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Abstract— Information-based mapping algorithms are crit-
ical to robot exploration tasks in several applications rang-
ing from disaster response to space exploration. Unfortu-
nately, most existing information-based mapping algorithms are
plagued by the computational difficulty of evaluating the Shan-
non mutual information between potential future sensor mea-
surements and the map. This has lead researchers to develop
approximate methods, such as Cauchy-Schwarz Quadratic
Mutual Information (CSQMI). In this paper, we propose a new
algorithm, called Fast Shannon Mutual Information (FSMI),
which is significantly faster than existing methods at computing
the exact Shannon mutual information. The key insight behind
FSMI is recognizing that the integral over the sensor beam
can be evaluated analytically, removing an expensive numerical
integration. In addition, we provide a number of approximation
techniques for FSMI, which significantly improve computation
time. Equipped with these approximation techniques, the FSMI
algorithm is more than three orders of magnitude faster than
the existing computation for Shannon mutual information; it
also outperforms the CSQMI algorithm significantly, being
roughly twice as fast, in our experiments.

I. INTRODUCTION

Robot exploration tasks are embedded and essential in
several applications of robotics, including disaster response
and space exploration. The key to efficient robot exploration
is to identify and navigate to locations that will yield the most
information towards building a map of the environment.

The problem of robotic exploration has received a large
amount of attention over the past few decades, resulting in
a rich literature. The geometry-based frontier exploration
algorithms approach this problem with heuristics that typ-
ically navigate the robot to the frontier of the well known
portion of the environment [1]-[5]. These heuristics are very
efficient from a computational point of view. However, they
lack any rigorous reasoning about information, which makes
them relatively inefficient in terms of the path spanned by
the robot while the exploring the environment [6]—[11].

On the other hand, information-based mapping and explo-
ration techniques consider paths that aim to maximize prin-
cipled information-theoretic metrics to actively maximize the
information collected by the robot. While information-based
mapping algorithms using Shannon mutual information (MI)
provide guarantees on the exploration of the environment,
the evaluation of Shannon MI, e.g., in [12], is computa-
tional demanding. The run time of the algorithm scales
quadratically with the spatial resolution of the occupancy
grid and linearly with the numerical integration resolution
due to the absence of an analytical solution. It has been
pointed out that the speed at which mutual information
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is evaluated can limit the planning frequency, which in
turn limits the velocity of the robot and the exploration
speed of the environment [13]. Towards designing algorithms
that are computationally more efficient, Charrow et al. [14]
proposed the use of an alternative information metric, called
Cauchy-Schwarz Quadratic Mutual Information (CSQMI).
They show that the integrations in CSQMI can be computed
analytically. Additionally, they show a close approximation
of CSQMI can be evaluated in time that scales linearly with
respect to the spatial resolution of the occupancy grid. It
is reported in [14] that CSQMI can be computed substan-
tially faster than Shannon MI, and it behaves similarly to
Shannon MI in experiments. Several follow-up publications
on information-theoretic autonomous mapping systems adopt
CSQMI as the information metric [13], [15], [16].

In this paper, we propose a new algorithm, called Fast
Shannon Mutual Information (FSMI), that computes the
(Shannon) MI in an efficient manner. We recognize that
the main computational bottleneck in the MI computation
reported by Julian et al. [12] is that the MI between a
beam and a single cell requires a computationally-demanding
numerical integration. The key idea behind the FSMI algo-
rithm is to evaluate the MI between a measurement and all
occupancy-grid cells that it intersects together. The shared
computation between multiple cells is rearranged to give the
integration an analytic form. As a result, FSMI’s asymptotic
run time is independent of the integration operation.

In addition, we adopt the approximation technique intro-
duced for CSQMI in [14] to the FSMI algorithm, which ren-
ders an algorithm with a runtime that scales linearly with the
spatial resolution, with negligible loss in accuracy. We show
that, even though this approximate FSMI algorithm has the
same asymptotic computational complexity when compared
to the approximate CSQMI algorithm, an implementation of
the approximate FSMI algorithm requires less than half the
number of multiplications as an equivalent implementation of
CSQMI, which translates to 1.8 speed in our experiments.
Finally, we show that, if the measurement noise is uniformly
distributed, the Shannon MI can be evaluated exactly in linear
time with respect to occupancy-grid resolution.

This paper is organized as follows. Section II introduces
our notation and preliminary definitions. Section III presents
the FSMI algorithm, proves its guarantees on correctness and
computational complexity. Sections IV and V present two
variants of FSMI with better run time. Finally, Section VI
demonstrates the effectiveness of the FSMI algorithm in both
synthetic and real experiments.
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II. NOTATION AND PRELIMINARY DEFINITIONS
A. The Occupancy-grid Map

We use the occupancy-grid map method to model the
environment. As is standard, we assume that all the occu-
pancy cells are independent and that a Bayesian filter is used
to update the occupancy probabilities. The occupancy grid
is denoted by the random variables M = {Mj,..., Mg},
where K is the number of cells and M; € {0,1} is the
binary random variable that indicates the occupancy of i-th
cell. In this case, M; = 0 indicates an empty cell, M; =1
indicates an occupied cell. The realization of the the random
variable M; is denoted by m;. The robot is equipped with a
range measurement Sensor.

The depth measurement is denoted by the random variable
7, with realizations denoted by z. The measurement obtained
at time ¢ is denoted by z;, and the set of measurements
obtained up to time ¢ is denoted by zj.;. Typically, the
robot acquires multiple measurements at the same time,
e.g., measuring range in different directions. Then, all range
measurements are denoted by z; = (z},...,2"*), where n,
is the number of beams in a scan. Unless explicitly stated
otherwise, we assume that the noise distribution follows a
zero mean Gaussian with a constant standard deviation of
o0.The measurements obtained by the robot are a stochastic
function of the map, the sensor model, and the state of the
robot. The state of the robot is described by the variable x.
In this paper, the state variables encode the pose of the robot.
We denote the state at time ¢ by ;. We denote the sequence
of states from the initial time through time ¢ by ..

The standard independence assumption among the oc-
cupancy cells is assumed, ie., P(My; = mq,..., Mg =
ME|21:4, T16) = ngz‘gK P(M; = mj|z1.t,71.4) wher
P(-) is the probability function. In addition, we assume no
prior information on the occupancy grid cell, meaning that
P(M; = 1) = P(M; = 0) = 0.5. Hence, the standard
Bayesian filter can be used to update the occupancy map
based on the scanning results:

P(M; = 1z14,14)  P(Mi = 1]21.0-1), T1.0-1))
P(M; = 0lz14,21:0)  P(M; = 0|21.(61), T1:(—1))
P(M; = 1|z, 24)
P(M; = 0|z, 20)

We denote the probability of occupancy of the ith cell
by 0; = P(M; = 1|z1.4,x1.+). Additionally, we denote the
odds ratio of a cell r; = 0;/(1 — 0;). The Bayesian filter in
Equation (1) essentially updates r; for the cells according to
the acquired range measurements.

)]

B. Shannon Mutual Information Metric

In this section, we review the algorithm proposed by [12]
that computes the Shannon mutual information for a single
range measurement. For notational convenience, we omit the
conditional probability terms x1.; and zy.,. With a slight
abuse of notation, we use M = (M, ..., M,,) to represent
the cells that a single sensor range measurement (beam)
intersects. We further assume that cells in M are listed in
an ascending order by their distance from the sensor. Again
by a slight abuse of notation, We denote the measurement
of this single beam by Z. In addition, let J;(z) approximate
the odds ratio inverse sensing model [17] for the cell M;:

boce  #z indicates M; is occupied
demp 2 indicates M; is empty ,
1 otherwise

where doce > 1 and 6epmyp < 1 are hyper parameters. Then,
10M52) = [ PEZ=2fGGrds @

220

where P(Z = z) is the measurement prior and

fo.r) =tog (54 )

~ logé
ré+1°

Since Eq. (2) does not have a known analytical solution,
[12] evaluate it numerically by discretizing z:

I(M;; Z) =Y P(Z =2)f(0i(2), )M

where ). is the discretization resolution. The mutual infor-
mation for the whole beam is computed as the sum of each
I(M;; Z). Hence, the computational complexity is O(n2\,).

C. Cauchy-Schwarz Quadratic Mutual Information Metric

The Cauchy-Schwarz quadratic mutual information
(CSQMI) is an alternative metric of Shannon mutual in-
formation. It was shown in [14] that the CSQMI metric
for a sensor beam that intersects with n cells can be
evaluated analytically in O(n?) time. This is lower than
the O(n?).) complexity of Shannon mutual information,
because numerical integration is avoided. We reiterate the
formula to compute CSQMI [14]:

C n
Ios(M; Z) = log Y wilN/(0,20%) + log (H@? +(1-01)?)

=0 i=1
SO PlenPle)N (u — 1y, 20%) )
j=01=0
—2log » > P(ej)wiN (i — pj, 207), 3)
=0 1=0

where N (x, 02) is the probability density function at = of
a normal distribution of zero mean and standard derivation
of o, p; is the distance from the center of the [-th cell to the
depth sensor and w; = P(e;)? Hj<l(0? + (1 —0/)?).

Authors in [14] also proposed a close approximation to
CSQMI that truncates the tails of a Gaussian distribution to
zero. This enables CSQMI to be computed approximately in
O(n), as each double sum in Eq. (3) can be approximated:

n  J+A

Z Z aj,lN(/J’l — My, 202)7

J=01=j—A

where «;; represents the corresponding coefficient in the
double sum, and A is a small constant such as 3.

D. Problem Formulation

A typical information-theoretic exploration strategy is to
generate a set of potential trajectories, evaluate mutual in-
formation along each of trajectory, and choose the one with
the highest mutual information per travel cost [13]-[16].

In order to evaluate the mutual information along a trajec-
tory, the trajectory is typically discretized in the state space,
the mutual information is computed at each state and then
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summed. Hence, the fundamental problem of information-
based exploration using range sensing is to efficiently eval-
uate the mutual information between the map and one range
measurement. This problem is solved many times in mutual-
information-based exploration algorithms. We call this the
single-beam mutual-information computation problem.

Consider a sensor that emits a single beam for depth
measurement. Let M’ = (Mi,...,M,) be a vector of
binary random variables representing all the occupancy cells
that the sensor beam can intersect. Let the random vari-
able Z be a potential future depth measurement. We wish
to measure the mutual dependence between these random
variables using Shannon mutual information. The mutual
information between the beam and a single cell can be
computed using Eq. (2). As is standard, we decompose the
mutual information between the beam and all of the cells in
M’ ie., I(M’; Z), into the following summation:

Y1052 =Y />O P(Z = 2)f(5:(2), r4)d2

: ) +1 log & @
= E / P(Z:z)(log< d 1)— o8 )dz,

= J:>0 r4+6- rd+1
where P(Z = z) is the measurement prior. This paper

focuses on efficient algorithms and efficient approximations
for computing the quantity defined in Eqn. (4).

III. THE FAST SHANNON MUTUAL INFORMATION
(FSMI) ALGORITHM FOR 2D MAPPING

This section is devoted to the presentation of the FSMI
algorithm.

A. The FSMI Algorithm

In this section we prsent the Fast Shannon Mutual Infor-
mation (FSMI) algorithm. The key ide behind the FSMI algo-
rithm is the following: Instead of performing the summation
in Eq. (4) directly, FSMI computes I(M’; Z) holistically and
analytically evaluates one of the resulting integrals, which
leads to substantial computational savings.

Algorithm 1 summarizes this procedure with subroutines
in Algorithms 2 and 3. To describe the algorithms, let us first
present our notation. Let [; be the distance from the origin to
the ith cell where [; = 0 and /; is monotonically increasing.
See the top part of Figure 1. Let us denote the center of the
ith cell by p; = (I; + l;+1)/2. Same as [12], we use P(e;)
to denote the probability that the jth cell is the first non-
empty cell in M’, i.e., P(ej) = o0 [[;;(1 —0;). Let P(eo)
be the probability that all cells are empty. ®(-) denotes the
standard normal CDF. We also define Cx = f(doce, ) +

Ikt
ik fOemp, i) and Gjpo = [, P(z]e;)d.
B. Correctness of the FSMI algorithm

The following theorem states the correctness of the FSMI
algorithm, that is, the FSMI algorithm indeed returns the
Shannon mutual information I(M; 7).

Theorem 1 (Correctness of FSMI): The Shannon mutual
information between the depth measurement and all of the
cells in M is I(M"; Z) = 377 > 25—y P(e;)CrGh j-

Algorithm 1 The FSMI algorithm

Require: ¢ and [;,0; for 1 <1i <n.
1: 1+ 0
2: Compute P(e;) for 0 < j < n with Algorithm 2.
3: Compute C}, for 1 < k < n with Algorithm 3.
4: for 7 =0 to n do

5: for k=0 to n do

6

7

8

Grj < ®((lk1 — p5)/05) — ((Ik — pj)/05)
I+ 1+ P(e]-)CkG;w-

. return /

Algorithm 2 Evaluate P(e;) for 0 < j <n
Require: o; for 1 <i<mn

1: Fg+1

2: for j =1 to n do

3 Ej %Ejfl(lfoj')
4: P(ej) < Ej—loj
5
6

: P(eo) = En
: return P(ej) for 0 < j<n

Algorithm 3 Evaluate C, for 1 <k <n
Require: 0cy,p, dpcc and r; for 1 <i <mn
1: g =0
2: for k=1 to n do
3 Qk = k-1 + [ (Oemps Tk)
4: Ck =(qk-1+ f(50C07 Tk)
5: return Cp, for 1 < k <n

My - My My Mpy - M,

b b her b e, haw T b

= Jf'mp d-rm P I"‘nr'r‘ 1 e 1

Fig. 1. Illustration of the key idea behind the proof of Lemma 1. The
sensor beam (red) hits an obstacle (blue) in cell M. The value of the odds
ratio inverse sensor model is shown below.

We first prove the following intermediate result regarding
the structure of f(d,7). Let F(z) = > 1, f(d:(2), 7).
Lemma 1 (Piecewise Constant Summation): The function
F(z) = >, f(6:i(z), ;) is piecewise constant. In partic-
ular, if z lies in the k-th cell, ie., [ < 2z < lg4+1, then
F(z) = C) where Cr = f(0oce, k) + D it [ (Oemp, i)
Proof: For ¢ < k a measurement of z implies that
the beam has passed through M;. Therefore M; should be
empty and 0;(z) = Oemp. By definition, 0;(2) = dopce. A
measurement of z also indicates that the beam stops at cell
k which gives no information about cells M; for j > k, so
f(6j(2),7;) = f(1,7;) = 0. Therefore each term of F'(z)
is constant for [, < z <, + 1 and the sum is equal to the
desired C}, proving the lemma. [ ]
Lemma 1 shows that the function F'(z) change its value
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only at the cell boundaries, as z increases. (See Fig. 1 for an
illustration.) If we compute at once the mutual information
between a range measurement and all the cells it can
intersect, we can turn the integration in Eq. (2) into a sum.
Proof: (Theorem 1) We begin with the total Shannon
mutual information for one range measurement as stated
in Eq. (4). We substitute the definition of Shannon mutual
information provided in Eq. (2), and rearrange to reveal the
sum described in Lemma 1. We find that I(M’; Z) equals

S 10M:2)= Y [ P)1G) iz

=Y [ Y Pe)PGle) 6
i=1"7% j=0

=Y Ple)) / P(z]e;) (Z f(éz-(zm)) dz
j=0 Z i=1

:ZP(ej)/P(z\ej)F(z)dz.
=0 2

&)

Inspired by the result of Lemma 1, we divide the integration
over z into a sum of multiple integration intervals across
each cell boundary. This allows us to isolate the described
term that is constant across each cell as follows:

n n [
I(M';Z) =) P(e) Z/ P(z|e;)Crdz
j=0 k=1"1k

n.n let1
=> Y P(e;)Ch /l P(z]e;)dz

=0 k=1

= Xn: Xn:P(ej)Cka_’j.

j=0 k=1
This completes the proof. [ ]

C. Computational Complexity of the FSMI Algorithm

We study the time complexity of Algorithm 1 with respect
to, n, the number of cells that a single range measurement
intersects. The result is stated in the following theorem:

Theorem 2: Algorithm 1 has O(n?) time complexity.

The proof of Theorem 2 is straightforward with the
following intermediate results:

Lemma 2: P(e;) can be computed for all of 0 < j < n
in O(n) with Algorithm 2.

Lemma 3: C can be computed for for all of 1 < k <n
in O(n) with Algorithm 3.

Lemma 4: The standard normal CDF, ®(-), can be evalu-
ated with a look-up table. G, ; can be evaluated in O(1) as
follows: Gy = @ (L1 — p)/0) — ® (I — p1;)/0).

Note that, unlike the algorithm proposed in [12], the FSMI
algorithm does not perform any numerical integration. As a
result the complexity of FSMI outperforms the algorithm
in [12] by a factor of A, the integration resolution.

Remark 1: FSMI has the same time complexity as the
exact version of CSQMI.

Since we assume the noise distribution has constant o,
we can directly precompute ®(>) to avoid one division

operation per query. Note that in addition to tabulating (),
we also build look-up table for f(docc, i) and f(demp,73)
for all ¢, which can be computationally expensive if we use
their definition to evaluate them. Specifically, We precompute
f(boce,7i) and f(Oemp, ;) for a discrete set of values of 7;
and store the results in a look-up table. We set dempdoce = 1,
following [12]; Since f(demp,ri) = f(doce, 1/7i), a single
look-up table suffices.

IV. EFFICIENT IMPLEMENTATIONS VIA GAUSSIAN
TRUNCATION

In [14], the authors approximate the CSQMI metric by
setting the tail of the Gaussian noise distribution to zero.
We apply their technique to FSMI. Let A be the truncation
width. We approximate the equation in Theorem 1 as

n J+A
I(M'52) =" 3" P(e;)CiGh;. (©6)
§=0 k=j—A

We refer to the variation of FSMI that applies the ap-
proximation described above as Approx-FSMI. We refer to
the corresponding CSQMI algorithm with the same approxi-
mation as the Approx-CSQMI. The complexity of evaluating
Approx-FSMI is O(nA), same as Approx-CSQMI in [14].

Even though both algorithms have the same asymptotic
complexity, we argue that the Approx-FSMI algorithm can
be implemented so that it requires fewer multiplications
when compared to the Approx-CSQMI algorithm. Intuitively,
this is because our computation in Eq. (6) has only one
double summation while the approximate version of CSQMI
in Eq. (3) has two similarly structured double summations
of the same size. In this comparison, we omit other opera-
tions, e.g., additions, because they are significantly cheaper
than multiplications on both general purpose CPUs and
FPGAs [18]. Operations such as log(-) occur at very low
frequency in both Eq. (6) and Eq. (3).

Theorem 3 (Number of Multiplications): Evaluating
Approx-FSMI and Approx-CSQMI require (A + 3)n and
(2A + 9)n multiplications, respectively.

V. SHANNON MUTUAL INFORMATION UNDER UNIFORM
MEASUREMENT NOISE MODEL (UNIFORM FSMI)

Recall that the asymptotic time complexity of Approx-
FSMI is O(nA). In this section, we show that when the
sensor noise follows a uniform distribution, under reasonable
technical assumptions, the Shannon mutual information can
be evaluated in O(n), independently of A.

Theorem 4 (Uniform FSMI): Suppose that cells have con-
stant width, ie., for all 4, ;41 — [; = AL. Suppose that
the sensor noise model is uniform and that the limits are
quantized onto cell boundaries:

for H € Z*. Let D; =3, ., Cj for 1 <i<mnand D; =0
otherwise. Then the Shannon mutual information between
the beam and all the cells it intersects is

" Divg—Di_py_
IMIZ — P . J+H j—H—-1
(M7 Z) 32;; () ="SF 1
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Proof: This proof follows the proof of Theorem 1 until
Eq. (5). We plug in the PDF of the uniform distribution:

non leg1
(M 2) :ZZP(ej)ck/ P(zle;)dz

=0 k=1 Uk
n j+H n
Ch Dijtg—Dj_g-1
= Ple; = Ple;) =2 J
> Plej) Z o1 2P T g
7=0 k=j—H 7=0
This completes the proof. [ ]

The algorithm to compute uniform-FSMI is summarized
in Algorithm 4. Tts time complexity is O(n), outperforming
Approx-FSMI and Approx-CSQMI by a factor of A.

Algorithm 4 The Uniform-FSMI algorithm
Require: H and r;,[; for 1 <1 <n.
1: I+ 0

2: Compute P(e;) for 0 < j < n with Algorithm 2.
3: Compute C, for 1 < k < n with Algorithm 3.

4: D+ 0

5: for k =1 to n do

6: Dy, < Dy_1 + Ci

7: for j =0 to n do

s T T+ Pley) Rttty Duoscousiion

9: return [

VI. EXPERIMENTAL RESULTS
A. Computational Experiments for a Single Measurement

First we study the accuracy and throughput of evaluating
the Shannon mutual information of a single beam. The length
of the beam is 10 m and the resolution of the occupancy grid
is 0.1 m. The occupancy values are generated at random. We
set dpcc = 1/0emp = 1.5. The sensor noise model is a normal
distribution with o = 0.05 m regardless of the travel distance
of the beam. The speed of the algorithms is evaluated on a
single core of an Intel Xeon E5-2695 CPU.

a) Comparison of Original MI, FSMI, and Approx-
FSMI: We compare the average relative error and running
time for the following algorithms in 10% trials: the original
MI algorithm [12] with A, = 0.01 m, FSMI, and Approx-
FSMI with A = 3. The ground truth MI is obtained using
the original MI algorithm [12] with a substantially better
resolution of A\, = 10um. The results are summarized in
Fig. 2(a) and Fig. 2(b). We observe that the FSMI computes
the MI more accurately than the original MI algorithm,
despite running more than three orders of magnitude faster.
The run time of Approx-FSMI is an additional 7 times faster
than FSMI, and yet it is still more accurate when compared
to the original algorithm with A\, = 0.01 m. Notice that the
relative error of Approx-FSMI is below 1075,

b) Comparison of Approx-FSMI, Approx-CSQMI, and
Uniform FSMI: We use the same A = 3 to cut the tails
of the Gaussian distributions in Approx-FSMI and Approx-
CSQMI. The results are shown in Fig. 2(c). It can be seen
that Approx-FSMI is 1.7x faster than Approx-CSQMI, and

Uniform FSMI is 3x faster than Approx-CSQMI. Note that
the acceleration is not as great as the predicted acceleration
in Theorem 3 because of compiler optimizations.

B. Simulations for Planar Mapping with a Ground Robot

This section presents results of a computational experi-
ment in which a simulated ground robot explores a synthetic
planar (2D) environment. The environment is 18 m x 18 m
and represented by an occupancy grid with resolution 0.1 m.
The robot is equipped with a 360° lidar with 180 beams.
The maximum distance of the sensor is set to 5m and
the noise is Gaussian with ¢ = 0.05m. We test four
algorithms: Approx-FSMI with A = 3, Approx-CSQMI with
A = 3, Uniform FSMI and a nearest frontier exploration
method. For the first three information-theoretic mapping
methods, the robot travels to the scanning location that
maximizes the ratio between MI gain and the travel distance,
which is computed using Dijkstra’s algorithm [19]. For the
nearest frontier exploration method, we implement the same
algorithm used in the experiments of [14], in which the robot
clusters the frontiers cells and travels to the closest cluster.
The exploration terminates when the entropy of the map
drops below a predefined threshold. For each algorithm, we
perform three independent trials.

Fig. 3(a) shows the mapped environment, together with
the exploration trajectory of one of the trials with Approx-
FSMI in our simulations. Fig. 3(b) compares the length of
the trajectory for each method, averaged over three trials.
All three information theoretic mapping algorithms yield
trajectories of similar length; these trajectories are roughly
16% shorter than the trajectories generated by the nearest
frontier algorithm.

We also report the average speed of MI evaluation during
the synthetic experiments. The results are consistent with
the one beam synthetic experiment: Approx-CSQMI takes
12.4ps per beam, Approx-FSMI takes 8.3us per beam,
and Uniform FSMI takes 4.9 us per beam. These times are
smaller in this experiment because the beam length is 5m
rather than 10m as in the previous experiment.

C. Planar Mapping Task involving a Ground Robot

Finally, we study the real-world performance of the MI
computation on a 1/10th scale car with the goal of exploring
a small (< 8m x 8m) planar environment. The car is
equipped with a Hokoyo UST-10LX lidar which has a 270°
field of view and a range of 10m. In our experiments, the
field of view and the range are limited to 230° and 3m,

1.E+07 7.E-04 G504 35 2

1.E+06 | 188046 6.E-04 30

1L.E+05 5.E-04 25

1.E+04 4.E-04 20 17

1.LE+03 132 3.E-04 15 10
1.E+02 17 2.E-04 10

LE+01 I:l D LE-04 JE0s 7806 | S I:l
1.LE+00 0.E+00 0

Original FSMI  Approx Original FSMI Approx
MI FSMI MI FSMI

Approx Approx Uniform
CSQMI FSMI  FSMI

(a) Mean time (us) (b) Mean relative error  (c) Mean time (us)

Fig. 2. Speed & relative error of different MI algorithms on a single beam.
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Fig. 3. Synthetic 2D environment exploration experiment results.

(a) Experimental setup witl

e car In Its starting position.

(b) RRT* based planner. Paths (c) Complete map and trajectory
with high MI per meter are green. for a trial with Approx-FSMI.

36000 — Approx CSOMI
Approx FSMI
34000 — Uniform FSMI
5 32000
& 30000
& 28000
26000
24000
0 = 50 ) 100 125 150 175

Timse (seconds)

(d) Representative samples of the map’s entropy during exploration

Fig. 4. Real experiments with a car in a 2D environment.

respectively. The number of measurements that fall within
this field of view is 920. We assume perfect localization for
this experiment. We use a motion capture system determine
the pose of the car and send it to the car wirelessly. All
other computational processing (MI computation, mapping,
planning, control) is done on board with an Nvidia Jetson
TX2 embedded ARM computer. Fig. 4(a) shows the setup
of the experiment.

In order to plan feasible paths within the environment
under the vehicle’s dynamic constraint we use an RRT*

motion planner [20] with Reeds-Shepp curves [21] as the
steering function. After the number of nodes in the tree
reaches a given limit, we evaluate the MI along each path
in the tree at 0.2m intervals, taking into account the in-
dependence between multiple beams according to [14]. To
speed up computation, we only evaluate the MI for 50 beams
per scanning location uniformly distributed in the field of
view without noticeable loss of quality. The path with the
highest total MI over travel distance is selected. A tree of
possible paths and the corresponding score of each is shown
in Fig. 4(b). The car then follows the selected path until it
reaches the end at which point it replans. We terminate each
experiment after 3 minutes which was sufficient for all trials.
A completed map is show in Fig. 4(c).

Our experiments evaluate the performance of the follow-
ing metrics: Approx-CSQMI with A = 3, Approx-FSMI
with A = 3 and Uniform FSMI. For each metric, we
performed four explorations from the same starting location
and recorded the average time spent computing MI per sensor
location along the path including the time spent performing
independence checks (note that this time includes multiple
beams). In all trials the resolution of the occupancy grid
is 0.05m, 0 = 0.05m and docc = 1/demp = 1.5. We
measure Approx-CSQMI to take 422.7 us, Approx-FSMI to
take 148.7 ps and Uniform FSMI to take 111.4 us per sensor
measurement. These results are consistent with, and in fact
outperform the synthetic results which may be due to differ-
ences in the ARM architecture. Because the environment is
small and the car is moving slowly the difference between
methods is not evident in the overall exploration time as
shown in Fig. 4(d).

VII. CONCLUSION

In this paper, we introduced the Fast Shannon Mutual
Information (FSMI) algorithm for computing the Shannon
mutual information between potential future measurements
and the occupancy grid. We also introduced two variants.
The Approx-FSMI approximates FSMI with arbitrary pre-
cision. The Uniform-FSMI algorithm computes the exact
Shannon mutual information under the assumption that the
measurement noise is uniformly distributed. We have proved
guarantees on the correctness and the computational com-
plexity of the proposed algorithms. In our computational
experiments, we showed that the FSMI algorithm achieved
more than three orders of magnitude computational savings
when compared to the original algorithm for computing
Shannon mutual information described in [12], while main-
taining higher accuracy. We showed that the Approx-FSMI
runs 7 times faster than FSMI with negligible precision loss.
We also showed that the Approx-FSMI algorithm has the
same asymptotic computational complexity when compared
to the Approx-CSQMI algorithm, and that the Approx-FSMI
algorithm requires a smaller number of multiplications, when
compared to the Approx-CSQMI algorithm. We observed in
our computational experiments that the Approx-FSMI algo-
rithm runs twice faster than the Approx-CSQMI algorithm.

6917

Authorized licensed use limited to: MIT Libraries. Downloaded on July 14,2020 at 02:52:08 UTC from IEEE Xplore. Restrictions apply.



REFERENCES

[1] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Computational Intelligence in Robotics and Automation, 1997.
CIRA’97., Proceedings., 1997 IEEE International Symposium on.
IEEE, 1997, pp. 146-151.

[2] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordi-
nated multi-robot exploration,” IEEE Transactions on robotics, vol. 21,
no. 3, pp. 376-386, 2005.

[3] H. H. Gonzilez-Banos and J.-C. Latombe, “Navigation strategies for
exploring indoor environments,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 829-848, 2002.

[4] D. Holz, N. Basilico, F. Amigoni, S. Behnke, et al., “A comparative
evaluation of exploration strategies and heuristics to improve them.”
in ECMR, 2011, pp. 25-30.

[5] S. Shen, N. Michael, and V. Kumar, “Stochastic differential equation-
based expl oration algorithm for autonomous indoor 3d exploration
with a micro-aerial vehicle,” The International Journal of Robotics
Research, vol. 31, no. 12, pp. 1431-1444, 2012

[6] A. Elfes, “Robot navigation: Integrating perception, environmental
constraints and task execution within a probabilistic framework,” in
Reasoning with Uncertainty in Robotics.  Springer, 1996, pp. 91—
130.

[71 A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under
uncertainty: Discrete bayesian models for mobile-robot navigation,”
in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS’96, vol. 2. 1EEE, 1996, pp. 963-972.

[8] S. J. Moorehead, R. Simmons, and W. L. Whittaker, “Autonomous
exploration using multiple sources of information,” in Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE International Con-
ference on, vol. 3. 1EEE, 2001, pp. 3098-3103.

[9] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and
H. F. Durrant-Whyte, “Information based adaptive robotic explo-
ration,” in Intelligent Robots and Systems, 2002. IEEE/RSJ Interna-
tional Conference on, vol. 1. 1EEE, 2002, pp. 540-545.

[10] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the
efficiency of frontier-based exploration strategies,” in ISR 2010 (41st
International Symposium on Robotics) and ROBOTIK 2010 (6th Ger-
man Conference on Robotics). VDE, 2010, pp. 1-8.

[11] A. Mobarhani, S. Nazari, A. H. Tamjidi, and H. D. Taghirad, “His-
togram based frontier exploration,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2011, pp. 1128-
1133

[12] B. J. Julian, S. Karaman, and D. Rus, “On mutual information-
based control of range sensing robots for mapping applications,” The
International Journal of Robotics Research, vol. 33, no. 10, pp. 1375—
1392, 2014.

[13] E. Nelson and N. Michael, “Information-theoretic occupancy grid
compression for high-speed information-based exploration,” in In-
telligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 4976-4982.

[14] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic
mapping using cauchy-schwarz quadratic mutual information,” in
Proceedings - IEEE International Conference on Robotics and Au-
tomation, 2015.

[15] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel,
N. Michael, and V. Kumar, “Information-theoretic planning with
trajectory optimization for dense 3d mapping.” in Robotics: Science
and Systems, vol. 6, 2015.

[16] W. Tabib, M. Corah, N. Michael, and R. Whittaker, “Computationally
efficient information-theoretic exploration of pits and caves,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2016.

[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[18] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital integrated
circuits. Prentice hall Englewood Cliffs, 2002, vol. 2.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846-894, 2011.

[21] J. Reeds and L. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific journal of mathematics, vol. 145,
no. 2, pp. 367-393, 1990.

6918

Authorized licensed use limited to: MIT Libraries. Downloaded on July 14,2020 at 02:52:08 UTC from IEEE Xplore. Restrictions apply.



