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cently developed anomaly inflow methods in M-theory [1]. In the large-N limit, we identify
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1 Introduction and summary

Quantum field theory (QFT) provides a powerful framework to describe a variety of physi-

cal phenomena, ranging from particle physics, to condensed matter systems and cosmology.

Symmetries and spontaneous symmetry breaking play a fundamental role in countless ex-

amples of applications of the QFT formalism. It is particularly interesting to investigate

the symmetries and dynamics of QFTs in strongly coupled non-perturbative regimes. Geo-

metric engineering is a remarkable tool in the construction and analysis of strongly coupled

QFTs in various dimensions. Several non-trivial QFTs can be studied by examining the

low-energy limit of brane configurations in string theory and M-theory. A prominent ex-

ample is furnished by 6d (2,0) theories of type AN−1, which emerge in the long-wavelength

dynamics of a stack of N M5-branes extending along a flat worldvolume [2, 3]. By a similar

token, an interesting class of 6d (1,0) theories is obtained by considering a stack of M5-

branes probing an orbifold singularity [4–9]. A rich variety of 4d QFTs can be constructed

by considering M-theory setups in which a stack of M5-branes is wrapped on a Riemann

surface. These 4d QFTs are generically strongly coupled and fit into the larger Class S
program, in which 6d superconformal field theories (SCFTs) are compactified to four di-

mensions on a Riemann surface, possibly with defects. The reduction of 6d (2,0) theories
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to 4d N = 2 QFTs was first analyzed in [10, 11], and reduction to 4d N = 1 QFTs has been

studied in [12–16]. The compactification of 6d (1,0) theories has been addressed in [17–32].

’t Hooft anomalies are among the most important observables to compute in a geomet-

rically engineered QFT, especially if a Lagrangian description of the theory is not available.

It is worth emphasizing that anomalies are naturally geometric quantities. For the case of

continuous 0-form symmetries — which is the case relevant for this work — the anomalies

of a d-dimensional QFT (with d even) are encoded in the anomaly polynomial, which is

a (d + 2)-form constructed with the curvatures of the background fields associated to the

symmetries [33–35]. The geometric nature of ’t Hooft anomalies makes them particularly

amenable to computation in the framework of geometric engineering. Building on seminal

papers on anomaly inflow for M5-branes [36–39], a systematic toolkit for the computation

of anomalies of QFTs from M5-branes has been developed in [1, 40–42].

Our strategy is to study the boundary conditions for the fields of 11d supergravity in the

vicinity of the branes, instead of performing a direct field theory analysis of the worldvolume

theory. The M-theory boundary conditions can be used as a proxy to track interesting QFT

features, such as anomalies, accidental symmetries, and spontaneous symmetry breaking.

In this paper we illustrate this point by considering a class of 4d N = 1 theories, obtained

from compactification on a Riemann surface of the worldvolume theory of a stack of M5-

branes probing a C2/Z2 singularity.

In order to describe in more detail the class of 4d theories we study in this work, let

us recall some salient features of the 6d (1,0) SCFT on a stack of N M5-branes probing a

C2/Z2 singularity. Before modding out by Z2, the stack is surrounded in its five transvervse

directions by a 4-sphere S4. After quotienting by Z2, S4 is replaced by S4/Z2. The Z2

action has two fixed points, located at the north and south poles of S4, which yield two

orbifold singularities on S4/Z2. The theory has global symmetry SU(2)L × SU(2)R ×
SU(2)N × SU(2)S. The factors SU(2)L × SU(2)R originate from isometries of S4/Z2, while

SU(2)N×SU(2)S originate from the two orbifold points (labeled N, S for “north”, “south”).

The factor SU(2)R is the 6d R-symmetry, while the other factors are flavor symmetries.

The orbifold singularities at the north and south poles can be resolved by blowups,

while preserving 8 supercharges. The orbifold S4/Z2 is replaced by a smooth internal

space M4. After resolution, only the Cartan subgroup U(1)N×U(1)S of the flavor symmetry

SU(2)N×SU(2)S is preserved. The 4d theories of interest in this work are obtained from the

low-energy dynamics of these brane configurations wrapped on a smooth genus-g Riemann

surface Σg (with g 6= 1). The compactification includes a twist for the U(1)N×U(1)S flavor

symmetry, while SU(2)L is untwisted. The resulting 4d theories are then labelled by the

genus g and three flux quanta N , NN, NS, with N the number of M5-branes in the stack,

and NN,S the twist parameter for the flavor symmetry U(1)N,S. The internal space M4 of the

resolved 6d theory is non-trivially fibered over the Riemann surface, yielding a 6d space M6,

with M4 ↪→M6 → Σg. Our geometric construction is summarized schematically in figure 1.

We also expect that these 4d theories emerge in the IR of an RG flow across dimensions

resulting from wrapping the parent 6d (1,0) SCFT on Σg with the appropriate R-symmetry

and flavor twists. From this point of view, anomaly matching across dimensions implies

that we can integrate the anomaly polynomial of the parent 6d theory on Σg to obtain ’t
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singular S4/Z2
<latexit sha1_base64="ewf86GRDVGBB/1ccVTaHXPUhtCY=">AAACAXicbZC7TsMwFIadcivlFmBkMbRIDKgkpRKMlVgYi6AX0YTKcU9bq85FtlNRRZkYeBYGJMQAA0/AI/A2JCVLW/7p0/mPffT/TsCZVIbxo+WWlldW1/LrhY3Nre0dfXevKf1QUGhQn/ui7RAJnHnQUExxaAcCiOtwaDmjq9RvjUFI5nt3ahKA7ZKBx/qMEpWMuvqhpeBRRZJ5g5ATgUu3D9UzyyVq6Dj4vlspxV29aJSNqfAimBkUUaZ6V/+2ej4NXfAU5UTKjmkEyo6IUIxyiAtWKCEgdEQGEBFXyonrxPg4PSnnvXT4n9cJVf/SjpgXhAo8mqwkXj/kWPk4TYl7TABVfJIAoYIllzEdEkGoSrqY/UmCR1yQp7g3ZoGcsh1Ni40LSXZzPukiNCtl87xcuakWa9WshTw6QEfoBJnoAtXQNaqjBqLoGb2iD/SpPWkv2pv2/rea07I3+2hG2tcvyOqWlw==</latexit>

smooth M4
<latexit sha1_base64="7w2vi+H9vsgKDjb4lYkZzBF30vg=">AAAB83icbZDLSsNAFIYnXmu9Rbt0E2wFF1KSWtBlwY0boYK9QBvCZHraDp1JwsxJMYQ+iQtBXOjCB/ERfBvTmk1b/9XH+c+F//iR4Bpt+8fY2Nza3tkt7BX3Dw6Pjs2T07YOY8WgxUIRqq5PNQgeQAs5CuhGCqj0BXT8yd3c70xBaR4GT5hE4Eo6CviQM4pZyTNLfYRnTLUMQxxblQevXpl5Ztmu2gtZ6+DkUCa5mp753R+ELJYQIBNU655jR+imVCFnAmbFfqwhomxCR5BSqXUi/Zl1ISmO9ao3L/7n9WIc3ropD6IYIWBZS+YNY2FhaM1zWQOugKFIMqBM8eyyxcZUUYZZ+uVNGgIqQV9ZgymP9ILddPHKWTHL7qwmXYd2repcV2uP9XKjnn+hQM7IObkkDrkhDXJPmqRFGEnIK/kgn0ZsvBhvxvtf64aRz5TIkoyvXxT1kTc=</latexit>

smooth M6
<latexit sha1_base64="7BpCazOlLO7b7c17qtX0Zp3zLrs=">AAAB83icbZDLSsNAFIYn9VbrLdqlm2AruJCS1KIuC27cCBXsBdoQJtPTdujkwsxJMYQ8iQtBXOjCB/ERfBvTmk1b/9XH+c+F/7ih4ApN80crbGxube8Ud0t7+weHR/rxSUcFkWTQZoEIZM+lCgT3oY0cBfRCCdRzBXTd6d3c785AKh74TxiHYHt07PMRZxSzkqOXBwjPmCgvCHBiVB+c62rq6BWzZi5krIOVQ4Xkajn692AYsMgDH5mgSvUtM0Q7oRI5E5CWBpGCkLIpHUNCPaViz02Nc4/iRK168+J/Xj/C0a2dcD+MEHyWtWTeKBIGBsY8lzHkEhiKOAPKJM8uG2xCJWWYpV/epMCnHqhLYzjjoVqwnSxemZay7NZq0nXo1GvWVa3+2Kg0G/kXiuSUnJELYpEb0iT3pEXahJGYvJIP8qlF2ov2pr3/tRa0fKZMlqR9/QIX75E5</latexit>

resolution

<latexit sha1_base64="Wq7gjFvTh8fCns1fIllBR1DOP80=">AAAB6HicbZC7TgJBFIbPekW8oZY2G4mJBSG7WGhJYmOJiVwibMjscICR2ZnNzCwJ2fAOFibGQgvfxkfwbZzFbQD/6sv5zyX/CWPOtPG8H2djc2t7Z7ewV9w/ODw6Lp2ctrRMFMUmlVyqTkg0ciawaZjh2IkVkijk2A4nd5nfnqLSTIpHM4sxiMhIsCGjxNjSk0IteZJhv1T2qt5C7jr4OZQhV6Nf+u4NJE0iFIZyonXX92ITpEQZRjnOi71EY0zohIwwJZHWsyicu5cRMWO96mXF/7xuYoa3QcpEnBgU1LZYb5hw10g3C+MOmEJq+MwCoYrZyy4dE0WosZGXN2kUJEJdcQdTFusFB+nif/Oize6vJl2HVq3qX1drD7VyvZJ/oQDncAFX4MMN1OEeGtAECgJe4QM+nWfnxXlz3v9aN5x85gyW5Hz9Ai7hjfs=</latexit>

orbifold

<latexit sha1_base64="ow52zWGtu4WEBwPZ9a2wFte+fMg=">AAAB5nicbZDLSsNAFIZP6q3WW9Wlm8EiuCglqQtdFty4rGAv0IYymZy0QyeZYWZSKKGv4EIQF7rwdXwE38a0ZmPrv/o4/7nwn0AJbqzrfjulre2d3b3yfuXg8Oj4pHp61jUy1Qw7TAqp+wE1KHiCHcutwL7SSONAYC+Y3i/93gy14TJ5snOFfkzHCY84ozYv9aUOeCRFOKrW3Ia7EtkEr4AaFGqPql/DULI0xsQyQY0ZeK6yfka15UzgojJMDSrKpnSMGY2NmcfBglzF1E7Murcs/ucNUhvd+RlPVGoxYXlL7kWpIFaSZRQSco3MinkOlGmeXyZsQjVlNg/8d5PBhMZo6iSccWVW7Ger7y0qeXZvPekmdJsN76bRfGzWWvXiC2W4gEu4Bg9uoQUP0IYOMBDwAu/w4UycZ+fVefttLTnFzDn8kfP5A13HjOQ=</latexit>

SU(2)L ⇥ U(1)R ⇥
⇥ U(1)0N ⇥ U(1)0S

<latexit sha1_base64="HM3xE6KTCNPcgi5ea0dUv10cAUI="></latexit>

SU(2)L ⇥ SU(2)R ⇥
⇥ SU(2)N ⇥ SU(2)S

<latexit sha1_base64="/RZL3NV21bAU9i02czyKmpK102M=">AAACOHicbVHLSgMxFM34rPVVdekmWCwVSpmpgkI3BTcuRKp12kJThkyatqGZB0mmUIb+mAv3foI7F4K40IVfYPoQ7OOuzj3n5l7OiRtyJpVpvhorq2vrG5uJreT2zu7efurgsCqDSBBqk4AHou5iSTnzqa2Y4rQeCoo9l9Oa27se6bU+FZIF/qMahLTp4Y7P2oxgpSknVc9U7GzhzLmFSDGPSjhpH/7aeIhQBqIiKmr0fwJ5WHWFB+/gUrripNJm3hwXXATWFKTBtMpO6gW1AhJ51FeEYykblhmqZoyFYoTTYRJFkoaY9HCHxtiTcuC5Q3g6OifntRG5TGtEqn3VjJkfRor6RI9orR1xqAI4Cge2mKBE8YEGmAimL0PSxQITpSOc3SSpj7XtHGz1WSjHuBmP/2OY1N6teaeLoFrIW+f5wv1FupSbppAAx+AEZIEFLkEJ3IAysAEBz+AdfIFv48l4Mz6Mz8noijF9cwRmyvj5BYZ2qXE=</latexit>

SU(2)L ⇥ U(1)R ⇥
⇥ U(1)N ⇥ U(1)S

<latexit sha1_base64="GCzeNHWTHQeGuyn+R8Eowf9T7Xs=">AAACNXicbVFPSwJBHJ21f2b/rI5dhiRRENm1oMCL0KVDhGWrgrsss+Oog7N/mJkVZNnP1aFP0Efo0CGIDnXoKzSaQWrv9Oa9N/Pj98YNGRVS15+11Mrq2vpGejOztb2zu5fdP2iKIOKYmDhgAW+7SBBGfWJKKhlph5wgz2Wk5Q4vJ35rRLiggX8vxyGxPdT3aY9iJJXkZM18wyxUis41tCT1iIBmwSg6d7+nOLGsPLSqVlWxPwHLQ3LAPXgD/1MbTjanl/Up4DIxZiQHZqg72SerG+DII77EDAnRMfRQ2jHikmJGkowVCRIiPER9EiNPiLHnJvBkMk4sehPxP68Tyd6FHVM/jCTxsYoorxcxKAM4aQZ2KSdYsrEiCHOqJkM8QBxhqfqbf0kQH6mtS7A7oqGYcjuefkaSUbsbi5suk2albJyWK7dnuVpp1kIaHIFjUAAGOAc1cAXqwAQYPIJX8AE+tQftRXvT3n+iKW125xDMQfv6BkzkqFc=</latexit>

fibration

over ⌃g
<latexit sha1_base64="oprTQYI9x6U8+nRcaGV1nFuZjdY=">AAACBXicbVBLS8NAGPxSX7W+qh69LLYFESlJRfRY8OKxon1AU8Jms02XbjZhd1MooWcP/hYPgnjQg2d/gv/Gbe2lrXMaZr4HM37CmdK2/WPl1tY3Nrfy24Wd3b39g+LhUUvFqSS0SWIey46PFeVM0KZmmtNOIimOfE7b/vB26rdHVCoWi0c9TmgvwqFgfUawNpJXrLgiZiKgQqM+8+VMdd1CbHZQ2X1gYYS9sOwVS3bVngGtEmdOSjBHwyt+u0FM0sjcJRwr1XXsRPcyLDUjnE4KbqpogskQhzTDkVLjyJ+gSoT1QC17U/E/r5vq/k0vYyJJNRXEjBivn3KkYzRNigImKdF8bAgmkpnPiAywxESbPhYvKSpwRNUFCkYsUTPey2blTgomu7OcdJW0alXnsnp1XyvVz+ct5OEETuEMHLiGOtxBA5pA4Ble4QM+rSfrxXqz3v9Gc9Z85xgWYH39AiuAmHk=</latexit>

Figure 1. Schematic representation of the geometric construction considered in this work. The

starting point is a configuration with M5-branes extending in six non-compact directions. The

angular transverse directions form the singular space S4/Z2. Along the horizontal arrow, the

orbifold singularities of S4/Z2 are blown up to yield a smooth manifold M4. The latter is then

fibered over a smooth Riemann surface Σg. For each stage of this process we give the corresponding

global symmetries. The factors U(1)′N × U(1)′S are defined in (1.1). Finally, the diagonal dashed

arrow corresponds to the expected RG flow across dimensions that results from wrapping the parent

6d (1,0) SCFT on Σg with the appropriate flavor twist.

Hooft anomalies in four dimensions. This method, however, does not capture accidental

symmetries. The latter can generically contribute to the exact IR superconformal R-

symmetry which governs the central charges of the 4d theory. In this work, we do not

follow such approach and we do not construct explicitly the relevant RG flows from six

to four dimensions. We can nonetheless track interesting physical phenomena through the

11d geometry.

The global symmetries of the 4d QFT are encoded in the geometry and topology of

the space M6. We notice that the global symmetries of the 4d QFT correspond to gauge

symmetries of the 5d supergravity obtained by reduction of M-theory on the internal space

M6. In this 5d supergravity theory, we have a massless gauge field for each isometry

generator of M6. Furthermore, additional 5d gauge fields are obtained by expanding the

M-theory 3-form C3 onto harmonic 2-forms in M6.

The space M6 has isometry group U(1)R × SU(2)L. It also admits three harmonic

2-forms, denoted ωN, ωS, ωC. The 2-forms ωN,S are related to the 2-cycles associated with

the resolution of the orbifold singularities of S4/Z2. The 2-form ωC, on the other hand,

only emerges after reduction to four dimensions, by fibering M4 non-trivially over Σg. From

a field theory point of view, the existence of a third harmonic 2-form in the 4d setup is

interpreted as the emergence of an accidental U(1)C global symmetry, which is not visible

in six dimensions.

A crucial feature of the 5d supergravity theory obtained from compactification on M6

is the following. While all three harmonic 2-forms ωN, ωS, ωC yield a 5d vector, one

linear combination of such vectors gets massive via Stückelberg mechanism, by coupling
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to a 5d axion. This phenomenon is described in greater detail in [1].1 From a field theory

perspective, the symmetry group U(1)N×U(1)S×U(1)C is spontaneouly broken to a U(1)′N×
U(1)′S subgroup. The connection between Stückelberg mechanism in 5d supergravity, and

spontaneous symmetry breaking of global symmetries in the 4d theory, is well-established

in the holography literature, see e.g. [44, 45]. To summarize,

U(1)N ×U(1)S
accidental−−−−−−−−−−→
symmetry

U(1)N ×U(1)S ×U(1)C
spontaneous−−−−−−−−−→

symm. breaking
U(1)′N ×U(1)′S ,

with the generators T ′N,S of U(1)′N,S given in terms of the generators TN,S,C of U(1)N,S,C as

T ′N = TN −
NN

N
TC , T ′S = TS −

NS

N
TC . (1.1)

The näıve symmetry U(1)N×U(1)S visible in 6d dimensions is replaced by U(1)′N×U(1)′S.

Even though the rank is unchanged, this process has deep implications for the ’t Hooft

anomalies of the theory, due to the non-trivial mixing of generators in (1.1).

We perform a careful analysis of the ’t Hooft anomalies of the 4d QFT, using the

techniques developed in [1], based on anomaly inflow from the M-theory ambient space.

The main idea in [1] is to obtain the inflow anomaly polynomial I inflow
6 of the 4d QFT by

integrating a 12-form characteristic class I12, which encodes the anomalous variation of the

M-theory action in the presence of the M5-brane stack. Crucially, I inflow
6 counterbalances

the anomalies of all degrees of freedom living on the stack, which in the IR can be organized

into the interacting QFT of interest, plus possible decoupled sectors. We may then write

I inflow
6 =

∫
M6

I12 , I inflow
6 + IQFT

6 + Idecoupl
6 = 0 . (1.2)

While we do not have a complete understanding of decoupled sectors, we can assume that

their contribution to the ’t Hooft anomalies is subleading in the large-N limit, which is taken

as N,NN,S →∞, keeping NN,S/N finite. Under this assumption, the term Idecoupl
6 in (1.2)

can be neglected at leading order at large N , and we can infer the anomaly polynomial of

the interacting QFT from I inflow
6 .

In order to test our large-N result, we investigate the gravity duals of our 4d field

theory constructions. As it turns out, we identify the gravity duals to be a well-known

class of AdS5 solutions in M-theory, first discussed in Gauntlett-Martelli-Sparks-Waldram

(GMSW) [46]. These solutions are warped products AdS5 ×w Mhol
6 , where the internal

space Mhol
6 is smooth and has exactly the same topology and isometries as M6 in the probe

M5-brane picture. The existence of smooth dual geometries provides evidence that our

construction yields a non-trivial interacting 4d SCFT in the IR, at least at large N .

To give more supporting evidence for our claims, we carry out two quantitative checks,

by computing the central charge c and the flavor central charge for the global symmetry

SU(2)L of the 4d theory. These quantities can be computed holographically at large N

from the supergravity effective action. On the field theory side, they can be extracted

1This Stückelberg mechanism was also instrumental in [43] for the correct counting of symmetries of 4d

N = 2 SCFTs from M5-branes from the perspective of their gravity duals.
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from the anomaly polynomial, because the superconformal algebra relates them to ’t

Hooft anomalies coefficients involving the SU(2)L generators and the superconformal R-

symmetry [47, 48]. The latter is the linear combination of U(1)R×U(1)′N×U(1)′S determined

by a-maximization [49]. We find a perfect agreement between the supergravity and field

theory computations, at leading order in the large-N expansion.

The outcome of a-maximization depends crucially on the mixing (1.1) of the näıve

symmetry generators TN,S of U(1)N,S with the generator TC of the emergent U(1)C sym-

metry. In particular, in order to match the supergravity results it is essential to take into

account emergent symmetries and spontaneous symmetry breaking in the computation of

the ’t Hooft anomalies of the 4d theory. The methods of [1] provide a streamlined, geomet-

ric way of addressing these phenomena. Indeed, if we integrate the anomaly polynomial of

the parent 6d SCFT of Σg, we do not reproduce the correct large-N central charge from

holography.

The rest of this paper is organized as follows. In section 2 we describe the 6d M-theory

setup with a stack of N M5-branes probing a C2/Z2 singularity. Section 3 is devoted to

the reduction of the 6d theory to four dimensions on Σg, and to the global symmetries

of the 4d QFT. In section 4 we compute the anomalies of the 4d QFT using inflow. In

section 5 we identify the gravity duals and we perform the aforementioned quantitative

tests involving the central charges of the 4d theories. We conclude with a brief discussion

in section 6. The computations in supergravity are collected in appendix A.

2 Six-dimensional setup

The main setup of interest is a stack of N M5-branes probing a C2/Z2 orbifold singularity

in M-theory. First, we discuss some general aspects where the M5-branes are probing a

C2/Zk orbifold fixed point.

2.1 Aspects of M-theory on C2/Zk

First we consider the M-theory background with the orbifold C2/Zk. Let (x0, · · · , x5) be

the coordinates along an R6 plane, and (y1, · · · , y5) be the coordinates along the transverse

directions. The latter parametrize a five-dimensional space C2×R with complex coordinates

(z1 = y1 + iy2, z2 = y3 + iy4). The orbifold action is

(z1, z2, y
5) ∼ (e

2πi
k z1, e

− 2πi
k z2, y

5). (2.1)

A local metric for the M-theory background is given as

ds2
11 = ds2(R6) + dr2 + r2 ds2(S4/Zk) (2.2)

ds2(S4/Zk) =
dµ2

1− µ2
+ (1− µ2)

[
1

k2
Dϕ2 +

1

4
ds2(S2

ψ)

]
, (2.3)

ds2(S2
ψ) = dθ2 + sin2 θ dψ2, Dϕ = dϕ+

k

2
cos θ dψ. (2.4)

The radius r is constructed from y5 and the radii of the two complex planes, in particular

we have y5 = rµ. The circle coordinates have periodicity (∆ψ = 2π,∆ϕ = 2π). For k = 1,
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the metric (2.3) is that of round four-sphere. When k > 1, the orbifold action admits two

R4/Zk fixed points at the poles of the sphere at µ = ±1. At constant values of µ, the

three dimensional sections of the four-sphere are S1
φ bundles over S2

ψ with degree k. The

isometries of S1
ϕ and S2

ψ lead to a U(1)ϕ× SU(2)ψ gauge symmetry on the extended seven-

dimensional directions of the M-theory background. This is the subgroup of the SO(5)

isometry of the sphere preserved by the orbifold action.

The region near an orbifold fixed point of the sphere corresponds to a single center

Taub-NUT space, the metric near each pole is

ds2∼=
1

V
Dϕ2+V

[
dR2+R2 ds2(S2

ψ)
]
, V =

k

2R
, R=

1

k
(1∓µ) , for µ=±1 . (2.5)

The orbifold singularities can be resolved locally by replacing the single center Taub-NUT

space to a Gibbons-Hawking space with k sources of unit charge. Such spaces are S1
ϕ

bundles over R3 with metric given as

ds2 = V −1 (dϕ+A)2 + V
(
dX2 + dY 2 + dZ2

)
, with dV = ?R3dA , (2.6)

where V is a potential on the 3D base space and A is a connection one-form for the circle

bundle. The potential satisfies Laplace’s equation on the R3 base. A general solution of

Gibbons-Hawking space is given by inserting k centers at positions ~XI = (XI , YI , ZI) with

charge nI . The potential is

V = v0 +
1

2

∑
I

nI∣∣ ~X − ~XI

∣∣ . (2.7)

The parameter v0 fixes the asymptotic size of the circle. The coordinate ϕ has period 2π.

The space is Asymptotically Locally Flat (ALF) when v0 6= 0 with topology of S1 × R3,

and asymptotically Locally Euclidean (ALE) when v0 = 0 with topology of R4.

The region near each center is described by a R4/ZnI orbifold fixed point where S1
ϕ

shrinks. A two-cycle can be obtained by taking S1
ϕ with a segment on R3 that connects

two singularities. There are k − 1 independent two-cycles with harmonic representatives,

ωi (i ∈ {1, · · · , k − 1}). When all nI = 1, the space is smooth with k − 1 two-cycles.

This corresponds to a resolution of the orbifold singularity. The S1
ψ circle of S2

ψ in (2.5),

is identified with the rotation on the (X,Y ) plane. Resolving the singularity breaks the

SU(2)ψ isometry of S2
ψ to a U(1)ψ corresponding to the rotations of S1

ψ.

M-theory, in the supergravity limit, can be studied on the space (2.2) where we replace

the two orbifold singularities with their smooth resolutions. This local deformation is

always possible since the asymptotic space of Gibbons-Hawking is fixed by the total charge.

M-theory has a 2-form gauge symmetry with a 3-form potential, C3. There are massless

fluctuations of the C3 potential on the extended seven-dimensional space coming from the

resolutions of the singularities. In reducing M-theory on the compact space, we can add

terms to C3 as

C3 = aN
i ∧ ωiN + aS

i ∧ ωiS + · · · (2.8)

where (ωiN, ω
i
S) are the resolution harmonic two-forms for the north and south singularities,

respectively. The one-forms (aN
i , a

S
i ) are massless gauge field on the seven-dimensional
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space. Each orbifold fixed point leads to a U(1)k−1 gauge symmetry in M-theory which

enhances to an SU(k) gauge symmetry in the singular limit [50]. To summarize, the M-

theory background admits an SU(2)ψ×SU(k)N×SU(k)S×U(1)ϕ bosonic gauge symmetry.

We are interested in the field theory that describe the low energy dynamics of a stack

of N M5-branes probing the M-theory singularity at r = 0 in (2.2). The gauge symmetry

of the M-theory background induces a global symmetry on the worldvolume directions of

the M5-branes. The SU(2)ψ symmetry from S2
ψ corresponds to an SU(2)R R-symmetry,

whiles the rest SU(k)N× SU(k)S×U(1)ϕ imprints as a flavor symmetry. In particular, the

7d gauge fields (aN
i , a

S
i ) yield 6d background connections (AN

6d i, A
S
6d i). This configuration

preserves eight supercharges leading to a six-dimensional superconformal field theory with

a (1, 0) supersymmetry [4–9].

2.2 The case k = 2

The resolution space of S4/Z2 has an enhanced symmetry. The U(1)ϕ isometry of S1
ϕ in

S4/Z2 enhances to an SU(2)ϕ isometry group as can be seen by rewriting the metric as

ds2(S4/Z2) =
dµ2

1−µ2
+

1

4
(1−µ2)

[
Dψ2+dθ2+sin2 θdϕ2

]
, Dψ= dψ+cosθdψ. (2.9)

The resolution of the orbifold singularities at µ = ±1 preserve the isometries of S2
ϕ com-

posed of (θ, ψ) in the metric of S4/Z2 above. This follows from the fact that the resolution

space of R4/Z2 is the Eguchi-Hanson space [51]. To see this more explicitly, write the

potentials for the two center Gibbons-Hawking space with unit charge as

V =
1

2R+
+

1

2R−
, A =

1

2

(
Z+

R+
+
Z−
R−

)
d tan−1 (Y/X) , (2.10)

R2
± = X2 + Y 2 + Z2

± , Z± = Z ± Z0 . (2.11)

The centers are sitting at (0, 0,±Z0). The metric of the resolved space can be written as

ds2 =
R4

R4 − a4
dR2 +

R2

4

[
dθ2 + sin2 θ dϕ2 +

R4 − a4

R4
(dψ + cos θ dϕ)2

]
, (2.12)

where we have made the coordinate transformation [52]

Z =
R2

4
cos θ , X =

√
R4 − a4

4
sin θ cosψ , Y =

√
R4 − a4

4
sin θ sinψ . (2.13)

The space smoothly caps off at R = a where the S1
ψ circle shrinks. The two-sphere, S2

ϕ,

composed of (θ, ϕ) in the resolved space has a finite size of a/2 at R = a. The two-sphere

in this region also corresponds to the two-cycle of the resolution of the R4/Z2.

The singularities of S4/Z2 are resolved by excising the singular region and gluing in

the Eguchi-Hanson space describe in (2.12). The S2
ϕ of (2.12) is identified with the S2

ϕ of

S4/Z2 in (2.9). In this sense, the resolution of the singularities on the sphere preserves its

isometries.
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The smooth geometry obtained from the resolution of S4/Z2 is denoted as M4. It has

the topology of S2×S2 and corresponds to the Hirzebruch surface F2. It is useful to write

a local metric for the space M4,

ds2(M4) = h1(µ) ds2(S2
ϕ) + h2(µ) dµ2 + h3(µ)Dψ2 , Dψ = dψ + cos θ dϕ . (2.14)

The coordinate µ takes value in the interval [µS, µN]. The boundary conditions of the h’s

are fixed by regularity of the metric at the bounds, and in particular, h3 must vanish on

them. The two-sphere S2
ϕ is not shrinking at the north and south poles of M4 where the S1

ψ

is shrinking. The two-spheres at the tip of the µ-interval correspond to two-cycles denoted

as (S2
S,S2

N) respectively. The volume of these cycles are then (h1(µS), h1(µN)) respectively.

The sizes of the two-cycles (S2
S,S2

N) are moduli parameters of M4. In the singular limit

where they vanish, M4 → S4/Z2. The four-sphere admits a left SU(2) and a right SU(2)

action; these are preserved by the Z2 orbifold action, and are related to the isometries of

SU(2)ψ × SU(2)ϕ rotations. The U(1)ψ × SU(2)ϕ are manifest as isometries of S1
ψ × S2

ϕ

of the metric (2.9). The total gauge symmetry in seven dimensions is SU(2)ψ × SU(2)ϕ ×
SU(2)N × SU(2)S.

Anomalies of the 6d setup. Anomaly inflow for flat M5-branes probing orbifold sin-

gularities was studied in [53]. See also [1] for a review of the computation. The inflow

computation yields an 8-form I inflow
8 which captures the variation of the M-theory action

in the presence of the M5-brane stack. The inflow anomaly polynomial counterbalances

the anomalies of the worldvolume degrees of freedom, which at low energies consists of an

interacting SCFT and of modes that decouple in the IR,

I inflow
8 + ISCFT

8 + Idecoupl
8 = 0 . (2.15)

The inflow anomaly polynomial reads

−I inflow
8 =

N3

6

[
cϕ2 − c

ψ
2

]2
+
N

12

[
4 cϕ2 − 3 cψ2

]
cψ2 +

N

24

[
2 cϕ2 − cψ2

]
p1(TW6)

− 1

32N

[
tr (FN

6d)
2

(2π)2
−

tr (F S
6d)

2

(2π)2

]2

+
N

4

[
cϕ2 − c

ψ
2

] [tr (FN
6d)

2

(2π)2
+

tr (F S
6d)

2

(2π)2

]
+

N

192

[
p1(TW6)2 − 4 p2(TW6)

]
. (2.16)

We have introduced the compact notation

cϕ2 ≡ c2(SU(2)ϕ) , cψ2 ≡ c2(SU(2)ψ) . (2.17)

The anomaly of the decoupling modes is given by

Idecoupl
8 = Itensor

8 +
1

2
Ivec,N

8 +
1

2
Ivec,S

8 . (2.18)

The 8-form Itensor
8 is the anomaly polynomial of a 6d (1,0) tensor multiplet,

Itensor
8 =

1

24
(cψ2 )2 +

1

48
cψ2 p1(TW6) +

23

5760
p1(TW6)2 − 29

1440
p2(TW6) . (2.19)
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The 8-form Ivec,N
8 is the anomaly polynomial of a 6d (1,0) vector multiplet of SU(2)N,

Ivec,N
8 = −1

8
(cψ2 )2 − 1

16
cψ2 p1(TW6)− 1

1920

[
7 p1(TW6)2 − 4 p2(TW6)

]
− 1

2
cψ2

tr (FN6d)2

(2π)2
− 1

24
p1(TW6)

tr (FN6d)2

(2π)2
− 1

12

[
tr (FN6d)2

(2π)2

]2

. (2.20)

The quantity Ivec,S
8 is completely analogous.2

3 Four-dimensional setup

In this section we describe aspects of the geometric setup when a stack of N M5-branes

wrapping a genus, g, Riemann Surface Σg,n with n punctures, probe a C2/Z2 singularity

in M-theory. We will discuss various aspects of the geometric setup in M-theory and the

symmetries they induce for the field theory that describe the low-energy dynamics of the

branes. We will then use the geometric set-up and compute the anomaly polynomial of the

field theory by using anomaly inflow techniques developed in [1].

3.1 Geometric setup for 4d systems

We consider an eleven-dimensional background given as

M11 = W4 × Σg,n × C2/Z2 × R. (3.1)

The M-theory background preserves supersymmetry when the space Σg,n×C2/Z2 satisfies

the Calabi-Yau threefold condition, i.e. the first Chern class of the space must vanish.

The worldvolume of the branes decompose as W6 = W4 × Σg,n where W4 is the external

spacetime. The low-energy dynamics of the branes is captured by a field theory that live

on W4. In the region near the branes, the spacetime decomposes as

M11 = R+ ×M10, where M6 ↪→M10 →W4, M4 ↪→M6 → Σg,n. (3.2)

The line R+ is the overall radius of the transverse directions of the worldvolume spacetime

W4. The space M10 describes the tubular neighborhood of the branes, it also corresponds

to an internal boundary of the M-theory spacetime near the branes. Finally, M4 is the

resolution space of S4/Z2 describe in section 2.2.

The Calabi-Yau condition on the M-theory background is satisfied by twisting the

R-symmetry circle S1
ψ over the Riemann surface. This twist breaks the six-dimensional

SU(2)R R-symmetry to a U(1)R symmetry for the worldvolume theory on W4. At the level

of the geometry, this is achieved by shifting the connection of S1
ψ as

Dψ→ D̂ψ= dψ+cosθdϕ−2πχAΣ , with

∫
Σg,n

dAΣ = 1 , χ=−2(g−1)−n. (3.3)

The Euler characteristic of the Riemann surface is denoted by χ. The twisting, AΣ, is a

nontrivial component of the six-dimensional gauging of the R-symmetry of the 6d theory.

2The trace ‘tr’ is normalized in such a way that, if n1,2 are the Chern roots of an SU(2) bundle with

n1 + n2 = 0, then trF 2/(2π)2 = −2 (n2
1 + n2

2). Since c2(SU(2)) = n1n2, we have trF 2/(2π)2 = 4 c2(SU(2)).
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In addition to twisting the R-symmetry, a large family of four-dimensional SCFTs

can be engineered by turn on background fields along the Riemann surface for the Cartan

elements of the SU(2)N× SU(2)S× SU(2)ϕ flavor symmetry. Such background fields break

the flavor symmetry of the six-dimensional theory to U(1)N ×U(1)S ×U(1)ϕ for the four-

dimensional theory. At the level of the M-theory background, this is achieved by turning

on the following flux parameters

dϕ→ D̂ϕ = dϕ+ 2π z AΣ (3.4)

C3 → Ĉ3 = C3 + 2π (NNAΣ ∧ ωN +NSAΣ ∧ ωS) . (3.5)

The connection forms (NNAΣ, NSAΣ) are background fields for the U(1) gauge fields dis-

cussed in (2.8) in the case of k = 2. The two-forms (ωN, ωS) are the closed representatives

that measure the volumes of the resolution two-cycles (S2
N,S2

S) in M4. For every choice of

a Riemann surface, Σg,n, there is a family of four-dimensional systems labeled by the three

flux parameters (z,NN, NS) and the number of branes, N .

In this paper, we restrict to four-dimensional theories that preserve the SU(2)ϕ sym-

metry, this corresponds to fixing z = 0. We will also restricted to cases with no punctures,

i.e. n = 0, and non-vanishing curvature, g 6= 0. For this family, a local metric for M6 can

be written as

ds2(M6) = h0(µ)ds2(Σg) + h1(µ)ds2(S2
ϕ) + h2(µ)dµ2 + h3(µ)D̂ψ2. (3.6)

The interval µ takes value in [µS, µN] where the endpoints are fixed by the loci where

h3 vanish. The functions (h0, h1) parametrize the radii of Σg and S2
ϕ in M6, they are

non-vanishing on the interval of µ.

At a fixed point on the surface Σg, there is a fiber that is a copy of M4 composed of S2
ϕ,

the circle S1
ψ and the interval µ. Similarly, we can consider a fixed point on the sphere S2

ψ,

there are four-dimensional fibers which are copies of a space MΣ
4 which are composed of

the Riemann surface Σg, the circle S1
ψ and the interval µ. These fibers do not shrink in M6.

3.2 Flux quantization and four-cycles of M6

One of the main object of interest is the boundary condition for the four-flux G4 when the

branes wrap the Riemann surface. Following [38, 39], we can write the boundary term for

G4 by using a bump function ρ(r) as

G4 = 2πρ(r)G4 + . . . , with

∫
M4

G4 = N . (3.7)

The flux G4 supports the non-trivial geometry M6.

The space M4 is the fiber over the Riemann Surface, Σg. Since it is non-shrinking, we

can thread N units of flux on it at a fixed point of the Riemann surface. Similarly, at a

fixed point of the sphere, S2
ϕ, we can thread flux on the fiber MΣ

4 given as∫
M4

G4 = NΣ. (3.8)
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The space M6 also admits four-cycles localized at the north and south poles of the µ interval

where S1
ψ shrinks. These correspond to the product of the resolution cycles of the original

orbifold singularities of the S4/Z2 with the Riemann surface, Σg. They are denoted as

C4
N = S2

N × Σg localized at µ = µN , (3.9)

C4
S = S2

S × Σg localized at µ = µS . (3.10)

We can thread flux on these cycles given as∫
C4N
G4 = NN ∈ Z,

∫
C4S
G4 = NS ∈ Z. (3.11)

It seems then that there exist four flux quanta (N,NΣ, NN, NS) that label the class of G4

in M6. These flux parameters are not all independent. This reflects the fact that the space

M6 actually admits only three four-cycles denoted as (C4
N, C4

S, C4
C). The last one C4

C is not

localized on M6. It consists of S2
ϕ × S2

µψ at a generic point on Σg.

To see that there are only three independent flux parameters, we consider the most

general local expression for G4 that is closed and consistent with the symmetries of M6

G4 =

[
dγϕ ∧ V ϕ

2 + dγΣ ∧ V Σ
2

]
∧ D̂ψ

2π
− (χγϕ + 2 γΣ)V ϕ

2 ∧ V
Σ

2 , (3.12)

where γϕ, γΣ are functions of µ only and V ϕ
2 , V Σ

2 are proportional to the volume forms of

S2
ϕ and the Riemann surface, respectively, normalized according to∫

S2
ϕ

V ϕ
2 = 1 ,

∫
Σg

V Σ
2 = 1 . (3.13)

The flux parameters are given as

γN
ϕ − γS

ϕ = N , γN
Σ − γS

Σ = NΣ , χ γN
ϕ + 2 γN

Σ = −NN , χ γS
ϕ + 2 γS

Σ = −NS , (3.14)

where the γ parameters are defined as γN,S
• ≡ γ•(µN,S). The γ relations imply3

2NΣ + χN = −(NN −NS) . (3.16)

The class G4 is labeled by three flux parameters that we denote as (N,NN, NS). The flux

parameter N can be associated with the four-cycle C4
C.

3The constraint on the flux parameters can be understood as the condition that must be satisfied by the

first Chern class of the S1
ψ bundle over the rest of the space:∫

C4
N

G4 −
∫
C4
S

G4 =

∫
M6

G4 d
D̂ψ

2π
. (3.15)

The minus sign is due the fact that the two cycles have opposite orientations in M6. A similar phenomenon

was observed in [54].
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The flux parameters can be equivalently regarded as the coefficients of the expansion

of G4 onto coholomogy classes of M6,

G4 = N VC
4 +NN VN

4 +NS VS
4 + (exact terms) . (3.17)

The 4-forms Vα4 , α = N, S,C are closed but not exact, and define a basis of cohomology

classes in M6. We can parametrize them uniformly by writing

Vα4 = d

[
Uαϕ V

ϕ
2 ∧

D̂ψ

2π
+ UαΣ V

Σ
2 ∧

D̂ψ

2π

]
+ Cα V ϕ

2 ∧ V
Σ

2 . (3.18)

In the above expression, Uαϕ , UαΣ are functions of µ, while Cα is constant. The parametriza-

tion (3.18) is subject to a 2-parameter redundancy, related to shifts of Uαϕ , UαΣ by constants.

A way to fix this redundancy is to demand

(Uαϕ )N + (Uαϕ )S = 0 , (UαΣ)N + (UαΣ)S = 0 . (3.19)

We want the 4-forms Vα4 to be dual to the 4-cycles C4
α defined above,∫

C4α
Vβ4 = δβα . (3.20)

This condition determines the constants Cα and the quantities (Uαϕ )N, (UαΣ)N, according

to the following table,
(Uαϕ )N (UαΣ)N Cα

α = C 1
2 −χ

4 0

α = N 0 −1
4

1
2

α = S 0 1
4

1
2

(3.21)

Another way to interpret the fluxes (NN, NS) is to consider the fate of the fluctuations

of the C3 potential from the SU(2)N × SU(2)S symmetry before the compactification on

the Riemann surface. The curvatures associated to SU(2)N × SU(2)S are (FN
6d, F

S
6d). We

use the notation (nN
6d, n

S
6d) for the corresponding Chern roots. Since these forms have legs

on the worldvolume directions of the M5-branes, W6, when we compactify on the Riemann

surface, they decompose as [22]

nN
6d = NN V

Σ
2 +N

FN

2π
, nS

6d = NS V
Σ

2 +N
F S

2π
. (3.22)

The quantities (FN, F S) are 4d external connections. We have introduced a factor N in

such a way that both terms on the r.h.s. of (3.22) scale linearly with the flux parameters

N , NN, NS. In the reduction, this decomposition implies the flux terms in G4 as

G4 = NN V
Σ

2 ∧ ωN +NS V
Σ

2 ∧ ωS + . . . (3.23)

In field theory, the flux correspond to twisting the Cartan elements of the six-dimensional

SU(2)N × SU(2)S symmetry over the Riemann surface.
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There are three harmonic two-forms associated to the four-cycles by Poincaré duality,

we denote them as (ωN, ωS, ωC). Indeed, the first two are just the resolution two cycles

of M4 which are preserved in M6. The flux quantization conditions can be equivalently

written as∫
M6

G4 ∧ ωN = NN,

∫
M6

G4 ∧ ωS = NS,

∫
M6

G4 ∧ ωC = N. (3.24)

These formulas will be useful in the computation of the anomalies for the four-dimensional

theories of interest.

In the reduction of M-theory on M6, there are a class of fluctuations we can add for the

C3 potential. For each of the harmonic two-forms, we can add a gauge field in the external

spacetime given as (aN, aS, aC) with field strength (fN, fS, fC). We are using lowercase

letters to emphasize that these are gauge fields in 7d supergravity. Naively, each one of

these fields should lead to a U(1) gauge symmetry on the external spacetime which then

induces a U(1) flavor symmetry on the worldvolume theory on the branes. However, the

C3 potential can also have a three-form fluctuation, c3, on the external spacetime with field

strength, g4 = dc3. These terms can be collected as

C3 = aN ∧ ωN + aS ∧ ωS + aC ∧ ωC + c3 + . . . (3.25)

When we reduce the effective action of M-theory, the effective action of the seven-

dimensional theory will have terms

S =

∫
b1g4 ∧ ?g4 + b2Nαa

α ∧ g4 + . . . (3.26)

where the b’s are numbers. We observe that g4 couples to a linear combination of the gauge

field. This coupling implies that g4 can be dualized to a Stückelberg field which is eaten by

the gauge field Nαa
α. Here and in what follows, the index α enumerates harmonic 2-forms

and takes the values α = N, S,C. We refer the reader to [1] for a more detailed discussion

of this Stückelberg mechanism.

Symmetries of the system. The low-energy quantum field preserves a U(1)R
R-symmetry and the SU(2)ϕ flavor symmetries corresponding to the isometries of S1

ψ and

S2
ϕ. Naively there is an U(1)N × U(1)S × U(1)C corresponding to the fluctuations of C3

along the harmonic two-forms (ωN, ωS, ωC). One linear combination is broken and only a

U(1)2 is preserved, which we denote as U(1)N×U(1)S. In the special cases when g = 0, the

Riemann surface is a two-sphere, in the low-energy limit it can admit an SU(2) isometry

group. The flavor symmetry will further enhance by an SU(2) flavor symmetry.

Now we are in a position to construct the gauge invariant and globally defined boundary

condition for the G4 flux in presences of curved branes. We have the action of the symme-

tries in G4 by adding suitable connection forms and curvature terms to make it closed:

G4 → E4 =
(
dγϕ ∧ eϕ2 + dγΣ ∧ eΣ

2

)
∧ D̃ψ

2π
+
(
γϕ e

ϕ
2 + γΣ e

Σ
2

)
∧
(
− 2 eϕ2 − χ e

Σ
2 + 2

Fψ

2π

)
+N

FN

2π
∧ ω̃N +N

F S

2π
∧ ω̃S +N

FC

2π
∧ ω̃C , with FαNα = 0 . (3.27)
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The last condition imposes the fact that one of gauge fields in the fluctuations of the C3

potential is massive. In the expression for E4 we have gauged the isometry group as

D̃ψ

2π
=
dψ

2π
− 2Aϕ − χAΣ + 2

Aψ

2π
, dAψ = Fψ, dAϕ = eϕ2 , dAΣ = eΣ

2 . (3.28)

The quantity Aψ is the 4d connection for U(1)ψ. The two-forms, eϕ2 and eΣ
2 are the closed

and gauge invariant volume forms of S2
ψ and Σg respectively. The expression for eϕ2 is

eϕ2 =
1

8π
εabc (Dya ∧Dyb yc − F ab yc) , Dya = dya −Aab yb . (3.29)

The indices a, b, c = 1, 2, 3 are vector indices of SO(3)ϕ, raised and lowered with δab. The

three quantities ya are constrained coordinates on S2
ϕ, with ya ya = 1.4 The 1-forms Aab are

the components of the external SO(3)ϕ connection, and F ab are the components of the field

strength. When g > 1, eΣ
2 is simply the volume form on the Riemann surface, eΣ

2 = V Σ
2 .

When g = 0 and the surface is a sphere, eΣ
2 is given similarly as (3.29). We need the integrals

∫
Σg

eΣ
2 = 1 ,

∫
S2

e2s+2
2 = 0 ,

∫
S2

e2s+1
2 = 2−2s [p1(SO(3))]s , s = 0, 1, 2, . . . (3.31)

where p1(SO(3)ϕ) is the first Pontryagin class of the SO(3)ϕ bundle over W4.

The tilde over the harmonic 2-forms ωN,S,C in (3.27) signals the fact that we have

gauged the isometry group and we have restored closure, as explained below.

Harmonic 2-forms. Before gauging the isometry group, the harmonic 2-forms ωα,

α = N, S,C, can be uniformly parametrized as

ωα = d

[
Hα(µ)

D̂ψ

2π

]
+ tϕα V

ϕ
2 + tΣα V

Σ
2 , (3.32)

where tϕα, tΣα are suitable constants and Hα is a suitable function of µ. We promote ωα to

ω̃α by writing

ω̃α = d

[
Hα(µ)

D̃ψ

2π

]
+ tϕα e

ϕ
2 + tΣα e

Σ
2 . (3.33)

This object is indeed manifestly closed and gauge-invariant.

4More explicitly,

y1 = sin θ cosϕ , y2 = sin θ sinϕ , y3 = cos θ . (3.30)
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Our parametrization of ωα is subject to a 1-parameter redundancy related to shifts of

Hα by a constant. We fix this redundancy by demanding HN
α + HS

α = 0. Moreover, we

want to basis ωα to be dual to the basis Vα4 of 4-forms defined in (3.18), in the sense that

∫
M6

Vα4 ∧ ωβ = δαβ ⇒

HN
α tϕα tΣα

α = C 0 0 1

α = N 1
2 −1 −χ

2

α = S 1
2 1 χ

2

. (3.34)

The table summarize all information about ωα that is needed for the computation of

anomaly inflow in the next section.

4 Anomalies for the low energy QFT

Now we are in a position to compute anomalies for M5-branes probing the k = 2 orbifold

singularity. The construction of the boundary data above will allow for an explicit com-

putation for the anomaly polynomial for the field theories that describe the low energy

dynamics of the branes [1, 40, 42]. These are captured by a 12-form M-theory anomaly

polynomial given as

I12 = −1

6
E3

4 − E4 ∧X8, X8 =
1

192

[
p1(TM11)2 − 4 p2(TM11)

]
, (4.1)

where p1(TM11), and p2(TM11) are the first and second Pontryagin classes of the tangent

bundle of the eleven-dimensional M-theory spacetime, TM11. The four-form E4 is precisely

the gauge invariant boundary and globally defined boundary condition for the G4 flux. The

anomaly six-form for the four-dimensional theories discussed above is given as

I inflow
6 =

∫
M6

I12 , (4.2)

where we use the corresponding E4 given in (3.27).

The task at hand is the computation of the 8-form X8 for the geometry (3.6) and of

the integrals
∫
M6

E4X8,
∫
M6

E3
4 with E4 as in (3.27). The full derivation is reported in

detail in [1]. Here we point out some salient features of the analysis.

The 8-form X8 is constructed with the first and second Pontryagin classes of the 11d

tangent bundle TM11, see (4.1). For the class of 4d theories under examination, these

classes can be computed using the following splitting of TM11,

TM11 → TW4 ⊕ TΣg ⊕ TS2
ϕ ⊕ TS2

µψ . (4.3)

The above expression is motivated recalling that the space M6 is a fibration of M4 (the

resolved orbifold S4/Z2) over Σg, and that M4 is a fibration of the 2-sphere S2
µψ spanned

by µ, ψ over the 2-sphere S2
ϕ. The gauging of the isometry SO(3)ϕ shifts the Chern root of

TS2
ϕ with a contribution with legs along W4. By a similar token, the Chern root of TS2

µψ is
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shifted by the fact that S1
ψ is non-trivially fibered over S2

ϕ, Σg, and W4, as can be inferred

from the expression of D̃ψ in (3.28). The split (4.3) implies

p1(TM11) = p1(TW4) + p1(SO(3)ϕ) +

[
d
D̃ψ

2π

]2

,

p2(TM11) =
[
p1(TW4) + p1(SO(3)ϕ)

] [
d
D̃ψ

2π

]2

. (4.4)

We noticed that terms with more than six external legs, such as p1(TW4) p1(SO(3)ϕ), can

be dropped, because they cannot contribute to the inflow anomaly polynomial. We notice

that, if the Riemann surface is a sphere, we can keep track of its SO(3)Σ isometry. To this

end, we simply have to replace p1(SO(3)ϕ) with p1(SO(3)ϕ) + p1(SO(3)Σ) in (4.4).

As pointed out earlier, the background curvatures for the U(1) symmetries associated

to harmonic 2-forms are subject to the constraint FαNα = 0. This is due to the argu-

ment given around (3.26) for the emergence of a massive vector in 7d supergravity. This

argument, however, is valid under the technical assumption∫
M6

G4 ∧ ωψ = 0 . (4.5)

In the previous expression G4 is as in (3.12) and the 2-form ωψ is the coefficient of the

linear term in Fψ inside E4,

E4 = Fψ ∧ ωψ + . . . , ωψ = 2 (2π)−1 (γϕ e
ϕ
2 + γΣ e

Σ
2 ) . (4.6)

The requirement (4.5) ensures that the linear combination of 7d U(1) vectors that gets

massive via Stückelberg mechanism is built exclusively with the vectors associated to har-

monic 2-forms, without any mixing with the vector Aψ associated to the isometry U(1)ψ.

The interested reader can find a more detailed discussion of this point in [1]. If we com-

bine (4.5) with the relations (3.14), we can express the four quantities γN
ϕ , γS

ϕ, γN
Σ , γS

Σ in

terms of the three flux quanta (N,NN, NS),

γN,S
ϕ = − N (NN +NS)

2 (2χN +NN −NS)
± 1

2
N , (4.7)

γN,S
Σ = −(NN +NS)(χN +NN −NS)

4 (2χN +NN −NS)
∓ 1

4
(χN +NN −NS) . (4.8)

It is worth noticing that the values of the integrals
∫
M6

E4X8,
∫
M6

E3
4 are insensitive

to the specific profile of the functions γϕ, γΣ, Hα entering E4, but only depend on the

values that these functions attain at the endpoints of the µ interval. For γϕ and γΣ these

values are given in (4.7), while for Hα they are collected in (3.34). We also notice that

integration over S2
ϕ of powers of eϕ2 is conveniently preformed making use of (3.31), and

similarly for integration along the Riemann surface.
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After these preliminary remarks, we can give the full expression for the inflow anomaly

polynomial I inflow
6 computed via (4.2). We solve the constraint FαNα = 0 by expressing

FC in (3.27) in terms of FN,S, FC = − 1
N (NN F

N +NS F
S). We introduce the notation

cψ1 ≡ c1(U(1)ψ) =
Fψ

2π
, cN,S

1 ≡ c1(U(1)N,S) =
FN,S

2π
, (4.9)

and we write I inflow
6 in terms of the quantities

NΣ = −1

2
(N χ+NN −NS) , M =

1

2
(NN +NS) . (4.10)

We find

−I inflow
6 =

[
N2NΣ(χN−2NΣ+2M)(χN−2NΣ−2M)

(χN−2NΣ)2
+
χN

2

]
(cψ1 )2 (cN

1 +cS
1) (4.11)

−N
2(χN−2NΣ+2M)(χN+2NΣ−2M)

2(χN−2NΣ)
cψ1 (cN

1 )2

−N
2(χN+2NΣ+2M)(χN−2NΣ−2M)

2(χN−2NΣ)
cψ1 (cS

1)2

−
N2(χ2N2−4N2

Σ−4M2)

χN−2NΣ
cψ1 c

N
1 c

S
1

+
1

6
N2(χN−6NΣ+6M)(cN

1 )3+
1

6
N2(χN−6NΣ−6M)(cS

1)3

+
1

2
N2(χN+2NΣ+2M)(cN

1 )2 cS
1 +

1

2
N2(χN+2NΣ−2M)(cS

1)2 cN
1

+
χN+2NΣ

24
cψ1 p1(TW4)−χN

24
(cN

1 +cS
1)p1(TW4)−χN+2NΣ

6
(cψ1 )3

+

[
−
N2(χ2N2−12N2

Σ+4χNNΣ+12M2)

24(χN−2NΣ)
−χN

12

]
cψ1 p1(SO(3)ϕ)

+
1

8
N2(χN+2NΣ−2M)cN

1 p1(SO(3)ϕ)+
1

8
N2(χN+2NΣ+2M)cS

1 p1(SO(3)ϕ)

+

[
−
N2

Σ(3N2−N2
Σ−2NNΣ−3M2)

12(N−NΣ)
−NΣ

6

]
cψ1 p1(SO(3)Σ)

+
1

4
NΣ(N+M)(N+NΣ−M)cN

1 p1(SO(3)Σ)

+
1

4
NΣ(N−M)(N+NΣ+M)cS

1 p1(SO(3)Σ) .

In the last three lines we have collected the terms related to the symmetry SO(3)Σ, which

is only present if the Riemann surface is a sphere.

5 Holographic solutions

In the previous sections we have adopted a UV point of view: we fixed the supersymmetric

M-theory background (3.1) and we inserted a stack of M5-branes extended along W4 ×Σg

and sitting at the origin of C2/Z2 × R, specifying also the appropriate background fluxes

along the Riemann surface. In this section we argue that, in the large-N limit, this class
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of UV setups corresponds in the IR to a well-known class of AdS5 solutions in M-theory,

first described in GMSW [46].

In the vicinity of the M5-branes, the UV picture of 11d spacetime is described in (3.2).

Our expectation for the near-horizon IR picture, based on [55], is that the overall radial

direction R+ combines with W4 to yield an AdS5 factor, leaving the geometry M6 as

internal space. Taking into account backreaction effects, the Ansatz for the 11d metric in

the near-horizon limit has the form

ds2(M11) = e2λ
[
ds2(AdS5) + ds2(M6)

]
, (5.1)

with ds2(M6) of the form (3.6), and λ a warp factor depending on M6. Let us stress that all

metric functions in the ansatz (3.6) for the metric on M6 depend on the interval coordinate

µ only. It is natural to also demand that the warp factor λ be a function of µ only.

In [46] a class of solutions is described, in which M6 and λ have exactly the properties

described in the previous paragraph. More precisely, the fully backreacted geometry of

M6 is

ds2(M6) = e−6λ
[
Fϕ ds

2(S2
ϕ) + FΣ ds

2(Σg)
]

+
e−6λ

cos2 ζ
dµ2 +

cos2 ζ

9
D̂ψ2 , (5.2)

where the warp factor λ and the metric functions Fϕ, FΣ, cos ζ depend on µ only. Their

expressions are recorded in appendix A, where we summarize some key features of the

GMSW solutions. The G4-flux configuration of the holographic solution is given in (A.4).

As expected, it has exactly the same structure as G4 in (3.12).

The fact that the topology of the internal space M6 in the GMSW solutions matches

exactly with the topology of M6 in our UV setup is a strong hint that the GMSW solution

provides the gravity dual to the field theory setups we discussed in section 3. Furthermore,

the GMSW solutions provide evidence for the fact that the 4d construction yields a non-

trivial IR fixed point, at least at large N .

In the remainder of this section we perform two quantitative checks of our proposed

field theory interpretation of the GMSW solutions. Before entering the details of the

computation, let us briefly discuss our stategy.

On the field theory side, the inflow anomaly polynomial (4.11) is expected to be exact in

N , but to contain both the anomalies of the interacting SCFT of interest and of decoupled

sectors. It is natural to assume that the decoupled sectors do not contribute to the leading

order N3. As a result, from (4.11) we can safely extract the anomaly polynomial for the

interacting SCFT at large N . We then perform a-maximization [49] at large N in order

to identify which linear combination of U(1)ψ, U(1)N,S is the superconformal R-symmetry.

Once the latter is determined, its ’t Hooft anomaly coefficients give us the central charge

c and the flavor central charge B for the SO(3)ϕ symmetry originating from isometries of

S2
ϕ. The quantities c and B can also be computed holographically in the GMSW solutions.

This supergravity computation is reported in appendix A. We find a perfect agreement

with the field theory results.

Let us discuss in greater detail the field theory derivation of the quantities c, B. The

first step is simply to isolate the leading terms in (4.11) at large N . For simplicity, in this
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section we do not keep track of the SO(3)Σ symmetry that is present in the case in which

the Riemann surface is a sphere. We may then write

ISCFT, large N
6 =

N2NΣ(χN − 2NΣ + 2M)(χN − 2NΣ − 2M)

(χN − 2NΣ)2
(cψ1 )2 (cN

1 + cS
1) (5.3)

− N2(χN − 2NΣ + 2M)(χN + 2NΣ − 2M)

2(χN − 2NΣ)
cψ1 (cN

1 )2

− N2(χN + 2NΣ + 2M)(χN − 2NΣ − 2M)

2(χN − 2NΣ)
cψ1 (cS

1)2

−
N2(χ2N2 − 4N2

Σ − 4M2)

χN − 2NΣ
cψ1 c

N
1 c

S
1

+
1

6
N2(χN − 6NΣ + 6M) (cN

1 )3 +
1

6
N2(χN − 6NΣ − 6M) (cS

1)3

+
1

2
N2(χN + 2NΣ + 2M) (cN

1 )2 cS
1 +

1

2
N2(χN + 2NΣ − 2M) (cS

1)2 cN
1

−
N2(χ2N2 − 12N2

Σ + 4χNNΣ + 12M2)

24(χN − 2NΣ)
cψ1 p1(SO(3)ϕ)

+
1

8
N2(χN + 2NΣ − 2M) cN

1 p1(SO(3)ϕ)

+
1

8
N2(χN + 2NΣ + 2M) cS

1 p1(SO(3)ϕ) .

Next, we perform a-maximization. The trial superconformal R-symmetry is a linear com-

bination of U(1)ψ with U(1)N,S, parametrized as

R = Tψ + sN TN + sS TS , (5.4)

where Tψ, TN,S denote the generators of U(1)ψ, U(1)N,S, and sN,S are parameters to be

fixed. At leading order at large N ,

ISCFT
6 =

1

6
trR3 (cR1 )3 , a = c =

9

32
trR3 , (large N) (5.5)

where cR1 is the first Chern class of the background curvature for the superconformal R-

symmetry. At the level of the anomaly polynomial, (5.4) is equivalent to the replacements

cψ1 → cR1 , cN,S
1 → sN,S cR1 . (5.6)

It follows that a-maximization at large N can be carried out by taking (5.3), performing the

replacements (5.6), and maximizing the coefficient of (FR)3 with respect to the parameters

sN,S. The result of this computation is most conveniently written in terms of the quantities

NΣ, M defined in (4.10). The central charge reads

c =
9N2N2

Σ

[
χ2N2 + 2χNNΣ + 4N2

Σ − 3M2
]3/2

4 (3M2 + 2χNNΣ) 2

−
9N2N2

Σ (2NΣ + χN)
(
2χ2N2 + 2χNNΣ + 8N2

Σ − 9M2
)

8 (3M2 + 2χNNΣ) 2
. (5.7)
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For completeness, let us also record the values of the parameters sN,S,

sN,S =
2χ2N2NΣ − 8N3

Σ ±M (χ2N2 − 4χNNΣ − 4N2
Σ)∓ 6M3

2 (χN − 2NΣ) (3M2 + 2χNNΣ)

− 2NΣ ∓M
2 (3M2 + 2χNNΣ)

√
χ2N2 + 2χNNΣ + 4N2

Σ − 3M2 . (5.8)

Let us now discuss the flavor central charge B for the SO(3)ϕ symmetry. The quantity

B appears in the 2-point function of two SO(3)ϕ symmetry currents. For its normalization,

we follow the conventions of [56]. The superconformal algebra relates B to the ’t Hooft

anomaly between the superconformal R-symmetry and SO(3)ϕ [47, 48]. Let us define the

’t Hooft anomaly coefficient ASO(3)ϕ by

ISCFT
6 = ASO(3)ϕ c

R
1 p1(SO(3)ϕ) + . . . (5.9)

We then have

B = 4ASO(3)ϕ . (5.10)

The quantity ASO(3)ϕ is extracted from (5.3) by performing the replacements (5.6) and

using (5.8). The result for B then reads

B =
N2
(
4χ2N2NΣ + 12χNN2

Σ + 24N3
Σ − 30M2NΣ − 9χM2N

)
6 (3M2 + 2χNNΣ)

−
N2
(
χNNΣ + 2N2

Σ −M2
)

3M2 + 2χNNΣ

√
χ2N2 + 2χNNΣ + 4N2

Σ − 3M2 . (5.11)

For definiteness, the supergravity computation of appendix A is performed in the case

in which the Riemann surface has genus g ≥ 2 and the flux parameter M is set to zero. The

results for c and B are given in (A.25), (A.26) in terms of the quantity r̃ = −2NΣ/(Nχ).

They agree perfectly with (5.7), (5.11), respectively.

5.1 Comments on the reduction of the 6d anomaly polynomial

In this section we contrast the approach of section 4 with the direct reduction on the

Riemann surface of the anomaly polynomial of the parent 6d (1,0) theory. More precisely,

let us consider the inflow anomaly polynomial I inflow
8 in (2.16), and let us integrate it on

Σg. To this end, it is useful to express cψ2 and tr(FN,S
6d )2 in terms of 6d Chern roots.

Following [22], we have

cψ2 = −(nψ6d)
2 , tr

(FN,S
6d )2

(2π)2
= −4 (nN,S

6d )2 . (5.12)

The 6d Chern roots split as

nψ6d = cψ1 −
χ

2
V Σ

2 , nN,S
6d = N cN,S

1 +NN,S V
Σ

2 , (5.13)
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with V Σ
2 normalized as in (3.13). We are not twisting SU(2)ϕ, whose connection is thus

purely external. Upon integration on Σg, we obtain

−
∫

Σg

I inflow
8 = −1

3
χ

(
N3 − 3

2
N

)
(cψ1 )3 − 2N2 (NN c

N
1 +NS c

S
1) (cψ1 )2

+ χN3 cψ1
[
(cN

1 )2 + (cS
1)2
]
− 2N2

[
NN (cN

1 )3 +NS (cS
1)3
]

+ 2N2
[
NN c

N
1 (cS

1)2 +NS c
S
1 (cN

1 )2
]
− 1

24
χN cψ1 p1(TW4)

− 1

3
χ (N3 −N) cψ1 c

ϕ
2 − 2N2 (NN c

N
1 +NS c

S
1) cϕ2 . (5.14)

By virtue of anomaly matching across dimensions, the above polynomial captures the

anomalies of symmetries that are manifest in six dimensions. We stress that the quan-

tity (5.14) generically receives contributions from modes that decouple along the RG flow

from the 6d SCFT to the 4d SCFT. As a result, caution must exercised in extracting 4d

central charges from (5.14).

For example, if we perform a-maximization at large N using (5.14) as an input, we

get a central charge c that does not agree with (5.7). Working for simplicity in the case

M = 0, or equivalently NN +NS = 0, we obtain the results

c = −
9N (5χ2N2 + 12χNNΣ + 12N2

Σ)

32χ
, sN,S = ∓NΣ

χN
∓ 1

2
, (M = 0) (5.15)

which have a different structure compared to (5.7), (5.8) at M = 0, due to the absence

of radicals. We have verified numerically in a few examples that the discrepancy between

the correct central charge (5.7) and the central charge obtained from (5.14) persists for

M 6= 0. This test can be regarded as a basis-independent check that (5.14) and (4.11)

are inequivalent anomaly polynomials. We interpret this discrepancy as due to decoupling

modes in the RG flow from six to four dimensions. A more detailed understanding of this

RG flow would be useful in studying the decoupling sector, but is beyond the scope of this

work.5

If the Riemann surface has genus g ≥ 2, we can consider the limit M = 0, NΣ = −χ
2 N .

This is equivalent to setting NN,S = 0. As a result, we are blowing down the resolution

2-cycles, and the geometry re-develops orbifold singularities. In this scenario, the reduction

of the 6d anomaly polynomial gives a large-N central charge that agrees with our 4d inflow

anomaly polynomial (4.11). We detect, however, a mismatch in the ’t Hooft anomaly

coefficients for U(1)N,S. We interpret this discrepancy as being due to decoupled modes in

the resolved phase, which have to be re-included in the limit NN,S → 0.

6 Discussion

In this work we have mainly focused on the 6d (1,0) theory living on a stack of N M5-

branes probing a C2/Z2 singularity. We expect, however, that many features of this setup

should persist for branes probing C2/Zk for k ≥ 3. By resolving the orbifold singularities

5We thank Shlomo Razamat for interesting correspondence on this matter.
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at the north and south poles of S4/Zk, the flavor symmetry SU(k)N× SU(k)S is broken to

[U(1)k−1]N× [U(1)k−1]S. We can then compactify on a Riemann surface with a non-trivial

twist for this symmetry. We expect the emergence of an accidental U(1) symmetry and

the spontaneous breaking of a U(1) generator to occur in such setups.

In the case k = 2 the geometry of the resolution of S4/Z2 is particularly simple.

This facilitates the identification of the gravity duals. Nonetheless, it would be interesting

to investigate the gravity duals also for k ≥ 3. In this case, the internal geometry M4,

associated to the 6d QFT in its resolved phase, is expected to have a smaller U(1)ψ×U(1)ϕ
isometry, and a more complicated topology. The identification of the dual AdS5 solutions

would be particularly useful, since it would allow us to perform large-N supergravity tests

similar to the ones considered in this work for k = 2. These solutions should be obtained

from BPS system described in [57].

The examples studied in this paper show the power of geometric methods in the study

of strongly coupled dynamics of 4d QFTs. In particular, by constructing the 4-form E4

that governs anomaly inflow from the M-theory ambient space, we are able to track directly

the emergence of accidental symmetries and spontaneous symmetry breaking. Our analysis

fits into a broader geometrization program, aimed at using geometric and string theoretic

tools define and classify non-trivial QFTs, and to uncover their non-perturbative dynamics.
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A Supergravity computations

A.1 Review of the GMSW solutions

In this appendix we review a class of M-theory solutions with 4d N = 1 superconformal

symmetry, first described in GMSW [46]. The 11d metric reads

ds2
11 = e2λ

[
ds2(AdS5) + ds2(M6)

]
,

ds2(M6) = e−6λ
[
Fϕ ds

2(S2
ϕ) + FΣ ds

2(Σg)
]

+
e−6λ

cos2 ζ
dµ2 +

cos2 ζ

9
D̂ψ2 ,

dD̂ψ = (2π) (−2V ϕ
2 − χV

Σ
2 ) ,

∫
S2
ϕ

V ϕ
2 = 1 ,

∫
Σg

V Σ
2 = 1 . (A.1)

We have set the AdS5 radius to 1, so that the Ricci scalar of AdS5 is R = −20. The metric

on the Riemann surface Σg has curvature k = ±1, with Ricci scalar R = 2 k. Compared

with [46], we have flipped the sign of ψ and we have renamed y into µ. All metric functions
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depend on µ only. They are given by

e6λ =
2
(
aϕ − µ2

) (
aΣ − k µ2

)
aΣ + k aϕ + 2 k µ (µ− 3 γ0)

, Fϕ =
1

3
(aϕ − µ2) , FΣ =

1

3
(aΣ − k µ2) , (A.2)

where aϕ, aΣ, γ0 are constant parameters. The quantity 0 ≤ cos ζ ≤ 1 is determined by

e3λ sin ζ = 2µ . (A.3)

The G4-flux configuration is given by

G4 = 2π d
[(
γ̃ϕ V

ϕ
2 + γ̃Σ V

Σ
2

)
∧ D̂ψ

]
= 2π

[
dγ̃ϕ ∧ V ϕ

2 + dγ̃Σ ∧ V Σ
2

]
∧ D̂ψ − (2π)2 (2 γ̃Σ + χ γ̃ϕ + 2χγ0)V ϕ

2 ∧ V
Σ

2 , (A.4)

with the functions γ̃ϕ, γ̃Σ given as

γ̃ϕ = 2
2 k aΣ µ− 6 k aΣ γ0 + aϕ µ+ µ3

9 k (aΣ − k µ2)
,

γ̃Σ = χ
2 k aϕ µ− 6 k aϕ γ0 + a2 y + k µ3

9 k (aϕ − µ2)
. (A.5)

We have put a tilde on γ̃ϕ, γ̃Σ to distinguish these functions, coming from the holographic

solution, from the functions γϕ, γΣ that enter the parametrization (3.27) of E4 in the

main text. In this appendix, we are adopting conventions in which the quantization of G4

flux reads ∫
C4

G4

(2π`p)3
∈ Z , (A.6)

where C4 is a 4-cycle and `p is the 11d Planck length.

Let us now focus on solutions with γ0 = 0. We verify that in this class of solutions the

fluxes NN,S defined in (3.11) satisfy

NN +NS = 0 . (A.7)

The range of the coordinate µ is determined from the zeros of cos ζ and has the form

[−µN, µN], with µN > 0. We find it useful to distinguish the cases in which the genus g of

the Riemann surface is g ≥ 2 contrasted to g = 0. We find

g = 0 : µ2
N = −1

2
(aϕ + aΣ) +

1

2

√
(aϕ + aΣ)2 +

4

3
aϕ aΣ , aϕ, aΣ > 0 ,

g ≥ 2 : µ2
N =

1

2
(aΣ − aϕ)− 1

2

√
(aΣ − aϕ)2 − 4

3
aϕ aΣ , aΣ > 3 aϕ > 0 . (A.8)

Recall that the fluxes N and NΣ are defined as

N =

∫
S2
ϕ×S2

µψ

G4

(2π`p)3
, NΣ =

∫
Σg×S2

µψ

G4

(2π`p)3
. (A.9)
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We can express the ratio aΣ/aϕ in terms of the ratio NΣ/N ,

g = 0 :
aΣ

aϕ
=

2 r2 − r + 2 + 2 (r − 1)
√
r2 + r + 1

3 r
, r :=

NΣ

N
,

g ≥ 2 :
aΣ

aϕ
=

2 r̃2 + r̃ + 2 + 2
√
r̃4 + r̃3 + r̃ + 1

3 r̃
, r̃ := −2NΣ

χN
> 1 . (A.10)

Moreover, we can express the ratio between the Planck length and the AdS5 scale (which

was set to 1 in the line element) in terms of aΣ, aϕ, µN, N ,

g = 0 :
`3p

L3
AdS

=
2µN (2 aΣ + aϕ + µ2

N)

9πN (aΣ − µ2
N)

,

g ≥ 2 :
`3p

L3
AdS

=
2µN (2 aΣ − aϕ − µ2

N)

9πN (aΣ + µ2
N)

. (A.11)

A.2 Effective action in five dimensions

In order to compute holographically the central charge c and the flavor central charge for

the SO(3)ϕ isometry of S2
ϕ, we need to extract the coefficients of the Einstein-Hilbert term

in the 5d effective action, as well as the coefficient of the kinetic terms for the SO(3)ϕ
vectors. To this end, we only need two terms in the 11d M-theory action,

S11 =
1

2κ2
11

∫
M11

[
R(11) ∗11 1− 1

2
G4 ∧ ∗11G4 + . . .

]
, 2κ2

11 = (2π)8 `9p . (A.12)

The dimensional reduction from 11d to 5d is performed activating the external 5d metric

and the gauge fields for SO(3)ϕ. The 11d line element then reads

ds2
11 = e2λ

[
ds2(M5) + ds2(M6)

]
,

ds2(M6) = e−6λ
[
Fϕ ds

2(S2
ϕ)g + FΣ ds

2(Σg)
]

+
e−6λ

cos2 ζ
dµ2 +

cos2 ζ

9
D̃ψ2 ,

dD̃ψ = (2π) (−2 eϕ2 − χV
Σ

2 ) ,

∫
S2
ϕ

eϕ2 = 1 ,

∫
Σg

V Σ
2 = 1 ,

ds2(S2
ϕ)g = DyaDya , ya ya = 1 , Dya = dya −Aab yb , Aab ≡ εabcAc . (A.13)

The 2-form eϕ2 is defined in (3.29). The gauge fields Aa for SO(3)ϕ also enter G4, as

described around (3.27). We replace V ϕ
2 with eϕ2 , and D̂ψ with D̃ψ. Therefore, the form

of G4 we use for the reduction is

G4 = 2π d
[(
γ̃ϕ e

ϕ
2 + γ̃Σ V

Σ
2

)
∧ D̃ψ

]
. (A.14)

The dimensional reduction of the 11d Ricci scalar yields

R(11) = e−2λR(5) −
1

4
e−4λ

[
1

9
e2λ cos2 ζ ya yb + e−4λ Fϕ (δab − ya yb)

]
F amn F

bmn + . . .

(A.15)
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where m,n = 0, . . . , 4 are indices in external 5d spacetime, R(5) is the Ricci scalar of the

external 5d metric, and we have only written down the terms that are relevant for our

discussion. We also have

∗11 1 =
1

3
e−4λ Fϕ FΣ (4π V ϕ

2 ) ∧ (−2πχV Σ
2 ) ∧ dµ ∧ dψ ∧ (∗51) , (A.16)

with V ϕ
2 , V Σ

2 normalized as in (A.1), and ∗5 denoting the Hodge star with respect to the

external 5d metric. Finally, one computes

G4 ∧ ∗11G4 =
e−6λ Fϕ
12χ2 FΣ

[
9χ2 F 2

Σ

(
dγ̃ϕ
dµ

)2

+ e6λ (2 γ̃Σ + χ γ̃ϕ)2

]
za zb Fa ∧ ∗5Fb ∧

∧ (4π V ϕ
2 ) ∧ (−2πχV Σ

2 ) ∧ dµ ∧ dψ + . . . (A.17)

where we have only written down the terms that can saturate the integration along

the internal directions. Notice that our conventions for the Hodge star is such that

F a ∧ ∗5Fa = 1
2 F

a
mn F

mn
a ∗5 1.

We are now in a position to perform the integral over the internal directions. The

result reads∫
M11

[
R(11) ∗11 1− 1

2
G4 ∧ ∗11G4

]
=

∫
M5

[
α1R(5) ∗5 1 + α2 F

a ∧ ∗5Fa + . . .

]
, (A.18)

with the coefficients α1, α2 given by

α1 =

[
− 8

81
π3 µχ

(
3 aΣ + 3 k aϕ + 2 k µ2

)]+µN

−µN
,

α2 =

[
4π3µχ

2187 (aΣ − kµ2) 3

(
6kµ6aΣ − 15kµ2aΣa

2
ϕ + kµ2a3

Σ + 3kaΣa
3
ϕ + 45ka3

Σaϕ

+ 18µ6aϕ + 15µ4a2
Σ + 9µ4a2

ϕ − 9µ2a2
Σaϕ − µ2a3

ϕ + 24a2
Σa

2
ϕ + 24a4

Σ + 8µ8

)]+µN

−µN
.

(A.19)

We adopt the following parametrization of the 5d effective action,

S5 =

∫
M5

[
1

16πG
(5)
N

R(5) ∗5 1 +
1

g2
SG

Trf(F ∧ ∗5F ) + . . .

]
, (A.20)

where the trace is in the fundamental representation of SU(2)ϕ, with conventions

Trf(T
a T b) =

1

2
δab , Trf(F ∧ ∗5F ) =

1

2
F a ∧ ∗5Fa , (A.21)

where T a are the generators of SU(2)ϕ. Our definition of g2
SG agrees with the conventions

of [56]. Keeping into account the prefactor 1/(2κ2
11) in the M-theory action (A.12), the

reduction result (A.18) translates into

G
(5)
N = 24 π7 `9p α

−1
1 , g2

SG = 27 π8 `9p α
−1
2 . (A.22)
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The holographic central charge c and SO(3)ϕ flavor central charge B, in the notation of [56],

are given in terms of G
(5)
N , gSG as

c =
π L3

AdS

8G
(5)
N

, B =
8π2

g2
SG

, (A.23)

so that we have the identifications

c = 2−7 π−6

[
`p

LAdS

]−9

α1 , B = 2−4 π−6

[
`p

LAdS

]−9

α2 . (A.24)

For definiteness, we proceed in the case in which the Riemann surface has genus g ≥ 2

and the parameter γ0 is set to zero. We may then use the relations (A.8), (A.10), (A.11)

and express c and B in terms of r̃,

c =
9

32
χN3

[
(r̃ − 1) (2 r̃2 − r̃ + 2)− 2 (r̃2 − r̃ + 1)3/2

]
, (A.25)

B = − 1

16
χN3

[
− 8

3
(3 r̃2 − 3 r̃ + 2) + 8 (r̃ − 1)

√
r̃2 − r̃ + 1

]
. (A.26)

To get the above expressions we had to de-nest some nested radicals. The supergravity

results for c, B match perfectly with the large-N field theory analysis performed in the

main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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