.14 All optimized geometries were verified by frequency
computations as minima or first-order saddle-point structures. Single-
point energy calculations on the optimized geometries were computed
at the ωB97X-D/6-311+G(d,p), CPCM (dichloromethane) level of
theory. EEF effects on single-point electronic energies were calculated
using the “field = M ± N” keyword on molecular geometries
optimized in the absence of EEFs. Conformational searches were
carried out in MacroModel15 and Spartan ’1616 using the MMFFs
force field, and DFT reoptimizations were performed on all
conformers within a 10 kcal/mol cutoff. All 3D renderings of
stationary points were generated using CYLview.17

■ RESULTS AND DISCUSSION

Uncatalyzed Aza-Diels−Alder Reaction. Figure 2a
shows the computed free energy profile of the uncatalyzed
aza-Diels−Alder reaction between imine 1 and Danishefsky’s
diene 2. The free energy barrier is 29.2 kcal/mol for the endo
pathway, and the exo pathway is 1.8 kcal/mol higher in energy.
These barriers correspond to a very slow process under the
reaction conditions, in good agreement with the experimentally
observed low yield (4%) of the product. Desilylation of adduct
6 is highly exergonic by 20.8 kcal/mol or more to yield the
stable enone product 3, with the elimination of one
stereocenter. Both TS1-endo and TS1-exo have geometries
characteristic of a concerted but asynchronous reaction, with
the forming C−C bonds at 2.0 Å and forming C−N bonds at
2.5−2.9 Å (Figure 2b). The favored endo pathway is more
asynchronous, with a larger negative Hirshfeld charge (−0.28)
on the imine nitrogen at the TS.
Aza-Diels−Alder reactions typically show exo selectivity

because of repulsive electrostatic n−π interactions between the
nitrogen lone pair and the diene π system (the exo-lone-pair
effect).18 To probe the origin of the unusual endo selectivity of
this reaction, we calculated the endo/exo ratios for aza-Diels−
Alder reactions between 2 and imines with different
substituents (Figure 2c). When both of the imine’s phenyl
rings are substituted by methyl groups, the reaction has a
moderate exo preference. With a phenyl substituent in either
the R1 or R2 position, the intrinsic exo selectivity is lowered or
reversed. These results suggest that the endo selectivity is due
to favorable electrostatic CH···π interactions between the
imine phenyl rings and substituents on the Danishefsky’s
diene.
Effect of Charged Catalysts and EEFs. Early in our

study, we found that commonly used implicit solvent models
such as solvent model density (SMD) and CPCM were not
adequate for calculating free energies of complexation between
imine 1 and charged ammonium or sulfonium catalysts.
Though experimental NMR data show exergonic complex
formation (Scheme 2), SMD and CPCM solvent models
predicted these complexation to be 2−3 kcal/mol uphill at all
tested levels of theory (see Supporting Information). As a
result, we elected to use experimentally determined ΔG values
for the complexation processes19 while studying the
ammonium- and sulfonium-catalyzed aza-Diels−Alder reac-
tions.
The calculated geometries of lowest-energy complexes

between 1 and charged -onium catalysts are shown in Figure
3. Short interaction distances are observed between the imine
nitrogen and the hydrogens α to the heteroatom on the
catalyst, involving favorable electrostatic interactions. These

interaction distances are shorter in the sulfonium−imine
complex, consistent with the higher acidity of the sulfonium
ion. In addition, electrostatic CH···π interactions involving the
imine phenyl substituents may contribute to the stabilities of
these complexes.
Figure 4a shows the free energy profile of the ammonium-

catalyzed aza-Diels−Alder reaction between 1 and 2. We
explored the free cation because the most effective salt, with
the BArF counterion, is expected to have weak anion
association. More strongly coordinating anions (e.g., halides)
are found to give less effective catalysis.8 The free energy
barrier for the catalyzed reaction is 25.2 kcal/mol, which is 4.0
kcal/mol lower than for the uncatalyzed system. The calculated
intrinsic reaction coordinate (IRC) of TS2-endo confirms that
the mechanism remains concerted but asynchronous, with no
intervening potential energy surface (PES) minima. Both
forming bonds (C−C at 2.02 Å, C−N at 2.95 Å) are longer
than in the uncatalyzed TS1-endo, indicating an earlier TS
(Figure 4b). The magnitude of the endo preference (2.0 kcal/
mol) is largely unchanged from the uncatalyzed system (1.8
kcal/mol), consistent with the observation that the same
favorable CH···π interactions between 1 and 2 still distinguish
the endo TS from the exo. In both TS2-endo and TS2-exo, the
CH bonds α to the ammonium N are close to the partially
negative imine nitrogen, consistent with the fact that the
positive charge on the alkyl ammonium ion is mainly
distributed around the α-CHs.20 The distances between the
imine nitrogen and the partially charged α hydrogens on the
catalyst significantly shorten in the TSs compared to 9,
indicating stronger catalyst−dienophile association due to
more favorable Coulombic interactions accompanying charge
transfer from the diene to the dienophile.
The sulfonium-catalyzed aza-Diels−Alder reaction between

1 and 2 was calculated to have a barrier of 25.4 kcal/mol
(Figure 5a), with the endo TS being preferred over the exo by
1.6 kcal/mol (Figure 5b). The calculated IRC for TS3-endo
shows that the mechanism moves further in the stepwise
direction under sulfonium catalysis, with a very shallow PES
minimum detected between the two bond formation events.
Attempts to optimize this PES minimum structure as an
intermediate failed, with the geometry collapsing to the aza-
Diels−Alder product instead. This result indicates that the
formation of the second bond is essentially barrierless on the
PES, although an entropic intermediate21 can be expected to
exist on the free energy surface. The sulfonium ion is better at
stabilizing the polar TSs, in agreement with the higher product
yields obtained with sulfonium catalysts (Scheme 1).
The dipole moment vectors (defined here as negative

toward positive) of uncatalyzed TSs TS1-endo and TS1-exo

Scheme 2. Experimental Free Energies of Complexation (in
kcal/mol) between Charged Ammonium and Sulfonium
Catalysts and Imine Dienophile 1 of Benzhydryl Chloride

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://dx.doi.org/10.1021/acs.joc.9b03446
J. Org. Chem. 2020, 85, 2618−2625

2620

http://pubs.acs.org/doi/suppl/10.1021/acs.joc.9b03446/suppl_file/jo9b03446_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.joc.9b03446?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.9b03446?fig=sch2&ref=pdf
pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.9b03446?ref=pdf


are shown in Figure 6a. TS1-endo has a larger dipole moment,
in line with its more polar and asynchronous nature. We
calculated the dipole−cation interaction energy between these
TSs and a monovalent cation (Figure 6b),22 assuming an
interaction distance r of 5.6 Å from the center of the cationic
charge to the center of the TS dipole.22−24 For the more
asynchronous and polarizable TS1-endo, the maximum
interaction energies are predicted to be 1.6 kcal/mol, which
is qualitatively in agreement with the 101 to 102 rate
acceleration observed experimentally with cationic catalysts.
The largest interaction energies are encountered at θ = 0°
(maximum destabilizing effect) and 180° (maximum stabilizing
effect). This result is consistent with our observation that in
the calculated TSs, the positively charged nitrogen or sulfur
centers of the catalysts typically prefer a θ angle very close to
the 180° that maximizes the dipole−cation stabilizing effect.
Favorable dipole−cation interactions are expected to

polarize the TS and increase the dipole moment. Indeed,

when the charged catalysts are excluded from the TS
geometries, we calculated a significant increase in the dipole
moments of the diene−dienophile fragments compared to the
uncatalyzed TS (Figure 7).
To estimate the strength of oriented EEFs required to

produce catalytic effects comparable to these charged onium
catalysts, we calculated the free energy barriers and TS dipole
moments under a range of EEF strengths, with the fields
oriented either parallel or antiparallel to the TS dipole moment
vectors (Figure 8). The results show that the exo TS exhibits
higher sensitivity to the applied EEFs, although the endo
preference is maintained throughout the EEF range we
examined, which covered the range discussed in Coote et
al.’s study of the effect of an oriented electric field on a Diels−
Alder reaction rate.4a When the EEF applied in the Coote et al.
study was increased from −0.05 to −0.75 V/nm, a 4.4-fold
increase in measured rate was observed, similar to their
calculation of a 0.2 kcal/mol lowering of activation barrier for

Figure 3. Calculated lowest-energy structures of complexes between imine 1 and charged catalysts. Interatomic distances are in Å.

Figure 4. (a) Free energy profile of the aza-Diels−Alder reaction between 1 and 2 catalyzed by ammonium 8. Interatomic distances are in Å.
Energies are in kcal/mol. (b) Calculated TSs for the aza-Diels−Alder reaction catalyzed by ammonium 8.
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this type of voltage change.4a As the free energy barriers are
reduced, we find that the TSs become more polarized with

larger dipole moments (Figure 8). This polarization effect is
also stronger for the more sensitive exo TS. At an EEF strength
of 1.3 V/nm, the endo TS is stabilized by ∼1.7 kcal/mol,
similar in magnitude to the maximum dipole−cation
interaction energy achieved at a distance of 5.6 Å (Figure 6b).

■ CONCLUSIONS

We have explored computationally the effect of ammonium
and sulfonium catalysts on aza-Diels−Alder reactions with
highly polar TSs. The catalysts are predicted to significantly
lower the reaction free energy barriers by as much as 4 kcal/
mol that would provide a several hundredfold increase in rate,
while the impact on endo/exo selectivity was small. The origin

Figure 5. (a) Free energy profile of the aza-Diels−Alder reaction between 1 and 2 catalyzed by sulfonium 10. Interatomic distances are in Å.
Energies are in kcal/mol. (b) Calculated TSs for the aza-Diels−Alder reaction catalyzed by sulfonium 10.

Figure 6. (a) Dipole moment vectors for uncatalyzed aza-Diels−Alder TSs. (b) Plot of dipole−cation interaction energies for uncatalyzed aza-
Diels−Alder TSs TS1-endo and TS1-exo.

Figure 7. Calculated dipole moments of diene−dienophile fragments
in aza-Diels−Alder TSs.
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of catalysis is attributed to favorable electrostatic interactions
between the cationic catalysts and the developing negative
charges on the dienophile in the TSs. As the free energy
barriers are lowered, the TSs also became more polarized with
larger dipole moments. Unfortunately, only yields of reaction,
not reaction rates, have been measured for these reactions to
date, so that a quantitative comparison of calculations and
experiment is not possible. We show that intense local fields
generated by the ammonium and sulfonium ions are
comparable in catalytic strength to the strongest EEFs
currently being applied in electrostatic catalysis. This chemical
approach, demonstrated in the work of Wilcox2 and Kanan,3g,h

is easily implemented in the synthetic laboratory. Our work
highlights the great potential of charged catalysts and ion pairs
as a scalable and practical approach to the electrostatic catalysis
of reactions with polar TSs.
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