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We extend the well-known mapping between the easy-plane ferromagnet and electrostatics in d ¼ 2

spatial dimensions to dynamical and quantum phenomena in a d ¼ 2þ 1 spacetime. Ferromagnetic vortices
behave like quantum particles with an electric charge equal to the vortex number and amagnetic flux equal to
the transverse spin of the vortex core. Vortices with half-integer core spin exhibit fermionic statistics.
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Dualities are versatile tools in a theorist’s chest.
They generate exact results when other methods fail and
provide unexpected insights. The Kramers-Wannier duality
[1] connects partition functions of the low and high-
temperatures states of the Ising ferromagnet in d ¼ 2,
allowing an exact determination of the critical temperature.
The mapping between the XY (easy-plane) ferromagnet
and electrostatics in d ¼ 2 [2] provided intuition about the
interactions of magnetic vortices and underpinned the
theory of the Kosterlitz-Thouless phase transition. Duali-
ties between ferromagnets and gauge models in d ¼ 3
served as a window into the properties of gauge theories
and helped understand the nature of quark confinement [3].
In the analogy between the XY ferromagnet and electro-

statics in d ¼ 2, vortices behave as electric charges. The
definition of the vortex number n as the increment of
magnetization’s azimuthal angle ϕ along the boundary of
some regionΩ,

R
∂Ω dr ·∇ϕ ¼ 2πn, can be recast as Gauss’s

law for the electric charge Q,
R
∂Ω ds ·E ¼ 2πQ, if we

identify the vortex number with the electric charge, Q ¼ n,
and the spatial gradients of the angle with components of an
electric field, Ei ¼ ϵij∂jϕ. Here Roman indices i ¼ 1, 2
refer to spatial directions and ϵij is the Levi-Civita symbol
in d ¼ 2.
This duality has been extended to dynamical and

quantum phenomena, which take place in a spacetime
with d ¼ 2þ 1. The addition of the time dimension pro-
motes electrostatics to electrodynamics, vortices become
quantum particles with Bose statistics, and the XY ferro-
magnet is mapped to a superconductor interacting with an
electromagnetic field [4,5].
In this Letter, we revisit the duality between the XY

ferromagnet and electrodynamics in d ¼ 2þ 1. In a real-
istic ferromagnet, the XY model with just two spin
components represents a low-energy, long-wavelength
limit of the Heisenberg ferromagnet with an easy-plane
anisotropy. Although magnetization lies in the easy plane
almost everywhere, it turns toward the hard axis at vortex
cores (Fig. 1). Despite its small radius (typically a few
nanometers [6,7]), the core plays a major role in the

dynamics of a vortex. In particular, it is responsible for
the gyroscopic (Magnus) force acting on a moving vortex
[8–10]. This is a rare example where high-energy physics
(here the existence of a vortex core) crucially impacts low-
energy dynamics.
The newly derived duality establishes an interesting

connection between quantum statistics of vortices and
the spin of the vortex core S3 along the hard axis. In the
dual description, vortices acquire not only the electric
charge Q ¼ n but also a magnetic flux Φ ¼ S3. Wilczek
[12,13] showed that in d ¼ 2þ 1 the quantum statistics
of particles carrying both an electric charge Q and a
magnetic flux Φ is altered by the Aharonov-Bohm phase.
Generally, bosons turn into anyons with the braiding phase
ϑ ¼ 2πQΦ. For magnetic vortices, this yields

ϑ ¼ 2πnS3: ð1Þ

Simple vortices with n ¼ �1 and half-integer spin S3 are
therefore fermions. An even more exotic, anyon statistics is
expected for vortices with a noninteger 2S3.
Micromagnetics, the continuum theory of the easy-plane

ferromagnet, operates with a unit-vector magnetization
field

FIG. 1. Vortices in a thin film of permalloy. Numerical
simulation in OOMMF [11]. Color encodes m3: positive (red),
zero (white), and negative (blue). At a vortex core, magnetization
leaves the easy plane and approaches the hard axis, m→ð0;0;pÞ,
where p ¼ �1 defines the polarity of the vortex.
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m ¼ ðm1; m2; m3Þ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ: ð2Þ

The simplest model without long-range dipolar interactions
has the Lagrangian density

Lðθ;ϕÞ ¼ Sðcos θ − pÞ∂tϕ − Uðθ;ϕÞ: ð3Þ
The first term in the Lagrangian comes from the spin Berry
phase and is responsible for the precessional dynamics of
magnetization; S is the spin density. The number p ¼ �1
reflects a gauge choice and determines the location of a
singularity of the spin wave function at cos θ ¼ −p ¼ ∓1
[14]. Either choice ofpwould work if the spins stayed in the
easy plane. However, a vortex configuration inevitably has a
location where the spin orientation approaches one of the
poles (Fig. 1). To avoid the singularity, we have to make a
specific choice of parameter p [15] by equating it to the
vortex polarity, defined as the value of the out-of-plane
magnetization at the center of thevortex core,m3 ¼ �1 [16].
Neglecting long-range effects of the dipolar interaction,

the potential energy has the area density

Uðθ;ϕÞ ¼ A
2
½ð∇θÞ2 þ sin2θð∇ϕÞ2� þK

2
cos2θ: ð4Þ

HereA is the strength of Heisenberg exchange andK is the
easy-plane anisotropy. The natural unit of length λ ¼ffiffiffiffiffiffiffiffiffiffi
A=K

p
sets the size of a vortex core; the natural unit of

time is τ ¼ jSj=K. The Lagrangian (3) with the energy
density (4) represents a full (high-energy) theory of
magnetization dynamics.
In low-energy states, the magnetization field lies in

the easy plane. The out-of-plane magnetization m3 ¼
cos θ ≪ 1 is suppressed and can be viewed as a hard
mode. In the spirit of the gradient expansion, we may
neglect the ð∇θÞ2 term. With this simplification, the
Lagrangian contains no gradients of the field θ and its
(classical) equation of motion reads

K cos θ ¼ S∂tϕ: ð5Þ
In static equilibrium, ∂tϕ ¼ 0 and thus cos θ ¼ 0, the
magnetization resides strictly in the easy plane. Slow
dynamics of the azimuthal angle ϕ is accompanied by a
small tilt of magnetization out of the easy plane. The polar
angle is thus a slave of the azimuthal angle. Integrating out
θ from the action yields a low-energy theory with just one
field ϕ and an effective Lagrangian

LðϕÞ ¼ −pS∂tϕþ ρ

2
ð∂tϕÞ2 −

A
2
ð∇ϕÞ2; ð6Þ

where ρ ¼ S2=K quantifies the inertia of the azimuthal
angle.
It is convenient to write the Lagrangian in a Lorentz-

covariant form with the Minkowski metric ημν ¼
diagðþ1;−1;−1Þ and in natural units,

LðϕÞ ¼ σ̄μ∂μϕþ e2

2
∂μϕ∂μϕ; σ̄μ ¼ −pe2δμ0: ð7Þ

The dimensionless coupling constant e2 ≡ jSjA=K ≫ 1 is
roughly the net out-of-plane spin S3 of a vortex core.
The low-energy Lagrangian (6) has a global symmetry of

rotations in the easy plane, ϕ ↦ ϕþ const. The conserved
global quantity is the hard-axis spin component S3. The
associated local conservation law, ∂μσ

μ ¼ 0, is the con-
tinuity equation for the spin current defined as

σμ ≡ ∂L
∂ð∂μϕÞ

− σ̄μ ¼ e2∂μϕ: ð8Þ

Here we have separated a uniform background spin current
σ̄, whose only nonvanishing component σ̄0 ¼ −pS is a
background spin density from the dynamical part σ.
Although the linear term σ̄μ∂μϕ in the Lagrangian (7) does
not influence the classical equation of motion,

∂μ∂μϕ ¼ 0; ð9Þ
it has a topological character and plays an important role in
the dynamics of vortices, as we discuss below. Equation (9)
describes spin waves with a linear dispersion, ω ¼ k.

Next we derive the dual theory of electrodynamics by
starting with the effective low-energy model (7). Although
this duality is well known in field theory (see Tong [17] for
a pedagogical review), we will use the occasion to illustrate
the underlying ideas that will be useful for obtaining the
dual description of the full model (3).
The duality can be revealed most efficiently in the

language of differential forms. In d ¼ 2þ 1 the electro-
magnetic field is represented by a 2-form F ¼ 1

2
Fμνdxμ ∧

dxν and the electric current by a 1-form J ¼ Jμdxμ [18].
Maxwell’s equations and current conservation read

d � F ¼ 2π � J; dF ¼ 0; d � J ¼ 0: ð10aÞ
Here d is the exterior derivative and � is the Hodge dual. In
the theory of the XY ferromagnet, the spin and vortex
currents are represented by 1-forms σ and j. The relation
between them, and the conservation of the two currents
read (in the low-energy limit)

dσ ¼ 2πe2 � j; d � σ ¼ 0; d � j ¼ 0: ð10bÞ
Comparing Eqs. (10) shows that the vortex current j maps
to the electric current J and the spin current σ to the Hodge
dual of the electromagnetic field �F.

We unpack this analogy in the more familiar language of
tensors and components, beginning with a list of ingre-
dients expected in a theory of electrodynamics.
Gauge field.—An electromagnetic field should satisfy

local constraints (Bianchi identities) in the form of the
homogeneous Maxwell equations. These constraints are
resolved by expressing the electromagnetic field as the curl
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of a gauge field, Fμν ¼ ∂μAν − ∂νAμ. The Bianchi identity
in d ¼ 2þ 1 reads

∂μ � Fμ ¼ 0; �Fμ ≡ 1

2
ϵμνρFνρ; ð11Þ

where ϵμνρ is the Levi-Civita symbol in d ¼ 2þ 1. Here �F
is the Hodge dual of the electromagnetic field F [18,19]. It
corresponds to a conserved current for a global Uð1ÞJ
symmetry, referred to as topological U(1), which exist for
Maxwell theories in d ¼ 2þ 1. The theory admits monop-
ole defect operators charged under Uð1ÞJ.
The global symmetry in the ferromagnetic model is the

symmetry of spin rotations in the xy plane. We identify
the generator of this symmetry with that of the Uð1ÞJ of the
Maxwell theory, and thus the current σμ maps to �Fμ as
follows:

�Fμ ≡ −σμ ¼ −e2∂μϕ; � F̄μ ≡ −σ̄μ: ð12Þ
Here quantities with a bar represent uniform background
parts of the respective fields. The minus signs in Eq. (12)
reflect the convention that a positive vortex number
corresponds to a positive electric charge.
With the physical units restored, the electric and mag-

netic fields are

Ei ¼ Aϵij∂jϕ; B ¼ ρ∂tϕ; B̄ ¼ −pS: ð13Þ
As in d ¼ 2 [2], the electric field comes from spatial
gradients of ϕ, whereas the temporal gradient gives rise to
the magnetic field. The background magnetic field B̄ ¼
−pS represents an effect well known in vortex dynamics. A
particle with electric charge Q moving with velocity _xi

should experience the Lorentz force Fi ¼ 2πQB̄ϵij _xj [20].
With Q ¼ n and B̄ ¼ −pS, this exactly reproduces the
gyroscopic force Fi ¼ −2πnpSϵij _xj acting on a moving
vortex [8,9,15].
Electromagnetic waves.—A hallmark of Maxwell’s

theory is the existence of transverse electromagnetic waves
with a linear dispersion, ω ¼ k. Spin waves in the XY
ferromagnet (9) seem like a good candidate. There is just
one spin-wave mode for each wave vector, in accordance
with a single transverse polarization expected for electro-
magnetic waves in d ¼ 2þ 1. The transverse nature of the
electric field in a spin wave can be checked with the aid of
Eq. (13): ∂iEi ¼ Að∂x∂y − ∂y∂xÞϕ ¼ 0 in the absence of
vortices.
Coupling of the field and current.—To find a conserved

matter current satisfying the continuity equation, ∂μjμ ¼ 0,
we turn to vortices. They are indestructible and can only be
annihilated in pairs. In their presence, derivatives of ϕ are
singular, ∂x∂yϕ − ∂y∂xϕ ¼ 2πρ. This definition of vortex
density ρ generalizes to a vortex current jμ in d ¼ 2þ 1:

ϵμνρ∂ν∂ρϕ ¼ 2πjμ: ð14Þ

With the help of the duality relation (12), this identity takes
the form of the inhomogeneous Maxwell equations,

∂μFμν ¼ 2πe2Jν; ð15Þ
with the electric current J equal to the vortex current j. The
dual theory can be obtained from the Lagrangian of
Maxwell’s electrodynamics with a matter current J coupled
to both the dynamical and background gauge fields A
and Ā:

LðJ; AÞ ¼ −2πðAμ þ ĀμÞJμ −
FμνFμν

4e2
: ð16Þ

Duality via an auxiliary field.—We now derive the
dual theory (16) from the low-energy Lagrangian (7) in
a standard formal way [17], through the introduction
of an auxiliary vector field with components �Fμ. The
Lagrangian of the two fields ϕ and �F is chosen to be

Lðϕ; �FÞ ¼ −ð�Fμ þ �F̄μÞ∂μϕ −
�Fμ � Fμ

2e2
: ð17Þ

This choice assures that minimization of the action with
respect to �F yields the conjectured relation (12).
Integrating out the auxiliary field �F would lead to our
effective theory (7). Instead, we will keep the auxiliary field
�F and integrate out the angle field ϕ.

However, prior to that, we need to separate a singular
vortex part of the field ϕ from spin waves as it is done in
d ¼ 2 [2]. In the presence of vortices, ϕ is not a single-
valued function of the spacetime coordinates and ∂μϕ is
not, strictly speaking, a gradient. We separate this quantity
into two parts, ∂μϕ ¼ aμ þ ∂μφ. The new gauge field a is
defined by vortex worldlines,

ϵμνρ∂νaρ ¼ 2πjμ: ð18Þ
The single-valued field φ represents spin waves in the
original theory and generates gauge transformations for the
vortex gauge field a.
Integrating out the single-valued part of the field φ

produces the Bianchi identity for F (11). Upon resolving it
in the expected way, �Fμ ¼ ϵμνρ∂νAρ, we obtain the
Lagrangian for a gauge field A and the vortex current j
parametrized by the vortex gauge field a:

Lðj; AÞ ¼ −ϵμνρaμ∂νðAρ þ ĀρÞ −
FμνFμν

4e2
: ð19Þ

Note that the first term in Eq. (19) is aμσμ, indicating that
the role of the electric charge for the gauge field a is played
by the spin S3, whereas the electric charge for A is the
vortex number n.
Finally, we convert the first term in Eq. (19) via

integration by parts and use the relation between a and j
(18) to obtain the conjectured Lagrangian of the dual
theory (16).
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As already mentioned, the low-energy theory (7) and its
well-known dual (16) break down at vortex cores. We now
turn to the full model (3) and derive its hitherto unknown
dual theory (22), our main technical achievement under-
pinning the new conceptual result (1).
We can readily construct the electromagnetic fields

following the familiar route. The Lagrangian (3) and
potential energy (4) retain the global rotational symmetry.
The spin current σμ has the following components:

σ0 ¼ S cos θ; σ̄0 ¼ −pS; σi ¼ −Asin2θ∂iϕ:

ð20Þ

The dynamical temporal component σ0 is the density of
spin along the hard axis. Identification of the spin current
with the electromagnetic field along the lines of Eqs. (12)
and (13) yields

Ei ¼Asin2θϵij∂jϕ; B¼ S cosθ; B̄¼ −pS: ð21Þ

The low-energy result (13) is recovered if we set sin θ ¼ 1
and use the low-energy equation of motion (5).
For completeness, we give the Lagrangian of the dual

gauge theory, in natural units:

LðJ;AÞ ¼ −2πðAμ þ ĀμÞJμ þ
1

2e2

�
E ·E− ð∇BÞ2
1− ðB=B̄Þ2 −B2

�
:

ð22Þ

The Lorentz-covariant form (16) is recovered in the limit
when the dynamical magnetic field is weak and varies
slowly in space, ∇B ≪ B ≪ B̄.

Up to this point, our theory of the XY ferromagnet in
d ¼ 2þ 1, recast as electrodynamics, has faithfully repro-
duced what is already known. The electrostatic analogy
goes back to 1974 [2]; the dynamical similarity with
electric charges in a background magnetic field is also
not new [21–23]. Does this duality provide any new
insights, not obvious from the original theory?
One interesting feature that, as far as we know, has not

been previously pointed out is the presence of a magnetic
field B ¼ S cos θ localized at a vortex core, where
cos θ ≠ 0. The net magnetic flux of a vortex,

Φ ¼
Z

d2xB ¼
Z

d2xS cos θ ¼ S3; ð23Þ

is equal to the net spin S3 of the vortex core. We thus find
that a vortex behaves like a particle with both an electric
chargeQ ¼ n and a magnetic fluxΦ ¼ S3. The attachment
of a well-localized magnetic flux does not influence the
classical dynamics of a charged particle. However, it has
important consequences at the quantum level because of the
Aharonov-Bohm phase experienced by an electric charge

moving around a magnetic flux. Wilczek [12,13] pointed
out that particles carrying both an electric charge q and
magnetic flux Φ in d ¼ 2þ 1, increment their statistical
angle ϑ (0 for bosons and π for fermions) by 2πQΦ (in our
units [20]). Viewed as a quantum particle, a vortex in a
ferromagnet is ordinarily considered to be a boson [5]. The
idea that a vortex carries both an electric charge Q ¼ n and
a magnetic flux Φ ¼ S3 means that its statistical angle is
ϑ ¼ 2πnS3. Common single vortices (n ¼ �1) can exhibit
the fermion statistics if their spin S3 is half-integer.
Are there vortices with a half-integer spin S3? We do not

know for sure. It is relatively easy to determine the spin of a
vortex in a classical model such as the one defined by
Eq. (4). The vortex core is well defined and its net spin is of
the order of e2 ¼ jSjA=K ≫ 1. However, this classical
answer varies continuously with the parameters of the
model and is not quantized.
The problem needs to be solved at the quantum level.

Aside from technical difficulties, we encounter a concep-
tual problem. The transverse spin S3 is a conserved quantity
by virtue of the O(2) rotational symmetry. However, in an
ordered ferromagnet this symmetry is spontaneously bro-
ken. Therefore, the ground state of an ordered magnet is
generally a superposition of (infinitely) many states with
different values of S3,

jψi ¼
X
S3

CS3 jS3i; ð24Þ

and S3 is not even a well-defined quantity. Fortunately,
quantum statistics is determined not so much by the
statistical angle ϑ but by its exponential eiϑ ¼ e2πinS3 .
Because physical states are invariant under 2π rotations,
the superposition (24) may only contain values of S3
differing by integers, e.g., 1=2; 3=2; 5=2;…, or
0; 1; 2;…. The number e2πinS3 is the same for all such
S3, so the quantum statistics of vortices is well defined even
if S3 is not.
We speculate that vortices with a half-integer spin could

be found in single-layer ferromagnets. With two layers, the
total spin would presumably double and give the trivial
bosonic statistics. For the same reason, magnetic atoms
with half-integer spin look more promising than ones with
integer spin.
The attachment of fluxes to charges is absent in the naive

dual theory (16). One could attempt to fix this deficiency by
adding a Chern-Simons (CS) term, LCS ¼ πkϵμνρAμ∂νAρ

[24,25]. Doing so would not affect the classical dynamics
[17] and attach magnetic flux Φ ¼ Q=k to an electric
charge Q. However, this one-to-one correspondence
between the charge and flux is too restrictive for our
model. A magnetic vortex with “electric charge”Q ¼ n can
have both positive and negative transverse “magnetic flux”
Φ ¼ S3, depending on the polarity p ¼ �1 of the core.
This Z2 degree of freedom is missing in the standard
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scenario of flux attachment via a CS term, thus requiring a
more sophisticated approach.
Vortices in ferromagnets have been extensively studied,

both experimentally and theoretically. In practically all of
these studies, vortices have been treated as classical
objects. Only recently have theorists begun to ponder their
unusual quantum properties. For example, Ivanov and co-
workers [26,27] considered the quantum mechanics of a
single vortex in an atomic lattice with spins of length S. The
single-vortex energy spectrum consists of 2S bands rem-
iniscent of electron bands in a solid. Similar results for
skyrmion energy bands were obtained by Takashima et al.
[28]. Noncommutativity of momentum components for
vortices and skyrmions was pointed out by Watanabe and
Murayama [29]; the same applies to their coordinates [30].
In this Letter, we have shown that magnetic vortices,

viewed as quantum particles, may exhibit nontrivial quan-
tum statistics: vortices with a half-integer core spin S3 are
expected to be fermions. Even more exotic anyon statistics
is expected for vortices with a noninteger 2S3. The
existence of vortices with noninteger 2S3, also conjectured
independently by Ivanov [31], would be a tantalizing
possibility. However, Feldman [32] has pointed out that
anyon statistics can probably be ruled out for vortices on
account of the spin-statistics theorem [12,33], which sets
eiϑ ¼ e−2πiS3 . This result is compatible with Eq. (1) for
n ¼ 1 only if 2S3 is an integer.
We hope that our work will stimulate further interest in

quantummechanics of vortices and other magnetic solitons.
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