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1 Introduction

Geometric engineering is a powerful way to study Quantum Field Theories (QFTs) and
their various dynamics. Many interesting QFTs can be explored by studying the low
energy limit of branes in string theory backgrounds. Some of the most interesting and yet
mysterious QFTs have such a definition: for instance, the Ay_1 N = (2,0) superconformal
field theories in six dimensions have a description as the worldvolume theories on a stack of
N flat M5-branes [1, 2]; and a class of 6d theories with reduced (1,0) supersymmetry are
obtained from Mb5-branes probing an orbifold singularity [3]. Further wrapping the branes
on a compact manifold yields a large class of lower dimensional QFTs. For example, by
reducing the (2,0) theories on a Riemann surface we obtain a large class of generically
strongly coupled 4d QFTs of varying amounts of supersymmetry known as Class S, first
analyzed for N' = 2 theories in [4, 5], and studied for N' = 1 cases in [6-10]. Embedding
these systems in string theory provides an organizing principle and geometric toolset for
exploring their properties, especially in their strong coupling regimes.

An important problem in these constructions is to compute the anomalies of the field
theories.! 't Hooft anomalies provide a robust set of observables that are useful for probing
the dynamics of QFTs. They are preserved under renormalization group flow, and then
can be used to constrain the IR phases of quantum systems via anomaly matching. For
a superconformal field theory, the 't Hooft anomalies involving R-symmetry are related
to central charges by the superconformal algebra [11, 12]. Anomalies are also naturally
geometric quantities. For the case of continuous symmetries in even d-dimensional QFTs,
they are encoded in the anomaly polynomial, a (d+ 2)-form polynomial in curvature forms
associated to gauge and gravity fields [13-15]. For QFTs obtained by dimensional reduction
of a higher dimensional field theory, anomaly matching is implemented by integrating the
upstairs anomaly polynomial over the compact manifold in the reduction. However, this
prescription only gives the contribution to the lower dimensional anomaly polynomial that
derives from symmetries manifest in the higher dimensional theory — it is not sensitive to
decoupled sectors, accidental symmetries, and other subtleties.

The primary objective of this work is to provide a systematic way of computing the
anomalies of geometrically engineered QFTs in d dimensions from M5-branes. Our main
tool is anomaly inflow in the M-theory background, first studied for M5-branes in [16-19].
The Mb-branes act as a singular magnetic source for the M-theory 4-form flux G4. In
the supergravity description we excise a small neighborhood of the stack, thus inducing

'Throughout we restrict to the case of anomalies in background rather than dynamical gauge symmetries
('t Hooft anomalies), so that their existence does not render the theory inconsistent.



a boundary for 11d spacetime. For the geometries under consideration, this boundary is
a fibration of an internal space Mjy_q over the low energy QFT worldvolume W,;. The
global symmetries of the QFT are fixed by isometries of the internal space, as well as gauge
symmetries of the three-form potential. In inflow, the anomalies for degrees of freedom on
the branes must cancel the classical anomalous variation of the effective 11d supergravity
action localized on the branes. The anomalous variation of the action is related by descent
relations to a 12-form characteristic class Z;5. Reducing Z;5 along the transverse directions
to the QFT worldvolume yields the inflow anomaly polynomial Igfgw associated to the
QFT. Then, the anomalies of the QFT are equal to those computed via inflow up to
decoupling modes, such that ™ + IC?_EZT + Igicgoupl = 0.

We provide a general prescription for computing Z;5, and describe its properties and
uniqueness. The essential point is that Z;5 is determined entirely by topological properties
of the internal space M1y_4, and equivariant classes constructed from the boundary data of
the 4-form flux. We see in examples of dimensionally reduced theories that the procedure of
directly integrating Z;5 to compute gfg’w can contain more information than the reduction
of the anomaly polynomial of the parent theory. Further, the embedding in M-theory may
allow for a geometric interpretation of the decoupling modes.

We will then examine the implications of this machinery for holography, i.e. when the
d-dimensional QFT is a conformal field theory with a large-N AdSg.q gravity dual (N
being the number of M5-branes). The dual geometry in M-theory consists of a warped
product of AdS;i1 times M{‘é’l_ 4+ Supported by a Gh°! flux configuration on the internal
space. The transverse directions Mig_4 to the QFT worldvolume are identified with the
internal space Mlhé’l_ 4~ The main observation is that we can use a known solution of 11d
supergravity to infer Zj5. This is because (1) the topology of the internal space M {1631_ 418
the same as that of Mig_g4, and (2) the holographic Gﬂ"l flux configuration can be identified
with our seed boundary G4-flux utilized in the inflow machinery.

The power of our method in the context of holography is twofold. First, since the
seed topological data for inflow can be read off of a known supergravity solution, we can
obtain the CFT anomalies even if we don’t know the probe M5-brane configuration. We
demonstrate this below by applying our method to the AdSs x Mg Gauntlett-Martelli-
Sparks-Waldram (GMSW) solutions [20]. Second, this prescription provides a path from
the classical solution of 2-derivative supergravity which is valid at large-N, to the exact
anomaly polynomial via inflow. Since our Zj9 involves higher derivative terms inherited
from the M-theory action, our prescription captures contributions to the anomalies at finite
N. In examples, we correctly produce all N-dependent anomaly coefficients excluding
O(N) terms which we can identify with decoupling modes.

We demonstrate our method in several examples, some of which have an explicit brane
construction, and some cases in which only the holographic solution is known. In section 4,
we focus on QFTs in six dimensions. First we exemplify our method in the case of flat

M5-branes. Of course, anomaly inflow for this setup is well-known [18, 19],? and we use this

2The anomaly polynomials for general 6d (2,0) ADE theories can be computed using anomaly matching
on the tensor branch [21], while inflow for the Dy series is studied in [22]. Also note that the holographic
computation of the ¢ central charge is given in [23].



analysis mainly to set notation for subsequent examples. We then apply our method to the
case of M5-branes probing a C?/T" singularity, for I' an ADE subgroup of SU(2). We match
the anomaly polynomial for these N' = (1,0) theories as given in [24], where an analysis via
anomaly matching on the tensor branch as well as an inflow analysis appears. One comment
is that our analysis produces an additional term relative to the inflow results from [24] that
corresponds precisely to the contribution of the Green-Schwarz term associated to the cen-
ter of mass mode for the branes. For the case of I' = Zj, we reproduce the full result of [25].

In section 5, we consider two classes of four-dimensional N' = 1 QFTs. First, we
reproduce the anomalies of 4d N/ = 1 SCFTs for which the internal space Mg is an S*
fibration over a smooth Riemann surface, analyzed by Bah-Beem-Bobev-Wecht (BBBW) [9,
10]. We then apply our method to a class of 4d SCFTs where Mg is an S? fibration
over a product of smooth Riemann surfaces, corresponding to the GMSW supergravity
solutions [20]. The M5-brane probe description is generally not known for these solutions,
but we are nonetheless able to compute the inflow anomaly polynomial, and show that
we match the holographic computation of the central charge [26]. Our results are the first
computation of the subleading-in-/N corrections to the central charges of this class of QFTs.

We conclude with a discussion of our results, as well as several appendices that contain
the details of computations that appear in the main text.

2 General aspects of anomaly inflow in M-theory

In this section we discuss general aspects of anomaly inflow for M-theory setups with
wrapped Mb-branes. We establish a connection to holography and outline a general recipe
for obtaining the inflow anomaly polynomial. The latter is governed by a 4-form F, that
encodes topological information about the G4-flux configuration. In this section we discuss
general properties of Fy and all the necessary ingredients for its construction.

2.1 Anomaly inflow for wrapped Mb5-branes

Let us consider a stack of N Mb5-branes with worldvolume Ws. The tangent bundle of the
11d ambient space M, restricted to the worldvolume Wg, decomposes according to

T My =TWgd NWg, (2.1)
We
where TWg is the tangent bundle to the stack and NWj is the normal bundle to the stack.
The latter has structure group SO(5) and encodes the five transverse directions of the
Mb-branes.

We are interested in setups in which

W6 = Wd X Sﬁ_d, (2.2)

where W, is external d-dimensional spacetime and Sg_g4 is a smooth compact even-
dimensional internal space. At low energies the system is described by a QFT living on Wj,.
For d = 6, the internal space is understood to be absent. For d < 6, in order to specify the
setup we have to describe the topology of the normal bundle NWjg over the internal space



Sg_g- This amounts to specifying a partial topological twist of the worldvolume theory
living on the M5-branes upon compactification on Sg_4. The topological twist is essential
in preserving some supersymmetry in the d non-compact directions.

Given the internal space Sg_q wrapped by the Mb-branes and the S* that surrounds
the stack in its five transverse directions, there is a compact (10 — d)-dimensional space
Mio_q that encodes the topological twist and governs the anomalies of the QFT on W,.
The space Myg_q is an S* fibration over Sg_g,

54 — MlO—d — Sﬁ_d . (2.3)

The structure group of the fibration (2.3) is a subgroup of the SO(5) structure group of
the normal bundle NW.

The QFT living on Wy at low energies can admit 't Hooft anomalies for the global
symmetries of the theory. In this work we focus on continuous symmetries. Their anomalies
are diagnosed by coupling the QFT on W; to background gauge connections and metric.

Since the full M-theory setup is anomaly-free, the 't Hooft anomalies in d dimensions
must be counterbalanced by anomaly inflow from the M-theory bulk, which is analyzed
using the methods of [18, 19]. The Mb5-brane stack acts as a singular magnetic source for
the M-theory G4 flux. To describe the setup in supergravity, the singularity is removed
by excising a small tubular neighborhood of the M5-brane stack. As a result, the 11d
spacetime Mj; acquires a boundary 0My; = M. If » denotes the radial coordinate away
from the Mb5-brane stack, Mg is located at r = €, where € is a small positive constant. The
space Mg is a fibration of Mjg_g4 over Wy,

Myo—aq = Mo — Wq. (2.4)

The fibration (2.4) is specified by the background gauge connections for the symmetries
of the QFT that originate from continuous isometries of Mjg_4. Let us stress that the
fibration (2.4) encodes the gauging of the d-dimensional theory with background gauge
fields on Wy, while the fibration (2.3) describes the topological twist that defines the
theory on Wj.

The magnetic source for G4 is modeled by imposing suitable boundary conditions at
r = €. More precisely, we have

= Ey, (2.5)

=€
where Ej is a closed 4-form on the space Mjg. The relation (2.5) is written in conventions
in which G4-flux quantization reads

/C4 (%—2)6% (2.6)

where Cy is a 4-cycle and A = p1(T'M11)/2 [27]. (In all setups we consider /2 is integral.)
The 4-form FE4 has to be globally defined and invariant under the structure group of the
fibration (2.4), i.e. invariant under all symmetries of the d-dimensional theory. Moreover,

we have

E;=N, (2.7)
S4



where S* is the 4-sphere surrounding the stack. Depending on the choice of Sg_gq and
the topology of the fibration (2.3), the 4-form F4 might have additional non-trivial fluxes
through 4-cycles in Mg, besides (2.7).

As explained in [18, 19], in the presence of the boundary Mo the topological terms
in the low-energy effective action of M-theory Sii4 are no longer invariant under gauge
transformations in the background connections on Wy. In fact, we have

St [ gy, (28)

where I%) is a 10-form on Mg, linear in the gauge parameters. In accordance with the
Wess-Zumino consistency conditions, If[l)) is related by descent to a 12-form characteristic
class 7o,
ar\) =610, a9 =15,. (2.9)
The class 719 is given by
1
Tiy=—¢ E} — By Xg, (2.10)
where we have suppressed wedge products. The 8-form Xg is given by
Xs = o5 [pl (TMy;)? — 4p2(TM11)] : (2.11)

where the quantities pjo(T'Mi1) are the first and second Pontryagin classes of the 11d
tangent bundle, implicitly pulled back to the boundary at r = e.

If we integrate the class Zj9 on the Myg_g4 fibers of (2.4), we obtain the (d 4 2)-form
inflow anomaly polynomial of the d-dimensional theory on Wy,

infl
132" = /M Ty (2.12)
10—d

The inflow anomaly polynomial (2.12) cancels against the 't Hooft anomalies of the in-
teracting QFT living on Wy at low energies, and of the decoupling modes related to the
center-of-mass of the M5-brane stack. We thus write

Iipfow 4 T3+ 15 = 0. (2.13)

2.2 Applications to holography

One of the main interests of this work is the case in which the interacting QFT on Wy is a
CFT with a gravity dual. The dual geometry in M-theory is a warped product of AdS;11
with an internal (10 — d)-dimensional space,

M11 = Ade+1 Xaw Mlhé)ld (214)

hol on the in-

This AdSg4y1 solution is supported by a non-trivial G4-flux configuration G

hol 3
ternal space Mjy" ;.

3For d = 2, G4°! can have additional terms with three external legs, proportional to the volume form on
AdSs. Such terms in G4°' do not play a role in the following discussion.



The main observation is that, for AdSy,1 solutions that correspond to wrapped Mb5-
branes, the topology of the internal space M{’é{ 4 1s the same as the topology of the space
Mjp—q defined in (2.3) [28]. By a similar token, the holographic G4-flux configuration
GY°!'/(27) lies in the same cohomology class as Fj after all external connections are turned
off,

Ghol
i —E, in cohomology of Mjg_g . (2.15)

2 external connections = 0
Let us emphasize that the topological properties of M7y_4 and E, are the main ingredients
in the implementation of anomaly inflow for wrapped Mb5-branes. The discussion above
indicates that these topological features can be equivalently extracted from the probe setup
or from the holographic solution.

There exists a larger set of AdS;11 solutions in M-theory for which the probe M5-brane
configuration is not known. In these solutions the internal space Mlhé’i 4 1s not necessarily
an S* fibration over some (6 — d)-dimensional space, as in (2.3). We expect that our
method for the computation of Igfzow applies to such setups. The anomaly is governed by
the topological properties of Mﬁ;{ 4 and GEOl, which determine Fj.

The general task at hand is the construction of F, given the topology of the space
Mjig—g4. Recall that Ey is a 4-form on the total space Mg of the fibration (2.4). Crucially,
we do not assume that Mijg_4 is an S? fibration over a (6 — d)-dimensional space. As
a result, the following considerations apply beyond setups that are realized by wrapping
M5-branes on a smooth compact internal space.

A local representative for the class Fy is constrained by the following properties:

e [, is globally defined,
e F, is closed,
e F, is invariant under all symmetries of Mig_g4.

The 4-form FEj is constructed by combining the curvatures of the background connections
on Wy with p-forms in the internal space M1g_4. Crucially, since M1g_g4 is fibered over Wy,
see (2.4), the internal p-forms on Mjy_4 must be appropriately “gauged”, i.e. coupled to
the background connections on Wj.

The constraints listed above may not completely fix the expression of F4. In section 3
we present a general recipe for the construction of Fy, we characterize its ambiguities, and
we argue that they do not affect the inflow anomaly polynomial.

3 Construction of E4

In this section we introduce a convenient formalism for the parametrization of the 4-form
FE4. We show how to construct a good representative for Fy in terms on p-forms in Myg_g.
The natural language to describe this construction is that of G-equivariant cohomology.
While Ey is generically non-unique, we argue that the inflow anomaly polynomial can be
extracted unambiguously.



3.1 Parametrization of F,

A local representative for the class Ej is a closed, gauge-invariant, globally-defined 4-form
on the total space My of the fibration of Mjy_4 over external spacetime Wy, see (2.4).
The 4-form FEj, is constructed using internal p-forms on the Mjy_4 fibers, together with
external curvatures with legs on Wj.

We suppose that Mig_g admits a collection of Killing vectors k7", with m a curved
index on Miy_g4, and I labeling a basis of Killing vectors. The latter obey the Lie algebra

Liky = Ly, ky = [kr,ks] = f1" kx (3.1)

where £ denotes Lie derivative. The non-trivial fibration of Mig_g4 over Wy is encoded by
the gauging of the isometries of Myy_g4. In what follows, we adopt a notation similar to
the one of [29]. The gauging is conveniently described locally by the replacement

de™ — DE™ = de™ + kT AL (3.2)

where A is the external connection associated to the Killing vector E}*. In our conventions,
the field strength F of the connection A’ reads

1
Fl=qAl — 3 frxl AT AK (3.3)
Let w be a p-form on Myy_g,

1
W= ol Winy.my, AE™ . dETP (3.4)

where the components wy,,...m, depend only on the coordinates § on Mjg_q. We use the
symbol w® for the gauged version of w, obtained by means of the replacement (3.2),

w? = ;wmlmmp DE™ . DEMy (3.5)
Further details about this gauging procedure are collected in appendix A.

If we turn off all external connections, F,4 reduces to a 4-form denoted V. The latter
must be closed and invariant under all the isometries of Mjg_,. Furthermore, Gy4-flux
quantization requires the class of Vj to be integral. Let VA, A = 1,.. b4 (Myg_g) be a
basis of the integral cohomology group H*(Mig_4,7).* We can expand the cohomology
class of Vj as

Vi= Ny VA, (3.6)

with the integers Ny specifying the topology of the G4-flux configuration, which is part of
the input data that defines the setup and is held fixed throughout the construction of Ej.

The first step in the parametrization of E4 is promoting V; to a closed and gauge-
invariant object. The completion of Vj is denoted V4 and is given by

Vil=Vi+ Flwt+ FI F oy (3.7)

4For d = 4, the internal space is six dimensional and 4-cycles are dual to 2-cycles and harmonic 2-forms;
the label A coincides with « in this case.



In the previous expression, wy are 2-forms on Myy_g4, while o7 5 are 0-forms. The superscript
‘g’ refers to the gauging prescription defined in (3.5), while ‘eq’ stands for equivariant, for
reasons outlined below. The 4-form V¥ must be invariant under the gauge transformations
associated to the isometries of Mjg_4. Let 6,V denote the gauge variation of V; 4, with M
denoting the gauge parameters. In computing 0,V, 4, we encounter variations of external
curvatures, and variations of gauged internal forms. The former are given by the usual
expression,

ONFI = —frt M FE. (3.8)

The gauge variations of gauged internal forms are given in terms of the Lie derivative with
respect to the Killing vector fields. For example,

5)\((,«}%) = )\J (fJW[)g . (3.9)

We refer the reader to appendix A for a more detailed explanation of this point. The
requirement 6, V4 = 0 translates into the conditions

L1Vy =0, Lrwy = fri® wr, Lrog5, = frnXoxn + frnfonx . (3.10)

We also have to demand d(V;“) = 0. In computing the external derivative of V4, the
following identity is useful,

d(w%) + A7 (£ywr)® = (dwp)® + F’ (Lywr)®. (3.11)

The quantity on the Lh.s. is the natural covariant derivative acting on a gauged internal
form, since the gauge algebra acts via Lie derivative along Killing vector fields. Accordingly,
the r.h.s. is a manifestly gauge invariant quantity. Even though we have written (3.11) for
wr, a similar identity holds for any internal gauged form. Further details on this point
can be found in appendix A. Making use of (3.11) and similar identities, together with
the Bianchi identity for F', we verify that requirement d(V?) = 0 implies the following
conditions,

dVy =0, tiVy + dwy =0, L(ij)—l-dJ[J:O. (3.12)

The symbol ¢7 is a shorthand notation for the interior product ¢y, of a p-form with the
Killing vector k7.

So far, we have only discussed the external connections associated to isometries of
Mig_4. Another class of external connections is related to harmonic 2-forms on Mig_g.
If we, @ = 1,...,b%(Myg_q), is a basis of harmonic 2-forms, expansion of the M-theory
3-form potential onto w, yields external vectors A%, according to the schematic relation
C3 = A%w,. The connections A* are Abelian and have field strength F* = dA®. Notice
that, for d = 4, one linear combination of the vectors A® is massive and does not correspond
to a symmetry of the system. This point is addressed in greater detail in appendix C.2.

Each harmonic 2-form w, is closed and invariant under the action of all isometries of
Mig_q.°> As a result, we can complete w, to a closed and gauge-invariant object, denoted

5The fact that £7wa = 0 can be seen as follows. From dwa = 0 we derive £jwa = d(t1wa). Making use
of Vimkrny =0 and V" wamn = 0, we verify (L1wa)mn = VP (kr A wa)pmn. We have thus established that
the 2-form £jw, is both exact and co-exact. It follows that f]\/flo—d(‘flwa) * (£1wa) = 0 (no sum over «,
I), which in turn guarantees £rwq = 0.



wal. It is given by
W =ws +2F op,, (3.13)

where o7, are suitable O-forms on Mjg_g4, and the factor of 2 is inserted for later conve-
nience. We demand Jywe' = 0, such that

Liwa =0, L1070 = 11" 0Ka .- (3.14)

Moreover, we need d(wa') = 0, which is equivalent to

1
dwa =0, §L1wa+d01a =0. (3.15)

We are now in a position to write down the most general parametrization of Fy. It
reads o

F
E, = V;fq + % qu + 4, (3'16)

where V% is as in (3.7), wa! is as in (3.13), while 74 denotes an arbitrary closed and gauge-
invariant 4-form with purely external legs. In appendix C we show that for d = 2 and d = 4
the inflow anomaly polynomial is insensitive to the 4-form ~4, which may then be set to
zero. For d = 6, the inflow anomaly polynomial does depend on 4. In appendix C we ar-
gue that the correct value of v4 is obtained by extremizing the inflow anomaly polynomial.
This prescription is equivalent to demanding that the 8-form E} + 2 Xg be trivial in the
cohomology of My. We interpret this requirement on E7 + 2 X3 as a tadpole cancellation
condition in M-theory, which must be satisfied in order to have a consistent setup. In sec-
tion 4 we verify that our treatment of v4 gives the correct inflow anomaly in two examples,
a flat stack of M5-branes, and M5-branes probing a C?/I" singularity.

The quantities V;¥ and wq! introduced above admit a natural interpretation in terms
of G-equivariant cohomology of Mjg_4, where G is the isometry group of Mjy_4. This
justifies the label ‘eq’. In appendix B we show how the objects V4, wa! can be identified
with G-equivariantly closed (poly)forms on M4, which specify non-trivial G-equivariant
cohomology classes.

Let us close this section by introducing a more compact notation, which is sometimes
convenient in what follows. Let X = (I,«a) be a collective index that unifies external
connections originating from isometries of Mjg_4 and external connections associated to
harmonic 2-forms on Myg_4. We can cast Ey4 in (3.16) in the form

Ey=Vf+ FXu§ + FY F oxy + 1, (3.17)
with the identifications
1
= <FI’ o Fa) ; wx = (W1, Wa) , oxy = | 7). (3.18)
2w 0Ja 0

By a similar token, we can summarize (3.10) and (3.14) by writing

LxVy=0, Lxwy = fxyZwz, £xoviv, = fxvil ozy, + fxvZloviz,  (3.19)



with the understanding that £, = 0, and that the only non-zero entry of fxy? are fr;/%.
In a similar fashion, we summarize (3.12), (3.15) as

dVy =0, txVi+dowx =0, L(wa)—i-da'xyzo, (320)

with the convention ¢, = 0.

It is interesting to note that the compact expression (3.17) is suggestive of a possible
extension of the G-equivariant cohomology interpretation of appendix B. Indeed, we can
formally augment the isometry group G to a larger group CA}’, by adding an extra U(1)
factor for each curvature F*. The extra U(1) generators act trivially on Mg, because of
tee = 0. We can then interpret the quantity Vf + FX wi +FXFYoxy asa é—equivariant
(as opposed to G-equivariant) completion of Vj.

3.2 Deformations of E4

An important question concerning the construction of Fj is to determine how uniquely
this object is fixed by the conditions (3.10), (3.12), (3.14), (3.15). We refer the reader to
appendix B.2 for a detailed analysis of this problem, and here we discuss only some salient
aspects.

A class of deformations of E, is of the form

Vi —Vi+dWs, wr — wr + tyWs +dAr, U]J—>U[J+L(I/\J),
1
Wo — W + dAy Ol — OJa + §L1)\a. (3.21)

where Ws is a globally-defined 3-form on Mjy_g4, and A\;, A, are globally-defined 1-forms
on Mjg_gq. Gauge-invariance requires

LiW3 =0, Ly = f175 Mk, Lrda =0, (3.22)

but W3, A\;, A\, are otherwise arbitrary. It is easily checked that the new FE, is still
closed and gauge-invariant. Furthermore, we have checked that the integrals [ Mio_a E3}
and [ Mo E, Xg are invariant under the deformation (3.21), which implies that the inflow
anomaly polynomial is unaffected by it. In the language of G-equivariant cohomology, the
deformation (3.21) corresponds to adding G-equivariantly exact pieces to Ey, which does
not change the G-equivariant cohomology class of Fj.

A more interesting class of ambiguities in the determination of Ej is the following.
For a given Vj, we can construct equivariant completions V' that correspond to different

G-equivariant cohomology classes. More explicitly, we can consider the modification
wr = wr + 7 wa o1y = 017 + ([ Oyt UL (3.23)
The quantities ¢, ury are constants. Compatibility with (3.10) requires
fr¥ ¢ =0, frnSurcs + fr2," unk =0. (3.24)

In other words, ¢ must be acted upon trivially by the adjoint representation, which means
that ¢¢ can be non-zero only if I labels a generator of an Abelian factor of the isometry
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group. On the other hand, the constants u;; must be components of a symmetric invariant
tensor in the adjoint representation of the isometry algebra. For instance, if the isometry
group is simple, ur; must be a multiple of the Cartan-Killing form.

Contrary to (3.21), the modification (3.23) changes the class defined of V', and hence
FE4. Tt should be noted, however, that the effect of the shift parametrized by the constants
cf can always be undone by a linear redefinition of the external curvatures Fl, pe,

1 1
N S

Fl — F!
’ o o

) e (3.25)
In this sense, the only genuine ambiguity in (3.23) is the part parametrized by the con-
stants uyy. We notice that any shift of o7y with ur; generates closed and gauge-invariant
terms with purely external legs, which can always be reabsorbed in the 4-form 4. The
(in)dependence of the inflow anomaly polynomial on 4 is studied in appendix C.

In a completely similar way, we can choose inequivalent equivariant completions of w.
Pragmatically, we consider the shifts

Ola = OJa + UJa (3.26)

where the constants uy, are constrained by (3.14),

Lruge = fr75 uka . (3.27)

Once again, a shift parametrized by wy, corresponds to a modification of 4.

We close this section by highlighting an important feature of the case d = 4, which is
explained in more detail in appendix C.2. For d = 4, one of the vectors A originating from
expansion of Cy onto a basis w, of harmonic 2-form is massive. This linear combination
does not correspond to a symmetry of the system. The associated background curvature
must then be set to zero. More precisely, this holds provided we choose the 2-forms wy in
such a way that

/ Viwr =0. (3.28)
Mg

This condition can always be achieved by shifting w; by an appropriate linear combination
of wy’s. If (3.28) holds, the linear combination of F'* curvatures that must be set to zero is

N, ,F*=0, Na:/ Viwg . (3.29)
Mg

The constraint N,F“ = 0 is essential in order to get the correct anomaly in four
dimensions. It plays a particularly non-trivial role in the example studied in section 5.2.

4 Examples in six dimensions

In this section we exemplify the method of section 3.1 for the construction of Ey in two
examples involving a stack of N Mb-branes in six uncompactified dimensions. In the first
example, the branes sit at a smooth point in the transverse directions, while in the second
example they probe an orbifold singularity.
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4.1 A stack of N Mb5-branes

Anomaly inflow for this setup is well-known [18, 19]. The analysis of this section is useful
for the rest of this paper, since it allows us to introduce the objects (4.5) which are later
used for various applications.

The 4-form Vy, which encodes the background G4-flux configuration, must be propor-
tional to the volume form on the internal space M, = S*. We write

Vi = N volga . (4.1)

In our normalization, | gavolgs = 1. The constant N is an integer by virtue of G4-flux
quantization in M-theory, and counts the number of M5-branes in the stack.

The internal space S admits an SO(5) isometry group. Let us introduce constrained
coordinates y4, A =1,...,5 with y* y4 = 1. The gauging of the SO(5) isometry is given by

(dy™)e = dy* — A*B yp, (4.2)
where AP is the external SO(5) connection, with field strength
FAP = dAMP — AMC AP (4.3)

Notice that S* does not admit any non-trivial harmonic 2-form. As a result, we do not
have any additional external connections.
The 4-form Ej is determined by solving (3.10), (3.12). The result of the analysis takes
the form
E4=V4+FABwiB+FABFCDEAB’CD+’)/4, (4.4)

where 4 is an arbitrary closed, gauge-invariant 4-form with external legs, and we have
defined the following forms on S*,

— 3N 1
4= 8? : E €Ay A5 dZ/Al dZ/A2 dyA3 d?/A4 yA5 ,
3N =2
WAB = 9.2 CABCICHCy dy©r dy©2 y©s
. 3N 1
TABCD = g3 * 4] CABCDE yP. (4.5)

If we set 74 = 0, the 4-form Ej in (4.4) is proportional to the global angular form of SO(5),
which appears in the original analysis of [18, 19].

The Pontryagin classes of T'M7; can be computed exploiting the decomposition of the
11d tangent bundle restricted on the worldvolume Ws of the brane,

TMy — TWs @ Nsogs) (4.6)
where Nggs) is the bundle encoding the SO(5) gauging. We have

p1(T M) = p1(TWs) + p1(SO(5))
pQ(TMH) = pQ(TWG) + p2(SO(5)) +p1 (TWG)pl(SO(5)) s (47)
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and hence

X =~ [p2(TWe) +12(506)] + 5 [ (TWo) —maisOG)]". (49

Notice that Xg has no legs along the internal S* directions.
We can now compute the inflow anomaly polynomial, using (4.4) and (4.8). The result

reads
IRV = N py(80(5)) — 5 N3
2
N [p2(TWe) 4 pa(SOG)| — 195 N [ (TWe) ~m(S0()] . (49)

The first line collects the contribution of the Ej term, while the second line contains the con-
tribution of the F4 Xg term. To verify (4.9) we can make use of the identities (A.17), (A.18).
In our conventions,

11
2 (2m)?

F2, py(SO(5)) = + [(trF2)2—2trF4], (4.10)

P(S0(3)) = - = 5 @

where the trace is in the fundamental representation of SO(5).

In appendix C we argue that ~4 is fixed by extremizing ]énﬂow with respect to an

arbitrary variation in 4. In the present situation, we obtain simply
Y4 =0. (4.11)
For this value of -4, the result (4.9) agrees with the original inflow polynomial of [19].

4.2 Mb5-branes probing an ADE singularity

Let us now analyze a setup in which a stack of M5-branes probes a C?/T" singularity, where
I' is an ADE subgroup of SU(2) [3, 30-34]. The probe picture in the UV is as follows.

Let us consider the transverse R® to the M5-branes, with coordinates y', ..., y°. The
group I' acts on R® by leaving y° invariant, and acting on R* parametrized by ', ..., y*.
More precisely, the action of I' is embedded in the factor SU(2)z of the isometry group
SO(4) = SU(2) 1, x SU(2) g of the R* spanned by y'*34. All points on the y° axis are fixed
points under the action of I'. In the probe picture, the stack is positioned at the origin
yh2345 = (. Because of the I' quotient, supersymmetry is reduced from (2, 0) to (1,0).

Before performing the quotient, the stack is surrounded by the round sphere S* C R®.
After acting with T', S* is replaced with S*/T". The north and south poles of S4, located
at y° = +1, y»?34 = 0, are both fixed points for the I" action. Locally near each pole we
have an orbifold singularity C?/T". The orbifold singularities at each pole can be resolved
preserving 6d (1,0) supersymmetry. If gr is the ADE Lie algebra associated to I', we write
rr = rank(gr). The resolution introduces a number rr of CP! curves, whose intersection
pattern reproduces the Dynkin diagram of gr. We use the symbol My for the smooth space
obtained from S*/I" by resolving the singularities at the north and south poles.

The isometry group SO(5) of S* is reduced by the action of I'. More precisely, the
isometry group of S*/I" is the subgroup of SU(2)1, x SU(2) g that commutes with the action
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of I'. If I' = Zj, with k > 3, the isometry group is U(1)z, x SU(2)g, with U(1). the Cartan
of SU(2). If k = 1,2 the isometry group is the full SU(2);, x SU(2)g. Finally, if I is of
type D, E, the isometry group is SU(2)g only.

To treat all cases uniformly, we formally introduce external connections for the full
SU(2)r x SU(2)g. It is understood that the external SU(2); connection is zero for I of D,
E type, it is along the Cartan for I' = Zj, k > 3, and it is a full non-Abelian connection
for k =1,2.

The resolved space M, admits non-trivial 2-cycles, and hence harmonic 2-forms. They
are dual to the resolution CP’s at the north and south poles. We write these harmonic
2-forms as wy;, ws;, with the index i = 1,...,rp labelling the Cartan generators of the ADE
Lie algebra gr. These harmonic 2-forms correspond to additional flavor symmetries of the
setup. In the resolved phase, the flavor symmetry associated to the harmonic 2-forms is
(U(1)T)n x (U(1)™)s. If we shrink the resolution cycles to zero size, we have enhancement
to the non-Abelian symmetry (Gr)n X (Gr)s, where Gr is the Lie group associated to I'.

We are now in a position to discuss the 4-form F4 for the setup under examination. It
can be written as

FNi FSi

Es = Vi + FABwiB + FAB FCDEABCD + ?wNi + ?wSi + vy . (4.12)

Several comments are in order. The above expression is written in terms of the SO(5)
curvature FAB. Tt is understood, however, that FAP is only non-zero along the generators
of the subgroup SU(2), x SU(2)r C SO(5). The quantities V4, Wag, GAB,cp are as in (4.5),
but with the replacement N — N |T'|, where |T'| is the order of the finite group I'. The extra
factor |I'| is needed to compensate for the fact that the I" action introduces a factor 1/|T"| in
all integrals over S*/T". The curvatures FN?, > are associated to the flavor symmetry at
the poles in the resolved phase. We stress that the harmonic 2-forms wy;, wg; are invariant
under the isometry group of S*/I', because they are localized at the poles, which are fixed
under SU(2) x SU(2)g. This is why we do not have to gauge wn;, ws; in (4.12). Finally,
~4 is an arbitrary closed, gauge-invariant, external 4-form.

The derivation of the inflow anomaly polynomial for this setup was discussed in [24],
without the v4 term. We review the derivation, including 4, in appendix D. The result

reads
4 N3|T|? s 1 1o [tr(FN)? te(F5)?
_ yinflow _ — Py it B
o= Bgr ) el g Vot oo o
N|T|

tr(FN)?  tr (FS)?
i [t =] [T+

+ NEELXF [ca(L) —ca(R)] [p1(TWe) +4c2(R)] + % co(L) [p1(TWs) +4c2(R)]
+%[p1(TW6)2—4P2(TW6)] +iv—802(R)p1 (TWs). (4.13)

The quantities ca(L, R) are the second Chern classes of SU(2)r, g, while py o(T'Ws) are the
Pontryagin classes of the external 6d background metric. We have written the result in
terms of the full non-Abelian flavor symmetry curvatures FN, FS, even though only the
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Lie algebra gr | SU(k) | SO(2k) | E¢ | E7 | Es
rank rp | K—1 k 6 7 8
order |T| k 4k —8 | 24 | 48 | 120

Table 1. The rank rr and order |T'| for ADE subgroups I' of SU(2).

Cartan curvatures FN¢, F5 are directly accessible in the supergravity approximation. The
quantity xr is the Euler characteristic of the ALE space that resolves the C?/I" orbifold.
It is given by
Xp:errl—i. (4.14)
T
The ranks 7 and orders |I'| for all ADE groups are summarized in table 1.

According to the general discussion of appendix C.1, the external 4-form -4 is fixed by
extremizing Iénﬁow, which is equivalent to imposing the tadpole cancellation condition in
M-theory. In the present situation, we obtain
1 [tr (FNY?2  tr (FS)T

MEIN | @) 2 (4.15)

4N
Plugging this back into (4.13), we obtain

s 1 [tr(FN)2 tr(FS)Qr

32N B

_Iinﬂow o N3 ‘PP
; (2m)? (2m)?

8 24
T N\2 T S\2
Néﬂ [e2(1) —e2(B)] [t ((2];)2) +t(;i)2) ]

[e2(L) —ca(R)]

+N|£E|;xr [ca(L) = ca(R)] [p1(TWs) +4ca(R)] —f—%CQ(L) [p1(TWe) +4ca(R)]
+ % [P (TW5)? = A pa(TWs)] "‘%02(1%)]01 (TWe). (4.16)

This result agrees with the analysis of [24]. It is interesting to point out that, in the
computation of [24], the term — o' (2m) 72 [tr (FN)? — tr (F5)?] ? is interpreted as a Green-
Schwarz term associated to the center of mass mode of the M5-brane stack, and is included
by hand. In our derivation, it is automatically generated by ~4-extremization.

Let us consider the case I' = Zj. Using the full anomaly polynomial recorded in [25]
for the interacting 6d (1,0) SCFT, we can extract the contribution of decoupling modes
related to the center of mass of the M5-brane stack. To compare with [25], we replace

ex(L) = —e1(5)?, (4.17)
where we are using the notation of [25] for the first Chern class ¢;(s) of the Cartan U(1)y,
of SU(2)r. Comparing (4.16) to the results of [25], we infer
Iéiecoupl _ _Iénﬂow - ISSCFT

1 1 1 Trama (FN)? T FS)3
_ Igensor + ilgeC,N + 5 IgeC,S _ 6 k:cl(s) fu(n2d7-‘-()3 ) . 1"fu(n2d7r()3 )

(4.18)
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The quantities I5™°T, IgeC’N, are given by®

IVGCvN——kQ_lc (R)Q—kz_lc (R) (TW)—k2_1[7 (TWe)? —4p2(TWs)]
I = 24 2 48 2 p1 6 5760 Y41 6 p2 6
k tr(FN)?2 & tr(FV)2 1 [tr(FN)21?2 Kk Trpgna (FV)4
,,CQ(R)%,ipl(TW@(iz),i (72) ,7L4)’
4 (2m) 48 (2m) 16 | (2m) 12 (2m)
riensor — L (RY2 L o (R) pr (TWi) + —o 1 (TW)? — — o (TW) (4.20)
8 T 48 AV PRI B P Te) T g P2 ) ‘
The quantity Igec’s is completely analogous to IgeC’N given above.

5 Examples in four dimensions

In this section we examine two 4d setups to exemplify our prescription for the computation
of Iénﬂow. In a first class of examples, the space Mg is an S?* fibration over a smooth
Riemann surface. This case corresponds to the setups analyzed in BBBW [9, 10]. Next,
we analyze the geometry Mg that is read off from the GMSW [20] AdS5 solution to 11d
supergravity.

5.1 S* fibrations over a smooth Riemann surface

Let us consider a stack of M5-branes wrapping a genus-g Riemann surface without punc-
tures X,. In this setup, the internal space Mg is an S* fibration over ¥4. Upon including
external connections, Mg is fibered over external spacetime Wj. The relevant fibrations
are thus

Mg — Mg — Wy, Stes Mg — %, . (5.1)

In order to implement anomaly inflow, we need to study the topology and isometries of Mg.

5.1.1 Topology and isometries of Mg

In this work we study a class of fibrations S* < Mg — ¥, that preserve 4d N = 1 super-
symmetry [9, 10]. In terms of the ambient space R> D S* we refer to the decomposition
R = C; x Cy x R. The topology of Mg is then encoded in the two line bundles £, Lo
that describe the twisting of the two Cq, Cs factors on the Riemann surface. Let ¢1, ¢
be the degrees of the line bundles. In order to preserve supersymmetry, the total space
L1 ® Lo — ¥4 has to be a Calabi-Yau threefold, which amounts to the requirement

a+q=—x3)=2g—-1). (5.2)

Setups in which g = 1, i.e. the Riemann surface is a torus, require special care, because
of the presence of emergent symmetries. For this reason, we restrict ourselves to the cases

Following [25], the traces of Y are defined in such a way that

tr (FN)2 _ Ny 2 Treun (FN)3 _ N\ 3 Treun. (FN)4 o Na4
EF gy, TE sy, T say

i i

where n} are the Chern roots of SU(k)n, i = 1,...,k and > nY = 0. The same conventions hold for SU(k)s.
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of a higher-genus Riemann surface, g > 2, or a sphere, g = 0. In our discussion ¢; and ¢
cannot therefore be simultaneously zero. If g1 = 0 or ¢go = 0, supersymmetry enhances to
N =2.

The topology of Mg can be equivalently described in terms of the background value of
a non-zero background value for the SO(5) field strength FAZ, which is proportional to the
volume form on ¥,. For the setups under examination, the background FAB takes the form

0 @
-q1 0
P =gy, M= 0 ¢ |- (5.3)
—q¢2 0
0

The subscript > on F is a reminder that this is the background part, or twist part, of
the SO(5) field strength, as opposed to the external 4d gauge part. The 2-form V5 is
proportional to the volume form on ¥, and is normalized according to

Vs =2m. (5.4)
29
In order to apply the recipe of section 3.1 for the construction of Ey, we need to identify
the isometries of Mg that we intend to couple to 4d gauge fields. We have two distinct
classes of isometries:

(i) For any genus g, a subgroup SO(2); x SO(2)3 of the SO(5) isometry group of the S*
fiber is preserved by the twist described by (5.3). We therefore introduce two Abelian
external connections A, A%, with field strengths F'' = dA', F? = dA?, to gauge this
residual isometry. The embedding of A, A% into the full SO(5) connection, and the
analogous relation for the field strengths, read

0 —A! 0 —F!
Al 0 F' 0
AAB — —A2 |, FiB= —F2 |, (5.5)
A% 0 F?2 0
0 0

with the subscript “ext” standing for external. If go = 0, the SO(2)y factor enhances
to SO(3)2, and F? is replaced by the suitable non-Abelian SO(3)s field strength.
Similar remarks apply if ¢g; = 0.

(ii) In the special case g = 0, Mg possesses additional isometries that originate from the
isometry group SO(3)g2 of the Riemann surface, which is a 2-sphere endowed with
its standard round metric. As explained in appendix E, the Killing vectors of the
base Y,—0 = S? considered in isolation extend to bona fide Killing vectors of the
entire space Mg, for any value of ¢1, g2. We use the notation A%, with a = 1,2,3, for
the external SO(3)g2 connection that gauges this additional isometry, and F'* for the
corresponding field strength.
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5.1.2 Aside on terminology: twisting vs gauging

The nested fibration structure (5.1) of the setups under examination allows us to define
two distinct operations on differential forms, which we refer to as twisting and gauging.
The twisting operation is defined with reference to the fibration S* < Mg — £,. It
makes use of the internal field strength (5.3), but it does not involve any external 4d gauge
connection. Twisting affects forms on Mg with legs along the S* fiber directions, while it
has no effect on legs along the Riemann surface. Operationally, in terms of the constrained
coordinates y'y4 = 1 of the S* fibers, the twisting operation amounts to the replacement

dy* = (dy")' =dy* —¢"Pyp Ay,  dAs =1k, (5.6)

The 1-form Ay, on the Riemann surface is an antiderivative of the volume form and is only
locally defined. Because of the non-trivial fibration, the untwisted 1-forms dy“ are not
well-defined on Mg. Their twisted counterparts (dyA)t, however, are good objects in Mg.
Let us now turn to the gauging operation. This is the same operation discussed in sec-
tion 3.1, and is based on the isometries of Mg. Let us first consider a higher-genus Riemann
surface. The only isometries are then of the class (i) above. Since isometries of class (i)
originate from the S* fiber of Mg, the gauging procedure has no effect on Vs. We can write

(dy™)t — (dy*)'® = dy* — ¢*P yp As — ALF ys,
higher-genus ¥, : (5.7)
Vs, — VE=Vy.

Notice that, since the untwisted dy? 1-forms are not well-defined on Mg, it does not make
sense to consider (dy™)e.

If the Riemann surface is a sphere, we have both isometries of class (i) and of class
(ii). To proceed, it is convenient to describe the 2-sphere by means of three constrained
coordinates z%, a = 1,2, 3, satisfying 2%z, = 1. The gauging operation in this case satisfies

(dy™)t — (dy?)'s = dy” — ¢*Pyp As — AR yp + 5 ¢*P yp 24 A*,
two-sphere : dz® — (dz%)8 = dz® 4 €% Ay 2.,
Vs — VE = %Eabc (dz®)8 (dz?)8 2¢.
Crucially, gauging of the additional SO(3)g2 isometry of class (ii) involves legs along the

Riemann surface. In appendix E we collect some useful formulae that are helpful in checking
the above relations.

5.1.3 Construction of F,4

The first task in the construction of Ej is the identification of the 4-form V4, to which Fj
reduces if we turn off all external 4d connections. We claim that

Vi=Vy+ ¢ P Vealy. (5.8)

The forms V4 and @ap have legs on the S* fibers and were introduced in (4.5). The sub-
script “t” signals the twisting operation discussed in the previous subsection. The untwisted
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4-form V4 is closed, but it is not well-defined in the total internal space Mg. Its twisted
counterpart VZ is a good object in Mg, but it is not closed. This explains the necessity of
the other term in (5.8). Indeed, to see that Vj is closed, we simply observe that it is propor-
tional to the global angular form of SO(5), provided we replace the SO(5) field strength F45
with FAP as in (5.3). (The term with two FAP factors is then zero because Vs Vs = 0.)

We claim that Vj can be taken to be as in (5.8) without any loss of generality. This
can be motivated as follows. Firstly, we know from section 3.2 that any modification of Vj
by an exact 4-form dW3 (compatible with the isometries of Ms) does not have any effect
on the inflow anomaly polynomial. Secondly, we observe that we do not have any other
closed but not exact 4-form in Msg.

The space Mg admits one non-trivial 4-cycle, given by the S* fiber over a generic point
on Y,. We then have one harmonic 2-form w, Poincaré dual to this 4-cycle. We can write

/S4v4:/M Viw=N. (5.9)
6

As discussed in section C.2, one linear combination of the vectors associated to harmonic
2-forms is massive. Since in this case we only have one harmonic 2-form, its associated
vector is massive, and we can simply ignore it in the following discussion. As a result, all
external connections are associated to the isometries of class (i) and (ii) discussed above.

We are now in a position to apply the recipe of section 3.1 for the construction of Ej.
We refer the reader to appendix E for the derivation of 4. The result takes the form

— 1
Ey=VE+FABG' e 4 FAB FOP 54 op+(C1 F1 +Cy F?) (vg -5 F za> +74. (5.10)

In the previous expression, we have introduced the 2-forms

FAB = FB 4 ¢4P (vg ~ %F“ za> : (5.11)
The quantities C' 2 are constants, while ~4 is an arbitrary closed, gauge-invariant 4-form
with external legs only.

The values of C1, Cs are actually fixed by the following considerations. In section C.2
we derived that one linear combination of the vectors associated to harmonic 2-forms is
massive. This results holds under the assumption that a basis of connections is chosen,
such that (3.28) holds. In order to check whether E4 in (5.10) satisfies (3.28), we need to
extract the terms linear in the isometry curvatures F!, F2?, and F¢,

Ey=VE+F LW+ F2uS + FOws + ... (5.12)
Comparison with (5.10), keeping (5.5) into account, leads to the identifications

w) = =2 (@ +2¢°P Ve diacp) + C1 Vs,

wy = —2 (@Y + 24P V5 Tsacp) + Co Vs,
1

Wq = 5 ZanB (@%B +2qCD VEEAB,CD)- (5.13)
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Equivalently, the above equations can be read off from (E.29)-(E.33). Making use of the
identities (A.17), we verify that fMa Viwe = 0, while, in order to achieve fMa Viwi o =0,
we must set

CL=0, Cy=0. (5.14)

As a final remark, we would like to point out that, if the Riemann surface is a 2-sphere,
the quantity

= ——— 2 (5.15)

is equal to the global angular form eg ? of SO(3). The definition and properties of the latter
are reviewed in appendix F.

5.1.4 Computation of Xg

To compute Xg, we adopt the following point of view on the setup under consideration.
Let Wﬁ denote the space obtained by combining external spacetime W, with the Riemann
surface ;. The Pontryagin classes of Wg detect the curvature of the background metric
on Wy. If the Riemann surface is a sphere, they also detect the gauging of its SO(3)g2
isometries, i.e. the gauging via the connections A?. The total space may be thought of
as an % fibration over Wg. This fibration is encoded in an SO(5) bundle. Its connection
consists of two parts: one describes the twist of S* over the Riemann surface, the other
AAB

ext vectors.

corresponds to the gauging of the isometries related to the
The considerations of the previous paragraph lead us to write

p1(TM11) = p1(TWs) + p1(SO(5)) ,

p2(TMi1) = pa(TWs) + p2(SO(5)) + p1 (TWs) p1(SO(5)) . (5.16)
To proceed, we notice that
pL(TWs) = p1(TWa) + p1(SO(3)g2) . pa(TWg) =0, (5.17)

with p1(SO(3)g2) only present if the Riemann surface is a sphere. It is given by
1
(27)?

Notice that any form with more than six legs on external spacetime can be discarded.

p1(SO(3)s2) = F, F®. (5.18)

The final task is the computation of the Pontryagin classes p;2(SO(5)). They can be
written in terms of traces of powers of the SO(5) field strength,

p1(S0(9)) = —5 (QT)QUFSO(E,) - p2AS00)) = ¢ (2m)? (tr Fso(5))” — 2tr Fgos) | -
(5.19)
In the present situation, FSAOEZs) contains two pieces,
F§403(5) =P+ FAP (5.20)

which are given in (5.3), (5.5) respectively.
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We are now in a position to compute Xg. We only need to collect terms linear in Vy.
The result reads

1 F! F? Vs
Xs= o5 (q1 o T 2) (P2 (TW) +p1(SO(B3)s2)| 52

HE O] 6E DS e

5.1.5 Inflow anomaly polynomial

Our first task is the computation of fM E3. Notice that in (5.10) the only objects with legs

along the S* fibers are VZ L@ ip- The integration of E3 along S* can then be performed
using the identities (A.17), (A.18). The integration along the S* fibers yields

1 11
E}=-N3.2
s T 4 8 (2m)*

[(trf2)2 — 2tr ]—“4} +3N42. (5.22)

We now have to integrate over the Riemann surface. The term -4, however, has no legs
along ¥4, and drops out. The integral over ¥, is performed recalling the definition of F AB
n (5.11). The result reads

1 F? Fl F! F? F*F,
El=—N 1=+ ) |4— : 5.23
e 3 (12 ‘|’CI227F>|: o7 o +q1qe (27)2 ] (5.23)

The terms with F'® are only present is the Riemann surface is a sphere.
Combining the E} contribution and the E;Xg contribution, we get the total inflow
anomaly polynomial. In order to facilitate comparison with the CFT expectation, we

introduce the notation

F! F?
— =2 = —2ny. 5.24
21 ", 2 2 ( )

We then have

1 2 1
inflow — —EN((hn:f‘i‘fDng) 3 <N3—4N> (q1n1n§+qm2n%>
1
+ﬂN(Q1 ni +qo n2> p1(TWy)

-5 |V M + (V4 - M| m(50B)). (529

The first two lines of the previous expression are in accordance with the results quoted
n [10, 35]. The last line is only present when the Riemann surface is a sphere, and at
present has not appeared in field-theoretic analyses of this scenario. The decoupling modes
that have to be subtracted to obtain the anomaly of the interacting SCFT are given by
dimensional reduction on ¥, of a free 6d (2,0) tensor multiplet, which corresponds to the
center of mass mode of the branes.
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5.2 S? fibrations over a product of Riemann surfaces

In this subsection we apply the methods of section 3.1 to construct the inflow anomaly
polynomial associated to a class of AdS5 solutions of 11d supergravity first discussed in [20],
which we refer to as GMSW solutions in this work. The input data for the construction of
the inflow anomaly polynomial are the geometry of the internal space Mg and the closed,
gauge-invariant 4-form V; which we use as seed for the construction of F,. Both Mg and
V4 are read off from the supergravity solution. The geometry of Mg can be directly inferred
from the 11d line element, while Vj is identified, up to normalization, with the G4-flux of
the solution.

Salient features of the solutions. Let us now discuss some basic properties of Mg and
V4 in the GMSW solutions. We refer the reader to appendix F for a more detailed review.
The line element of Mg is of the form

ds*(Ms) = hg» ds*(S) + h3 ds*(Sy) + h dy® + hi, Dy>. (5.26)

Some comments on our notation are in order. The coordinate y parametrizes an interval,
Y € [Ymin, Ymax), and the metric functions hgz, hy, hy, hy are functions of y only. Their
explicit expressions can be extracted from (F.1). The symbol ds?(S?) denotes the line
element on a round S? with unit radius, while ds?(3,) is the line element on a Riemann
surface of genus g equipped with a constant curvature metric. We only consider the cases
g =0or g > 2, and we normalize the metric in such a way that the Ricci scalar is R = +2.
The angle ¢ has periodicity 2w. The circle Szlﬁ is twisted over S? and g, with”

dDp = —2Vgs — x Vi, . (5.27)

The quantity y is the Euler characteristic of ¥,. The 2-form Vg2 is proportional to the
volume form of S?, while Vi is proportional to the volume form on ¥,. We use the
normalization conventions
/ Vg = 2m, Ve =27 (5.28)
S2 g
The metric functions hg2, hy are smooth and strictly positive on the entire y interval.
The metric function h; is everywhere positive on the interior of the y interval, with simple
poles at the endpoints. The function hfp, on the other hand, is everywhere positive on the in-
terior of the y interval, with simple zeros at the endpoints. The 2d space obtained combining
the y interval with the v circle is topologically a 2-sphere, which we denote S§¢. The behav-
ior of hy, hy at the endpoints of the y interval is such that st is free of conical singularities.
The angle v is an isometry direction for Mg. The dual 1-form reads

ky = h, Dy (5.29)

The space Mg admits additional SO(3) isometries originating from S2. These isometries
are preserved by the Sjw fibration on top of S?. The corresponding Killing 1-forms are

ka = Wo €qpe 2" dz° + 2 hiy DY . (5.30)

"Compared to [20], we have flipped the sign of .
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The scalars 2%, a = 1,2, 3 are constrained coordinates on S?, satisfying 2%z, = 1. If the
Riemann surface ¥, is also a 2-sphere, it give rise to a completely analogous set of Killing
vectors, generating an extra SO(3) factor in the isometry group. For simplicity, in the rest
of this section we focus on the isometries associated to the angle 1) and the S?, and we do
not consider the additional isometries that emerge if 3, is also a 2-sphere.
The form Vj, which is going to be used as seed in the construction of E4 below, is
extracted from the expression of the G4-flux in the GMSW solution. The form Vj can be
Vi = |dys ‘2/72 + dys2 VSQ] be [272 +X’YS2} W ls
T 2m | 2w 2m 2w
In the previous equation, s and g2 are functions of y only. The expressions for vs, g2
can be extracted from in (F.10), (F.5).
Let us stress that the presentation (5.31) of Vj in terms of g2, 75 is subject to a

written as

(5.31)

redundancy. More precisely, there is a 1-parameter family of redefinitions of the functions
vy, Vg2 that leave Vy invariant,

Yoz =Ygz + 2 K, v =y — x K, (5.32)

where K is an arbitrary constant. This redundancy will be fixed below when we construct
E, and impose the condition (3.28).

Flux quantization. We can extract the flux quantum numbers of the setup by integrat-
ing Vj on suitable 4-cycles in Mg [26]. If we integrate V along the Riemann surface ¥
2 .
and Syzﬁ’ we obtain
Y=Ymax

ngsjlﬁ Y=Ymin

3

The superscripts ‘N’, ‘S’ denote evaluation at ¥y = ¥max, min, respectively. We can also

integrate V, along S;w and S2,
Y=Ymax
Ng2 := / Vy= [’752} = ")/gg - 7?92 . (5.34)
SQXsiw Y=Ymin

Finally, we can integrate Vj over X, X S? at ¥ = Ymax OF Y = Ymin,

Ny :—/ V4:—[27§+xvfgv2},
Y

=Ymax

Noim [ Vim= 2§+ xed] (5.35)
Y

=Ymin

The four quantities Ny, Ng2, Ny, Ng are all integers, but they are not independent, since
NN —Ng+2Ns 4+ xNg2=0. (5.36)

Since x is an even integer, the difference Ny — Ng is an even integer. It follows that the
sum Ny + Ng is also an even integer, and we can thus define the integer M via

M= % (Nx + Ns). (5.37)

The integers (Ngz, Ny, M) can be taken to be the independent quanta specifying the Gy-
flux configuration.
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Harmonic 2-forms on Mg. The space Mg admits three independent harmonic 2-forms.
This is in accordance with the fact that we have three independent flux quanta, associated
to the three independent 4-cycles of Mg. The harmonic 2-forms are denoted w, and can
be parametrized as

Dy
2T

Vg2

Vs2 Vs
o ’

a — dHa
w 2

+ (toz52 -2 Ha) + (taE - XHa) (538)

where H, is a function of y and t,g2, oy are suitable constants. This parametrization
is subject to a l-parameter family of redefinitions, corresponding to shifts of H, by an
arbitrary constant. For definiteness, we fix this ambiguity by demanding that

HY +HS=0. (5.39)

The quantities Hy, t,g2, toaxy may be fixed in terms of the metric functions in (5.26) by
requiring that w, be co-closed. This would require solving and ODE for H,. To proceed,
however, we do not need to find the explicit form of the function H,. It is sufficient to
demand that the three w,’s be Poincaré dual to the three 4-cycles associated to the flux
quanta (Nx, Ng2, M). More precisely, we require

/ Vijwi = Ng2, Viwo = Ny, / Viws =M. (5.40)
Mg Mg Mg

We compute

N
/ Viwe = [tasz’yz—i-tag’ySQ—Q’yEHa—X’)/Sz Ha]s
Mg

= Nstyg2 + Ngotox +2M HY (5.41)

where we have expressed 'ygg’sz in terms of the flux quanta. From (5.41) we see that (5.40)

implies
HY | toge | tas
a=1| 0 0 1 (5.42)
a=2] 0 1 0
a=3| 3] 0 [0

The above table contains all information we need about w, to compute the inflow anomaly

polynomial.

Construction of E4. In the construction of F; we introduce background connections
for the U(1),, isometry as well as the SO(3) isometry of S%. We also have three background
connections A® associated to the three harmonic 2-forms w,,, even though one combination
of these vectors is massive, as discussed in more detail later. The construction of FEj
proceeds according to the general recipe of section 3.1. The details of the derivation can
be found in appendix F.
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The 4-form E4 can be written as

(e}

F
E4=qu+%w§q,

) 1% Di)e % Ve | FU
V4q=<d722i+d7526§2>( v) +<"y E+752625>(—2€2 —X2+2>

2 2 2 2

(Dy)e Vs Fw

5 = dHo ~ o + (tas2 = 2Ha) " + (tax = X Ha) 5= + 2 Ho 5 (5.43)

The 1-form (D)8 is the gauged version of D). It is computed in appendix F, and satisfies

the property
d(Dy)e 9,8 Vs FY

— 2 — 5.44
2T © Xor 2 * o ( )

The quantity F¥ = dAY is the external connection associated to the U(1), isometry. The

2-form €5 is the closed and SO(3)-invariant completion of Vgz /(27),
de$” =0, / e =1. (5.45)
S2

The explicit expression of 652 can be found in appendix F.

Recall from section 3.2 that we must impose the relation (3.28) in order to be able to
set to zero the combination N,F“ of background field strengths associated to harmonic
2-forms. As detailed in appendix F, imposing (3.28) allows us to write down the values of
the functions vg2, 75 at the endpoints of the y interval in terms of the three flux quanta
Ng2, Ny, M,

M N M N 1

N,S S N,S b))

=8 4= N =—— "= 1 _Ny. 5.46
Y52 T 3Ny — y Neo s> % 2 Ny, — x Nga > (5.46)

Computation of Xg. The first Pontryagin class pi(T'Mj;) takes the form

Vs F¥7?
p1(TMi1) = pi(TWa) + pi1(SOB3)) + | — 25 — x 22 +2 -~

4
2 2T (5 7)

The above relation is justified as follows. The internal space Mg is an S}b fibration over
a bd space. Moreover, Mg is in turn fibered over external spacetime Wy. The terms
p1(TWy) + p1(SO(3)) capture the first Pontryagin class of the 5d space fibered over Wj.
The class p1(SO(3)) is associated to the SO(3) isometry of S2. The final contribution is
equal to [d(Dv)8/(2m)]?. Tt accounts for the Chern root associated to the S%b fibration,
whose connection has both internal legs (on S? and ¥,) as well as external legs on W,. By
a similar token, the second Pontryagin class of the total geometry reads

2
5, F¢]

pQ(TMH) = [pl (TW4) —|—p1 (SO(3))} |:— 2 652 — X % + % (548)

Notice that we can drop any term in po(7'M;p;) with more than six external legs. In
summary, the class Xg for the setup under examination takes the form

Xe = {pl(TW4)+p1(SO(3)) { 25 —XVZHW] } . (5.49)

192 27
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Inflow anomaly polynomial. We can now compute | M E3 and [ 1, P4 X and extract
the inflow anomaly polynomial. Integrals over S? are conveniently performed with the help
of the Bott-Cattaneo formula, reviewed in appendix F. We also need (5.42) and (5.46).
The curvatures associated to the three harmonic 2-forms w, are subject to the con-
straint
NoF*=NgF' + Ny F2+ MF3=0. (5.50)

We choose to give the result in terms of F2 and F®, solving the above constraint for F'.
The inflow anomaly polynomial reads

. 1 1
(273 [ipflow — — 57 (XNs2 +2N5) pr (TW) FY 4 57 XP1(TWa) F3
NZ, (12M? +4xNg2 Ny + x?NZ, —12Ng) 1

52 S b} X S2 > 1

—xN SO(3)) F

+[ N ML sz]m 3)

1 1
—— M Ng2p1(SO(3)) F? - gNs2 (xNg2 +2Nx) p1(SO(3)) F?

(xNg2 +2Ns) (F¥)?

_stNZ(—2M—XN52+2NE)(2M—XN5*2+2NZ)_1 (Fw)2F3
(QNz—XNS2)2 X
2 AN 2
o AMNs | AV N a3
2N2_XNSQ 2(2NE_XNSQ)
Ny,

M 1
= (F? P34 —— F2(F3)2— = (F3)3. 5.51
+st( ) +N52 (F?) 6X( ) (5.51)

_l’_

_l_
O =

FY(F?)?

An alternative presentation is based on a different choice of basis of harmonic 2-forms,
which we denote wc, wy, ws. These combinations of the three w,’s are defined by

/V4wc = Ng2, /V4 wN,s = NNs (5.52)
where Ny g were defined in (5.34). More explicitly,

X
we = wi, WNs = Fo5 w1 Fwz tws. (5.53)

Correspondingly, we have the identifications
F2=_-FN4FS, B3 =FN4 S, (5.54)
If desired, it is straightforward to rewrite the anomaly polynomial (5.51) in terms of FN:S,

Exact superconformal R-symmetry and central charge at large N. To identify
the superconformal R-symmetry we use a-maximization [36]. The non-Abelian flavor sym-
metry SO(3) cannot participate to a-maximization. As a result, we simply turn off the
associated background curvature. At the level of the anomaly polynomial, we perform the
replacements

FY — F} F? 5 2 FR, F3 - s FR, (5.55)

— 26 —



with unspecified coefficients s%3.

For simplicity, we work in the large N limit, with the
scalings

Ng2 ~ Ny~ M ~ F?2 ~ F3 ~ O(N). (5.56)

In the large N approximation, our task is to maximize the coefficient of (F®)3. There are
four branches of solutions for s*3. In two branches, the coefficient of (F®)3 attains the
value 0; these branches are not acceptable. On the other two branches, we find

. 1
(2m)* Ig"T = (2m)° (—1g") = CrRP (1), (5.57)

with

8 N2, N3 (AN2 +2x Ng2 Ny + X2 N2, — 3 M?)3/2

(2x Ng2 Ny, + 3 M?)?
_ ANZ NE(2Ns + x Ngz) 8 Ng +2x Ngz N +2x° Ng; — 9 M?)
(2x Ng2 Ny, + 3 M?)? )

trR® = +

(5.58)

At large N,

9
a=c= ﬁtrR?’. (5.59)

If we select the branch with the plus sign, we find

9N2Z, NE (ANZ +2x Ng2 Ny, + X2 N2, — 3 M?)3/2
- 4(2x Ng2 Ny, + 3 M2)?
9NZ, NE (2 Ns + x Ng2) (BNE 4+ 2 x Ng2 Ng +2x? N2, — 9 M?)
a 8(2x Ng2 Ny + 3 M?2)2 ‘

C

(5.60)

We verify in appendix F that this result agrees with the holographic central charge com-
puted in [26]. More precisely, the explicit formula given in [26] applies to solutions with
M = 0. The formula (5.60) can be regarded as the generalization to the case M # 0, which
is harder to tackle directly in holography.

Here we focused on a large-IN test of our result. Nonetheless, we expect the inflow
anomaly polynomial (5.51) to be exact in N, but to also contain contributions from de-
coupled modes. A field-theoretic understanding of the latter would allow us to repeat the
a-maximization analysis to obtain corrections to the central charge of the CET (5.60).

6 Discussion

We have presented a systematic method of computing anomalies of QFTs that are geomet-
rically engineered in M-theory, using anomaly inflow in the M-theory background. As we
have described, there are two main pieces of data which determine the inflow analysis (i.e.,
ingredients of Z;9): the value of G4 on the boundary of 11d spacetime, which we denote
by F4, and the topology of the space Mig_4 corresponding to the transverse directions
to the d-dimensional QFT worldvolume. We presented a general recipe for constructing
F, in terms of forms in Mjy_g4, and characterized its ambiguities. This is naturally done
using the language of G-equivariant cohomology, where G is the isometry group of Myg_g4.
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We have argued that the inflow anomaly polynomial can be extracted unambiguously in
d = 2,4,6. For the remainder of this discussion, we elaborate on some of the results we
have obtained by applying this formalism.

All the ambiguity in our construction of F4 can be encapsulated by a single external
4-form 4. We argue in appendix C that inflow anomalies in two and four dimensions
are independent of v4. For d = 6, the inflow anomaly polynomial Iénﬂow depends on y,
which is fixed by extremizing Iénﬂow. This prescription is equivalent to imposing that the
8-form E? + 2 Xy be trivial in the cohomology of the internal space My. We interpret this
requirement on E + 2 Xg as a consequence of tadpole cancellation, which is necessary to
have a well-defined M-theory setup. Let us stress that our prescription for fixing ~4 in
d = 6 is such that we obtain the correct answer for the anomaly polynomial for M5-branes
probing C?/T" (given in (4.16)). In particular, the inclusion of v, generates an additional
term relative to the inflow analysis of [24], which provides precisely the contribution of the
Green-Schwarz term of the center of mass mode for the M5-branes. Previously this term
had only been fixed via anomaly matching on the tensor branch.

Turning to the 4d SCFTs corresponding to BBBW solutions, we have noted that our in-
flow analysis yields a new set of terms in the anomaly polynomials for the case of M5-branes
compactified on a sphere (the last line of (5.25)). These terms are due to the additional
su(2) isometry algebra of the sphere. This has not previously been discussed in the litera-
ture — such a symmetry does not appear from reducing the anomaly polynomial from 6d [9,
10], and is missing in the analysis of the flow to these theories from closing punctures on the
surface [37-39]. From the latter point of view, this su(2) is an accidental symmetry in the
IR. It would be interesting to understand if some of the subtleties regarding decoupled op-
erators in these theories are clarified with the knowledge of this IR symmetry enhancement.

We have also outlined a connection between the data of the holographic supergravity
solutions and the input to the inflow anomaly polynomial, and we demonstrated the utility
of this observation by computing the anomaly polynomial of the 4d field theories dual to the
GMSW solutions (with result given in (5.51)). Let us contrast our method to the standard
application of the AdS/CFT dictionary. In the latter, anomalies are extracted by comput-
ing Chern-Simons coefficients in the bulk; subleading terms in N require computing higher
derivative corrections to the supergravity action and loops in AdS. In our approach, the
inflow anomaly polynomial is expected to be exact in NV, but it contains contributions both
from the interacting CFT of interest and from decoupled sectors. Our analysis of GMSW so-
lutions gives us strong hints for a UV realization of the dual SCF'Ts in terms of M5-branes
probing a C?/Zs singularity, compactified on a Riemann surface with a suitable flavor
twist [40]. The field theory picture will shed light on decoupling modes for these setups.

There are many interesting future directions to explore. We expect our methods to be
applicable to a wider class of 6d theories constructed in M-theory, including (2,0) theories of
type Dy and (1,0) E-string theories. We also believe that our approach can be extended to
setups with M5-branes wrapped on a Riemann surface with defects. This analysis has been
performed in [41, 42] for regular punctures in 4d A = 2 theories, and it would be interesting
to study N = 2 irregular punctures and N/ = 1 punctures for general compactifications
of 6d theories on a Riemann surface. From a broader perspective, it would be useful to
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develop systematic geometric tools for the computation of 't Hooft anomalies of theories
engineered in type ITA, type IIB string theories and F-theory. Moreover, the methods of
this work can be straightforwardly generalized to include anomalies for continuous higher-
form symmetries [43, 44].
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A Some useful identities

A.1 Identities for gauging of isometries

Let k7" denote the Killing vectors of the internal space Mio_q, satisfying £7k; = fr; Kkg.
Given a p-form w on Myg_g4, its gauged counterpart is denoted w® and is defined by

1 1
w = H Wmy...my dé‘ml - dé'mp = w8 = H Winy ..., D€m1 o Dé-mp ’ (Al)

where DE™ = d¢™ + k7 AL An alternative equivalent presentation of w8 is

p

1

ws = Z MAII"'AIM Ly - LW, (AQ)
M=0"""

where ¢; denotes interior product with the Killing vector k7",
1
LW = W k? wnml.”mp_l dgml PN dé‘mpil . (AS)

A natural notion of gauge transformation on w® can be defined as follows. Let Al be a
set of scalar functions depending on the external coordinates only, and consider the vector
field Z()) in the total space Mg specified by Z(A) = A k7" 9¢m. We may then define®

o
n(@5) = L2y (WF) + rAT o (w8) (A.4)

where §y A’ denotes the standard gauge transformation of a connection,

S\AT= =DM | DX = dX — frl AT N (A.5)

8With reference to (A.2), we have explicitly

s . 1
5>\Alm(u}g) = Z méAAll AI2 AIM LIpg oo laWe
M=1
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Making use of the identity
£rog—usfr = fr" g, (A.6)

we verify the relation
Oa(w?) = X (£1w)B. (A.7)

Let us now suppose that the form w is invariant under Lie derivative with respect to
all isometry directions,

£1w =0. (AS)

Under this assumption, the following identity holds,
d(w?) = (dw)® + FI (1;w)8, (A.9)

where

Fl=qa’ — % fret AT AK (A.10)
We may now consider a collection of p-forms w; that satisfies
_ K
£[WJ—f[J WK . (A.ll)

In other words, wy transform in the adjoint representation of the isometry algebra. For
such a collection of p-forms, one has

d(w¥) = (dwr)® + F7 (Ljwr)8 + f1,5 A7 W8, (A.12)
A similar formula holds for a two-indexed collection of p-forms: under the assumption that
Lrwng = finSwrs + frn” vk, (A.13)
one has the identity
d(w§ 1) = (dwn1,)® + F7 (Lyjwnn)® + frg™ A7 W, + fr,g™ A7 Wi k- (A.14)
The relations (A.9), (A.12), (A.14) are all examples of the general identity
d(Ag) + AT (£L1A%) = (dA)® + F! (17A)8, (A.15)
where A is a p-form on Myy_4 in an arbitrary representation of the isometry algebra.

A.2 Identities for SO(5) isometry of S

The forms V4, Wag, o ap,cp are defined in (4.5), repeated here for convenience,

— 3N 1
Vi= g g eaas dy™ dy™ dy™ dy™ ™,
_ 3N =2
WAB = 8? : j €EABC1C2C3 dyCI dyCQ 903 )
3N 1
TABCD = g3 ' 3 CABCDE Y. (A.16)
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Some useful integral identities involving V4, WaR, 4 B,CD are

/ wapwep =0, / ViGapcp =0, (A.17)
S4 54

as well as

A1AsA3A4 5By BaB3B o= —
o 1e2AsA g1 B2 b /4 V4G AL Ay, A3A4 OB BoaB3By =

S
= N? N 2 . a*BL B pep — — PP Bacpp
572|360 180 ’
a1z gBiB2 , C1C2C5Ch /  PA14, WB1By TC1Co.05Ca
S
=N? kN 2 = atB YD y 4 pep — = a8 8P y4cpp (A.18)
872|540 270 S

In the last expressions, the quantities «, 3, v are arbitrary tensors used as placeholders for
SO(5) indices.

In the main text we described S* in terms of embedding coordinates y, A =1,...,5.
We can also describe S* in terms of four local coordinates €™, m = 1,...,4. We can write

dy? = Oyt de™,  (dy?)® = Oyt DE™,  DE™ =dem + kg AP (A19)
where k{5 are the Killing vectors of the SO(5) isometries. They are given by
fmAB — gmn y[AE?nyB} ) (A.20)
where g, is the round metric on S induced from the flat metric on R,

Gmn = Omy™ Onya . (A.21)
Let us record the useful identities

9" Oy Oy = 548 =y Yy apdy© = ya 0. (A.22)

B The G-equivariant cohomology class defined by E,

B.1 Relation between V4, wed and G-equivariant polyforms

The discussion of section 3.1 fits naturally into the language of G-equivariant cohomology,
see e.g. [45] for a review. The group G in our discussion is the isometry group of Mjg_g,
acting on Myy_4 infinitesimally via Lie derivative. The objects of interest are maps from the
Lie algebra g of GG into polyforms on Mig_g, i.e. formal linear combinations of differential
forms of various degrees,

fig = Q(My-_q)

(B.1)
X = alX).
We fix a basis {t;} of g, so that we can write
g>Xx =x"1¢. (B.2)
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The map f must be G-equivariant, which, at the infinitesimal level, amounts to the property

0
£If(X):fIJKXJaX7Kf(X>- (B.3)
The equivariant differential acting on « is defined by

(deqf)(X) = d(f(X)) + ea f(X), (B.4)

where the operation ¢y amounts to X’¢;. Crucially, (deq)2 = 0. The G-equivariant coho-
mology of Mjg_g is then realized by considering the set of deq-closed polyforms, modulo
deg-exact polyforms.

Let us now revisit the expression (3.7) for the object V4. If we identify the external
connections F! with the abstract variables X! parametrizing g, we can reinterpret V4 as
a map of the form (B.1),

fu, 0 X1 = @) =i+ X+ X7 0y (B.5)

We then verify that the conditions (3.10) are precisely equivalent to the equivariance of fy,
as in (B.3). Furthermore, the conditions (3.12) are equivalent to deqfy, = 0. The object
V4 thus amounts to an equivariantly closed form, hence the label ‘eq’. In a completely
analogous fashion, the object wg! in (3.13) corresponds to the map

fou = X1 o £ (X) =wa + X 207, . (B.6)

We verify that (3.14) is equivalent to the equivariance of f,,, and that (3.15) is equivalent
t0 deqfw, = 0.

Incidentally, we notice that both fy, and f,, are polynomials in X’. The natural
notion of degree for each monomial in fy, or f,, is

(differential form degree) + 2 (polynomial degree) . (B.7)
It follows that fy, is homogeneous of degree 4, and f,,, is homogeneous of degree 2.

B.2 Deformations of E4 and G-equivariant cohomology

In section 3.1 we have demonstrated that constructing a good representative for £, amounts
to solving the conditions (3.19) and (3.20), repeated here for convenience,

dw = 0, £XV21 - 07
txVy+dox =0, £XWY:fXYZWZa
Lxwy) +doxy =0, Lxoyiy, = fXY1ZUZY2 + fXYQZUle- (B.8)

We are using a collective index X = (I, «) that enumerates all external connections. By
definition, 1, = £, = 0, and the only non-zero components of fxy? are fr;%. In this
appendix, we suppose to fix a reference solution (Vy,wx,oxy) to (B.8), and we investigate
the most general deformation to a different solution.
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The most general deformation. The outcome of the analysis is as follows. The new
forms are given by

Vi — Vy+dWs,
wx S wx +iexW3— Zox +dAx + Hox

oxy — OxXy + L(X/\Y) — Z(,)(XY) — ZO(XY) +uxy . (B.g)
The 3-form W3 must be chosen in such a way that there exists a 2-form Zsx such that
£xWs =dZsx . (B.10)

The 2-form Zsx in turn determines the 1-forms Zj[xy] and the harmonic 2-forms Hé[ XvY]
via
Ixy? Zag — £xZay + £y Zax = dZyxy + Hixy - (B.11)

The harmonic forms Hsx must be chosen compatibly with the constraint
fxy? Haz + Hyyy = 0. (B.12)

Once the harmonic 2-forms Hsx are chosen, they determine the O-forms Z{J vy and the
harmonic 1-forms H{ v via

txHoy = dZ}xy + Hixy - (B.13)
The 1-forms Ax must be chosen in such a way that there exist a 0-form Zyxy such that
£xAy = fxyZ Az + oy Zax — Zixy +dZoxy — Hixy . (B.14)
Finally, the constants uxy must be chosen in such a way that
0= £, Zox|ys) — £xZopiva) + Fxvi” Zozvy) + Fxva” Zoizv)

z Z
- ‘£XZ(/)(Y1Y2) + fxvi Z(/)(ZYQ) + [xvs Z(/)(ZYl)

— i Hxpyy) = tn Zax vy — Fxn 7 uzy, — fxv, P uzy, (B.15)

Manifestly symmetric deformations and G-equivariant cohomology. It is natural
to consider deformations that are parametrized by quantities that are manifestly symmetric
under the action of the isometry group G. More explicitly, we impose

LxW3 =0, £xdy = fxy? Az, LxHay = fxy? Haz,

Lxuy,y, = fxviZ uzy, + fxva? uviz - (B.16)

We notice that, in the above equations, we actually have £xHoy = 0 (because Hay is
harmonic) and £xuy,y, = 0 (because uy,y, is constant). Under the additional assump-
tions (B.16), the most general deformation described above takes a simpler form. Compar-
ison of (B.16) with (B.10) shows that we can take Zox = 0, and therefore also Z;xy = 0,
H)+, = 0. Contrasting (B.16) and (B.14) we infer 0 = dZyxy — H|yy, which implies
Zoxy = const and H{XY = 0. The constant Zyxy can be reabsorbed in uxy.
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After these simplifications, the deformations parametrized by W3 and A; take the form

Vi = Vi +dWs3,
wr = wr + tyWs +dAr, Wo — Wa
(T[J-)L([)\J), J]a—>0, Ja5—>0. (B.17)

This is equivalent to adding to the polyform fy,(X) a G-equivariantly exact polyform,
v = fuutdeafws,  fwe(X) =Ws+ X1 Ap, (B.18)

while leaving the polyforms f,,, unaffected.
If we focus instead on the deformation parametrized by A., we have

V4 — V4,
wr — wr, Wa — Wa + dAg
1
org =0, Ola = 5 UAa s oap — 0. (B.19)

2
In this case, the polyform fy, is unaffected, while the polyform f,, are shifted by G-
equivariantly exact terms,

fwu — fwa + deqf)\a , f)\& (X) = Ao (B20)

Let us now discuss the deformation parametrized by Hoj. Since this object is a har-
monic 2-form, we must have
Hyr = c1%wa (B.21)

with invariance under G imposing f7;% c% = 0. This is a shift of w; by a combination of
wq’s, which is discussed in the main text around (3.23).

A deformation parametrized by Ha, is a change of basis for the harmonic 2-forms,
hence contains no interesting information.

Finally, constant shift by urs, us,, are discussed around (3.23) and (3.26), while a shift
by uqp only affects the purely external, closed 4-form ;.
C (In)dependence of I}}'?" on v,
Throughout this appendix we make use of the compact notation with collective index
X = (I,«) introduced at the end of section 3.1. The most general E, in this language is
given in (3.17), repeated here for convenience,

Ey=VE+FXS + FXFY oxy + . (C.1)
Notice that in the main text we have set by definition 0,3 = 0. In this appendix, it is

convenient to relax this assumption, and let 0,3 be an unspecified constant. Turning on
04 amounts to shifting v, as

Ya = Y4+ FCFPoys. (C.2)

(2m)2
Since 74 is an arbitrary closed and gauge-invariant external 4-form, this shift is immaterial.

The goal of this appendix is to analyze the dependence of ICilIfQ"W = Mioa Z12 on vy
and on constant shifts in oxy.
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C.1 The cased =6

Let us first focus on the contribution of the E3 term in Z5 to the inflow anomaly polyno-
mial. Making use of the parametrization (3.17), we compute

1 1
I EZ’ — _ - X1 pXe pXs pXa / [le WX, OX3 X, T V4(TX1X2 UX3X4} (0.3)
6 Ju, 2 "
1 1
—FXFY")/4/ [way+2V4axy]—’yZ/ Vi . (C4)
2 M 2

Let us now turn to the term Ey Xg in Z15. We are only interested here in keeping track of
terms with oxy, 74. The quantity E4 Xg is necessarily linear in these parameters. In order
to have a oxy or 4 factor, we must select the part of £, with four external legs, which
means that Xg must saturate the integration over My. The relevant terms in Xg can be
written as

Xs = ZVEp1(TWe) + Zxy VEFX FY + ..., (C.5)

where Z and Zxy are constants. Notice that Xg is not expected to receive any contribution
proportional to the curvatures F'* associated to the harmonic 2-forms w,. As a result, the
only non-zero components of Zxy are Z;j. Keeping nonetheless the collective indices X,
Y, we have

| EiXs = —[Zp1(TWe) + Zxy FX FY} /

[74+FXFYUXY]‘/AL
My My

+ terms without oxy, V4 . (C.6)

We propose the following prescription to fix v4: extremize Iénﬂo‘” with respect to arbi-

trary variations of v4. We compute
inflow 1 X Y
518 :5’74 _EF F [wxwy—l—2‘/zlaxy}
My

- [74+ZPI(TW6) +ZXYFXFY} /
My

v4} | ©1)
The quantity 74 is then be fixed to be

FY fM4(WX wy +2Vioxy)
Jo, Vs

To further elucidate the prescription (C.8), let us consider the 8-form E? + 2 Xg. The
relevance of this combination stems from the fact that it corresponds to the combination
G?%/(27)? + 2 Xg that governs the M2-brane tadpole cancellation in M-theory compactifi-
cations. Let us focus on the part of E2 + 2 Xg with four legs on My,

1
=3 FX — Zp1(TWs) — Zxy FX FY . (C.8)

[E3+2 ] = FYFY [ox wy+2Vioxy |42V [yu+ 2 pi (TWe)+ Zxy FX FY].

(C.9)

4 legs on My
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The r.h.s. is a sum of terms, each given by an external 4-form wedge a 4-form on My. Let
us demand

[EZ +2 Xg} =0 in cohomology of My . (C.10)
4 legs on My

Since h*(My) = 1, the above requirement is equivalent to

/ (B2 +2X3g)=0. (C.11)
My

Making use of (C.9), we see that this selects exactly the same 74 as in (C.8). This obser-
vation allows us to interpret the prescription (C.8) as an M2-brane tadpole cancellation
condition.

C.2 Thecased =4

In the case d = 4, not all harmonic 2-forms w, are associated to global symmetries of the

setup. To clarify this point, let us consider the low-energy effective action for the compacti-

fication of M-theory on the internal space Mg. Assuming supersymmetry is not completely

broken, the low-energy theory is a supergravity theory in five dimensions. One linear combi-

nation of the vectors A% associated to w, gets massive because of its coupling to a 5d axion.
The 11d background metric for the compactification is of the form

ds*(My1) = e* ds® (W) + ds? (M) , (C.12)

where A is a warp factor and W5 denotes the 5d spacetime where the low-energy super-
gravity is defined. We refrain from a full analysis of the low-energy dynamics, and only
focus on the relevant couplings. The G4-flux consists of a background part, together with
fluctuations. Let us write

%:mg+FXw§(+FXFYaXY+g4+.... (C.13)
In the previous expression, Vy is the G4-flux configuration in the background. The gauging
procedure couples it to the 5d vectors associated to isometries of Mg. The term FX w
contains both the vectors associated to isometries, and the vectors associated to harmonic
2-forms w,. The term FX FY gyy is higher-order in external fluctuations, but we have
included because it is needed for closure of GG4. Finally, g4 is a 5d field, independent of the
internal coordinates. It is the zeromode in the Kaluza-Klein expansion of G4 onto scalar
harmonics on Mg. This 5d field satisfies

dg4 = 0, g4 = ng y (C.14)

with ¢3 a 3-form potential in five dimensions. Notice that a 3-form potential in five dimen-
sions is dual to a O-form potential, i.e. an axion.

The topological couplings in the 11d action induce Chern-Simons couplings in the low-
energy 5d supergravity theory. A convenient way to perform the dimensional reduction
is to write the Chern-Simons interactions in one dimension higher. We thus introduce
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M12 with 8M12 = M117 as well as W6 with aW(g = W5. The 03G4G4 term in M11 is
reformulated as G4G4G4 in Mi2, and upon reduction on My yields the couplings

1[G41° 1 1

/ —= [4} =g F¥ V4wX—FXFYFZ/ (wxwywz +3Viwxoyz).
Mg 6 27 2 Mg 6 Mg

(C.15)

The second coupling is a Chern-Simons coupling in five dimensions, and is not instrumental
for our analysis. The first coupling is the essential ingredient in what follows.

Recall from the discussion around (3.25) that we are free to shift w; with wy’s, if we
perform a compensating redefinition of the curvatures F'*. In particular, we can always
shift the forms w; with linear combinations of w, in such a way as to obtain

/ VZ;aq:O. (C.lﬁ)
M.

With this choice of basis, g4 is only coupling to the vectors F'“ associated to the harmonic
2-forms wy.
The considerations of the previous paragraph show that the terms in the 5d low-energy

effective action involving g4 are

1 1
Ssd:/ [—2gg4*g4—lcag4Aa+..l, Ka / Viwg . (C.17)
W5 M6

T 4r

The Hodge star is computed with the external metric on W5. The quantity G in the kinetic
term for g4 can be fixed by reducing G4 %11 G4 on the background (C.12). We do not need
the precise expression of G in what follows. In the action (C.17), g4 is the field strength of
the 3-form potential c3, which is regarded as dynamical field. We can alternatively dualize,
by adding a 0-form Lagrange multiplier ¢ to impose the Bianchi identity for g4,

AS5d - —/ gsq dd. (018)
Wi
If we eliminate g4 using its equation of motion, we obtain
1
S5d+AS5d:/ —ED(I)*DQ—%..., D® =dd+ K, A%. (C.19)
Ws

The scalar ® has a shift symmetry coupled to the combination K, A%, which is thus rendered
massive, as anticipated.

In the computation of the inflow anomaly polynomial, the connections A!, A% are
background fields coupled to the global symmetries of the system. We have argued that
the combination Ky, A% does not correspond to a symmetry. As a result, we must set it to
zero in the computation of the anomaly,

e Viws, =0. (C.20)
M

Since we work in a basis such that (C.16) holds, the condition (C.20) is equivalent to

FX Viwx =0. (C.21)
Mg
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We are now in a position to analyze how ambiguities in F, affect the inflow anomaly
polynomial. First of all, let us study the E% term in Zj5. We compute

1 1
—6/ Ei’_—FXFYFZ/ [waYwZ+6V4wXO'yz]—FX’y4/ V4wX. (0.22)
Mg Me Ms

6
The dependence on 4 immediately drops away thanks to (C.21). The same holds true for
any dependence on shifts of oxy. Indeed, we can write

oxXy =0Xy +uxy, (0.23)

where 7 xy is a reference choice for oxy, and uxy are arbitrary constant. The dependence
on uyy in (C.22) disappears, thanks to

—1FXFYFZ/

6VZ;wXUYZ:—U}/2FYFZ (FX/ V4(,U)(>:O. (C.24)
6 MG M6

In conclusion, the value of [ Mg E3 is insensitive to ambiguities in Ej.
The term F,Xg can be sensitive to ambiguities in Ey if Xg can saturate the integral
over Mg. For this to be possible, Xg must contain a term of the form

Xs=28F +..., (C.25)

where Zgr is a 6-form on Mg and the label I refers to a U(1) factor in the isometry group.
In all examples we consider in this work, however, Xg does not contain any terms of the
form (C.25). While we do not have a general proof, we suspect that this feature should
hold in general. As a result, the term F, Xy is insensitive to ambiguities in Fy4, and the full
inflow anomaly polynomial is determined unambiguously.

C.3 The case d = 2

The contribution to the inflow anomaly polynomial coming from the E% term in Z;2 reads

1 1
— - Eff:—QFXFY/

1
6 [V4 wx wy + V{ UXy} — =M / Vi (C.26)
Mg Mg Mg

2

As far as the /4 Xg term is concerned, it can depend on ambiguities in 4 only if Xg can
saturate the integration in the internal space Mg. The part of Xg with 8 internal legs is
the 8-form

1
Zg = X packeround _ 0% |:p1 (TMg)* — 4 pQ(TMg)] , (C.27)

where the label “background” refers to the fact that Zg is the value of Xg when all external
curvatures are turned off. The terms in £, Xg that are potentially ambiguous are then

- EyXg=—-FXFY /

ZgO')(y—"M/ Zg+ ... . (028)
Mg MS

Mg

In summary, the terms in the inflow anomaly polynomial containing v4 or oxy are

. 1 1
[piev = _Z pX gy / (VE+27Zs)oxy — 5 / (VP +27Zs) + ... (C.29)
2 Mg 2 Mg
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We argue, however, that a good M-theory background necessarily requires

/ (Vi +228) =0. (C.30)
Mg

This condition is the tadpole cancellation condition that must hold for any compactifica-
tion of M-theory on an 8-manifold in absence of localized M2-brane sources. As we can
see, thanks to (C.30) the inflow anomaly polynomial (C.29) is independent on 74 and on
constant shifts of oxy. As a result, it is completely determined.

D Details on branes at an orbifold singularity

Preliminaries. When the Mb5-brane stack probes an orbifold singularity, the isometry of
S4 is reduced to a subgroup of SU(2);, x SU(2)x of SO(5). Under the reduction SO(5) —
SU(2)L X SU(Q)R, we find

p1(SO(5)) = =2 [c2(L) — e2(R)] ,
p2(SO(5)) = [e2(L) — e2(R))7,

FWFM%MWD:%fNHH@@%mﬂmy (D.1)
In the above expressions ca(L, R) = ¢2(SU(2)1,r). We have used the expression for 4p.cp
in (4.5), keeping in mind that IV is now replaced by N |I'|.

The quantity co(L) contains both internal and external contributions. The external
contribution is related to isometries of $*/T", and is only present if ' is of A type. The
internal contributions are present for any I' and are localized at the north and south poles.
They measure the curvature of the ALE spaces that resolve the orbifold singularities C2/T
at each pole. Since the two singularities are identical,

AMM:AMD:M. (D.2)

In the above relations the symbols fN ¢ denote schematically integration on the ALE space
at the north, south pole respectively. The Euler characteristic xr is given in (4.14).

The form E4. The 4-form Ej is given in (4.12), repeated here for convenience,

FNi FSZ'

o WN; + or ws; + V4 - (D.3)

Ey :VE-I-FABE%‘B-FFABFCDEABCD-F

It is important to stress that all curvatures in Ey, including the curvature of SU(2)z, are
understood to have purely external legs. In other words, the term FAB F¢P o ap,cp does
not contain the internal part of co(L) that integrates to xr at the ALE spaces near the poles.
This observation is crucial to obtain the correct result. The fact that £, only contains the
external connections is due to the fact that it is built gauging the isometries of S*/T.
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The form Xg. The Pontryagin classes of the total space can be written as

p1(T M) = pr(TWs) + p1(SO(5)),
pQ(TMH) = pQ(TWG) + p2(SO(5)) +p1 (TW@)pl(SO(E))) , (D.4)

where p12(SO(5)) are given as in (D.1). Expressing Xy in terms of py o(TWs), c2(L, R),
we arrive at

Xg = % ca(L) [p1(TWs) + 4 ca(R)] + é [p1(TWe)* — 4pa(TWs)] + % ca(R) p1(TWs) .

Let us stress that here co(L) contains both internal and external parts, while all other
curvatures have legs along Wg only.

Integral of E4Xg. The 4-form Ej is given in (4.12). The integral fM4 Fy4 Xg receives
two types of contributions. Firstly, we can consider the purely external part of Xg, and
saturate the integral over S* using the part of E4 with four internal legs, which is V4. This
contribution is

NI 1 1
FE4 XgD ||{ CQ(L)eXt [pl (TW(;) + 4CQ(R)] + — [pl(TW6)2 — 4p2(TW6)}
M, ‘F‘ 48 192

+ g AR (T}
where the factor N|I'| originates from the new normalization of V4, the factor 1/|T'| orig-
inates from the integral over S*/I' (as opposed to S%). The superscript “ext” on co(L)
denotes its external part.

The other contribution to | v, Ba Xy is obtained by saturating the integration over My
with the internal part of co(L) inside Xg. We then consider the purely external part of Fy.
We find

1
By Xg D — [p1(TWs) + 4 ea(R)] / co(L) [FAB FOP G up op + 4] - (D.5)
M 48 Ma

The integral over M, localizes at the two poles. More precisely, we get integrals over the
ALE spaces that resolve the orbifold singularities at each pole. Taking into account the
opposite orientation of the two poles, we can write

_ _ N
/ ca(L) [FAP FOP G ap op + ) = / co(L) [FAP FP G up.cp + 4
My N

—/SCQ(L) [FABFCDEAB,CDJFM]S. (D.6)

Since 74 is independent on the coordinates on S* it drops away. In contrast,
FAB FC'D EN _FAB FCD

AB.CD = E,SalBCD? and the two terms add to

/M co(L) [FAP FOPGup cp +71) = N [T xr [e2(L)™ — c2(R)] (D.7)

where we have used (D.1) and (D.2).
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In conclusion, the integral of F4 Xg is given by

By Xs— NE;’XF [02(L)eXt —CQ(R)] [pl (TW6)+4CQ(R)] +%CQ(L)eXt [pl (TW6)+4CQ(R)]
My
+F]Y2 [pl(TW6)2—4p2(TW6)] —I—%Cg(R)pl (TW(;). (D.S)

Integral of EZ’. A first set of contributions to |’ M, E3 originates from the region away
from the north and south poles. These contributions are given by

[ oEss / F (FF5) (F©)? + = (FF3)?Va+ = (F&)2a+ (FF3) Vava+~ V442 | |
6 /i, ST 2 2 2

(D.9)
where we are suppressing SO(5) indices for brevity. The integral over S*/T" can be computed
with the identities (A.17), (A.18). We must keep in mind, however, that the quotient by
I' generates an additional factor 1/|I'|. We then verify that the r.h.s. of (D.9) is equal to

N?) ’F’2
24

P(30(5) + 3 Nt (D.10)

Let us now discuss the contributions to | M, E3 coming from the harmonic 2-forms
localized at the north and south poles. These terms are

1 1 (FNwn)? | (FS ws,)?
- E33/ FFo +'y4[ Y+ - D.11
6 Ju, 123 Jyy (T 0l [T+ T (D-11)
To proceed, we make use of
B (FNCUN)2 N FN'L' FNj/
FF =~ = —4(FF — N
[ FFT ) SEEE = e o) S [ s,
B (FSLUS)Q g FSi FSj
IF Xy (FF — WS . D.12
/M4( T+ v4) Gn)? (FF5° + v4) 5 o Nws,wsj ( )

The relative sign is due to the different orientation of the two ALE spaces near the north
and south poles. The integral fN wn; wn; is proportional to the entries of the Cartan matrix
of the ADE Lie algebra gr associated to I', and similarly for fN ws; wgj. We know that,
at the conformal point where all resolution CP!'’s are shrunk to zero size, we have a non-
Abelian enhancement of the flavor symmetry at each pole. In light of this observation, we
make the replacements

FNi pNj / e s L tr(FN)?2 FSt RS e s L tr(FS)? (D.13)
o 21 Sy NENITT S Tom2 0 o 2m Jg SN T T(any2 '
Recalling (D.1), it follows that the r.h.s. of (D.11) is equal to
N|T| tr(FN)?  tr(FS)2] 1 [tr(FN)2  tr(FS)?
——— Jeo(L)*™* — ca(R - - D.14
g [2l)™ —aR)] [ ez T Tere | Ta T en T 2np (D-14)
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In conclusion, the integral of E3 yields

1 N3 |L?
/ E} = Tl [e2(L)™* — e2(R))* + = N~
My

6 24
r N2 r S\ 2
+ S e ot [T+

1 tr (FN)2 tr (FS)?

*'“[ @r? () ]

; (D.15)

The sum of the above quantity with |’ M, E, Xg given in (D.8) gives —Iénﬂow as quoted in
the main text in (4.13).

E Details on the BBBW setup

This appendix is devoted to some derivations regarding the setups studied in section 5.1.
The relevant space Mg is an S* fibration over Y4, specified by the background flux (5.3),
repeated here for the reader’s convenience,

FAB = ¢AB vy | Vs =2r. (E.1)
29
The matrix ¢4B is given in (5.3). All the following results, however, hold for any constant
antisymmetric ¢*5.

Additional isometries in the case g = 0. In the case g = 0, the line element of Mg
reads

ds*(Mg) = ds*(S?) + ds*(S")" = ds*(S?) + (dy* — ¢*P yp V) (dya — qacy® V). (E.2)

Recall that y*, A =1,...,5 are constrained coordinates for the S* fiber, yy4 = 1. The
1-form V is defined only locally, and is an antiderivative of Vs,

qv = Vs, (E.3)

We find it convenient to parametrize the base S? in terms of three constrained coordinates
2%z, =1, a = 1,2,3. By means of a direct computation, one verifies that the following
triplet of 1-forms on Mg are such that the dual contravariant vectors are Killing,

1
ka = €abc Zb dz° — 5 Za qAB YA (dyB - qBC Yyc V) . (E4)

The term %eabc 2P dz° is the expression of the Killing 1-forms of a round S? considered in
isolation. The other terms in (E.4) demonstrate how these 1-forms are extended to the
total space Mg, depending on the twist data g5,

The explicit expression (E.4) of the Killing 1-forms k, is useful in checking the following
identities,

AB

b b
Zaq" " YB, Ladz” = —€,

c
Ze s

La(dyA)t =

N = DN

1
Vs = €ape A2 d2P 2° Vs = 5 dzg . (E.5)

1
2
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We can now compute the interior product of k, with Vj given in (5.8). Two useful partial
results are

(V)" = 25 -5 maeacos (V) (@) (@) (d07) "
= o eeancop a™ () (dyP) (g,
qABLaEEB==gﬁg'%%%%eABCDEqAB(qcaycd(dnyyE
= g Faeancona™® (P (), (5.6)

where we used two Schouten identities deriving from dp[a, €4,4,4,4545) = 0. Combining
all elements, we verify the identity

3N 1
LaVa = 32 24 d{za [Vz eapcpe @8 ¢“PyP — eapopr ¢ (dy©)* (dyP)t yE} }
1
= d{za [VE ¢*P¢“PGapcp + 3 ¢ EELXB} } . (E.7)

Derivation of E4. The 4-form FE, is constructed as
Ey=Vi+F o} + F F/ opy+ Cpi(TWy). (E.8)

Here we have used (3.17), combined with the observation that Mg has no harmonic 2-
forms, so that the collective index X reduces to the isometry label I. The latter refers
both to isometries of class (i) and isometries of class (ii), in the terminology of section 5.1.
Accordingly, we split the [ index as

I=(I,a), I=1,2, a=1,2,3. (E.9)

We have already introduced the SO(3) g2 index a above. The new index I refers to isometries

of class (i). More precisely, we describe the external connections AAZ of (5.5) by writing

ALB = AT MAB (E.10)

ext —

where the index I labels the two generators of the class (i) isometry SO(2); x SO(2)s,
Al = (A;, As). The matrices M;AP are constant and readily read off from (5.5),

0 -1 0
10 0
MAB = 0 N 0-1 |. (E.11)
0 10
0 0

The Killing vectors associated to AT are linear combinations of the Killing vectors kap of
the round S%,
kp =M P kap, (E.12)

with kap as in (A.20).
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Determining 4 amounts to solving the following equations for wy, oy,
tiVi+dwr =0, L(IWJ)+dU]J:0, (E.l?))
where I = (I,a) and Vj is given in (5.8).

Solution for wy. Let us first discuss the forms w; associated to isometries from the S4
fiber. A natural ansatz for w; is

wf:(:)j:—i-Vng, (E.14)

where w; is a 2-form with two legs along the S4 fibers, while gj are O-forms. The equation
that determines w; is dw; +¢;V4 = 0. Upon using (E.14) and separating terms with and
without Vx, we find the relations

do;+1;Va=0,  dg;+p*Prap@;+q*P ;w4 =0. (E.15)
The first equation is readily solved by setting
(T)I“ :MfABwAB. (Elﬁ)

Since by assumption &y is a 2-form in the S* fiber, there is no non-trivial closed but not
exact form that we can add to it. Adding an exact piece would have no effect on the inflow
anomaly polynomial. The second equation in (E.15) becomes

0= dgf + qAB MfCD (LABQC’D + LCDwAB) = dgj — 2qAB MfCD doaB,cD , (E.17)

where we have used (A.22). As we can see, g; is fixed up to a constant. More precisely,
the second equation in (E.15) only has to hold when wedged with Vx. In summary, w; is
given by

wf:MfABw%B—i-QVEqAB M[ACDEAB@D-FCIAVE, (E.18)

where C'; are arbitrary functions depending on ¥ only. The term C; Vy is thus closed but
not necessarily exact. We can be more precise: since C'; Vy is a closed form on 52, it can
be decomposed as a sum of an exact form and a harmonic form. The exact piece can
be disregarded. The harmonic piece must be a constant multiple of Vx. It follows that,
without any loss of generality, we can take C; to be constant.
In the case ¢ = 0 we also have to construct w,, which must satisfy dw, + ¢,Vy = 0.
Thanks to (E.7), we know how to write ¢,V} as a total derivative. As a result, w, is given by
wo =2 |Va g P Tancn+ 5 P Bg| +CaVe. (E.19)
Once again, we have not included an exact piece, because it would have no effect on the
inflow anomaly polynomial. A priori, the 0-form C, is allowed to have an arbitrary depen-
dence on S?. Using arguments similar to those of the previous paragraphs, however, we
argue that we can take C, constant without loss of generality. A constant C,, however, is
incompatible with the fact that w, must be covariant with respect to its SO(3)g2 index. In
other words, there is no invariant tensor of SO(3)g2 with one index. We conclude C, = 0.
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Solution for o7y. Let us now turn to the determination of o;;. We first focus on the
components o; ;. The equation to solve is

AB cD —
O—dUIJ+L(IwJ)—dO'IJ—|—M( Lywp = doj; + M7 M, wep@hy.  (E.20)
Making use of (A.22), we see that
91; = M(fAB Mj)CD 0AB,CD t+Ujj, (E.21)
where u;; = wuj; are constants.
For g = 0, we also have to determine o; and o4. The former is determined by the
requirement

1 1
Ozdaja+*LGWf+§MfABLABwa. (E.22)

2
Using the formulae for Wi, W given above, as well as the expression of Wwap and dap.cp
given in (4.5), one verifies the identity

1 1 3N

*Lawf—i-*MfABLABwa— C dz, + d ) ZGEABCDEMAquDyE (E.23)
2 2 872 48
It follows that we can write
3N 1 1
o5, =— G zaeABCDEMfABqCDyE—Zsza+ufa, (E.24)
where uj, is an arbitrary constant. Once again, however, we must conclude u;, = 0,

because there is no SO(3)g2 invariant object with one index a. Our final task is the
determination of o, in

0 =doa + t(aWp) - (E.25)
We have the identity
LawWp) = —d i za 20" ¢“PTaBcp (E.26)
which implies
Oab = 1Za 2 ¢ ¢“P T a.cp + va, (E.27)

4
for some constant u,,. This time there is a natural candidate for a constant u,, compatible
with SO(3)g2 symmetry,
Ugh = U (5ab . (E.28)

Summary. The solution for all components of wy, o7y is summarized as follows,

w; = M P @Y 5 +2V5 P M;“PGapcp+ C; Vs, (E.29)
wo =2 |Ve ¢*? ¢“PTapcp + ; Py, (E.30)
Ofj = M(fAB MJ)CD 0AB,CD + ufj, (E.31)
o, = 1ZCLM AB CD TAB,CD — C'j Za (E.32)
Oab = % 20 24P ¢“P T ap,cp + ula. (E.33)
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If we plug the above relations into (E.8), after some manipulations we recover the expres-
sion (5.10) for E4 given in the main text. The constants Cj, Co in (5.10) are identified
with the components of C;. All terms with u; ;, u are absorbed into 74 in (5.10).

F Details on the GMSW setup

F.1 Brief review of the solutions

In this appendix we review a class of M-theory solutions with 4d A/ = 1 superconformal
symmetry, first described in GMSW [20]. The 11d metric reads

dsi, = L? e* [dSQ(AdS5) + dSZ(MG)} :

e 06X cos? ¢
du?

cos2( v 9

dDy = —x1 Vo, — x2 Ve, - (F.1)

ds*(Mp) = e~ [F1 ds*(C1) + Fy dSQ(CQ)} + Dy?,

The constant L is the overall length scale of the solution. The metric on AdSj5 is normalized
in such a way that the Ricci scalar is Raqg, = —20. The spaces C1, Cy are two Riemann
surfaces, of arbitrary genus. If Cj, i = 1,2, is not a torus, the metric ds?(C;) is normalized
so that the Ricci scalar is Rg, = 2k;, with k; = £1. The symbol x; denotes the Euler
characteristic of C;, while V(, is proportional to the volume form on C;. If Cj is not a torus,
Ve, is normalized according to sz- Ve, = 27, with no sum over 7. Notice that, compared
to [20], we have reversed the sign of 1.
The quantities A\, F; depend on y only and are given by
) 2 (a1 — k1y?) (a2 — k2 v°)

1
= ) Fi = ~(a; — ki y?), F.2
az k1 + a1 ks + 2y ki ka2 (y — 370) 3 V) (-2)

where a;, 79 are constants. The quantity ¢ € [0,7/2] is determined by
e sin¢ =2y . (F.3)
The G4 flux takes the form

Gy = L* | (dn Vo, + dya Vo,) DY — (x172 + X271 + x1 x270) Vo Ve | (F.4)
with the functions ~; given as

_ 2a0kikay —6agki koo + a1y + k1 y?
B 9k ko (ag — k2 y?)
C2a1kikoy—6ar ki koo +acy + ko y?
- 9k1 kg (a1 — kl y2)

Al X1,

V2

We are adopting conventions in which the quantization of G4 flux reads

G
/C4 7(27%‘;)3 €7, (F.6)

where Cy4 is a 4-cycle and ¢, is the 11d Planck length.
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Let us stress that, in this work, we only consider GMSW solutions of the
form (F.1), (F.4) in which none of the Riemann surfaces C; is a torus, so that k; # 0.
According to the analysis of [20], in order to a have a regular solution at least one of the
two Riemann surfaces must be a sphere. We associate the label 1 to this sphere, while the
label 2 is reserved to a Riemann surface of genus g, with g =0 or g > 2,

C1=8%  (Ca=Y,. (F.7)
We should emphasize that the 4-form Vj in (5.31) is understood to have integral fluxes

along 4-cycles. It follows from (F.6) that the relation between Vj and Gy is

w:@%ﬁ. (F.8)

In the main text, we parametrized V4 by writing

Vi = d’m‘%+d7s2 ‘gﬂ %p_ [272+x752} ‘%% (F.9)
Comparison with (F.4) gives the identifications
L? L?
Vs2 = 27T£?) (71+51)7 == 27’[’6% (724—32)7 289+ x81=2Xx7, (FlO)

where the constants s can be chosen at will. In the text, this ambiguity in the precise
definition of 7y, g2 is resolved upon construction of E4, when the condition (3.28) is
enforced.

The holographic central charge for these solutions was analyzed in [26], where the
explicit value of ¢ is derived in the case vo = 0, X, = S2. In this situation, one verifies that
NN = — NS, or equivalently M = 0, see (5.34), (5.37). In the notation of [26] the central
charge reads
3P 9(E+1)P - (32 +42+3) VX 4, 3/2 73
= 96 2372 prq )
where the parameters p, q, N are related to our quantities Ng2, Ny, by Ng2 = Np,
Ny, = N q. The objects X, z are defined as

2¢° —pq+2p* —2(p—q) /P +pq+ ¢ (F.12)

3pq

c (F.11)

X=9224302+9, z =

In order to compare (F.11) to the central charge (5.60) inferred from the inflow anomaly
polynomial, we need the following identity, valid for positive numbers p, g,

1/2
(2p2—pq+2q2—2(p—Q)\/p2+pq+q2> =q-p+VpP+pg+q¢*.  (F.13)
With the help of (F.13), the central charge (F.11) can be rewritten as
9 9
c=——N(p+q) 2P +pq+2¢*) + = N> (0> +pqa+¢*)*/, (F.14)

16 8
which indeed matches (5.60) for y =2, M = 0.
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F.2 Details on the construction of E4 for GMSW

Let us first discuss the construction of V;*. The isometries of Mg we gauge are the U(1)
symmetry associated to 1 and the SO(3) symmetry associated to S2. The former has
background connection A%, while the latter is associated to A%.

The claim that the 4-form V% is given by

1% Dip)e
Vi = d|:<’}’2 % + g2 e§2> ( 2? } (F.15)
Ve g2\ (Dy)8 Vs 2 ¢ Ve  _FY
= = = —2ef —x——=4+2—].
(dvz 5. T dVs2 €2 > 5 T =5, Ts2e € —Xg5- T25-

We have exploited the relation

dDyY)E _ s Vs 2F¢

— — — F.1
o7 E X or o’ (F.16)

which is derived below. The 2-form e3 ? is the global angular form for SO(3), or equivalently
the closed and gauge-invariant completion of Vg2 /(27). More explicitly,

Ve _1d(:* 4l

1
6;2 = & (€abe D2* D2’ —2F, 2%) = D2 = dz® + €™ Ay 2.

2r 2 2w
(F.17)
A useful identity regarding 652 is the Bott-Cattaneo formula [46],
/Qﬁe§3%+2:(% ]QJ@§3%+1==225@1&KX3»P, s=0,1,2,... (F.18)

The object V;4 is manifestly closed and gauge-invariant, and reduces to Vj if F ¥ and
F® are turned off. Moreover, V4 is globally well-defined. Indeed, S? does not shrink
anywhere on the y interval, and all terms with (D1))® are accompanied by a factor dy, so
that there is no singularity at the endpoints of the y interval, where S}p shrinks.

Before analyzing V; ¥ further, let us derive the identity (F.16). If all external connec-
tions are turned off,

D _di _,As A
or 2 2 X27r’

dAg2 = Vg2 | dAs = Vs (F.19)

The 1-forms Ag2, Ay, are antiderivatives of the volume forms on $2, ¥, and are only locally
defined. The gauging of the 1-form dv is given by

(d)F = dip + 2 A% + A [0 + 2 e 2 V2 (Ag2)y] - (F.20)

The index p is a curved 2d index on S? associated to local coordinates (*, so that, for
example, dz® = 9,2 d¢*, gij = 0,2% 0,24. The symbol V is the Levi-Civita connection on
S2. Notice the appearance in (di))® of terms proportional to A%. They are a consequence
of the second term in the Killing 1-form k, in (5.30).

In order to compute (D)8, we also need

(Ag2)8 = (Ag2), (dCH)® = (Ag), |dCH + €ape 2° VF2¢ A% . (F.21)
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We are now in a position to write

27 2 27

(D) _ (dy)E , (As2)®  An _dp AV {AW ! zaA“] A2 pa

27 27 2 X o 2 o 27

Notice the cancellation of the terms with €, against (F.20) and (F.21). Making use
of (F.17), it is now straightforward to check that (F.22) implies (F.16).

In order to make contact with the language of section 3.1, we have to expand V4 is
powers of the external connections,

Vit = VE+ FUWl + Flwo+ (F¥) ogy + F* FP oap + 2 FY FO oy, (F.23)

The w and o quantities are extracted from comparison with (F.15). In what follows, we
only need the expression of wy and wy,

2 \% Vo
ww: <722+752 S>7

o 2T 2T
z 1 D 1% V.

Wwe === | — = [ dyge v_ 275 + X7s2) o= ) + 2752 | - (F.24)
27 2 27 27 27

We verify [ Me Viwq = 0, while we compute

N

2
\% = — . F.2
/MG awy = o [752 ’Yz} . (F.25)

This quantity must be set to zero. As a result, we can express the four quantities 7?2’82 in
terms of the three flux quanta Ng2, Ny, M,

MN M N 1
N = 52 > LNy (F.26)

1 N,S
Lo N S8
s 9Ny — xNgz 2

2Ny —xNg2 = 2

Let us now discuss the equivariant completion of the harmonic 2-forms w,, parametrized
in (5.38). It is given as

(Dy)® 2 Vs
wgq =d |:Ha o + taSQ 63 + taE %
Dy)® A FY
=dH, (Dy) + (tagz — 2 Hy) 652 + (tax — X Ha) RN 2H, — (F.27)
2 2w 2w

This is manifestly closed and gauge-invariant and reduces to (5.38) if all external connec-
tions are turned off. Moreover, (5.38) is globally defined, since (D)8 is accompanied by dy.
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