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1 Introduction

Geometric engineering is a powerful way to study Quantum Field Theories (QFTs) and

their various dynamics. Many interesting QFTs can be explored by studying the low

energy limit of branes in string theory backgrounds. Some of the most interesting and yet

mysterious QFTs have such a definition: for instance, the AN−1 N = (2, 0) superconformal

field theories in six dimensions have a description as the worldvolume theories on a stack of

N flat M5-branes [1, 2]; and a class of 6d theories with reduced (1, 0) supersymmetry are

obtained from M5-branes probing an orbifold singularity [3]. Further wrapping the branes

on a compact manifold yields a large class of lower dimensional QFTs. For example, by

reducing the (2, 0) theories on a Riemann surface we obtain a large class of generically

strongly coupled 4d QFTs of varying amounts of supersymmetry known as Class S, first
analyzed for N = 2 theories in [4, 5], and studied for N = 1 cases in [6–10]. Embedding

these systems in string theory provides an organizing principle and geometric toolset for

exploring their properties, especially in their strong coupling regimes.

An important problem in these constructions is to compute the anomalies of the field

theories.1 ’t Hooft anomalies provide a robust set of observables that are useful for probing

the dynamics of QFTs. They are preserved under renormalization group flow, and then

can be used to constrain the IR phases of quantum systems via anomaly matching. For

a superconformal field theory, the ’t Hooft anomalies involving R-symmetry are related

to central charges by the superconformal algebra [11, 12]. Anomalies are also naturally

geometric quantities. For the case of continuous symmetries in even d-dimensional QFTs,

they are encoded in the anomaly polynomial, a (d+2)-form polynomial in curvature forms

associated to gauge and gravity fields [13–15]. For QFTs obtained by dimensional reduction

of a higher dimensional field theory, anomaly matching is implemented by integrating the

upstairs anomaly polynomial over the compact manifold in the reduction. However, this

prescription only gives the contribution to the lower dimensional anomaly polynomial that

derives from symmetries manifest in the higher dimensional theory — it is not sensitive to

decoupled sectors, accidental symmetries, and other subtleties.

The primary objective of this work is to provide a systematic way of computing the

anomalies of geometrically engineered QFTs in d dimensions from M5-branes. Our main

tool is anomaly inflow in the M-theory background, first studied for M5-branes in [16–19].

The M5-branes act as a singular magnetic source for the M-theory 4-form flux G4. In

the supergravity description we excise a small neighborhood of the stack, thus inducing

1Throughout we restrict to the case of anomalies in background rather than dynamical gauge symmetries

(’t Hooft anomalies), so that their existence does not render the theory inconsistent.

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
5

a boundary for 11d spacetime. For the geometries under consideration, this boundary is

a fibration of an internal space M10−d over the low energy QFT worldvolume Wd. The

global symmetries of the QFT are fixed by isometries of the internal space, as well as gauge

symmetries of the three-form potential. In inflow, the anomalies for degrees of freedom on

the branes must cancel the classical anomalous variation of the effective 11d supergravity

action localized on the branes. The anomalous variation of the action is related by descent

relations to a 12-form characteristic class I12. Reducing I12 along the transverse directions

to the QFT worldvolume yields the inflow anomaly polynomial I inflowd+2 associated to the

QFT. Then, the anomalies of the QFT are equal to those computed via inflow up to

decoupling modes, such that I inflowd+2 + IQFT
d+2 + Idecoupld+2 = 0.

We provide a general prescription for computing I12, and describe its properties and

uniqueness. The essential point is that I12 is determined entirely by topological properties

of the internal space M10−d, and equivariant classes constructed from the boundary data of

the 4-form flux. We see in examples of dimensionally reduced theories that the procedure of

directly integrating I12 to compute I inflowd+2 can contain more information than the reduction

of the anomaly polynomial of the parent theory. Further, the embedding in M-theory may

allow for a geometric interpretation of the decoupling modes.

We will then examine the implications of this machinery for holography, i.e. when the

d-dimensional QFT is a conformal field theory with a large-N AdSd+1 gravity dual (N

being the number of M5-branes). The dual geometry in M-theory consists of a warped

product of AdSd+1 times Mhol
10−d, supported by a Ghol

4 flux configuration on the internal

space. The transverse directions M10−d to the QFT worldvolume are identified with the

internal space Mhol
10−d. The main observation is that we can use a known solution of 11d

supergravity to infer I12. This is because (1) the topology of the internal space Mhol
10−d is

the same as that of M10−d, and (2) the holographic Ghol
4 flux configuration can be identified

with our seed boundary G4-flux utilized in the inflow machinery.

The power of our method in the context of holography is twofold. First, since the

seed topological data for inflow can be read off of a known supergravity solution, we can

obtain the CFT anomalies even if we don’t know the probe M5-brane configuration. We

demonstrate this below by applying our method to the AdS5 × M6 Gauntlett-Martelli-

Sparks-Waldram (GMSW) solutions [20]. Second, this prescription provides a path from

the classical solution of 2-derivative supergravity which is valid at large-N , to the exact

anomaly polynomial via inflow. Since our I12 involves higher derivative terms inherited

from the M-theory action, our prescription captures contributions to the anomalies at finite

N . In examples, we correctly produce all N -dependent anomaly coefficients excluding

O(N0) terms which we can identify with decoupling modes.

We demonstrate our method in several examples, some of which have an explicit brane

construction, and some cases in which only the holographic solution is known. In section 4,

we focus on QFTs in six dimensions. First we exemplify our method in the case of flat

M5-branes. Of course, anomaly inflow for this setup is well-known [18, 19],2 and we use this

2The anomaly polynomials for general 6d (2, 0) ADE theories can be computed using anomaly matching

on the tensor branch [21], while inflow for the DN series is studied in [22]. Also note that the holographic

computation of the c central charge is given in [23].
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analysis mainly to set notation for subsequent examples. We then apply our method to the

case of M5-branes probing a C
2/Γ singularity, for Γ an ADE subgroup of SU(2). We match

the anomaly polynomial for these N = (1, 0) theories as given in [24], where an analysis via

anomaly matching on the tensor branch as well as an inflow analysis appears. One comment

is that our analysis produces an additional term relative to the inflow results from [24] that

corresponds precisely to the contribution of the Green-Schwarz term associated to the cen-

ter of mass mode for the branes. For the case of Γ = Zk, we reproduce the full result of [25].

In section 5, we consider two classes of four-dimensional N = 1 QFTs. First, we

reproduce the anomalies of 4d N = 1 SCFTs for which the internal space M6 is an S4

fibration over a smooth Riemann surface, analyzed by Bah-Beem-Bobev-Wecht (BBBW) [9,

10]. We then apply our method to a class of 4d SCFTs where M6 is an S2 fibration

over a product of smooth Riemann surfaces, corresponding to the GMSW supergravity

solutions [20]. The M5-brane probe description is generally not known for these solutions,

but we are nonetheless able to compute the inflow anomaly polynomial, and show that

we match the holographic computation of the central charge [26]. Our results are the first

computation of the subleading-in-N corrections to the central charges of this class of QFTs.

We conclude with a discussion of our results, as well as several appendices that contain

the details of computations that appear in the main text.

2 General aspects of anomaly inflow in M-theory

In this section we discuss general aspects of anomaly inflow for M-theory setups with

wrapped M5-branes. We establish a connection to holography and outline a general recipe

for obtaining the inflow anomaly polynomial. The latter is governed by a 4-form E4 that

encodes topological information about the G4-flux configuration. In this section we discuss

general properties of E4 and all the necessary ingredients for its construction.

2.1 Anomaly inflow for wrapped M5-branes

Let us consider a stack of N M5-branes with worldvolume W6. The tangent bundle of the

11d ambient space M11, restricted to the worldvolume W6, decomposes according to

TM11

∣∣∣
W6

= TW6 ⊕NW6 , (2.1)

where TW6 is the tangent bundle to the stack and NW6 is the normal bundle to the stack.

The latter has structure group SO(5) and encodes the five transverse directions of the

M5-branes.

We are interested in setups in which

W6 = Wd × S6−d , (2.2)

where Wd is external d-dimensional spacetime and S6−d is a smooth compact even-

dimensional internal space. At low energies the system is described by a QFT living on Wd.

For d = 6, the internal space is understood to be absent. For d < 6, in order to specify the

setup we have to describe the topology of the normal bundle NW6 over the internal space
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S6−d. This amounts to specifying a partial topological twist of the worldvolume theory

living on the M5-branes upon compactification on S6−d. The topological twist is essential

in preserving some supersymmetry in the d non-compact directions.

Given the internal space S6−d wrapped by the M5-branes and the S4 that surrounds

the stack in its five transverse directions, there is a compact (10 − d)-dimensional space

M10−d that encodes the topological twist and governs the anomalies of the QFT on Wd.

The space M10−d is an S4 fibration over S6−d,

S4 →֒ M10−d → S6−d . (2.3)

The structure group of the fibration (2.3) is a subgroup of the SO(5) structure group of

the normal bundle NW6.

The QFT living on Wd at low energies can admit ’t Hooft anomalies for the global

symmetries of the theory. In this work we focus on continuous symmetries. Their anomalies

are diagnosed by coupling the QFT on Wd to background gauge connections and metric.

Since the full M-theory setup is anomaly-free, the ’t Hooft anomalies in d dimensions

must be counterbalanced by anomaly inflow from the M-theory bulk, which is analyzed

using the methods of [18, 19]. The M5-brane stack acts as a singular magnetic source for

the M-theory G4 flux. To describe the setup in supergravity, the singularity is removed

by excising a small tubular neighborhood of the M5-brane stack. As a result, the 11d

spacetime M11 acquires a boundary ∂M11 = M10. If r denotes the radial coordinate away

from the M5-brane stack, M10 is located at r = ǫ, where ǫ is a small positive constant. The

space M10 is a fibration of M10−d over Wd,

M10−d →֒ M10 → Wd . (2.4)

The fibration (2.4) is specified by the background gauge connections for the symmetries

of the QFT that originate from continuous isometries of M10−d. Let us stress that the

fibration (2.4) encodes the gauging of the d-dimensional theory with background gauge

fields on Wd, while the fibration (2.3) describes the topological twist that defines the

theory on Wd.

The magnetic source for G4 is modeled by imposing suitable boundary conditions at

r = ǫ. More precisely, we have
G4

2π

∣∣∣∣
r=ǫ

= E4 , (2.5)

where E4 is a closed 4-form on the space M10. The relation (2.5) is written in conventions

in which G4-flux quantization reads
∫

C4

(
G4

2π
− λ

2

)
∈ Z , (2.6)

where C4 is a 4-cycle and λ = p1(TM11)/2 [27]. (In all setups we consider λ/2 is integral.)

The 4-form E4 has to be globally defined and invariant under the structure group of the

fibration (2.4), i.e. invariant under all symmetries of the d-dimensional theory. Moreover,

we have ∫

S4

E4 = N , (2.7)
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where S4 is the 4-sphere surrounding the stack. Depending on the choice of S6−d and

the topology of the fibration (2.3), the 4-form E4 might have additional non-trivial fluxes

through 4-cycles in M10, besides (2.7).

As explained in [18, 19], in the presence of the boundary M10 the topological terms

in the low-energy effective action of M-theory S11d are no longer invariant under gauge

transformations in the background connections on Wd. In fact, we have

δS11d

2π
=

∫

M10

I(1)
10 , (2.8)

where I(1)
10 is a 10-form on M10, linear in the gauge parameters. In accordance with the

Wess-Zumino consistency conditions, I(1)
10 is related by descent to a 12-form characteristic

class I12,
dI(1)

10 = δI(0)
11 , dI(0)

11 = I12 . (2.9)

The class I12 is given by

I12 = −1

6
E3

4 − E4X8 , (2.10)

where we have suppressed wedge products. The 8-form X8 is given by

X8 =
1

192

[
p1(TM11)

2 − 4 p2(TM11)

]
, (2.11)

where the quantities p1,2(TM11) are the first and second Pontryagin classes of the 11d

tangent bundle, implicitly pulled back to the boundary at r = ǫ.

If we integrate the class I12 on the M10−d fibers of (2.4), we obtain the (d + 2)-form

inflow anomaly polynomial of the d-dimensional theory on Wd,

I inflowd+2 =

∫

M10−d

I12 . (2.12)

The inflow anomaly polynomial (2.12) cancels against the ’t Hooft anomalies of the in-

teracting QFT living on Wd at low energies, and of the decoupling modes related to the

center-of-mass of the M5-brane stack. We thus write

I inflowd+2 + IQFT
d+2 + Idecoupld+2 = 0 . (2.13)

2.2 Applications to holography

One of the main interests of this work is the case in which the interacting QFT on Wd is a

CFT with a gravity dual. The dual geometry in M-theory is a warped product of AdSd+1

with an internal (10− d)-dimensional space,

M11 = AdSd+1 ×w Mhol
10−d . (2.14)

This AdSd+1 solution is supported by a non-trivial G4-flux configuration Ghol
4 on the in-

ternal space Mhol
10−d.

3

3For d = 2, Ghol
4 can have additional terms with three external legs, proportional to the volume form on

AdS3. Such terms in Ghol
4 do not play a role in the following discussion.
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The main observation is that, for AdSd+1 solutions that correspond to wrapped M5-

branes, the topology of the internal space Mhol
10−d is the same as the topology of the space

M10−d defined in (2.3) [28]. By a similar token, the holographic G4-flux configuration

Ghol
4 /(2π) lies in the same cohomology class as E4 after all external connections are turned

off,

Ghol
4

2π
= E4

∣∣∣
external connections = 0

in cohomology of M10−d . (2.15)

Let us emphasize that the topological properties of M10−d and E4 are the main ingredients

in the implementation of anomaly inflow for wrapped M5-branes. The discussion above

indicates that these topological features can be equivalently extracted from the probe setup

or from the holographic solution.

There exists a larger set of AdSd+1 solutions in M-theory for which the probe M5-brane

configuration is not known. In these solutions the internal space Mhol
10−d is not necessarily

an S4 fibration over some (6 − d)-dimensional space, as in (2.3). We expect that our

method for the computation of I inflowd+2 applies to such setups. The anomaly is governed by

the topological properties of Mhol
10−d and Ghol

4 , which determine E4.

The general task at hand is the construction of E4 given the topology of the space

M10−d. Recall that E4 is a 4-form on the total space M10 of the fibration (2.4). Crucially,

we do not assume that M10−d is an S4 fibration over a (6 − d)-dimensional space. As

a result, the following considerations apply beyond setups that are realized by wrapping

M5-branes on a smooth compact internal space.

A local representative for the class E4 is constrained by the following properties:

• E4 is globally defined,

• E4 is closed,

• E4 is invariant under all symmetries of M10−d.

The 4-form E4 is constructed by combining the curvatures of the background connections

on Wd with p-forms in the internal space M10−d. Crucially, since M10−d is fibered over Wd,

see (2.4), the internal p-forms on M10−d must be appropriately “gauged”, i.e. coupled to

the background connections on Wd.

The constraints listed above may not completely fix the expression of E4. In section 3

we present a general recipe for the construction of E4, we characterize its ambiguities, and

we argue that they do not affect the inflow anomaly polynomial.

3 Construction of E4

In this section we introduce a convenient formalism for the parametrization of the 4-form

E4. We show how to construct a good representative for E4 in terms on p-forms in M10−d.

The natural language to describe this construction is that of G-equivariant cohomology.

While E4 is generically non-unique, we argue that the inflow anomaly polynomial can be

extracted unambiguously.

– 6 –
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3.1 Parametrization of E4

A local representative for the class E4 is a closed, gauge-invariant, globally-defined 4-form

on the total space M10 of the fibration of M10−d over external spacetime Wd, see (2.4).

The 4-form E4 is constructed using internal p-forms on the M10−d fibers, together with

external curvatures with legs on Wd.

We suppose that M10−d admits a collection of Killing vectors kmI , with m a curved

index on M10−d, and I labeling a basis of Killing vectors. The latter obey the Lie algebra

£IkJ ≡ £kIkJ = [kI , kJ ] = fIJ
K kK , (3.1)

where £ denotes Lie derivative. The non-trivial fibration of M10−d over Wd is encoded by

the gauging of the isometries of M10−d. In what follows, we adopt a notation similar to

the one of [29]. The gauging is conveniently described locally by the replacement

dξm → Dξm = dξm + kmI AI , (3.2)

where AI is the external connection associated to the Killing vector kmI . In our conventions,

the field strength F I of the connection AI reads

F I = dAI − 1

2
fJK

I AJ AK . (3.3)

Let ω be a p-form on M10−d,

ω =
1

p!
ωm1...mp dξ

m1 . . . dξmp , (3.4)

where the components ωm1...mp depend only on the coordinates ξ on M10−d. We use the

symbol ωg for the gauged version of ω, obtained by means of the replacement (3.2),

ωg =
1

p!
ωm1...mp Dξm1 . . . Dξmp . (3.5)

Further details about this gauging procedure are collected in appendix A.

If we turn off all external connections, E4 reduces to a 4-form denoted V4. The latter

must be closed and invariant under all the isometries of M10−d. Furthermore, G4-flux

quantization requires the class of V4 to be integral. Let VΛ, Λ = 1, . . . , b4(M10−d) be a

basis of the integral cohomology group H4(M10−d,Z).
4 We can expand the cohomology

class of V4 as

V4 = NΛ VΛ , (3.6)

with the integers NΛ specifying the topology of the G4-flux configuration, which is part of

the input data that defines the setup and is held fixed throughout the construction of E4.

The first step in the parametrization of E4 is promoting V4 to a closed and gauge-

invariant object. The completion of V4 is denoted V eq
4 and is given by

V eq
4 = V g

4 + F I ωg
I + F I F J σIJ . (3.7)

4For d = 4, the internal space is six dimensional and 4-cycles are dual to 2-cycles and harmonic 2-forms;

the label Λ coincides with α in this case.
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In the previous expression, ωI are 2-forms onM10−d, while σIJ are 0-forms. The superscript

‘g’ refers to the gauging prescription defined in (3.5), while ‘eq’ stands for equivariant, for

reasons outlined below. The 4-form V eq
4 must be invariant under the gauge transformations

associated to the isometries of M10−d. Let δλV
eq
4 denote the gauge variation of V eq

4 , with λI

denoting the gauge parameters. In computing δλV
eq
4 , we encounter variations of external

curvatures, and variations of gauged internal forms. The former are given by the usual

expression,

δλF
I = −fJK

I λJ FK . (3.8)

The gauge variations of gauged internal forms are given in terms of the Lie derivative with

respect to the Killing vector fields. For example,

δλ(ω
g
I ) = λJ (£JωI)

g . (3.9)

We refer the reader to appendix A for a more detailed explanation of this point. The

requirement δλV
eq
4 = 0 translates into the conditions

£IV4 = 0 , £IωJ = fIJ
K ωK , £IσJ1J2 = fIJ1

K σKJ2 + fIJ2
K σJ1K . (3.10)

We also have to demand d(V eq
4 ) = 0. In computing the external derivative of V eq

4 , the

following identity is useful,

d(ωg
I ) +AJ (£JωI)

g = (dωI)
g + F J (ιJωI)

g . (3.11)

The quantity on the l.h.s. is the natural covariant derivative acting on a gauged internal

form, since the gauge algebra acts via Lie derivative along Killing vector fields. Accordingly,

the r.h.s. is a manifestly gauge invariant quantity. Even though we have written (3.11) for

ωI , a similar identity holds for any internal gauged form. Further details on this point

can be found in appendix A. Making use of (3.11) and similar identities, together with

the Bianchi identity for F I , we verify that requirement d(V eq
4 ) = 0 implies the following

conditions,

dV4 = 0 , ιIV4 + dωI = 0 , ι(IωJ) + dσIJ = 0 . (3.12)

The symbol ιI is a shorthand notation for the interior product ιkI of a p-form with the

Killing vector kmI .

So far, we have only discussed the external connections associated to isometries of

M10−d. Another class of external connections is related to harmonic 2-forms on M10−d.

If ωα, α = 1, . . . , b2(M10−d), is a basis of harmonic 2-forms, expansion of the M-theory

3-form potential onto ωα yields external vectors Aα, according to the schematic relation

C3 = Aα ωα. The connections Aα are Abelian and have field strength Fα = dAα. Notice

that, for d = 4, one linear combination of the vectors Aα is massive and does not correspond

to a symmetry of the system. This point is addressed in greater detail in appendix C.2.

Each harmonic 2-form ωα is closed and invariant under the action of all isometries of

M10−d.
5 As a result, we can complete ωα to a closed and gauge-invariant object, denoted

5The fact that £Iωα = 0 can be seen as follows. From dωα = 0 we derive £Iωα = d(ιIωα). Making use

of ∇(mkI|n) = 0 and ∇mωαmn = 0, we verify (£Iωα)mn = ∇p(kI ∧ ωα)pmn. We have thus established that

the 2-form £Iωα is both exact and co-exact. It follows that
∫
M10−d

(£Iωα) ∗ (£Iωα) = 0 (no sum over α,

I), which in turn guarantees £Iωα = 0.

– 8 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
5

ωeq
α . It is given by

ωeq
α = ωg

α + 2F I σIα , (3.13)

where σIα are suitable 0-forms on M10−d, and the factor of 2 is inserted for later conve-

nience. We demand δλω
eq
α = 0, such that

£Iωα = 0 , £IσJα = fIJ
K σKα . (3.14)

Moreover, we need d(ωeq
α ) = 0, which is equivalent to

dωα = 0 ,
1

2
ιIωα + dσIα = 0 . (3.15)

We are now in a position to write down the most general parametrization of E4. It

reads

E4 = V eq
4 +

Fα

2π
ωeq
α + γ4 , (3.16)

where V eq
4 is as in (3.7), ωeq

α is as in (3.13), while γ4 denotes an arbitrary closed and gauge-

invariant 4-form with purely external legs. In appendix C we show that for d = 2 and d = 4

the inflow anomaly polynomial is insensitive to the 4-form γ4, which may then be set to

zero. For d = 6, the inflow anomaly polynomial does depend on γ4. In appendix C we ar-

gue that the correct value of γ4 is obtained by extremizing the inflow anomaly polynomial.

This prescription is equivalent to demanding that the 8-form E2
4 + 2X8 be trivial in the

cohomology of M4. We interpret this requirement on E2
4 + 2X8 as a tadpole cancellation

condition in M-theory, which must be satisfied in order to have a consistent setup. In sec-

tion 4 we verify that our treatment of γ4 gives the correct inflow anomaly in two examples,

a flat stack of M5-branes, and M5-branes probing a C
2/Γ singularity.

The quantities V eq
4 and ωeq

α introduced above admit a natural interpretation in terms

of G-equivariant cohomology of M10−d, where G is the isometry group of M10−d. This

justifies the label ‘eq’. In appendix B we show how the objects V eq
4 , ωeq

α can be identified

with G-equivariantly closed (poly)forms on M10−d, which specify non-trivial G-equivariant

cohomology classes.

Let us close this section by introducing a more compact notation, which is sometimes

convenient in what follows. Let X = (I, α) be a collective index that unifies external

connections originating from isometries of M10−d and external connections associated to

harmonic 2-forms on M10−d. We can cast E4 in (3.16) in the form

E4 = V g
4 + FX ωg

X + FX F Y σXY + γ4 , (3.17)

with the identifications

FX =

(
F I ,

1

2π
Fα

)
, ωX = (ωI , ωα) , σXY =

(
σIJ σIβ

σJα 0

)
. (3.18)

By a similar token, we can summarize (3.10) and (3.14) by writing

£XV4 = 0 , £XωY = fXY
Z ωZ , £XσY1Y2 = fXY1

Z σZY2 + fXY2
Z σY1Z , (3.19)
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with the understanding that £α ≡ 0, and that the only non-zero entry of fXY
Z are fIJ

K .

In a similar fashion, we summarize (3.12), (3.15) as

dV4 = 0 , ιXV4 + dωX = 0 , ι(XωY ) + dσXY = 0 , (3.20)

with the convention ια ≡ 0.

It is interesting to note that the compact expression (3.17) is suggestive of a possible

extension of the G-equivariant cohomology interpretation of appendix B. Indeed, we can

formally augment the isometry group G to a larger group Ĝ, by adding an extra U(1)

factor for each curvature Fα. The extra U(1) generators act trivially on M6, because of

ια ≡ 0. We can then interpret the quantity V g
4 + FX ωg

X + FX F Y σXY as a Ĝ-equivariant

(as opposed to G-equivariant) completion of V4.

3.2 Deformations of E4

An important question concerning the construction of E4 is to determine how uniquely

this object is fixed by the conditions (3.10), (3.12), (3.14), (3.15). We refer the reader to

appendix B.2 for a detailed analysis of this problem, and here we discuss only some salient

aspects.

A class of deformations of E4 is of the form

V4 → V4 + dW3 , ωI → ωI + ιIW3 + dλI , σIJ → σIJ + ι(IλJ) ,

ωα → ωα + dλα , σIα → σIα +
1

2
ιIλα . (3.21)

where W3 is a globally-defined 3-form on M10−d, and λI , λα are globally-defined 1-forms

on M10−d. Gauge-invariance requires

£IW3 = 0 , £IλJ = fIJ
K λK , £Iλα = 0 , (3.22)

but W3, λI , λα are otherwise arbitrary. It is easily checked that the new E4 is still

closed and gauge-invariant. Furthermore, we have checked that the integrals
∫
M10−d

E3
4

and
∫
M10−d

E4X8 are invariant under the deformation (3.21), which implies that the inflow

anomaly polynomial is unaffected by it. In the language of G-equivariant cohomology, the

deformation (3.21) corresponds to adding G-equivariantly exact pieces to E4, which does

not change the G-equivariant cohomology class of E4.

A more interesting class of ambiguities in the determination of E4 is the following.

For a given V4, we can construct equivariant completions V eq
4 that correspond to different

G-equivariant cohomology classes. More explicitly, we can consider the modification

ωI → ωI + cαI ωα , σIJ → σIJ + cα(I σJ)α + uIJ . (3.23)

The quantities cαI , uIJ are constants. Compatibility with (3.10) requires

fIJ
K cαK = 0 , fIJ1

K uKJ2 + fIJ2
K uJ1K = 0 . (3.24)

In other words, cαI must be acted upon trivially by the adjoint representation, which means

that cαI can be non-zero only if I labels a generator of an Abelian factor of the isometry
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group. On the other hand, the constants uIJ must be components of a symmetric invariant

tensor in the adjoint representation of the isometry algebra. For instance, if the isometry

group is simple, uIJ must be a multiple of the Cartan-Killing form.

Contrary to (3.21), the modification (3.23) changes the class defined of V eq
4 , and hence

E4. It should be noted, however, that the effect of the shift parametrized by the constants

cαI can always be undone by a linear redefinition of the external curvatures F I , Fα,

F I → F I ,
1

2π
Fα → 1

2π
Fα − cαI F

I . (3.25)

In this sense, the only genuine ambiguity in (3.23) is the part parametrized by the con-

stants uIJ . We notice that any shift of σIJ with uIJ generates closed and gauge-invariant

terms with purely external legs, which can always be reabsorbed in the 4-form γ4. The

(in)dependence of the inflow anomaly polynomial on γ4 is studied in appendix C.

In a completely similar way, we can choose inequivalent equivariant completions of ωα.

Pragmatically, we consider the shifts

σIα → σIα + uIα , (3.26)

where the constants uIα are constrained by (3.14),

£IuJα = fIJ
K uKα . (3.27)

Once again, a shift parametrized by uIα corresponds to a modification of γ4.

We close this section by highlighting an important feature of the case d = 4, which is

explained in more detail in appendix C.2. For d = 4, one of the vectors Aα originating from

expansion of C4 onto a basis ωα of harmonic 2-form is massive. This linear combination

does not correspond to a symmetry of the system. The associated background curvature

must then be set to zero. More precisely, this holds provided we choose the 2-forms ωI in

such a way that ∫

M6

V4 ωI = 0 . (3.28)

This condition can always be achieved by shifting ωI by an appropriate linear combination

of ωα’s. If (3.28) holds, the linear combination of Fα curvatures that must be set to zero is

Nα F
α = 0 , Nα =

∫

M6

V4 ωα . (3.29)

The constraint NαF
α = 0 is essential in order to get the correct anomaly in four

dimensions. It plays a particularly non-trivial role in the example studied in section 5.2.

4 Examples in six dimensions

In this section we exemplify the method of section 3.1 for the construction of E4 in two

examples involving a stack of N M5-branes in six uncompactified dimensions. In the first

example, the branes sit at a smooth point in the transverse directions, while in the second

example they probe an orbifold singularity.
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4.1 A stack of N M5-branes

Anomaly inflow for this setup is well-known [18, 19]. The analysis of this section is useful

for the rest of this paper, since it allows us to introduce the objects (4.5) which are later

used for various applications.

The 4-form V4, which encodes the background G4-flux configuration, must be propor-

tional to the volume form on the internal space M4 = S4. We write

V4 = N volS4 . (4.1)

In our normalization,
∫
S4 volS4 = 1. The constant N is an integer by virtue of G4-flux

quantization in M-theory, and counts the number of M5-branes in the stack.

The internal space S4 admits an SO(5) isometry group. Let us introduce constrained

coordinates yA, A = 1, . . . , 5 with yA yA = 1. The gauging of the SO(5) isometry is given by

(dyA)g = dyA −AAB yB , (4.2)

where A[AB] is the external SO(5) connection, with field strength

FAB = dAAB −AAC AC
B . (4.3)

Notice that S4 does not admit any non-trivial harmonic 2-form. As a result, we do not

have any additional external connections.

The 4-form E4 is determined by solving (3.10), (3.12). The result of the analysis takes

the form

E4 = V 4 + FAB ωg
AB + FAB FCD σAB,CD + γ4 , (4.4)

where γ4 is an arbitrary closed, gauge-invariant 4-form with external legs, and we have

defined the following forms on S4,

V 4 =
3N

8π2
· 1

4!
ǫA1...A5 dy

A1 dyA2 dyA3 dyA4 yA5 ,

ωAB =
3N

8π2
· −2

4!
ǫABC1C2C3 dy

C1 dyC2 yC3 ,

σAB,CD =
3N

8π2
· 1

4!
ǫABCDE yE . (4.5)

If we set γ4 = 0, the 4-form E4 in (4.4) is proportional to the global angular form of SO(5),

which appears in the original analysis of [18, 19].

The Pontryagin classes of TM11 can be computed exploiting the decomposition of the

11d tangent bundle restricted on the worldvolume W6 of the brane,

TM11 → TW6 ⊕NSO(5) , (4.6)

where NSO(5) is the bundle encoding the SO(5) gauging. We have

p1(TM11) = p1(TW6) + p1(SO(5)) ,

p2(TM11) = p2(TW6) + p2(SO(5)) + p1(TW6) p1(SO(5)) , (4.7)
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and hence

X8 = − 1

48

[
p2(TW6) + p2(SO(5))

]
+

1

192

[
p1(TW6)− p1(SO(5))

]2
. (4.8)

Notice that X8 has no legs along the internal S4 directions.

We can now compute the inflow anomaly polynomial, using (4.4) and (4.8). The result

reads

I inflow8 = − 1

24
N3 p2(SO(5))− 1

2
N γ24

+
1

48
N

[
p2(TW6) + p2(SO(5))

]
− 1

192
N

[
p1(TW6)− p1(SO(5))

]2
. (4.9)

The first line collects the contribution of the E3
4 term, while the second line contains the con-

tribution of the E4X8 term. To verify (4.9) we can make use of the identities (A.17), (A.18).

In our conventions,

p1(SO(5)) = −1

2

1

(2π)2
trF 2 , p2(SO(5)) =

1

8

1

(2π)2

[
(trF 2)2 − 2 trF 4

]
, (4.10)

where the trace is in the fundamental representation of SO(5).

In appendix C we argue that γ4 is fixed by extremizing I inflow8 with respect to an

arbitrary variation in γ4. In the present situation, we obtain simply

γ4 = 0 . (4.11)

For this value of γ4, the result (4.9) agrees with the original inflow polynomial of [19].

4.2 M5-branes probing an ADE singularity

Let us now analyze a setup in which a stack of M5-branes probes a C
2/Γ singularity, where

Γ is an ADE subgroup of SU(2) [3, 30–34]. The probe picture in the UV is as follows.

Let us consider the transverse R
5 to the M5-branes, with coordinates y1, . . . , y5. The

group Γ acts on R
5 by leaving y5 invariant, and acting on R

4 parametrized by y1, . . . , y4.

More precisely, the action of Γ is embedded in the factor SU(2)L of the isometry group

SO(4) ∼= SU(2)L×SU(2)R of the R4 spanned by y1,2,3,4. All points on the y5 axis are fixed

points under the action of Γ. In the probe picture, the stack is positioned at the origin

y1,2,3,4,5 = 0. Because of the Γ quotient, supersymmetry is reduced from (2, 0) to (1, 0).

Before performing the quotient, the stack is surrounded by the round sphere S4 ⊂ R
5.

After acting with Γ, S4 is replaced with S4/Γ. The north and south poles of S4, located

at y5 = ±1, y1,2,3,4 = 0, are both fixed points for the Γ action. Locally near each pole we

have an orbifold singularity C
2/Γ. The orbifold singularities at each pole can be resolved

preserving 6d (1, 0) supersymmetry. If gΓ is the ADE Lie algebra associated to Γ, we write

rΓ = rank(gΓ). The resolution introduces a number rΓ of CP1 curves, whose intersection

pattern reproduces the Dynkin diagram of gΓ. We use the symbol M4 for the smooth space

obtained from S4/Γ by resolving the singularities at the north and south poles.

The isometry group SO(5) of S4 is reduced by the action of Γ. More precisely, the

isometry group of S4/Γ is the subgroup of SU(2)L×SU(2)R that commutes with the action
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of Γ. If Γ = Zk with k ≥ 3, the isometry group is U(1)L × SU(2)R, with U(1)L the Cartan

of SU(2)L. If k = 1, 2 the isometry group is the full SU(2)L × SU(2)R. Finally, if Γ is of

type D, E, the isometry group is SU(2)R only.

To treat all cases uniformly, we formally introduce external connections for the full

SU(2)L × SU(2)R. It is understood that the external SU(2)L connection is zero for Γ of D,

E type, it is along the Cartan for Γ = Zk, k ≥ 3, and it is a full non-Abelian connection

for k = 1, 2.

The resolved space M4 admits non-trivial 2-cycles, and hence harmonic 2-forms. They

are dual to the resolution CP
1’s at the north and south poles. We write these harmonic

2-forms as ωNi, ωSi, with the index i = 1, . . . , rΓ labelling the Cartan generators of the ADE

Lie algebra gΓ. These harmonic 2-forms correspond to additional flavor symmetries of the

setup. In the resolved phase, the flavor symmetry associated to the harmonic 2-forms is

(U(1)rΓ)N× (U(1)rΓ)S. If we shrink the resolution cycles to zero size, we have enhancement

to the non-Abelian symmetry (GΓ)N × (GΓ)S, where GΓ is the Lie group associated to Γ.

We are now in a position to discuss the 4-form E4 for the setup under examination. It

can be written as

E4 = V
g
4 + FAB ωg

AB + FAB FCD σAB,CD +
FNi

2π
ωNi +

F Si

2π
ωSi + γ4 . (4.12)

Several comments are in order. The above expression is written in terms of the SO(5)

curvature FAB. It is understood, however, that FAB is only non-zero along the generators

of the subgroup SU(2)L×SU(2)R ⊂ SO(5). The quantities V 4, ωAB, σAB,CD are as in (4.5),

but with the replacement N → N |Γ|, where |Γ| is the order of the finite group Γ. The extra

factor |Γ| is needed to compensate for the fact that the Γ action introduces a factor 1/|Γ| in
all integrals over S4/Γ. The curvatures FNi, F Si are associated to the flavor symmetry at

the poles in the resolved phase. We stress that the harmonic 2-forms ωNi, ωSi are invariant

under the isometry group of S4/Γ, because they are localized at the poles, which are fixed

under SU(2)L × SU(2)R. This is why we do not have to gauge ωNi, ωSi in (4.12). Finally,

γ4 is an arbitrary closed, gauge-invariant, external 4-form.

The derivation of the inflow anomaly polynomial for this setup was discussed in [24],

without the γ4 term. We review the derivation, including γ4, in appendix D. The result

reads

−I inflow8 =
N3 |Γ|2

24

[
c2(L)−c2(R)

]2
+
1

2
N γ24+

1

4
γ4

[
tr(FN)2

(2π)2
− tr(F S)2

(2π)2

]

+
N |Γ|
8

[
c2(L)−c2(R)

][tr(FN)2

(2π)2
+
tr(F S)2

(2π)2

]

+
N |Γ|χΓ

48

[
c2(L)−c2(R)

][
p1(TW6)+4c2(R)

]
+

N

48
c2(L)

[
p1(TW6)+4c2(R)

]

+
N

192

[
p1(TW6)

2−4p2(TW6)
]
+

N

48
c2(R)p1(TW6) . (4.13)

The quantities c2(L,R) are the second Chern classes of SU(2)L,R, while p1,2(TW6) are the

Pontryagin classes of the external 6d background metric. We have written the result in

terms of the full non-Abelian flavor symmetry curvatures FN, F S, even though only the
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Lie algebra gΓ SU(k) SO(2k) E6 E7 E8

rank rΓ k − 1 k 6 7 8

order |Γ| k 4k − 8 24 48 120

Table 1. The rank rΓ and order |Γ| for ADE subgroups Γ of SU(2).

Cartan curvatures FNi, F Si are directly accessible in the supergravity approximation. The

quantity χΓ is the Euler characteristic of the ALE space that resolves the C
2/Γ orbifold.

It is given by

χΓ = rΓ + 1− 1

|Γ| . (4.14)

The ranks rΓ and orders |Γ| for all ADE groups are summarized in table 1.

According to the general discussion of appendix C.1, the external 4-form γ4 is fixed by

extremizing I inflow8 , which is equivalent to imposing the tadpole cancellation condition in

M-theory. In the present situation, we obtain

γ4 = − 1

4N

[
tr (FN)2

(2π)2
− tr (F S)2

(2π)2

]
. (4.15)

Plugging this back into (4.13), we obtain

−I inflow8 =
N3 |Γ|2

24

[
c2(L)−c2(R)

]2− 1

32N

[
tr(FN)2

(2π)2
− tr(F S)2

(2π)2

]2

+
N |Γ|
8

[
c2(L)−c2(R)

][tr(FN)2

(2π)2
+
tr(F S)2

(2π)2

]

+
N |Γ|χΓ

48

[
c2(L)−c2(R)

][
p1(TW6)+4c2(R)

]
+

N

48
c2(L)

[
p1(TW6)+4c2(R)

]

+
N

192

[
p1(TW6)

2−4p2(TW6)
]
+

N

48
c2(R)p1(TW6) . (4.16)

This result agrees with the analysis of [24]. It is interesting to point out that, in the

computation of [24], the term − 1
32N (2π)−2

[
tr (FN)2− tr (F S)2

]2
is interpreted as a Green-

Schwarz term associated to the center of mass mode of the M5-brane stack, and is included

by hand. In our derivation, it is automatically generated by γ4-extremization.

Let us consider the case Γ = Zk. Using the full anomaly polynomial recorded in [25]

for the interacting 6d (1,0) SCFT, we can extract the contribution of decoupling modes

related to the center of mass of the M5-brane stack. To compare with [25], we replace

c2(L) → −c1(s)
2 , (4.17)

where we are using the notation of [25] for the first Chern class c1(s) of the Cartan U(1)L
of SU(2)L. Comparing (4.16) to the results of [25], we infer

Idecoupl8 = −I inflow8 − ISCFT
8

= Itensor8 +
1

2
Ivec,N8 +

1

2
Ivec,S8 − 1

6
k c1(s)

[
Trfund (F

N)3

(2π)3
− Trfund (F

S)3

(2π)3

]
. (4.18)
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The quantities Itensor8 , Ivec,N8 , are given by6

Ivec,N8 =−k2−1

24
c2(R)2− k2−1

48
c2(R)p1(TW6)−

k2−1

5760

[
7p1(TW6)

2−4p2(TW6)
]

− k

4
c2(R)

tr(FN )2

(2π)2
− k

48
p1(TW6)

tr(FN )2

(2π)2
− 1

16

[
tr(FN )2

(2π)2

]2
− k

12

Trfund (F
N )4

(2π)4
,

Itensor8 =
1

24
c2(R)2+

1

48
c2(R)p1(TW6)+

23

5760
p1(TW6)

2− 29

1440
p2(TW6) . (4.20)

The quantity Ivec,S8 is completely analogous to Ivec,N8 given above.

5 Examples in four dimensions

In this section we examine two 4d setups to exemplify our prescription for the computation

of I inflow6 . In a first class of examples, the space M6 is an S4 fibration over a smooth

Riemann surface. This case corresponds to the setups analyzed in BBBW [9, 10]. Next,

we analyze the geometry M6 that is read off from the GMSW [20] AdS5 solution to 11d

supergravity.

5.1 S4 fibrations over a smooth Riemann surface

Let us consider a stack of M5-branes wrapping a genus-g Riemann surface without punc-

tures Σg. In this setup, the internal space M6 is an S4 fibration over Σg. Upon including

external connections, M6 is fibered over external spacetime W4. The relevant fibrations

are thus

M6 →֒ M10 → W4 , S4 →֒ M6 → Σg . (5.1)

In order to implement anomaly inflow, we need to study the topology and isometries of M6.

5.1.1 Topology and isometries of M6

In this work we study a class of fibrations S4 →֒ M6 → Σg that preserve 4d N = 1 super-

symmetry [9, 10]. In terms of the ambient space R
5 ⊃ S4, we refer to the decomposition

R
5 = C1 × C2 × R. The topology of M6 is then encoded in the two line bundles L1, L2

that describe the twisting of the two C1, C2 factors on the Riemann surface. Let q1, q2
be the degrees of the line bundles. In order to preserve supersymmetry, the total space

L1 ⊕ L2 → Σg has to be a Calabi-Yau threefold, which amounts to the requirement

q1 + q2 = −χ(Σg) = 2(g − 1) . (5.2)

Setups in which g = 1, i.e. the Riemann surface is a torus, require special care, because

of the presence of emergent symmetries. For this reason, we restrict ourselves to the cases

6Following [25], the traces of FN are defined in such a way that

tr (FN)2

(2π)2
= −2

∑

i

(nN
i )

2
,

Trfund (F
N)3

(2π)3
=

∑

i

(nN
i )

3
,

Trfund (F
N)4

(2π)4
=

∑

i

(nN
i )

4
, (4.19)

where nN
i are the Chern roots of SU(k)N, i = 1, . . . , k and

∑
i
nN
i = 0. The same conventions hold for SU(k)S.
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of a higher-genus Riemann surface, g ≥ 2, or a sphere, g = 0. In our discussion q1 and q2
cannot therefore be simultaneously zero. If q1 = 0 or q2 = 0, supersymmetry enhances to

N = 2.

The topology of M6 can be equivalently described in terms of the background value of

a non-zero background value for the SO(5) field strength FAB, which is proportional to the

volume form on Σg. For the setups under examination, the background FAB takes the form

FAB
Σ = qAB VΣ , qAB =




0 q1

−q1 0

0 q2

−q2 0

0




. (5.3)

The subscript Σ on F is a reminder that this is the background part, or twist part, of

the SO(5) field strength, as opposed to the external 4d gauge part. The 2-form VΣ is

proportional to the volume form on Σg, and is normalized according to
∫

Σg

VΣ = 2π . (5.4)

In order to apply the recipe of section 3.1 for the construction of E4, we need to identify

the isometries of M6 that we intend to couple to 4d gauge fields. We have two distinct

classes of isometries:

(i) For any genus g, a subgroup SO(2)1 × SO(2)2 of the SO(5) isometry group of the S4

fiber is preserved by the twist described by (5.3). We therefore introduce two Abelian

external connections A1, A2, with field strengths F 1 = dA1, F 2 = dA2, to gauge this

residual isometry. The embedding of A1, A2 into the full SO(5) connection, and the

analogous relation for the field strengths, read

AAB
ext =




0 −A1

A1 0

−A2

A2 0

0




, FAB
ext =




0 −F 1

F 1 0

−F 2

F 2 0

0




, (5.5)

with the subscript “ext” standing for external. If q2 = 0, the SO(2)2 factor enhances

to SO(3)2, and F 2 is replaced by the suitable non-Abelian SO(3)2 field strength.

Similar remarks apply if q1 = 0.

(ii) In the special case g = 0, M6 possesses additional isometries that originate from the

isometry group SO(3)S2 of the Riemann surface, which is a 2-sphere endowed with

its standard round metric. As explained in appendix E, the Killing vectors of the

base Σg=0 = S2 considered in isolation extend to bona fide Killing vectors of the

entire space M6, for any value of q1, q2. We use the notation Aa, with a = 1, 2, 3, for

the external SO(3)S2 connection that gauges this additional isometry, and F a for the

corresponding field strength.
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5.1.2 Aside on terminology: twisting vs gauging

The nested fibration structure (5.1) of the setups under examination allows us to define

two distinct operations on differential forms, which we refer to as twisting and gauging.

The twisting operation is defined with reference to the fibration S4 →֒ M6 → Σg. It

makes use of the internal field strength (5.3), but it does not involve any external 4d gauge

connection. Twisting affects forms on M6 with legs along the S4 fiber directions, while it

has no effect on legs along the Riemann surface. Operationally, in terms of the constrained

coordinates yAyA = 1 of the S4 fibers, the twisting operation amounts to the replacement

dyA → (dyA)t = dyA − qAB yB AΣ , dAΣ = VΣ . (5.6)

The 1-form AΣ on the Riemann surface is an antiderivative of the volume form and is only

locally defined. Because of the non-trivial fibration, the untwisted 1-forms dyA are not

well-defined on M6. Their twisted counterparts (dyA)t, however, are good objects in M6.

Let us now turn to the gauging operation. This is the same operation discussed in sec-

tion 3.1, and is based on the isometries of M6. Let us first consider a higher-genus Riemann

surface. The only isometries are then of the class (i) above. Since isometries of class (i)

originate from the S4 fiber of M6, the gauging procedure has no effect on VΣ. We can write

higher-genus Σg :





(dyA)t → (dyA)tg = dyA − qAB yB AΣ −AAB
ext yB ,

VΣ → V g
Σ = VΣ .

(5.7)

Notice that, since the untwisted dyA 1-forms are not well-defined on M6, it does not make

sense to consider (dyA)g.

If the Riemann surface is a sphere, we have both isometries of class (i) and of class

(ii). To proceed, it is convenient to describe the 2-sphere by means of three constrained

coordinates za, a = 1, 2, 3, satisfying zaza = 1. The gauging operation in this case satisfies

two-sphere :





(dyA)t → (dyA)tg = dyA − qAB yB AΣ −AAB
ext yB + 1

2 q
AB yB zaA

a ,

dza → (dza)g = dza + ǫabcAb zc ,

VΣ → V g
Σ = 1

4 ǫabc (dz
a)g (dzb)g zc .

Crucially, gauging of the additional SO(3)S2 isometry of class (ii) involves legs along the

Riemann surface. In appendix E we collect some useful formulae that are helpful in checking

the above relations.

5.1.3 Construction of E4

The first task in the construction of E4 is the identification of the 4-form V4, to which E4

reduces if we turn off all external 4d connections. We claim that

V4 = V
t
4 + qAB VΣ ωt

AB . (5.8)

The forms V 4 and ωAB have legs on the S4 fibers and were introduced in (4.5). The sub-

script “t” signals the twisting operation discussed in the previous subsection. The untwisted
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4-form V 4 is closed, but it is not well-defined in the total internal space M6. Its twisted

counterpart V
t
4 is a good object in M6, but it is not closed. This explains the necessity of

the other term in (5.8). Indeed, to see that V4 is closed, we simply observe that it is propor-

tional to the global angular form of SO(5), provided we replace the SO(5) field strength FAB

with FAB
Σ as in (5.3). (The term with two FAB

Σ factors is then zero because VΣ VΣ = 0.)

We claim that V4 can be taken to be as in (5.8) without any loss of generality. This

can be motivated as follows. Firstly, we know from section 3.2 that any modification of V4

by an exact 4-form dW3 (compatible with the isometries of M6) does not have any effect

on the inflow anomaly polynomial. Secondly, we observe that we do not have any other

closed but not exact 4-form in M6.

The space M6 admits one non-trivial 4-cycle, given by the S4 fiber over a generic point

on Σg. We then have one harmonic 2-form ω, Poincaré dual to this 4-cycle. We can write

∫

S4

V4 =

∫

M6

V4 ω = N . (5.9)

As discussed in section C.2, one linear combination of the vectors associated to harmonic

2-forms is massive. Since in this case we only have one harmonic 2-form, its associated

vector is massive, and we can simply ignore it in the following discussion. As a result, all

external connections are associated to the isometries of class (i) and (ii) discussed above.

We are now in a position to apply the recipe of section 3.1 for the construction of E4.

We refer the reader to appendix E for the derivation of E4. The result takes the form

E4 = V
tg
4 +FAB ωtg

AB+FAB FCD σAB,CD+(C1 F
1+C2 F

2)

(
V g
Σ − 1

2
F a za

)
+γ4 . (5.10)

In the previous expression, we have introduced the 2-forms

FAB = FAB
ext + qAB

(
V g
Σ − 1

2
F a za

)
. (5.11)

The quantities C1,2 are constants, while γ4 is an arbitrary closed, gauge-invariant 4-form

with external legs only.

The values of C1, C2 are actually fixed by the following considerations. In section C.2

we derived that one linear combination of the vectors associated to harmonic 2-forms is

massive. This results holds under the assumption that a basis of connections is chosen,

such that (3.28) holds. In order to check whether E4 in (5.10) satisfies (3.28), we need to

extract the terms linear in the isometry curvatures F 1, F 2, and F a,

E4 = V g
4 + F 1 ωg

1 + F 2 ωg
2 + F a ωg

a + . . . (5.12)

Comparison with (5.10), keeping (5.5) into account, leads to the identifications

ω1 = −2 (ωt
12 + 2 qCD VΣ σ12,CD) + C1 VΣ ,

ω2 = −2 (ωt
34 + 2 qCD VΣ σ34,CD) + C2 VΣ ,

ωa = −1

2
za q

AB (ωt
AB + 2 qCD VΣ σAB,CD) . (5.13)
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Equivalently, the above equations can be read off from (E.29)–(E.33). Making use of the

identities (A.17), we verify that
∫
M6

V4 ωa = 0, while, in order to achieve
∫
M6

V4 ω1,2 = 0,

we must set

C1 = 0 , C2 = 0 . (5.14)

As a final remark, we would like to point out that, if the Riemann surface is a 2-sphere,

the quantity
V g
Σ

2π
− 1

2

F a

2π
za (5.15)

is equal to the global angular form eS
2

2 of SO(3). The definition and properties of the latter

are reviewed in appendix F.

5.1.4 Computation of X8

To compute X8, we adopt the following point of view on the setup under consideration.

Let W̃6 denote the space obtained by combining external spacetime W4 with the Riemann

surface Σg. The Pontryagin classes of W̃6 detect the curvature of the background metric

on W4. If the Riemann surface is a sphere, they also detect the gauging of its SO(3)S2

isometries, i.e. the gauging via the connections Aa. The total space may be thought of

as an S4 fibration over W̃6. This fibration is encoded in an SO(5) bundle. Its connection

consists of two parts: one describes the twist of S4 over the Riemann surface, the other

corresponds to the gauging of the isometries related to the AAB
ext vectors.

The considerations of the previous paragraph lead us to write

p1(TM11) = p1(TW̃6) + p1(SO(5)) ,

p2(TM11) = p2(TW̃6) + p2(SO(5)) + p1(TW̃6) p1(SO(5)) . (5.16)

To proceed, we notice that

p1(TW̃6) = p1(TW4) + p1(SO(3)S2) , p2(TW̃6) = 0 , (5.17)

with p1(SO(3)S2) only present if the Riemann surface is a sphere. It is given by

p1(SO(3)S2) =
1

(2π)2
Fa F

a . (5.18)

Notice that any form with more than six legs on external spacetime can be discarded.

The final task is the computation of the Pontryagin classes p1,2(SO(5)). They can be

written in terms of traces of powers of the SO(5) field strength,

p1(SO(5)) = −1

2

1

(2π)2
trF 2

SO(5) , p2(SO(5)) =
1

8

1

(2π)4

[
(trF 2

SO(5))
2 − 2 trF 4

SO(5)

]
.

(5.19)

In the present situation, FAB
SO(5) contains two pieces,

FAB
SO(5) = FAB

Σ + FAB
ext , (5.20)

which are given in (5.3), (5.5) respectively.
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We are now in a position to compute X8. We only need to collect terms linear in VΣ.

The result reads

X8 =
1

48

(
q1

F 1

2π
+ q2

F 2

2π

)[
p1(TW4) + p1(SO(3)S2)

] VΣ

2π

− 1

48

[(
F 1

2π

)2

−
(
F 2

2π

)2] (
q1

F 1

2π
− q2

F 2

2π

)
VΣ

2π
+ . . . (5.21)

5.1.5 Inflow anomaly polynomial

Our first task is the computation of
∫
M6

E3
4 . Notice that in (5.10) the only objects with legs

along the S4 fibers are V
tg
4 , ωtg

AB. The integration of E3
4 along S4 can then be performed

using the identities (A.17), (A.18). The integration along the S4 fibers yields

∫

S4

E3
4 =

1

4
N3 · 1

8

1

(2π)4

[
(trF2)2 − 2 trF4

]
+ 3N γ24 . (5.22)

We now have to integrate over the Riemann surface. The term γ4, however, has no legs

along Σg, and drops out. The integral over Σg is performed recalling the definition of FAB

in (5.11). The result reads

∫

M6

E3
4 = −1

8
N3

(
q1

F 2

2π
+ q2

F 1

2π

)[
4
F 1

2π

F 2

2π
+ q1 q2

F a Fa

(2π)2

]
. (5.23)

The terms with F a are only present is the Riemann surface is a sphere.

Combining the E3
4 contribution and the E4X8 contribution, we get the total inflow

anomaly polynomial. In order to facilitate comparison with the CFT expectation, we

introduce the notation

F 1

2π
= −2n1 ,

F 2

2π
= −2n2 . (5.24)

We then have

I inflow6 = −1

6
N

(
q1 n

3
1 + q2 n

3
2

)
− 2

3

(
N3 − 1

4
N

)(
q1 n1 n

2
2 + q2 n2 n

2
1

)

+
1

24
N

(
q1 n1 + q2 n2

)
p1(TW4)

− 1

24

[
(N3 q22 −N) q1 n1 + (N3 q21 −N) q2 n2

]
p1(SO(3)S2) . (5.25)

The first two lines of the previous expression are in accordance with the results quoted

in [10, 35]. The last line is only present when the Riemann surface is a sphere, and at

present has not appeared in field-theoretic analyses of this scenario. The decoupling modes

that have to be subtracted to obtain the anomaly of the interacting SCFT are given by

dimensional reduction on Σg of a free 6d (2,0) tensor multiplet, which corresponds to the

center of mass mode of the branes.
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5.2 S2 fibrations over a product of Riemann surfaces

In this subsection we apply the methods of section 3.1 to construct the inflow anomaly

polynomial associated to a class of AdS5 solutions of 11d supergravity first discussed in [20],

which we refer to as GMSW solutions in this work. The input data for the construction of

the inflow anomaly polynomial are the geometry of the internal space M6 and the closed,

gauge-invariant 4-form V4 which we use as seed for the construction of E4. Both M6 and

V4 are read off from the supergravity solution. The geometry of M6 can be directly inferred

from the 11d line element, while V4 is identified, up to normalization, with the G4-flux of

the solution.

Salient features of the solutions. Let us now discuss some basic properties of M6 and

V4 in the GMSW solutions. We refer the reader to appendix F for a more detailed review.

The line element of M6 is of the form

ds2(M6) = h2S2 ds
2(S2) + h2Σ ds2(Σg) + h2y dy

2 + h2ψ Dψ2 . (5.26)

Some comments on our notation are in order. The coordinate y parametrizes an interval,

y ∈ [ymin, ymax], and the metric functions hS2 , hΣ, hy, hψ are functions of y only. Their

explicit expressions can be extracted from (F.1). The symbol ds2(S2) denotes the line

element on a round S2 with unit radius, while ds2(Σg) is the line element on a Riemann

surface of genus g equipped with a constant curvature metric. We only consider the cases

g = 0 or g ≥ 2, and we normalize the metric in such a way that the Ricci scalar is R = ±2.

The angle ψ has periodicity 2π. The circle S1
ψ is twisted over S2 and Σg, with

7

dDψ = −2VS2 − χVΣ . (5.27)

The quantity χ is the Euler characteristic of Σg. The 2-form VS2 is proportional to the

volume form of S2, while VΣ is proportional to the volume form on Σg. We use the

normalization conventions ∫

S2

VS2 = 2π ,

∫

Σg

VΣ = 2π . (5.28)

The metric functions hS2 , hΣ are smooth and strictly positive on the entire y interval.

The metric function h2y is everywhere positive on the interior of the y interval, with simple

poles at the endpoints. The function h2ψ, on the other hand, is everywhere positive on the in-

terior of the y interval, with simple zeros at the endpoints. The 2d space obtained combining

the y interval with the ψ circle is topologically a 2-sphere, which we denote S2
yψ. The behav-

ior of hy, hψ at the endpoints of the y interval is such that S2
yψ is free of conical singularities.

The angle ψ is an isometry direction for M6. The dual 1-form reads

kψ = h2ψ Dψ . (5.29)

The space M6 admits additional SO(3) isometries originating from S2. These isometries

are preserved by the S2
yψ fibration on top of S2. The corresponding Killing 1-forms are

ka = h2S2 ǫabc z
b dzc + za h

2
ψ Dψ . (5.30)

7Compared to [20], we have flipped the sign of ψ.
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The scalars za, a = 1, 2, 3 are constrained coordinates on S2, satisfying za za = 1. If the

Riemann surface Σg is also a 2-sphere, it give rise to a completely analogous set of Killing

vectors, generating an extra SO(3) factor in the isometry group. For simplicity, in the rest

of this section we focus on the isometries associated to the angle ψ and the S2, and we do

not consider the additional isometries that emerge if Σg is also a 2-sphere.

The form V4, which is going to be used as seed in the construction of E4 below, is

extracted from the expression of the G4-flux in the GMSW solution. The form V4 can be

written as

V4 =

[
dγΣ

VΣ

2π
+ dγS2

VS2

2π

]
Dψ

2π
−
[
2 γΣ + χγS2

] VΣ

2π

VS2

2π
. (5.31)

In the previous equation, γΣ and γS2 are functions of y only. The expressions for γΣ, γS2

can be extracted from in (F.10), (F.5).

Let us stress that the presentation (5.31) of V4 in terms of γS2 , γΣ is subject to a

redundancy. More precisely, there is a 1-parameter family of redefinitions of the functions

γΣ, γS2 that leave V4 invariant,

γS2 → γS2 + 2K , γΣ → γΣ − χK , (5.32)

where K is an arbitrary constant. This redundancy will be fixed below when we construct

E4 and impose the condition (3.28).

Flux quantization. We can extract the flux quantum numbers of the setup by integrat-

ing V4 on suitable 4-cycles in M6 [26]. If we integrate V4 along the Riemann surface Σg

and S2
yψ, we obtain

NΣ :=

∫

Σg×S2
yψ

V4 =
[
γΣ

]y=ymax

y=ymin

= γNΣ − γSΣ . (5.33)

The superscripts ‘N’, ‘S’ denote evaluation at y = ymax, min, respectively. We can also

integrate V4 along S2
yψ and S2,

NS2 :=

∫

S2×S2
yψ

V4 =
[
γS2

]y=ymax

y=ymin

= γNS2 − γSS2 . (5.34)

Finally, we can integrate V4 over Σg × S2 at y = ymax or y = ymin,

NN :=

∫

y=ymax

V4 = −
[
2 γNΣ + χγNS2

]
,

NS :=

∫

y=ymin

V4 = −
[
2 γSΣ + χγSS2

]
. (5.35)

The four quantities NΣ, NS2 , NN, NS are all integers, but they are not independent, since

NN −NS + 2NΣ + χNS2 = 0 . (5.36)

Since χ is an even integer, the difference NN − NS is an even integer. It follows that the

sum NN +NS is also an even integer, and we can thus define the integer M via

M =
1

2
(NN +NS) . (5.37)

The integers (NS2 , NΣ,M) can be taken to be the independent quanta specifying the G4-

flux configuration.
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Harmonic 2-forms on M6. The space M6 admits three independent harmonic 2-forms.

This is in accordance with the fact that we have three independent flux quanta, associated

to the three independent 4-cycles of M6. The harmonic 2-forms are denoted ωα and can

be parametrized as

ωα = dHα
Dψ

2π
+ (tαS2 − 2Hα)

VS2

2π
+ (tαΣ − χHα)

VΣ

2π
, (5.38)

where Hα is a function of y and tαS2 , tαΣ are suitable constants. This parametrization

is subject to a 1-parameter family of redefinitions, corresponding to shifts of Hα by an

arbitrary constant. For definiteness, we fix this ambiguity by demanding that

HN
α +HS

α = 0 . (5.39)

The quantities Hα, tαS2 , tαΣ may be fixed in terms of the metric functions in (5.26) by

requiring that ωα be co-closed. This would require solving and ODE for Hα. To proceed,

however, we do not need to find the explicit form of the function Hα. It is sufficient to

demand that the three ωα’s be Poincaré dual to the three 4-cycles associated to the flux

quanta (NΣ, NS2 ,M). More precisely, we require

∫

M6

V4 ω1 = NS2 ,

∫

M6

V4 ω2 = NΣ ,

∫

M6

V4 ω3 = M . (5.40)

We compute

∫

M6

V4 ωα =
[
tαS2 γΣ + tαΣ γS2 − 2 γΣHα − χγS2 Hα

]N
S

= NΣ tαS2 +NS2 tαΣ + 2M HN
α , (5.41)

where we have expressed γN,S
S2,Σ

in terms of the flux quanta. From (5.41) we see that (5.40)

implies

HN
α tαS2 tαΣ

α = 1 0 0 1

α = 2 0 1 0

α = 3 1
2 0 0

(5.42)

The above table contains all information we need about ωα to compute the inflow anomaly

polynomial.

Construction of E4. In the construction of E4 we introduce background connections

for the U(1)ψ isometry as well as the SO(3) isometry of S2. We also have three background

connections Aα associated to the three harmonic 2-forms ωα, even though one combination

of these vectors is massive, as discussed in more detail later. The construction of E4

proceeds according to the general recipe of section 3.1. The details of the derivation can

be found in appendix F.
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The 4-form E4 can be written as

E4 = V eq
4 +

Fα

2π
ωeq
α ,

V eq
4 =

(
dγΣ

VΣ

2π
+ dγS2 eS

2

2

)
(Dψ)g

2π
+

(
γΣ

VΣ

2π
+ γS2 eS

2

2

)(
− 2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π

)
,

ωeq
α = dHα

(Dψ)g

2π
+ (tαS2 − 2Hα) e

S2

2 + (tαΣ − χHα)
VΣ

2π
+ 2Hα

Fψ

2π
. (5.43)

The 1-form (Dψ)g is the gauged version of Dψ. It is computed in appendix F, and satisfies

the property
d(Dψ)g

2π
= −2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π
. (5.44)

The quantity Fψ = dAψ is the external connection associated to the U(1)ψ isometry. The

2-form eS
2

2 is the closed and SO(3)-invariant completion of VS2/(2π),

deS
2

2 = 0 ,

∫

S2

eS
2

2 = 1 . (5.45)

The explicit expression of eS
2

2 can be found in appendix F.

Recall from section 3.2 that we must impose the relation (3.28) in order to be able to

set to zero the combination NαF
α of background field strengths associated to harmonic

2-forms. As detailed in appendix F, imposing (3.28) allows us to write down the values of

the functions γS2 , γΣ at the endpoints of the y interval in terms of the three flux quanta

NS2 , NΣ, M ,

γN,S
S2 =

M NS2

2NΣ − χNS2

± 1

2
NS2 , γN,S

Σ = − M NΣ

2NΣ − χNS2

± 1

2
NΣ . (5.46)

Computation of X8. The first Pontryagin class p1(TM11) takes the form

p1(TM11) = p1(TW4) + p1(SO(3)) +

[
− 2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π

]2
. (5.47)

The above relation is justified as follows. The internal space M6 is an S1
ψ fibration over

a 5d space. Moreover, M6 is in turn fibered over external spacetime W4. The terms

p1(TW4) + p1(SO(3)) capture the first Pontryagin class of the 5d space fibered over W4.

The class p1(SO(3)) is associated to the SO(3) isometry of S2. The final contribution is

equal to [d(Dψ)g/(2π)]2. It accounts for the Chern root associated to the S1
ψ fibration,

whose connection has both internal legs (on S2 and Σg) as well as external legs on W4. By

a similar token, the second Pontryagin class of the total geometry reads

p2(TM11) =
[
p1(TW4) + p1(SO(3))

] [
− 2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π

]2
. (5.48)

Notice that we can drop any term in p2(TM11) with more than six external legs. In

summary, the class X8 for the setup under examination takes the form

X8 =
1

192

{
p1(TW4) + p1(SO(3))−

[
− 2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π

]2}2

. (5.49)
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Inflow anomaly polynomial. We can now compute
∫
M6

E3
4 and

∫
M6

E4X8 and extract

the inflow anomaly polynomial. Integrals over S2 are conveniently performed with the help

of the Bott-Cattaneo formula, reviewed in appendix F. We also need (5.42) and (5.46).

The curvatures associated to the three harmonic 2-forms ωα are subject to the con-

straint

Nα F
α = NS2 F 1 +NΣ F 2 +M F 3 = 0 . (5.50)

We choose to give the result in terms of F 2 and F 3, solving the above constraint for F 1.

The inflow anomaly polynomial reads

(2π)3 I inflow6 =− 1

24
(χNS2 +2NΣ)p1(TW4)F

ψ+
1

24
χp1(TW4)F

3

+

[
N2

S2

(
12M2+4χNS2NΣ+χ2N2

S2 −12N2
Σ

)

24(χNS2 −2NΣ)
+

1

12
χNS2

]
p1(SO(3))Fψ

− 1

4
MNS2 p1(SO(3))F 2− 1

8
NS2 (χNS2 +2NΣ) p1(SO(3))F 3

+
1

6
(χNS2 +2NΣ) (F

ψ)3

+

[
−NS2NΣ (−2M−χNS2 +2NΣ)(2M−χNS2 +2NΣ)

(2NΣ−χNS2)2
− 1

2
χ

]
(Fψ)2F 3

+
4MNΣ

2NΣ−χNS2

FψF 2F 3+
4M2−χ2N2

S2 +4N2
Σ

2(2NΣ−χNS2)
Fψ (F 3)2

+
NΣ

NS2

(F 2)2F 3+
M

NS2

F 2 (F 3)2− 1

6
χ(F 3)3 . (5.51)

An alternative presentation is based on a different choice of basis of harmonic 2-forms,

which we denote ωC, ωN, ωS. These combinations of the three ωα’s are defined by

∫
V4 ωC = NS2 ,

∫
V4 ωN,S = NN,S , (5.52)

where NN,S were defined in (5.34). More explicitly,

ωC = ω1 , ωN,S = ∓χ

2
ω1 ∓ ω2 + ω3 . (5.53)

Correspondingly, we have the identifications

F 2 = −FN + F S , F 3 = FN + F S . (5.54)

If desired, it is straightforward to rewrite the anomaly polynomial (5.51) in terms of FN,S.

Exact superconformal R-symmetry and central charge at large N . To identify

the superconformal R-symmetry we use a-maximization [36]. The non-Abelian flavor sym-

metry SO(3) cannot participate to a-maximization. As a result, we simply turn off the

associated background curvature. At the level of the anomaly polynomial, we perform the

replacements

Fψ → FR , F 2 → s2 FR , F 3 → s3 FR , (5.55)
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with unspecified coefficients s2,3. For simplicity, we work in the large N limit, with the

scalings

NS2 ∼ NΣ ∼ M ∼ F 2 ∼ F 3 ∼ O(N) . (5.56)

In the large N approximation, our task is to maximize the coefficient of (FR)3. There are

four branches of solutions for s2,3. In two branches, the coefficient of (FR)3 attains the

value 0; these branches are not acceptable. On the other two branches, we find

(2π)3 ICFT
6 = (2π)3 (−I inflow6 ) =

1

6
trR3 (FR)3 , (5.57)

with

trR3 = ±8N2
S2 N

2
Σ (4N2

Σ + 2χNS2 NΣ + χ2N2
S2 − 3M2)3/2

(2χNS2 NΣ + 3M2)2

− 4N2
S2 N

2
Σ (2NΣ + χNS2) (8N2

Σ + 2χNS2 NΣ + 2χ2N2
S2 − 9M2)

(2χNS2 NΣ + 3M2)2
. (5.58)

At large N ,

a = c =
9

32
trR3 . (5.59)

If we select the branch with the plus sign, we find

c =
9N2

S2 N
2
Σ (4N2

Σ + 2χNS2 NΣ + χ2N2
S2 − 3M2)3/2

4 (2χNS2 NΣ + 3M2)2

− 9N2
S2 N

2
Σ (2NΣ + χNS2) (8N2

Σ + 2χNS2 NΣ + 2χ2N2
S2 − 9M2)

8 (2χNS2 NΣ + 3M2)2
. (5.60)

We verify in appendix F that this result agrees with the holographic central charge com-

puted in [26]. More precisely, the explicit formula given in [26] applies to solutions with

M = 0. The formula (5.60) can be regarded as the generalization to the case M 6= 0, which

is harder to tackle directly in holography.

Here we focused on a large-N test of our result. Nonetheless, we expect the inflow

anomaly polynomial (5.51) to be exact in N , but to also contain contributions from de-

coupled modes. A field-theoretic understanding of the latter would allow us to repeat the

a-maximization analysis to obtain corrections to the central charge of the CFT (5.60).

6 Discussion

We have presented a systematic method of computing anomalies of QFTs that are geomet-

rically engineered in M-theory, using anomaly inflow in the M-theory background. As we

have described, there are two main pieces of data which determine the inflow analysis (i.e.,

ingredients of I12): the value of G4 on the boundary of 11d spacetime, which we denote

by E4, and the topology of the space M10−d corresponding to the transverse directions

to the d-dimensional QFT worldvolume. We presented a general recipe for constructing

E4 in terms of forms in M10−d, and characterized its ambiguities. This is naturally done

using the language of G-equivariant cohomology, where G is the isometry group of M10−d.
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We have argued that the inflow anomaly polynomial can be extracted unambiguously in

d = 2, 4, 6. For the remainder of this discussion, we elaborate on some of the results we

have obtained by applying this formalism.

All the ambiguity in our construction of E4 can be encapsulated by a single external

4-form γ4. We argue in appendix C that inflow anomalies in two and four dimensions

are independent of γ4. For d = 6, the inflow anomaly polynomial I inflow8 depends on γ4,

which is fixed by extremizing I inflow8 . This prescription is equivalent to imposing that the

8-form E2
4 + 2X8 be trivial in the cohomology of the internal space M4. We interpret this

requirement on E2
4 + 2X8 as a consequence of tadpole cancellation, which is necessary to

have a well-defined M-theory setup. Let us stress that our prescription for fixing γ4 in

d = 6 is such that we obtain the correct answer for the anomaly polynomial for M5-branes

probing C
2/Γ (given in (4.16)). In particular, the inclusion of γ4 generates an additional

term relative to the inflow analysis of [24], which provides precisely the contribution of the

Green-Schwarz term of the center of mass mode for the M5-branes. Previously this term

had only been fixed via anomaly matching on the tensor branch.

Turning to the 4d SCFTs corresponding to BBBW solutions, we have noted that our in-

flow analysis yields a new set of terms in the anomaly polynomials for the case of M5-branes

compactified on a sphere (the last line of (5.25)). These terms are due to the additional

su(2) isometry algebra of the sphere. This has not previously been discussed in the litera-

ture — such a symmetry does not appear from reducing the anomaly polynomial from 6d [9,

10], and is missing in the analysis of the flow to these theories from closing punctures on the

surface [37–39]. From the latter point of view, this su(2) is an accidental symmetry in the

IR. It would be interesting to understand if some of the subtleties regarding decoupled op-

erators in these theories are clarified with the knowledge of this IR symmetry enhancement.

We have also outlined a connection between the data of the holographic supergravity

solutions and the input to the inflow anomaly polynomial, and we demonstrated the utility

of this observation by computing the anomaly polynomial of the 4d field theories dual to the

GMSW solutions (with result given in (5.51)). Let us contrast our method to the standard

application of the AdS/CFT dictionary. In the latter, anomalies are extracted by comput-

ing Chern-Simons coefficients in the bulk; subleading terms in N require computing higher

derivative corrections to the supergravity action and loops in AdS. In our approach, the

inflow anomaly polynomial is expected to be exact in N , but it contains contributions both

from the interacting CFT of interest and from decoupled sectors. Our analysis of GMSW so-

lutions gives us strong hints for a UV realization of the dual SCFTs in terms of M5-branes

probing a C
2/Z2 singularity, compactified on a Riemann surface with a suitable flavor

twist [40]. The field theory picture will shed light on decoupling modes for these setups.

There are many interesting future directions to explore. We expect our methods to be

applicable to a wider class of 6d theories constructed in M-theory, including (2,0) theories of

type DN and (1,0) E-string theories. We also believe that our approach can be extended to

setups with M5-branes wrapped on a Riemann surface with defects. This analysis has been

performed in [41, 42] for regular punctures in 4d N = 2 theories, and it would be interesting

to study N = 2 irregular punctures and N = 1 punctures for general compactifications

of 6d theories on a Riemann surface. From a broader perspective, it would be useful to
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develop systematic geometric tools for the computation of ’t Hooft anomalies of theories

engineered in type IIA, type IIB string theories and F-theory. Moreover, the methods of

this work can be straightforwardly generalized to include anomalies for continuous higher-

form symmetries [43, 44].
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A Some useful identities

A.1 Identities for gauging of isometries

Let kmI denote the Killing vectors of the internal space M10−d, satisfying £IkJ = fIJ
K kK .

Given a p-form ω on M10−d, its gauged counterpart is denoted ωg and is defined by

ω =
1

p!
ωm1...mp dξ

m1 . . . dξmp ⇒ ωg =
1

p!
ωm1...mp Dξm1 . . . Dξmp , (A.1)

where Dξm = dξm + kmI AI . An alternative equivalent presentation of ωg is

ωg =

p∑

M=0

1

M !
AI1 . . . AIM ιIM . . . ιI1ω , (A.2)

where ιI denotes interior product with the Killing vector kmI ,

ιIω =
1

(p− 1)!
knI ωnm1...mp−1 dξ

m1 . . . dξmp−1 . (A.3)

A natural notion of gauge transformation on ωg can be defined as follows. Let λI be a

set of scalar functions depending on the external coordinates only, and consider the vector

field Ξ(λ) in the total space M10 specified by Ξ(λ) = λI kmI ∂ξm . We may then define8

δλ(ω
g) = £Ξ(λ)(ω

g) + δλA
I δ

δAI
(ωg) , (A.4)

where δλA
I denotes the standard gauge transformation of a connection,

δλA
I = −DλI , DλI = dλI − fJK

I AJ λK . (A.5)

8With reference to (A.2), we have explicitly

δλA
I δ

δAI
(ωg) =

p∑

M=1

1

(M − 1)!
δλA

I1 A
I2 . . . A

IM ιIM . . . ιI1ω .
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Making use of the identity

£IιJ − ιJ£I = fIJ
K ιK , (A.6)

we verify the relation

δλ(ω
g) = λI (£Iω)

g . (A.7)

Let us now suppose that the form ω is invariant under Lie derivative with respect to

all isometry directions,

£Iω = 0 . (A.8)

Under this assumption, the following identity holds,

d(ωg) = (dω)g + F I (ιIω)
g , (A.9)

where

F I = dAI − 1

2
fJK

I AJ AK . (A.10)

We may now consider a collection of p-forms ωI that satisfies

£IωJ = fIJ
K ωK . (A.11)

In other words, ωI transform in the adjoint representation of the isometry algebra. For

such a collection of p-forms, one has

d(ωg
I ) = (dωI)

g + F J (ιJωI)
g + fIJ

K AJ ωg
K . (A.12)

A similar formula holds for a two-indexed collection of p-forms: under the assumption that

£IωJ1J2 = fIJ1
K ωKJ2 + fIJ2

K ωK1K , (A.13)

one has the identity

d(ωg
I1I2

) = (dωI1I2)
g + F J (ιJωI1I2)

g + fI1J
K AJ ωg

KI2
+ fI2J

K AJ ωg
I1K

. (A.14)

The relations (A.9), (A.12), (A.14) are all examples of the general identity

d(Λg) +AI (£IΛ
g) = (dΛ)g + F I (ιIΛ)

g , (A.15)

where Λ is a p-form on M10−d in an arbitrary representation of the isometry algebra.

A.2 Identities for SO(5) isometry of S4

The forms V 4, ωAB, σAB,CD are defined in (4.5), repeated here for convenience,

V 4 =
3N

8π2
· 1

4!
ǫA1...A5 dy

A1 dyA2 dyA3 dyA4 yA5 ,

ωAB =
3N

8π2
· −2

4!
ǫABC1C2C3 dy

C1 dyC2 yC3 ,

σAB,CD =
3N

8π2
· 1

4!
ǫABCDE yE . (A.16)

– 30 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
5

Some useful integral identities involving V 4, ωAB, σAB,CD are
∫

S4

ωAB ωCD = 0 ,

∫

S4

V 4 σAB,CD = 0 , (A.17)

as well as

αA1A2A3A4 βB1B2B3B4

∫

S4

V 4 σA1A2,A3A4 σB1B2B3B4 =

= N3

[
3

8π2

]2{ 1

360
αABCD βABCD − 1

180
αABCD βACBD

}
,

αA1A2 βB1B2 γC1C2C3C4

∫

S4

ωA1A2 ωB1B2 σC1C2,C3C4

= N3

[
3

8π2

]2{ 1

540
αAB βCD γABCD − 1

270
αAB βCD γACBD

}
. (A.18)

In the last expressions, the quantities α, β, γ are arbitrary tensors used as placeholders for

SO(5) indices.

In the main text we described S4 in terms of embedding coordinates yA, A = 1, . . . , 5.

We can also describe S4 in terms of four local coordinates ξm, m = 1, . . . , 4. We can write

dyA = ∂myA dξm , (dyA)g = ∂myADξm , Dξm = dξm + kmAB AAB , (A.19)

where kmAB are the Killing vectors of the SO(5) isometries. They are given by

kmAB = gmn y[A∂ny
B] , (A.20)

where gmn is the round metric on S4 induced from the flat metric on R
5,

gmn = ∂myA ∂nyA . (A.21)

Let us record the useful identities

gmn ∂myA ∂ny
B = δAB − yA yB , ιAB dyC = y[A δCB] . (A.22)

B The G-equivariant cohomology class defined by E4

B.1 Relation between V
eq
4 , ωeq

α
and G-equivariant polyforms

The discussion of section 3.1 fits naturally into the language of G-equivariant cohomology,

see e.g. [45] for a review. The group G in our discussion is the isometry group of M10−d,

acting onM10−d infinitesimally via Lie derivative. The objects of interest are maps from the

Lie algebra g of G into polyforms on M10−d, i.e. formal linear combinations of differential

forms of various degrees,

f : g → Ω∗(M10−d)

X 7→ α(X ) .
(B.1)

We fix a basis {tI} of g, so that we can write

g ∋ X = X I tI . (B.2)
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The map f must beG-equivariant, which, at the infinitesimal level, amounts to the property

£If(X ) = fIJ
K X J ∂

∂XK
f(X ) . (B.3)

The equivariant differential acting on α is defined by

(deqf)(X ) = d
(
f(X )

)
+ ιX f(X ) , (B.4)

where the operation ιX amounts to X IιI . Crucially, (deq)
2 = 0. The G-equivariant coho-

mology of M10−d is then realized by considering the set of deq-closed polyforms, modulo

deq-exact polyforms.

Let us now revisit the expression (3.7) for the object V eq
4 . If we identify the external

connections F I with the abstract variables X I parametrizing g, we can reinterpret V eq
4 as

a map of the form (B.1),

fV4 : X I 7→ fV4(X ) = V4 + X I ωI + X I X J σIJ . (B.5)

We then verify that the conditions (3.10) are precisely equivalent to the equivariance of fV4

as in (B.3). Furthermore, the conditions (3.12) are equivalent to deqfV4 = 0. The object

V eq
4 thus amounts to an equivariantly closed form, hence the label ‘eq’. In a completely

analogous fashion, the object ωeq
α in (3.13) corresponds to the map

fωα : X I 7→ fωα(X ) = ωα + X I 2σIα . (B.6)

We verify that (3.14) is equivalent to the equivariance of fωα , and that (3.15) is equivalent

to deqfωα = 0.

Incidentally, we notice that both fV4 and fωα are polynomials in X I . The natural

notion of degree for each monomial in fV4 or fωα is

(differential form degree) + 2 (polynomial degree) . (B.7)

It follows that fV4 is homogeneous of degree 4, and fωα is homogeneous of degree 2.

B.2 Deformations of E4 and G-equivariant cohomology

In section 3.1 we have demonstrated that constructing a good representative for E4 amounts

to solving the conditions (3.19) and (3.20), repeated here for convenience,

dV4 = 0 , £XV4 = 0 ,

ιXV4 + dωX = 0 , £XωY = fXY
Z ωZ ,

ι(XωY ) + dσXY = 0 , £XσY1Y2 = fXY1
Z σZY2 + fXY2

Z σY1Z . (B.8)

We are using a collective index X = (I, α) that enumerates all external connections. By

definition, ια = £α = 0, and the only non-zero components of fXY
Z are fIJ

K . In this

appendix, we suppose to fix a reference solution (V4, ωX , σXY ) to (B.8), and we investigate

the most general deformation to a different solution.
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The most general deformation. The outcome of the analysis is as follows. The new

forms are given by

V4 → V4 + dW3 ,

ωX → ωX + ιXW3 − Z2X + dλX +H2X ,

σXY → σXY + ι(XλY ) − Z ′
0(XY ) − Z0(XY ) + uXY . (B.9)

The 3-form W3 must be chosen in such a way that there exists a 2-form Z2X such that

£XW3 = dZ2X . (B.10)

The 2-form Z2X in turn determines the 1-forms Z1[XY ] and the harmonic 2-forms H ′
2[XY ]

via

fXY
Z Z2Z −£XZ2Y +£Y Z2X = dZ1XY +H ′

2XY . (B.11)

The harmonic forms H2X must be chosen compatibly with the constraint

fXY
Z H2Z +H ′

2XY = 0 . (B.12)

Once the harmonic 2-forms H2X are chosen, they determine the 0-forms Z ′
0XY and the

harmonic 1-forms H ′
1XY via

ιXH2Y = dZ ′
0XY +H ′

1XY . (B.13)

The 1-forms λX must be chosen in such a way that there exist a 0-form Z0XY such that

£XλY = fXY
Z λZ + ιY Z2X − Z1XY + dZ0XY −H ′

1XY . (B.14)

Finally, the constants uXY must be chosen in such a way that

0 = £(Y1
Z0X|Y2) −£XZ0(Y1Y2) + fXY1

Z Z0(ZY2) + fXY2
Z Z0(ZY1)

−£XZ ′
0(Y1Y2)

+ fXY1
Z Z ′

0(ZY2)
+ fXY2

Z Z ′
0(ZY1)

− ι(Y1
H ′

1X|Y2)
− ι(Y1

Z1X|Y2) − fXY1
Z uZY2 − fXY2

Z uZY1 . (B.15)

Manifestly symmetric deformations and G-equivariant cohomology. It is natural

to consider deformations that are parametrized by quantities that are manifestly symmetric

under the action of the isometry group G. More explicitly, we impose

£XW3 = 0 , £XλY = fXY
Z λZ , £XH2Y = fXY

Z H2Z ,

£XuY1Y2 = fXY1
Z uZY2 + fXY2

Z uY1Z . (B.16)

We notice that, in the above equations, we actually have £XH2Y = 0 (because H2Y is

harmonic) and £XuY1Y2 = 0 (because uY1Y2 is constant). Under the additional assump-

tions (B.16), the most general deformation described above takes a simpler form. Compar-

ison of (B.16) with (B.10) shows that we can take Z2X = 0, and therefore also Z1XY = 0,

H ′
2XY = 0. Contrasting (B.16) and (B.14) we infer 0 = dZ0XY − H ′

1XY , which implies

Z0XY = const and H ′
1XY = 0. The constant Z0XY can be reabsorbed in uXY .
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After these simplifications, the deformations parametrized by W3 and λI take the form

V4 → V4 + dW3 ,

ωI → ωI + ιIW3 + dλI , ωα → ωα

σIJ → ι(IλJ) , σIα → 0 , σαβ → 0 . (B.17)

This is equivalent to adding to the polyform fV4(X ) a G-equivariantly exact polyform,

fV4 → fV4 + deqfW3 , fW3(X ) = W3 + X I λI , (B.18)

while leaving the polyforms fωα unaffected.

If we focus instead on the deformation parametrized by λα, we have

V4 → V4 ,

ωI → ωI , ωα → ωα + dλα

σIJ → 0 , σIα → 1

2
ιIλα , σαβ → 0 . (B.19)

In this case, the polyform fV4 is unaffected, while the polyform fωα are shifted by G-

equivariantly exact terms,

fωα → fωα + deqfλα
, fλα

(X ) = λα . (B.20)

Let us now discuss the deformation parametrized by H2I . Since this object is a har-

monic 2-form, we must have

H2I = cI
α ωα , (B.21)

with invariance under G imposing fIJ
K cαK = 0. This is a shift of ωI by a combination of

ωα’s, which is discussed in the main text around (3.23).

A deformation parametrized by H2α is a change of basis for the harmonic 2-forms,

hence contains no interesting information.

Finally, constant shift by uIJ , uIα, are discussed around (3.23) and (3.26), while a shift

by uαβ only affects the purely external, closed 4-form γ4.

C (In)dependence of I inflow
d+2

on γ4

Throughout this appendix we make use of the compact notation with collective index

X = (I, α) introduced at the end of section 3.1. The most general E4 in this language is

given in (3.17), repeated here for convenience,

E4 = V g
4 + FX ωg

X + FX F Y σXY + γ4 . (C.1)

Notice that in the main text we have set by definition σαβ = 0. In this appendix, it is

convenient to relax this assumption, and let σαβ be an unspecified constant. Turning on

σαβ amounts to shifting γ4 as

γ4 → γ4 +
1

(2π)2
Fα F β σαβ . (C.2)

Since γ4 is an arbitrary closed and gauge-invariant external 4-form, this shift is immaterial.

The goal of this appendix is to analyze the dependence of I inflowd+2 =
∫
M10−d

I12 on γ4
and on constant shifts in σXY .
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C.1 The case d = 6

Let us first focus on the contribution of the E3
4 term in I12 to the inflow anomaly polyno-

mial. Making use of the parametrization (3.17), we compute

−1

6

∫

M4

E3
4 = −1

2
FX1 FX2 FX3 FX4

∫

M4

[
ωX1 ωX2 σX3 X4 + V4 σX1X2 σX3X4

]
(C.3)

− 1

2
FX F Y γ4

∫

M4

[
ωX ωY + 2V4 σXY

]
− 1

2
γ24

∫

M4

V4 . (C.4)

Let us now turn to the term E4X8 in I12. We are only interested here in keeping track of

terms with σXY , γ4. The quantity E4X8 is necessarily linear in these parameters. In order

to have a σXY or γ4 factor, we must select the part of E4 with four external legs, which

means that X8 must saturate the integration over M4. The relevant terms in X8 can be

written as

X8 = Z V g
4 p1(TW6) + ZXY V g

4 FX F Y + . . . , (C.5)

where Z and ZXY are constants. Notice that X8 is not expected to receive any contribution

proportional to the curvatures Fα associated to the harmonic 2-forms ωα. As a result, the

only non-zero components of ZXY are ZIJ . Keeping nonetheless the collective indices X,

Y , we have

−
∫

M4

E4X8 = −
[
Z p1(TW6) + ZXY FX F Y

] ∫

M4

[
γ4 + FX F Y σXY

]
V4

+ terms without σXY , γ4 . (C.6)

We propose the following prescription to fix γ4: extremize I inflow8 with respect to arbi-

trary variations of γ4. We compute

δI inflow8 = δγ4

{
− 1

2
FX F Y

∫

M4

[
ωX ωY + 2V4 σXY

]

−
[
γ4 + Z p1(TW6) + ZXY FX F Y

] ∫

M4

V4

}
. (C.7)

The quantity γ4 is then be fixed to be

γ4 = −1

2
FX F Y

∫
M4

(ωX ωY + 2V4 σXY )∫
M4

V4
− Z p1(TW6)− ZXY FX F Y . (C.8)

To further elucidate the prescription (C.8), let us consider the 8-form E2
4 + 2X8. The

relevance of this combination stems from the fact that it corresponds to the combination

G2
4/(2π)

2 + 2X8 that governs the M2-brane tadpole cancellation in M-theory compactifi-

cations. Let us focus on the part of E2
4 + 2X8 with four legs on M4,

[
E2

4+2X8

]
4 legs on M4

= FX F Y
[
ωX ωY +2V4 σXY

]
+2V4

[
γ4+Z p1(TW6)+ZXY FX F Y

]
.

(C.9)

– 35 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
5

The r.h.s. is a sum of terms, each given by an external 4-form wedge a 4-form on M4. Let

us demand [
E2

4 + 2X8

]
4 legs on M4

= 0 in cohomology of M4 . (C.10)

Since h4(M4) = 1, the above requirement is equivalent to

∫

M4

(E2
4 + 2X8) = 0 . (C.11)

Making use of (C.9), we see that this selects exactly the same γ4 as in (C.8). This obser-

vation allows us to interpret the prescription (C.8) as an M2-brane tadpole cancellation

condition.

C.2 The case d = 4

In the case d = 4, not all harmonic 2-forms ωα are associated to global symmetries of the

setup. To clarify this point, let us consider the low-energy effective action for the compacti-

fication of M-theory on the internal space M6. Assuming supersymmetry is not completely

broken, the low-energy theory is a supergravity theory in five dimensions. One linear combi-

nation of the vectors Aα associated to ωα gets massive because of its coupling to a 5d axion.

The 11d background metric for the compactification is of the form

ds2(M11) = e2λ ds2(W5) + ds2(M6) , (C.12)

where λ is a warp factor and W5 denotes the 5d spacetime where the low-energy super-

gravity is defined. We refrain from a full analysis of the low-energy dynamics, and only

focus on the relevant couplings. The G4-flux consists of a background part, together with

fluctuations. Let us write

G4

2π
= V g

4 + FX ωg
X + FX F Y σXY + g4 + . . . . (C.13)

In the previous expression, V4 is the G4-flux configuration in the background. The gauging

procedure couples it to the 5d vectors associated to isometries of M6. The term FXωg
X

contains both the vectors associated to isometries, and the vectors associated to harmonic

2-forms ωα. The term FX F Y σXY is higher-order in external fluctuations, but we have

included because it is needed for closure of G4. Finally, g4 is a 5d field, independent of the

internal coordinates. It is the zeromode in the Kaluza-Klein expansion of G4 onto scalar

harmonics on M6. This 5d field satisfies

dg4 = 0 , g4 = dc3 , (C.14)

with c3 a 3-form potential in five dimensions. Notice that a 3-form potential in five dimen-

sions is dual to a 0-form potential, i.e. an axion.

The topological couplings in the 11d action induce Chern-Simons couplings in the low-

energy 5d supergravity theory. A convenient way to perform the dimensional reduction

is to write the Chern-Simons interactions in one dimension higher. We thus introduce
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M12 with ∂M12 = M11, as well as W6 with ∂W6 = W5. The C3G4G4 term in M11 is

reformulated as G4G4G4 in M12, and upon reduction on M6 yields the couplings

∫

M6

−1

6

[
G4

2π

]3
= −1

2
g4 F

X

∫

M6

V4 ωX − 1

6
FX F Y FZ

∫

M6

(ωX ωY ωZ + 3V4 ωX σY Z) .

(C.15)

The second coupling is a Chern-Simons coupling in five dimensions, and is not instrumental

for our analysis. The first coupling is the essential ingredient in what follows.

Recall from the discussion around (3.25) that we are free to shift ωI with ωα’s, if we

perform a compensating redefinition of the curvatures Fα. In particular, we can always

shift the forms ωI with linear combinations of ωα in such a way as to obtain
∫

M6

V4 ωI = 0 . (C.16)

With this choice of basis, g4 is only coupling to the vectors Fα associated to the harmonic

2-forms ωα.

The considerations of the previous paragraph show that the terms in the 5d low-energy

effective action involving g4 are

S5d =

∫

W5

[
− 1

2
G g4 ∗ g4 −Kα g4A

α + . . .

]
, Kα =

1

4π

∫

M6

V4 ωα . (C.17)

The Hodge star is computed with the external metric on W5. The quantity G in the kinetic

term for g4 can be fixed by reducing G4 ∗11 G4 on the background (C.12). We do not need

the precise expression of G in what follows. In the action (C.17), g4 is the field strength of

the 3-form potential c3, which is regarded as dynamical field. We can alternatively dualize,

by adding a 0-form Lagrange multiplier Φ to impose the Bianchi identity for g4,

∆S5d = −
∫

W5

g4 dΦ . (C.18)

If we eliminate g4 using its equation of motion, we obtain

S5d +∆S5d =

∫

W5

− 1

2G DΦ ∗DΦ+ . . . , DΦ = dΦ+KαA
α . (C.19)

The scalar Φ has a shift symmetry coupled to the combinationKαA
α, which is thus rendered

massive, as anticipated.

In the computation of the inflow anomaly polynomial, the connections AI , Aα are

background fields coupled to the global symmetries of the system. We have argued that

the combination KαA
α does not correspond to a symmetry. As a result, we must set it to

zero in the computation of the anomaly,

Fα

∫

M6

V4 ωα = 0 . (C.20)

Since we work in a basis such that (C.16) holds, the condition (C.20) is equivalent to

FX

∫

M6

V4 ωX = 0 . (C.21)
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We are now in a position to analyze how ambiguities in E4 affect the inflow anomaly

polynomial. First of all, let us study the E3
4 term in I12. We compute

− 1

6

∫

M6

E3
4 = −1

6
FX F Y FZ

∫

M6

[
ωX ωY ωZ +6V4 ωX σY Z

]
−FX γ4

∫

M6

V4 ωX . (C.22)

The dependence on γ4 immediately drops away thanks to (C.21). The same holds true for

any dependence on shifts of σXY . Indeed, we can write

σXY = σXY + uXY , (C.23)

where σXY is a reference choice for σXY , and uXY are arbitrary constant. The dependence

on uXY in (C.22) disappears, thanks to

− 1

6
FX F Y FZ

∫

M6

6V4 ωX uY Z = −uY Z F Y FZ

(
FX

∫

M6

V4 ωX

)
= 0 . (C.24)

In conclusion, the value of
∫
M6

E3
4 is insensitive to ambiguities in E4.

The term E4X8 can be sensitive to ambiguities in E4 if X8 can saturate the integral

over M6. For this to be possible, X8 must contain a term of the form

X8 = Zg
6I F

I + . . . , (C.25)

where Z6I is a 6-form on M6 and the label I refers to a U(1) factor in the isometry group.

In all examples we consider in this work, however, X8 does not contain any terms of the

form (C.25). While we do not have a general proof, we suspect that this feature should

hold in general. As a result, the term E4X8 is insensitive to ambiguities in E4, and the full

inflow anomaly polynomial is determined unambiguously.

C.3 The case d = 2

The contribution to the inflow anomaly polynomial coming from the E3
4 term in I12 reads

− 1

6

∫

M8

E3
4 = −1

2
FX F Y

∫

M8

[
V4 ωX ωY + V 2

4 σXY

]
− 1

2
γ4

∫

M8

V 2
4 . (C.26)

As far as the E4X8 term is concerned, it can depend on ambiguities in E4 only if X8 can

saturate the integration in the internal space M8. The part of X8 with 8 internal legs is

the 8-form

Z8 = Xbackground
8 =

1

192

[
p1(TM8)

2 − 4 p2(TM8)

]
, (C.27)

where the label “background” refers to the fact that Z8 is the value of X8 when all external

curvatures are turned off. The terms in E4X8 that are potentially ambiguous are then

−
∫

M8

E4X8 = −FX F Y

∫

M8

Z8 σXY − γ4

∫

M8

Z8 + . . . . (C.28)

In summary, the terms in the inflow anomaly polynomial containing γ4 or σXY are

I inflow4 = −1

2
FX F Y

∫

M8

(V 2
4 + 2Z8)σXY − 1

2
γ4

∫

M8

(V 2
4 + 2Z8) + . . . (C.29)
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We argue, however, that a good M-theory background necessarily requires

∫

M8

(V 2
4 + 2Z8) = 0 . (C.30)

This condition is the tadpole cancellation condition that must hold for any compactifica-

tion of M-theory on an 8-manifold in absence of localized M2-brane sources. As we can

see, thanks to (C.30) the inflow anomaly polynomial (C.29) is independent on γ4 and on

constant shifts of σXY . As a result, it is completely determined.

D Details on branes at an orbifold singularity

Preliminaries. When the M5-brane stack probes an orbifold singularity, the isometry of

S4 is reduced to a subgroup of SU(2)L × SU(2)R of SO(5). Under the reduction SO(5) →
SU(2)L × SU(2)R, we find

p1(SO(5)) = −2
[
c2(L)− c2(R)

]
,

p2(SO(5)) =
[
c2(L)− c2(R)

]2
,

FAB FCD σAB,CD =
1

2
y5N |Γ|

[
c2(L)− c2(R)

]
. (D.1)

In the above expressions c2(L,R) ≡ c2(SU(2)L,R). We have used the expression for σAB,CD

in (4.5), keeping in mind that N is now replaced by N |Γ|.
The quantity c2(L) contains both internal and external contributions. The external

contribution is related to isometries of S4/Γ, and is only present if Γ is of A type. The

internal contributions are present for any Γ and are localized at the north and south poles.

They measure the curvature of the ALE spaces that resolve the orbifold singularities C2/Γ

at each pole. Since the two singularities are identical,

∫

N
c2(L) =

∫

S
c2(L) = χΓ . (D.2)

In the above relations the symbols
∫
N,S denote schematically integration on the ALE space

at the north, south pole respectively. The Euler characteristic χΓ is given in (4.14).

The form E4. The 4-form E4 is given in (4.12), repeated here for convenience,

E4 = V
g
4 + FAB ωg

AB + FAB FCD σAB,CD +
FNi

2π
ωNi +

F Si

2π
ωSi + γ4 . (D.3)

It is important to stress that all curvatures in E4, including the curvature of SU(2)L, are

understood to have purely external legs. In other words, the term FAB FCD σAB,CD does

not contain the internal part of c2(L) that integrates to χΓ at the ALE spaces near the poles.

This observation is crucial to obtain the correct result. The fact that E4 only contains the

external connections is due to the fact that it is built gauging the isometries of S4/Γ.
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The form X8. The Pontryagin classes of the total space can be written as

p1(TM11) = p1(TW6) + p1(SO(5)) ,

p2(TM11) = p2(TW6) + p2(SO(5)) + p1(TW6) p1(SO(5)) , (D.4)

where p1,2(SO(5)) are given as in (D.1). Expressing X8 in terms of p1,2(TW6), c2(L,R),

we arrive at

X8 =
1

48
c2(L)

[
p1(TW6) + 4 c2(R)

]
+

1

192

[
p1(TW6)

2 − 4 p2(TW6)
]
+

1

48
c2(R) p1(TW6) .

Let us stress that here c2(L) contains both internal and external parts, while all other

curvatures have legs along W6 only.

Integral of E4X8. The 4-form E4 is given in (4.12). The integral
∫
M4

E4X8 receives

two types of contributions. Firstly, we can consider the purely external part of X8, and

saturate the integral over S4 using the part of E4 with four internal legs, which is V 4. This

contribution is
∫

M4

E4X8 ⊃
N |Γ|
|Γ|

{
1

48
c2(L)

ext
[
p1(TW6) + 4 c2(R)

]
+

1

192

[
p1(TW6)

2 − 4 p2(TW6)
]

+
1

48
c2(R) p1(TW6)

}
,

where the factor N |Γ| originates from the new normalization of V 4, the factor 1/|Γ| orig-
inates from the integral over S4/Γ (as opposed to S4). The superscript “ext” on c2(L)

denotes its external part.

The other contribution to
∫
M4

E4X8 is obtained by saturating the integration over M4

with the internal part of c2(L) inside X8. We then consider the purely external part of E4.

We find
∫

M4

E4X8 ⊃
1

48

[
p1(TW6) + 4 c2(R)

] ∫

M4

c2(L)
[
FAB FCD σAB,CD + γ4

]
. (D.5)

The integral over M4 localizes at the two poles. More precisely, we get integrals over the

ALE spaces that resolve the orbifold singularities at each pole. Taking into account the

opposite orientation of the two poles, we can write
∫

M4

c2(L)
[
FAB FCD σAB,CD + γ4

]
=

∫

N
c2(L)

[
FAB FCD σAB,CD + γ4

]N

−
∫

S
c2(L)

[
FAB FCD σAB,CD + γ4

]S
. (D.6)

Since γ4 is independent on the coordinates on S4, it drops away. In contrast,

FAB FCD σN
AB,CD = −FAB FCD σS

AB,CD, and the two terms add to

∫

M4

c2(L)
[
FAB FCD σAB,CD + γ4

]
= N |Γ|χΓ

[
c2(L)

ext − c2(R)
]
, (D.7)

where we have used (D.1) and (D.2).
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In conclusion, the integral of E4X8 is given by

∫

M4

E4X8=
N |Γ|χΓ

48

[
c2(L)

ext−c2(R)
][
p1(TW6)+4c2(R)

]
+
N

48
c2(L)

ext
[
p1(TW6)+4c2(R)

]

+
N

192

[
p1(TW6)

2−4p2(TW6)
]
+
N

48
c2(R)p1(TW6). (D.8)

Integral of E3
4 . A first set of contributions to

∫
M4

E3
4 originates from the region away

from the north and south poles. These contributions are given by

1

6

∫

M4

E3
4 ⊃

∫

S4/Γ

[
1

2
(FFσ) (Fω)2+

1

2
(FFσ)2V 4+

1

2
(Fω)2 γ4+(FFσ)V 4 γ4+

1

2
V 4 γ

2
4

]
,

(D.9)

where we are suppressing SO(5) indices for brevity. The integral over S4/Γ can be computed

with the identities (A.17), (A.18). We must keep in mind, however, that the quotient by

Γ generates an additional factor 1/|Γ|. We then verify that the r.h.s. of (D.9) is equal to

N3 |Γ|2
24

p2(SO(5)) +
1

2
N γ24 . (D.10)

Let us now discuss the contributions to
∫
M4

E3
4 coming from the harmonic 2-forms

localized at the north and south poles. These terms are

1

6

∫

M4

E3
4 ⊃ 1

2

∫

M4

[
(FFσ) + γ4

][(FNi ωNi)
2

(2π)2
+

(F Si ωSi)
2

(2π)2

]
. (D.11)

To proceed, we make use of

∫

M4

(FFσ + γ4)
(FNωN)

2

(2π)2
= +(FFσN + γ4)

FNi

2π

FNj

2π

∫

N
ωNi ωNj ,

∫

M4

(FFσ + γ4)
(F SωS)

2

(2π)2
= −(FFσS + γ4)

F Si

2π

F Sj

2π

∫

N
ωSi ωSj . (D.12)

The relative sign is due to the different orientation of the two ALE spaces near the north

and south poles. The integral
∫
N ωNi ωNj is proportional to the entries of the Cartan matrix

of the ADE Lie algebra gΓ associated to Γ, and similarly for
∫
N ωSi ωSj . We know that,

at the conformal point where all resolution CP
1’s are shrunk to zero size, we have a non-

Abelian enhancement of the flavor symmetry at each pole. In light of this observation, we

make the replacements

FNi

2π

FNj

2π

∫

N
ωNi ωNj →

1

2

tr(FN)2

(2π)2
,

F Si

2π

F Sj

2π

∫

S
ωSi ωSj →

1

2

tr(F S)2

(2π)2
. (D.13)

Recalling (D.1), it follows that the r.h.s. of (D.11) is equal to

N |Γ|
8

[
c2(L)

ext − c2(R)
] [tr(FN)2

(2π)2
+

tr(F S)2

(2π)2

]
+

1

4
γ4

[
tr(FN)2

(2π)2
− tr(F S)2

(2π)2

]
. (D.14)
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In conclusion, the integral of E3
4 yields

1

6

∫

M4

E3
4 =

N3 |Γ|2
24

[
c2(L)

ext − c2(R)
]2

+
1

2
N γ24

+
N |Γ|
8

[
c2(L)

ext − c2(R)
] [tr (FN)2

(2π)2
+

tr (F S)2

(2π)2

]

+
1

4
γ4

[
tr (FN)2

(2π)2
− tr (F S)2

(2π)2

]
. (D.15)

The sum of the above quantity with
∫
M4

E4X8 given in (D.8) gives −I inflow8 as quoted in

the main text in (4.13).

E Details on the BBBW setup

This appendix is devoted to some derivations regarding the setups studied in section 5.1.

The relevant space M6 is an S4 fibration over Σg, specified by the background flux (5.3),

repeated here for the reader’s convenience,

FAB
Σ = qAB VΣ ,

∫

Σg

VΣ = 2π . (E.1)

The matrix qAB is given in (5.3). All the following results, however, hold for any constant

antisymmetric qAB.

Additional isometries in the case g = 0. In the case g = 0, the line element of M6

reads

ds2(M6) = ds2(S2) + ds2(S4)t = ds2(S2) + (dyA − qAB yB V) (dyA − qAC yC V) . (E.2)

Recall that yA, A = 1, . . . , 5 are constrained coordinates for the S4 fiber, yAyA = 1. The

1-form V is defined only locally, and is an antiderivative of VΣ,

dV = VΣ . (E.3)

We find it convenient to parametrize the base S2 in terms of three constrained coordinates

za za = 1, a = 1, 2, 3. By means of a direct computation, one verifies that the following

triplet of 1-forms on M6 are such that the dual contravariant vectors are Killing,

ka = ǫabc z
b dzc − 1

2
za q

AB yA (dyB − qBC yC V) . (E.4)

The term 1
2 ǫabc z

b dzc is the expression of the Killing 1-forms of a round S2 considered in

isolation. The other terms in (E.4) demonstrate how these 1-forms are extended to the

total space M6, depending on the twist data qAB.

The explicit expression (E.4) of the Killing 1-forms ka is useful in checking the following

identities,

ιa(dy
A)t =

1

2
za q

AB yB , ιadz
b = −ǫa

bc zc ,

VΣ =
1

2
· 1
2
ǫabc dz

a dzb zc , ιaVΣ =
1

2
dza . (E.5)
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We can now compute the interior product of ka with V4 given in (5.8). Two useful partial

results are

ιa(V 4)
t =

3N

8π2
· 1

12
za ǫABCDE (qAA′

yA′) (dyB)t (dyC)t (dyD)t yE

=
3N

8π2
· −1

24
za ǫABCDE qAB (dyC)t (dyD)t (dyE)t ,

qAB ιa ω
t
AB =

3N

8π2
· −1

12
za ǫABCDE qAB (qCC′

yC′) (dyD)t yE

=
3N

8π2
· 1

48
za ǫABCDE qAB qCD (dyE)t , (E.6)

where we used two Schouten identities deriving from δB[A1
ǫA2A3A4A5A6] = 0. Combining

all elements, we verify the identity

ιaV4 =
3N

8π2
· 1

24
d

{
za

[
VΣ ǫABCDE qAB qCD yE − ǫABCDE qAB (dyC)t (dyD)t yE

]}

= d

{
za

[
VΣ qAB qCD σAB,CD +

1

2
qAB ωt

AB

]}
. (E.7)

Derivation of E4. The 4-form E4 is constructed as

E4 = V g
4 + F I ωg

I + F I F J σIJ + C p1(TW4) . (E.8)

Here we have used (3.17), combined with the observation that M6 has no harmonic 2-

forms, so that the collective index X reduces to the isometry label I. The latter refers

both to isometries of class (i) and isometries of class (ii), in the terminology of section 5.1.

Accordingly, we split the I index as

I = (Î , a) , Î = 1, 2 , a = 1, 2, 3 . (E.9)

We have already introduced the SO(3)S2 index a above. The new index Î refers to isometries

of class (i). More precisely, we describe the external connections AAB
ext of (5.5) by writing

AAB
ext = AÎ MÎ

AB , (E.10)

where the index Î labels the two generators of the class (i) isometry SO(2)1 × SO(2)2,

AÎ = (A1, A2). The matrices MÎ
AB are constant and readily read off from (5.5),

M1
AB =




0 −1

1 0

0

0

0




, M2
AB =




0

0

0 −1

1 0

0




. (E.11)

The Killing vectors associated to AÎ are linear combinations of the Killing vectors kAB of

the round S4,

kÎ = MÎ
AB kAB , (E.12)

with kAB as in (A.20).
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Determining E4 amounts to solving the following equations for ωI , σIJ ,

ιIV4 + dωI = 0 , ι(IωJ) + dσIJ = 0 , (E.13)

where I = (Î , a) and V4 is given in (5.8).

Solution for ωI . Let us first discuss the forms ωÎ associated to isometries from the S4

fiber. A natural ansatz for ωÎ is

ωÎ = ω̃t
Î
+ VΣ gÎ , (E.14)

where ω̃Î is a 2-form with two legs along the S4 fibers, while gÎ are 0-forms. The equation

that determines ωÎ is dωÎ + ιÎV4 = 0. Upon using (E.14) and separating terms with and

without VΣ, we find the relations

dω̃Î + ιÎV 4 = 0 , dgÎ + pAB ιABω̃Î + qAB ιÎ ωAB = 0 . (E.15)

The first equation is readily solved by setting

ω̃Î = MÎ
AB ωAB . (E.16)

Since by assumption ω̃I is a 2-form in the S4 fiber, there is no non-trivial closed but not

exact form that we can add to it. Adding an exact piece would have no effect on the inflow

anomaly polynomial. The second equation in (E.15) becomes

0 = dgÎ + qAB MÎ
CD

(
ιABωCD + ιCDωAB

)
= dgÎ − 2 qAB MÎ

CD dσAB,CD , (E.17)

where we have used (A.22). As we can see, gÎ is fixed up to a constant. More precisely,

the second equation in (E.15) only has to hold when wedged with VΣ. In summary, ωÎ is

given by

ωÎ = MÎ
AB ωt

AB + 2VΣ qAB MÎ
CD σAB,CD + CÎ VΣ , (E.18)

where CÎ are arbitrary functions depending on Σ only. The term CÎ VΣ is thus closed but

not necessarily exact. We can be more precise: since CÎ VΣ is a closed form on S2, it can

be decomposed as a sum of an exact form and a harmonic form. The exact piece can

be disregarded. The harmonic piece must be a constant multiple of VΣ. It follows that,

without any loss of generality, we can take CÎ to be constant.

In the case g = 0 we also have to construct ωa, which must satisfy dωa + ιaV4 = 0.

Thanks to (E.7), we know how to write ιaV4 as a total derivative. As a result, ωa is given by

ωa = − za

[
VΣ qAB qCD σAB,CD +

1

2
qAB ωt

AB

]
+ Ca VΣ . (E.19)

Once again, we have not included an exact piece, because it would have no effect on the

inflow anomaly polynomial. A priori, the 0-form Ca is allowed to have an arbitrary depen-

dence on S2. Using arguments similar to those of the previous paragraphs, however, we

argue that we can take Ca constant without loss of generality. A constant Ca, however, is

incompatible with the fact that ωa must be covariant with respect to its SO(3)S2 index. In

other words, there is no invariant tensor of SO(3)S2 with one index. We conclude Ca = 0.
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Solution for σIJ . Let us now turn to the determination of σIJ . We first focus on the

components σÎ Ĵ . The equation to solve is

0 = dσÎ Ĵ + ι(ÎωĴ) = dσÎ Ĵ +M(I
AB ιJ)ω

t
AB = dσÎ Ĵ +M(Î

AB MĴ)
CD ιCD ωt

AB . (E.20)

Making use of (A.22), we see that

σÎ Ĵ = M(Î
AB MĴ)

CD σAB,CD + uÎ Ĵ , (E.21)

where uÎ Ĵ = uĴ Î are constants.

For g = 0, we also have to determine σÎa and σab. The former is determined by the

requirement

0 = dσÎa +
1

2
ιa ωÎ +

1

2
MÎ

AB ιAB ωa . (E.22)

Using the formulae for ωÎ , ωa given above, as well as the expression of ω̊AB and σ̊AB,CD

given in (4.5), one verifies the identity

1

2
ιa ωÎ +

1

2
MÎ

AB ιAB ωa =
1

4
CÎ dza + d

[
3N

8π2
· 1

48
za ǫABCDE MÎ

AB qCD yE
]
. (E.23)

It follows that we can write

σÎa = − 3N

8π2
· 1

48
za ǫABCDE MÎ

AB qCD yE − 1

4
CÎ za + uÎa , (E.24)

where uÎa is an arbitrary constant. Once again, however, we must conclude uÎa = 0,

because there is no SO(3)S2 invariant object with one index a. Our final task is the

determination of σab in

0 = dσab + ι(aωb) . (E.25)

We have the identity

ι(aωb) = −d

[
1

4
za zb q

AB qCD σAB,CD

]
, (E.26)

which implies

σab =
1

4
za zb q

AB qCD σAB,CD + uab , (E.27)

for some constant uab. This time there is a natural candidate for a constant uab compatible

with SO(3)S2 symmetry,

uab = u δab . (E.28)

Summary. The solution for all components of ωI , σIJ is summarized as follows,

ωÎ = MÎ
AB ωt

AB + 2VΣ qAB MÎ
CD σAB,CD + CÎ VΣ , (E.29)

ωa = −za

[
VΣ qAB qCD σAB,CD +

1

2
qAB ωt

AB

]
, (E.30)

σÎ Ĵ = M(Î
AB MĴ)

CD σAB,CD + uÎ Ĵ , (E.31)

σÎa = −1

2
zaMÎ

AB qCD σAB,CD − 1

4
CÎ za , (E.32)

σab =
1

4
za zb q

AB qCD σAB,CD + u δab . (E.33)
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If we plug the above relations into (E.8), after some manipulations we recover the expres-

sion (5.10) for E4 given in the main text. The constants C1, C2 in (5.10) are identified

with the components of CÎ . All terms with uÎ Ĵ , u are absorbed into γ4 in (5.10).

F Details on the GMSW setup

F.1 Brief review of the solutions

In this appendix we review a class of M-theory solutions with 4d N = 1 superconformal

symmetry, first described in GMSW [20]. The 11d metric reads

ds211 = L2 e2λ
[
ds2(AdS5) + ds2(M6)

]
,

ds2(M6) = e−6λ
[
F1 ds

2(C1) + F2 ds
2(C2)

]
+

e−6λ

cos2 ζ
dy2 +

cos2 ζ

9
Dψ2 ,

dDψ = −χ1 VC1 − χ2 VC2 . (F.1)

The constant L is the overall length scale of the solution. The metric on AdS5 is normalized

in such a way that the Ricci scalar is RAdS5 = −20. The spaces C1, C2 are two Riemann

surfaces, of arbitrary genus. If Ci, i = 1, 2, is not a torus, the metric ds2(Ci) is normalized

so that the Ricci scalar is RCi
= 2 ki, with ki = ±1. The symbol χi denotes the Euler

characteristic of Ci, while VCi
is proportional to the volume form on Ci. If Ci is not a torus,

VCi
is normalized according to

∫
Ci

VCi
= 2π, with no sum over i. Notice that, compared

to [20], we have reversed the sign of ψ.

The quantities λ, Fi depend on y only and are given by

e6λ =
2
(
a1 − k1 y

2
) (

a2 − k2 y2
)

a2 k1 + a1 k2 + 2 y k1 k2 (y − 3 γ0)
, Fi =

1

3
(ai − ki y

2) , (F.2)

where ai, γ0 are constants. The quantity ζ ∈ [0, π/2] is determined by

e3λ sin ζ = 2 y . (F.3)

The G4 flux takes the form

G4 = L3
[
(dγ1 VC1 + dγ2 VC2)Dψ − (χ1 γ2 + χ2 γ1 + χ1 χ2 γ0)VC1 VC2

]
, (F.4)

with the functions γi given as

γ1 =
2 a2 k1 k2 y − 6 a2 k1 k2 γ0 + a1 y + k1 y

3

9 k1 k2 (a2 − k2 y2)
χ1 ,

γ2 =
2 a1 k1 k2 y − 6 a1 k1 k2 γ0 + a2 y + k2 y

3

9 k1 k2 (a1 − k1 y2)
χ2 . (F.5)

We are adopting conventions in which the quantization of G4 flux reads
∫

C4

G4

(2πℓp)3
∈ Z , (F.6)

where C4 is a 4-cycle and ℓp is the 11d Planck length.
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Let us stress that, in this work, we only consider GMSW solutions of the

form (F.1), (F.4) in which none of the Riemann surfaces Ci is a torus, so that ki 6= 0.

According to the analysis of [20], in order to a have a regular solution at least one of the

two Riemann surfaces must be a sphere. We associate the label 1 to this sphere, while the

label 2 is reserved to a Riemann surface of genus g, with g = 0 or g ≥ 2,

C1 = S2 , C2 = Σg . (F.7)

We should emphasize that the 4-form V4 in (5.31) is understood to have integral fluxes

along 4-cycles. It follows from (F.6) that the relation between V4 and G4 is

V4 =
G4

(2πℓp)3
. (F.8)

In the main text, we parametrized V4 by writing

V4 =

[
dγΣ

VΣ

2π
+ dγS2

VS2

2π

]
Dψ

2π
−
[
2 γΣ + χγS2

] VΣ

2π

VS2

2π
. (F.9)

Comparison with (F.4) gives the identifications

γS2 =
L3

2π ℓ3p
(γ1 + s1) , γΣ =

L3

2π ℓ3p
(γ2 + s2) , 2 s2 + χ s1 = 2χγ0 , (F.10)

where the constants s1,2 can be chosen at will. In the text, this ambiguity in the precise

definition of γΣ, γS2 is resolved upon construction of E4, when the condition (3.28) is

enforced.

The holographic central charge for these solutions was analyzed in [26], where the

explicit value of c is derived in the case γ0 = 0, Σg = S2. In this situation, one verifies that

NN = −NS, or equivalently M = 0, see (5.34), (5.37). In the notation of [26] the central

charge reads

c =
33/2

26
9 (z + 1)3 − (3 z2 + 4 z + 3)

√
X

z3/2
p3/2 q3/2N3 , (F.11)

where the parameters p, q, N are related to our quantities NS2 , NΣ by NS2 = N p,

NΣ = N q. The objects X, z are defined as

X = 9 z2 + 30 z + 9 , z =
2 q2 − p q + 2p2 − 2 (p− q)

√
p2 + p q + q2

3 p q
. (F.12)

In order to compare (F.11) to the central charge (5.60) inferred from the inflow anomaly

polynomial, we need the following identity, valid for positive numbers p, q,

(
2 p2 − p q + 2 q2 − 2 (p− q)

√
p2 + p q + q2

)1/2
= q − p+

√
p2 + p q + q2 . (F.13)

With the help of (F.13), the central charge (F.11) can be rewritten as

c = − 9

16
N3 (p+ q) (2 p2 + p q + 2 q2) +

9

8
N3 (p2 + p q + q2)3/2 , (F.14)

which indeed matches (5.60) for χ = 2, M = 0.
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F.2 Details on the construction of E4 for GMSW

Let us first discuss the construction of V eq
4 . The isometries of M6 we gauge are the U(1)

symmetry associated to ψ and the SO(3) symmetry associated to S2. The former has

background connection Aψ, while the latter is associated to Aa.

The claim that the 4-form V eq
4 is given by

V eq
4 = d

[(
γΣ

VΣ

2π
+ γS2 eS

2

2

)
(Dψ)g

2π

]
(F.15)

=

(
dγΣ

VΣ

2π
+ dγS2 eS

2

2

)
(Dψ)g

2π
+

(
γΣ

VΣ

2π
+ γS2 eS

2

2

)(
− 2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π

)
.

We have exploited the relation

d(Dψ)g

2π
= −2 eS

2

2 − χ
VΣ

2π
+ 2

Fψ

2π
, (F.16)

which is derived below. The 2-form eS
2

2 is the global angular form for SO(3), or equivalently

the closed and gauge-invariant completion of VS2/(2π). More explicitly,

eS
2

2 =
1

8π
(ǫabcDzaDzb zc − 2Fa z

a) =
VS2

2π
− 1

2

d(zaAa)

2π
, Dza = dza + ǫabcAb zc .

(F.17)

A useful identity regarding eS
2

2 is the Bott-Cattaneo formula [46],
∫

S2

(eS
2

2 )2s+2 = 0 ,

∫

S2

(eS
2

2 )2s+1 = 2−2s [p1(SO(3))]s , s = 0, 1, 2, . . . (F.18)

The object V eq
4 is manifestly closed and gauge-invariant, and reduces to V4 if Fψ and

F a are turned off. Moreover, V eq
4 is globally well-defined. Indeed, S2 does not shrink

anywhere on the y interval, and all terms with (Dψ)g are accompanied by a factor dy, so

that there is no singularity at the endpoints of the y interval, where S1
ψ shrinks.

Before analyzing V eq
4 further, let us derive the identity (F.16). If all external connec-

tions are turned off,

Dψ

2π
=

dψ

2π
− 2

AS2

2π
− χ

AΣ

2π
, dAS2 = VS2 , dAΣ = VΣ . (F.19)

The 1-forms AS2 , AΣ are antiderivatives of the volume forms on S2, Σ, and are only locally

defined. The gauging of the 1-form dψ is given by

(dψ)g = dψ + 2Aψ +Aa
[
za + 2 ǫabc z

b∇µzc (AS2)µ

]
. (F.20)

The index µ is a curved 2d index on S2 associated to local coordinates ζµ, so that, for

example, dza = ∂µz
a dζµ, gS

2

µν = ∂µz
a ∂νza. The symbol ∇ is the Levi-Civita connection on

S2. Notice the appearance in (dψ)g of terms proportional to Aa. They are a consequence

of the second term in the Killing 1-form ka in (5.30).

In order to compute (Dψ)g, we also need

(AS2)g = (AS2)µ (dζ
µ)g = (AS2)µ

[
dζµ + ǫabc z

b∇µzcAa
]
. (F.21)

– 48 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
5

We are now in a position to write

(Dψ)g

2π
=

(dψ)g

2π
− 2

(AS2)g

2π
− χ

AΣ

2π
=

dψ

2π
+ 2

Aψ

2π
− 2

[
AS2

2π
− 1

2

zaAa

2π

]
− χ

AΣ

2π
. (F.22)

Notice the cancellation of the terms with ǫabc against (F.20) and (F.21). Making use

of (F.17), it is now straightforward to check that (F.22) implies (F.16).

In order to make contact with the language of section 3.1, we have to expand V eq
4 is

powers of the external connections,

V eq
4 = V g

4 + Fψ ωg
ψ + F a ωa + (Fψ)2 σψψ + F a F b σab + 2Fψ F a σψa . (F.23)

The ω and σ quantities are extracted from comparison with (F.15). In what follows, we

only need the expression of ωψ and ωa,

ωψ =
2

2π

(
γΣ

VΣ

2π
+ γS2

VS2

2π

)
,

ωa =
za
2π

[
− 1

2

(
dγS2

Dψ

2π
− (2 γΣ + χγS2)

VΣ

2π

)
+ 2 γS2

VS2

2π

]
. (F.24)

We verify
∫
M6

V4 ωa = 0, while we compute

∫

M6

V4 ωψ =
2

2π

[
γS2 γΣ

]N
S
. (F.25)

This quantity must be set to zero. As a result, we can express the four quantities γN,S
S2,Σ

in

terms of the three flux quanta NS2 , NΣ, M ,

γN,S
S2 =

M NS2

2NΣ − χNS2

± 1

2
NS2 , γN,S

Σ = − M NΣ

2NΣ − χNS2

± 1

2
NΣ . (F.26)

Let us now discuss the equivariant completion of the harmonic 2-forms ωα parametrized

in (5.38). It is given as

ωeq
α = d

[
Hα

(Dψ)g

2π

]
+ tαS2 eS

2

2 + tαΣ
VΣ

2π

= dHα
(Dψ)g

2π
+ (tαS2 − 2Hα) e

S2

2 + (tαΣ − χHα)
VΣ

2π
+ 2Hα

Fψ

2π
. (F.27)

This is manifestly closed and gauge-invariant and reduces to (5.38) if all external connec-

tions are turned off. Moreover, (5.38) is globally defined, since (Dψ)g is accompanied by dy.
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