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singularity. In particular, we study its compactifications to four dimensions on a smooth
genus-g Riemann surface with non-trivial flavor flux, yielding a family of 4d CFTs. By
tracking the M-theory origin of the global symmetries of the 4d CFTs, we detect the
emergence of an accidental symmetry and the spontaneous symmetry breaking of a U(1)
generator. These effects are visible from geometric considerations and not apparent from
the point of view of the compactification of the 6d field theory. These phenomena leave an
imprint on the 't Hooft anomaly polynomial of the 4d CFTs, which is obtained from re-
cently developed anomaly inflow methods in M-theory [1]. In the large-N limit, we identify
the gravity dual of the 4d setups to be a class of smooth AdS5 solutions first discussed by
Gauntlett-Martelli-Sparks-Waldram. Using our anomaly polynomial, we compute the con-
formal central charge and a non-Abelian flavor central charge at large IV, finding agreement
with the holographic predictions.
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1 Introduction and summary

Quantum field theory (QFT) provides a powerful framework to describe a variety of physi-
cal phenomena, ranging from particle physics, to condensed matter systems and cosmology.
Symmetries and spontaneous symmetry breaking play a fundamental role in countless ex-
amples of applications of the QFT formalism. It is particularly interesting to investigate
the symmetries and dynamics of QFT's in strongly coupled non-perturbative regimes. Geo-
metric engineering is a remarkable tool in the construction and analysis of strongly coupled
QFTs in various dimensions. Several non-trivial QFTs can be studied by examining the
low-energy limit of brane configurations in string theory and M-theory. A prominent ex-
ample is furnished by 6d (2,0) theories of type Ax_1, which emerge in the long-wavelength
dynamics of a stack of N M5-branes extending along a flat worldvolume [2, 3]. By a similar
token, an interesting class of 6d (1,0) theories is obtained by considering a stack of M5-
branes probing an orbifold singularity [4-9]. A rich variety of 4d QFTs can be constructed
by considering M-theory setups in which a stack of M5-branes is wrapped on a Riemann
surface. These 4d QFTs are generically strongly coupled and fit into the larger Class S
program, in which 6d superconformal field theories (SCFTs) are compactified to four di-
mensions on a Riemann surface, possibly with defects. The reduction of 6d (2,0) theories



to 4d N = 2 QFTs was first analyzed in [10, 11], and reduction to 4d N = 1 QFTs has been
studied in [12-16]. The compactification of 6d (1,0) theories has been addressed in [17-32].

't Hooft anomalies are among the most important observables to compute in a geomet-
rically engineered QF T, especially if a Lagrangian description of the theory is not available.
It is worth emphasizing that anomalies are naturally geometric quantities. For the case of
continuous 0O-form symmetries — which is the case relevant for this work — the anomalies
of a d-dimensional QFT (with d even) are encoded in the anomaly polynomial, which is
a (d + 2)-form constructed with the curvatures of the background fields associated to the
symmetries [33-35]. The geometric nature of 't Hooft anomalies makes them particularly
amenable to computation in the framework of geometric engineering. Building on seminal
papers on anomaly inflow for M5-branes [36-39], a systematic toolkit for the computation
of anomalies of QFTs from Mb5-branes has been developed in [1, 40-42].

Our strategy is to study the boundary conditions for the fields of 11d supergravity in the
vicinity of the branes, instead of performing a direct field theory analysis of the worldvolume
theory. The M-theory boundary conditions can be used as a proxy to track interesting QF T
features, such as anomalies, accidental symmetries, and spontaneous symmetry breaking.
In this paper we illustrate this point by considering a class of 4d N' = 1 theories, obtained
from compactification on a Riemann surface of the worldvolume theory of a stack of M5-
branes probing a C2/Zy singularity.

In order to describe in more detail the class of 4d theories we study in this work, let
us recall some salient features of the 6d (1,0) SCFT on a stack of N M5-branes probing a
C?/Zy singularity. Before modding out by Zs, the stack is surrounded in its five transvervse
directions by a 4-sphere S*. After quotienting by Zs, S* is replaced by S*/Zy. The Zs
action has two fixed points, located at the north and south poles of S*, which yield two
orbifold singularities on S*/Zs. The theory has global symmetry SU(2); x SU(2)gr x
SU(2)x x SU(2)s. The factors SU(2)r, x SU(2)p originate from isometries of S*/Zs, while
SU(2)n x SU(2)g originate from the two orbifold points (labeled N, S for “north”, “south”).
The factor SU(2)p is the 6d R-symmetry, while the other factors are flavor symmetries.

The orbifold singularities at the north and south poles can be resolved by blowups,
while preserving 8 supercharges. The orbifold S*/Zy is replaced by a smooth internal
space My. After resolution, only the Cartan subgroup U(1)nxU(1)s of the flavor symmetry
SU(2)n xSU(2)g is preserved. The 4d theories of interest in this work are obtained from the
low-energy dynamics of these brane configurations wrapped on a smooth genus-g Riemann
surface ¥, (with g # 1). The compactification includes a twist for the U(1)nx x U(1)g flavor
symmetry, while SU(2), is untwisted. The resulting 4d theories are then labelled by the
genus g and three flux quanta N, Ny, Ng, with N the number of M5-branes in the stack,
and Ny g the twist parameter for the flavor symmetry U(1)x g. The internal space My of the
resolved 6d theory is non-trivially fibered over the Riemann surface, yielding a 6d space Mg,
with My — Mg — X,. Our geometric construction is summarized schematically in figure 1.

We also expect that these 4d theories emerge in the IR of an RG flow across dimensions
resulting from wrapping the parent 6d (1,0) SCFT on ¥, with the appropriate R-symmetry
and flavor twists. From this point of view, anomaly matching across dimensions implies
that we can integrate the anomaly polynomial of the parent 6d theory on X, to obtain 't
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Figure 1. Schematic representation of the geometric construction considered in this work. The
starting point is a configuration with Mb5-branes extending in six non-compact directions. The
angular transverse directions form the singular space S*/Z,. Along the horizontal arrow, the
orbifold singularities of S*/Z, are blown up to yield a smooth manifold My. The latter is then
fibered over a smooth Riemann surface >,. For each stage of this process we give the corresponding
global symmetries. The factors U(1)y x U(1)g are defined in (1.1). Finally, the diagonal dashed
arrow corresponds to the expected RG flow across dimensions that results from wrapping the parent
6d (1,0) SCFT on X, with the appropriate flavor twist.

Hooft anomalies in four dimensions. This method, however, does not capture accidental
symmetries. The latter can generically contribute to the exact IR superconformal R-
symmetry which governs the central charges of the 4d theory. In this work, we do not
follow such approach and we do not construct explicitly the relevant RG flows from six
to four dimensions. We can nonetheless track interesting physical phenomena through the
11d geometry.

The global symmetries of the 4d QFT are encoded in the geometry and topology of
the space Mg. We notice that the global symmetries of the 4d QFT correspond to gauge
symmetries of the 5d supergravity obtained by reduction of M-theory on the internal space
Mg. In this 5d supergravity theory, we have a massless gauge field for each isometry
generator of Mg. Furthermore, additional 5d gauge fields are obtained by expanding the
M-theory 3-form C3 onto harmonic 2-forms in Mg.

The space Mg has isometry group U(1)r x SU(2)z. It also admits three harmonic
2-forms, denoted wn, ws, wc. The 2-forms wy g are related to the 2-cycles associated with
the resolution of the orbifold singularities of S*/Zs. The 2-form wc, on the other hand,
only emerges after reduction to four dimensions, by fibering My non-trivially over ¥,. From
a field theory point of view, the existence of a third harmonic 2-form in the 4d setup is
interpreted as the emergence of an accidental U(1)¢c global symmetry, which is not visible
in six dimensions.

A crucial feature of the 5d supergravity theory obtained from compactification on Mg

is the following. While all three harmonic 2-forms wy, ws, we yield a 5d vector, one
linear combination of such vectors gets massive via Stiickelberg mechanism, by coupling



to a 5d axion. This phenomenon is described in greater detail in [1].! From a field theory
perspective, the symmetry group U(1)nxU(1)gxU(1)c is spontaneouly broken to a U(1)} x
U(1)g subgroup. The connection between Stiickelberg mechanism in 5d supergravity, and
spontaneous symmetry breaking of global symmetries in the 4d theory, is well-established
in the holography literature, see e.g. [44, 45]. To summarize,

accidental spontaneous

U(l)N X U(l)s U(l)N X U(l)s X U(l)c

symmetry symm. breaking

Uy x U(Ds,

with the generators TI<I,S of U(1)\ g given in terms of the generators Ty g c of U(1)ns,c as

N N,
TI(I:TN—WNTC, TézTg—WSTC. (1.1)

The naive symmetry U(1)yx x U(1)g visible in 6d dimensions is replaced by U(1)y x U(1)g.
Even though the rank is unchanged, this process has deep implications for the 't Hooft
anomalies of the theory, due to the non-trivial mixing of generators in (1.1).

We perform a careful analysis of the 't Hooft anomalies of the 4d QFT, using the
techniques developed in [1], based on anomaly inflow from the M-theory ambient space.
The main idea in [1] is to obtain the inflow anomaly polynomial Ié“ﬂow of the 4d QFT by
integrating a 12-form characteristic class Z;2, which encodes the anomalous variation of the
M-theory action in the presence of the M5-brane stack. Crucially, Iénﬁow counterbalances
the anomalies of all degrees of freedom living on the stack, which in the IR can be organized

into the interacting QFT of interest, plus possible decoupled sectors. We may then write
I(i}nﬁow - /M Tio ) I(ijnﬂow + IgFT + IgeCOUPl =0. (12)
6

While we do not have a complete understanding of decoupled sectors, we can assume that
their contribution to the 't Hooft anomalies is subleading in the large- IV limit, which is taken
as N, Ny g — 00, keeping Ny g/N finite. Under this assumption, the term Igecoum in (1.2)
can be neglected at leading order at large IV, and we can infer the anomaly polynomial of
the interacting QFT from Iénﬁow.

In order to test our large-N result, we investigate the gravity duals of our 4d field
theory constructions. As it turns out, we identify the gravity duals to be a well-known
class of AdSs solutions in M-theory, first discussed in Gauntlett-Martelli-Sparks-Waldram
(GMSW) [46]. These solutions are warped products AdSs x,, MJ°', where the internal
space Méml is smooth and has exactly the same topology and isometries as Mg in the probe
Mb5-brane picture. The existence of smooth dual geometries provides evidence that our
construction yields a non-trivial interacting 4d SCF'T in the IR, at least at large N.

To give more supporting evidence for our claims, we carry out two quantitative checks,
by computing the central charge ¢ and the flavor central charge for the global symmetry
SU(2)1, of the 4d theory. These quantities can be computed holographically at large N
from the supergravity effective action. On the field theory side, they can be extracted

IThis Stiickelberg mechanism was also instrumental in [43] for the correct counting of symmetries of 4d
N =2 SCFTs from M5-branes from the perspective of their gravity duals.



from the anomaly polynomial, because the superconformal algebra relates them to ’t
Hooft anomalies coefficients involving the SU(2) generators and the superconformal R-
symmetry [47, 48]. The latter is the linear combination of U(1) g x U(1)y x U(1)g determined
by a-maximization [49]. We find a perfect agreement between the supergravity and field
theory computations, at leading order in the large-IN expansion.

The outcome of a-maximization depends crucially on the mixing (1.1) of the naive
symmetry generators T g of U(1)n,g with the generator T of the emergent U(1)c sym-
metry. In particular, in order to match the supergravity results it is essential to take into
account emergent symmetries and spontaneous symmetry breaking in the computation of
the 't Hooft anomalies of the 4d theory. The methods of [1] provide a streamlined, geomet-
ric way of addressing these phenomena. Indeed, if we integrate the anomaly polynomial of
the parent 6d SCFT of ¥,, we do not reproduce the correct large-IN central charge from
holography.

The rest of this paper is organized as follows. In section 2 we describe the 6d M-theory
setup with a stack of N M5-branes probing a C?/Zy singularity. Section 3 is devoted to
the reduction of the 6d theory to four dimensions on X, and to the global symmetries
of the 4d QFT. In section 4 we compute the anomalies of the 4d QFT using inflow. In
section 5 we identify the gravity duals and we perform the aforementioned quantitative
tests involving the central charges of the 4d theories. We conclude with a brief discussion
in section 6. The computations in supergravity are collected in appendix A.

2 Six-dimensional setup

The main setup of interest is a stack of N M5-branes probing a C?/Zsy orbifold singularity
in M-theory. First, we discuss some general aspects where the M5-branes are probing a
C? /7y, orbifold fixed point.

2.1 Aspects of M-theory on C2/Z

First we consider the M-theory background with the orbifold C2/Zj. Let (2°,--- , 2°) be
the coordinates along an R® plane, and (y',--- ,%°) be the coordinates along the transverse
directions. The latter parametrize a five-dimensional space C? xR with complex coordinates
(z1 = y* +iy?, 20 = y> + iy?). The orbifold action is
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21,67k 20, 10). (2.1)

(217227y5) ~ (6 k

A local metric for the M-theory background is given as

ds%l = dsQ(]RG) +dr? +r? ds2(54/Zk) (2.2)

dp? 1 1
ds*(S*)zy,) = e + (1 —p?) = Dy? + i ds*(S3)| . (2.3)
ds*(S}) = d6* + sin” 0 dy)?, Dy =dp + gcosﬂdd}. (2.4)

The radius r is constructed from y° and the radii of the two complex planes, in particular
we have y> = ru. The circle coordinates have periodicity (A = 27, Ap = 27). For k = 1,



the metric (2.3) is that of round four-sphere. When k > 1, the orbifold action admits two
R*/7Z; fixed points at the poles of the sphere at y = +1. At constant values of p, the
three dimensional sections of the four-sphere are S(;ls bundles over Si with degree k. The
isometries of Si, and Si lead to a U(1), x SU(2), gauge symmetry on the extended seven-
dimensional directions of the M-theory background. This is the subgroup of the SO(5)
isometry of the sphere preserved by the orbifold action.

The region near an orbifold fixed point of the sphere corresponds to a single center
Taub-NUT space, the metric near each pole is

1 k 1
2~ 2 2, P2 7.2/a2 _ _ _
The orbifold singularities can be resolved locally by replacing the single center Taub-NUT
space to a Gibbons-Hawking space with k sources of unit charge. Such spaces are Sslp

bundles over R? with metric given as
ds* =V~ (dp+ A +V (dX? +dY* +dZ?),  with dV =4gsdA, (2.6)

where V is a potential on the 3D base space and A is a connection one-form for the circle
bundle. The potential satisfies Laplace’s equation on the R3 base. A general solution of
Gibbons-Hawking space is given by inserting k centers at positions X, = (X1,Yr, Zr) with

charge n!. The potential is

nI

1
R PNEES A 0

The parameter vg fixes the asymptotic size of the circle. The coordinate ¢ has period 27.
The space is Asymptotically Locally Flat (ALF) when vy # 0 with topology of S! x R3,
and asymptotically Locally Euclidean (ALE) when vy = 0 with topology of R*.

The region near each center is described by a R*/Z,; orbifold fixed point where SJJ
shrinks. A two-cycle can be obtained by taking Si, with a segment on R3 that connects
two singularities. There are k£ — 1 independent two-cycles with harmonic representatives,
w' (i € {1,---,k —1}). When all n! = 1, the space is smooth with k — 1 two-cycles.
This corresponds to a resolution of the orbifold singularity. The S&) circle of Si in (2.5),
is identified with the rotation on the (X,Y’) plane. Resolving the singularity breaks the
SU(2), isometry of Si to a U(1), corresponding to the rotations of Si.

M-theory, in the supergravity limit, can be studied on the space (2.2) where we replace
the two orbifold singularities with their smooth resolutions. This local deformation is
always possible since the asymptotic space of Gibbons-Hawking is fixed by the total charge.
M-theory has a 2-form gauge symmetry with a 3-form potential, C'5. There are massless
fluctuations of the C5 potential on the extended seven-dimensional space coming from the
resolutions of the singularities. In reducing M-theory on the compact space, we can add
terms to C3 as

Cs=a¥ ANwl +ad Nwl+ -+ (2.8)

where (w;,w) are the resolution harmonic two-forms for the north and south singularities,
respectively. The one-forms (ay,ais) are massless gauge field on the seven-dimensional



space. Bach orbifold fixed point leads to a U(1)*~! gauge symmetry in M-theory which
enhances to an SU(k) gauge symmetry in the singular limit [50]. To summarize, the M-
theory background admits an SU(2),, x SU(k)n x SU(k)s x U(1),, bosonic gauge symmetry.

We are interested in the field theory that describe the low energy dynamics of a stack
of N M5-branes probing the M-theory singularity at » = 0 in (2.2). The gauge symmetry
of the M-theory background induces a global symmetry on the worldvolume directions of
the Mb5-branes. The SU(2), symmetry from Si corresponds to an SU(2)g R-symmetry,
whiles the rest SU(k)n x SU(k)s x U(1), imprints as a flavor symmetry. In particular, the
7d gauge fields (a,a}) yield 6d background connections (AY;,, AS,.). This configuration
preserves eight supercharges leading to a six-dimensional superconformal field theory with
a (1,0) supersymmetry [4-9].

2.2 The case k =2

The resolution space of S*/Zy has an enhanced symmetry. The U(1), isometry of S}O in
S4/Zs enhances to an SU(2),, isometry group as can be seen by rewriting the metric as
201

ds*(S*/7y) = 1‘?‘M2+4(1—u2) [Dy?+d6? +sin®0dp?|, Dy =dip+cosfdip.  (2.9)

The resolution of the orbifold singularities at p = +1 preserve the isometries of S?p com-
posed of (#,) in the metric of S*/Zy above. This follows from the fact that the resolution
space of R*/Zs is the Eguchi-Hanson space [51]. To see this more explicitly, write the
potentials for the two center Gibbons-Hawking space with unit charge as

1 1 1(Zy Z_ .
V=t A= S5+ 5= ]dt Y/X 2.10
2R, 2R 2<R+ R_> an™ (Y/X) , (2.10)
RL=X*+Y?*+27%, Zi=Z+27. (2.11)

The centers are sitting at (0,0, +Zy). The metric of the resolved space can be written as

R*— ot
R4

R R?
FAR* + - [d92 +sin” 0 dp® +

ds® = ————
8 RY—a

(dip + cos 6 dgp)ﬂ , (2.12)

where we have made the coordinate transformation [52]

2
Z:RZCOSG, X:R44_a4$in9 cos, Y:R44_a4$in951n¢. (2.13)
The space smoothly caps off at R = a where the Szlp circle shrinks. The two-sphere, SZ,
composed of (6, ) in the resolved space has a finite size of a/2 at R = a. The two-sphere
in this region also corresponds to the two-cycle of the resolution of the R*/Z,.

The singularities of S*/Zy are resolved by excising the singular region and gluing in
the Eguchi-Hanson space describe in (2.12). The Sg of (2.12) is identified with the 53; of
S%/Zs in (2.9). In this sense, the resolution of the singularities on the sphere preserves its
isometries.



The smooth geometry obtained from the resolution of S*/Zs is denoted as My. It has
the topology of S? x S and corresponds to the Hirzebruch surface Fo. It is useful to write
a local metric for the space My,

ds®(My) = hy(p) ds®(S2) + ho(p) dp® + ha(p) DY® . Dip = dip + cosfdp.  (2.14)

The coordinate u takes value in the interval [ug, unx]. The boundary conditions of the hA’s
are fixed by regularity of the metric at the bounds, and in particular, A3 must vanish on
them. The two-sphere SZ is not shrinking at the north and south poles of My where the 5’1})
is shrinking. The two-spheres at the tip of the u-interval correspond to two-cycles denoted
as (82, S%) respectively. The volume of these cycles are then (hi(ug), hi(ux)) respectively.

The sizes of the two-cycles (83, S%) are moduli parameters of My. In the singular limit
where they vanish, My — S*/Zsy. The four-sphere admits a left SU(2) and a right SU(2)
action; these are preserved by the Z, orbifold action, and are related to the isometries of
SU(2)y x SU(2), rotations. The U(1), x SU(2), are manifest as isometries of SI}} x 52
of the metric (2.9). The total gauge symmetry in seven dimensions is SU(2), x SU(2),, x
SU(Z)N X SU(Q)S.

Anomalies of the 6d setup. Anomaly inflow for flat M5-branes probing orbifold sin-
gularities was studied in [53]. See also [1] for a review of the computation. The inflow
computation yields an 8-form I, énﬂow which captures the variation of the M-theory action
in the presence of the Mb5-brane stack. The inflow anomaly polynomial counterbalances
the anomalies of the worldvolume degrees of freedom, which at low energies consists of an
interacting SCFT and of modes that decouple in the IR,

pinflow | SCFT | Iélecoupl —0. (2.15)

The inflow anomaly polynomial reads

: N3 N N
_pinflow _ - [f =)+ = [4 =3 &b + = [2¢8 — ] pa(TWe)

12 24
1 Tt (FLY)? tr (Fg)* 2+ N (2 _Cw] tr(Foy)?  tr(E5)?
32N | (27)2 (27)2 4 t2 0 20 (2n)2 (27)2
+ %2 [p1(TWe)? — 4 pa(TWs)] - (2.16)
We have introduced the compact notation
& =c(SU2),), ) =ea(SUQR),). (2.17)
The anomaly of the decoupling modes is given by
Iéiecoupl _ plemsor % Igec,N n % Igec,s' (2.18)

The 8-form I is the anomaly polynomial of a 6d (1,0) tensor multiplet,

1
21

tensor __
18

We)? (TWs). (2.19)

" 14402

1 3
cg})2 +— Clgj} p1(TWs) + 5760 P! (T
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The 8-form I3*“N is the anomaly polynomial of a 6d (1,0) vector multiplet of SU(2)x;,

1 1 1
LN = = () = — & p1(TWe) — ——[Tp1(TWe)? — 4 pa(TW,
8 3 (c3) 16 © p1(TWs) 1920 [7191( 6) pa( 6)]
1 ,tr(FEN)?2 1 tr (EN)2 1 [tr (FEN)2?
_ -y \ed) TW, 6d) 6d 99
9 2 (2m)? 24 Pi(TWe) (27)2 12 | (2m)2 : (2:20)

The quantity Igec’s is completely analogous.?

3 Four-dimensional setup

In this section we describe aspects of the geometric setup when a stack of N Mb-branes
wrapping a genus, g, Riemann Surface Y, , with n punctures, probe a C?/Zs singularity
in M-theory. We will discuss various aspects of the geometric setup in M-theory and the
symmetries they induce for the field theory that describe the low-energy dynamics of the
branes. We will then use the geometric set-up and compute the anomaly polynomial of the
field theory by using anomaly inflow techniques developed in [1].

3.1 Geometric setup for 4d systems

We consider an eleven-dimensional background given as
M11 = W4 X Eyﬂ X (CQ/ZQ x R. (31)

The M-theory background preserves supersymmetry when the space X, ,, X C2/Zsy satisfies
the Calabi-Yau threefold condition, i.e. the first Chern class of the space must vanish.
The worldvolume of the branes decompose as Wg = Wy x X, where Wy is the external
spacetime. The low-energy dynamics of the branes is captured by a field theory that live
on Wy. In the region near the branes, the spacetime decomposes as

M11 = R+ X Ml(), where MG — M10 — VV47 M4 — M6 — Zg,n- (32)

The line R* is the overall radius of the transverse directions of the worldvolume spacetime
Wy. The space M1 describes the tubular neighborhood of the branes, it also corresponds
to an internal boundary of the M-theory spacetime near the branes. Finally, My is the
resolution space of S*/Zs describe in section 2.2.

The Calabi-Yau condition on the M-theory background is satisfied by twisting the
R-symmetry circle S}p over the Riemann surface. This twist breaks the six-dimensional
SU(2)r R-symmetry to a U(1)g symmetry for the worldvolume theory on Wy. At the level
of the geometry, this is achieved by shifting the connection of S}p as

D¢—>ﬁ¢zd¢+cos€dgo—27rxAg, with / dAs =1, x=-2(9—1)—n. (3.3)
Sgon

The Euler characteristic of the Riemann surface is denoted by x. The twisting, Ay, is a
nontrivial component of the six-dimensional gauging of the R-symmetry of the 6d theory.

2The trace ‘tr’ is normalized in such a way that, if n1 2 are the Chern roots of an SU(2) bundle with
n1 +n2 = 0, then trF?/(2m)? = —2 (n? 4+ n3). Since c2(SU(2)) = ninz, we have trF?/(2m)? = 4¢2(SU(2)).



In addition to twisting the R-symmetry, a large family of four-dimensional SCFT's
can be engineered by turn on background fields along the Riemann surface for the Cartan
elements of the SU(2)x x SU(2)s x SU(2), flavor symmetry. Such background fields break
the flavor symmetry of the six-dimensional theory to U(1)x x U(1)g x U(1), for the four-
dimensional theory. At the level of the M-theory background, this is achieved by turning
on the following flux parameters

dy — IA)gp =dp + 27 z Ay (3.4)
Cs — 6’3203+27T(NNA2/\OJN+N3AE/\QJ5). (3.5)

The connection forms (Ny As, Ng Ax) are background fields for the U(1) gauge fields dis-
cussed in (2.8) in the case of k = 2. The two-forms (wn,ws) are the closed representatives
that measure the volumes of the resolution two-cycles (S%,S2) in My. For every choice of
a Riemann surface, ¥, ,,, there is a family of four-dimensional systems labeled by the three
flux parameters (z, NN, Ng) and the number of branes, N.

In this paper, we restrict to four-dimensional theories that preserve the SU(2), sym-
metry, this corresponds to fixing z = 0. We will also restricted to cases with no punctures,
i.e. n = 0, and non-vanishing curvature, g # 0. For this family, a local metric for Mg can
be written as

ds® (M) = ho(p)ds®(Sg) + ha(u)ds®(S2) + ha(p)dp® + ha(p) Dy, (3.6)

The interval p takes value in [ug, un| where the endpoints are fixed by the loci where
hs vanish. The functions (hg,hi) parametrize the radii of X, and S?D in Mg, they are
non-vanishing on the interval of .

At a fixed point on the surface ¥/, there is a fiber that is a copy of My composed of SZ,
the circle S}ﬁ and the interval y. Similarly, we can consider a fixed point on the sphere S2,
there are four-dimensional fibers which are copies of a space M, 42 which are composed of
the Riemann surface ¥, the circle S}# and the interval . These fibers do not shrink in Mg.

3.2 Flux quantization and four-cycles of Mg

One of the main object of interest is the boundary condition for the four-flux G4 when the
branes wrap the Riemann surface. Following [38, 39], we can write the boundary term for
G4 by using a bump function p(r) as

Gy = 27Tp(7’) 64 +..., with 64 =N. (37)
My
The flux G4 supports the non-trivial geometry Mg.
The space My is the fiber over the Riemann Surface, ¥,. Since it is non-shrinking, we
can thread N units of flux on it at a fixed point of the Riemann surface. Similarly, at a
fixed point of the sphere, SZ,, we can thread flux on the fiber M} given as

G4 = Ny, (3.8)
My
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The space Mg also admits four-cycles localized at the north and south poles of the u interval
where S}b shrinks. These correspond to the product of the resolution cycles of the original
orbifold singularities of the S*/Z5 with the Riemann surface, Y4. They are denoted as

Ch=8&x¥, localized at  pu= un, (3.9)
C§d=83x%, localized at W= ps . (3.10)

We can thread flux on these cycles given as

Gy =Ny € Z, Gy = Ng € Z. (3.11)

N cs

It seems then that there exist four flux quanta (N, Ny, Nn, Ns) that label the class of Gy
in Mg. These flux parameters are not all independent. This reflects the fact that the space
Mg actually admits only three four-cycles denoted as (Cf&I,Cg , Cé). The last one Cé is not
localized on Mg. It consists of Sf, X Sﬁw at a generic point on Y.

To see that there are only three independent flux parameters, we consider the most
general local expression for G4 that is closed and consistent with the symmetries of Mg

_ D
Gy = [d%o AV + dys A VQE:| A T:f — (X +272) VI AV, (3.12)

where v, 75, are functions of p only and V57, V2Z are proportional to the volume forms of
Sfo and the Riemann surface, respectively, normalized according to

/ Vi =1, / Vo =1. (3.13)
S 2

% 9
The flux parameters are given as
Y= =N, 7w —-28=Ng, X9 +2%w=-Nx, x1p+275=-Ns, (3.14)
where the v parameters are defined as %\I S = Ye(1n,g). The v relations imply?>
2Ny, + xN = —(Nny — Ng) . (3.16)

The class Gy is labeled by three flux parameters that we denote as (N, Ny, Ng). The flux
parameter N can be associated with the four-cycle Cé.

3The constraint on the flux parameters can be understood as the condition that must be satisfied by the
first Chern class of the S}p bundle over the rest of the space:

/ 64—/ Gy = [en d%. (3.15)
c& cd Mg 2m

The minus sign is due the fact that the two cycles have opposite orientations in Mg. A similar phenomenon
was observed in [54].
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The flux parameters can be equivalently regarded as the coefficients of the expansion
of G4 onto coholomogy classes of Mg,

Gy =NV + Ny VY + Ng Vi + (exact terms) . (3.17)

The 4-forms V§', a = N, S, C are closed but not exact, and define a basis of cohomology
classes in Mg. We can parametrize them uniformly by writing

Dy
Vi=d|\Ug Vy? A 5

™

D
+U§VQEA2—:} +COVY AV (3.18)

In the above expression, UZ, Uy are functions of y, while C* is constant. The parametriza-
tion (3.18) is subject to a 2-parameter redundancy, related to shifts of U o> Uy by constants.
A way to fix this redundancy is to demand

N+ (Ug)° =0, (UHN +(Ug)S =0. (3.19)

We want the 4-forms V§ to be dual to the 4-cycles C4 defined above,

9 V=40, (3.20)

This condition determines the constants C'* and the quantities (Uf;‘)N7 (UN, according
to the following table,

UHN | (UHN | C

a=C i —X 0
2 L (3.21)

a=3S 0 % %

Another way to interpret the fluxes (N, Ng) is to consider the fate of the fluctuations
of the C5 potential from the SU(2)x x SU(2)g symmetry before the compactification on
the Riemann surface. The curvatures associated to SU(2)x x SU(2)s are (Fpy, Fo;). We
use the notation (n;,ng;) for the corresponding Chern roots. Since these forms have legs
on the worldvolume directions of the M5-branes, Wy, when we compactify on the Riemann
surface, they decompose as [22]

N ¥ FN S P FS

The quantities (FN, F'S) are 4d external connections. We have introduced a factor N in
such a way that both terms on the r.h.s. of (3.22) scale linearly with the flux parameters
N, NN NS In the reduction, this decomposition implies the flux terms in G, as

E4ZNNV2E/\LUN+N3VQZ/\0J3+... (3.23)

In field theory, the flux correspond to twisting the Cartan elements of the six-dimensional
SU(2)x x SU(2)s symmetry over the Riemann surface.
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There are three harmonic two-forms associated to the four-cycles by Poincaré duality,
we denote them as (wn,ws,wc). Indeed, the first two are just the resolution two cycles
of My which are preserved in Mg. The flux quantization conditions can be equivalently
written as

Gy A wn = Nn, 64/\(,05 = Ng, 64/\(,00 = N. (3.24)
Mg Mg M
These formulas will be useful in the computation of the anomalies for the four-dimensional
theories of interest.

In the reduction of M-theory on Mg, there are a class of fluctuations we can add for the
C5 potential. For each of the harmonic two-forms, we can add a gauge field in the external
spacetime given as (aN,a%,a®) with field strength (f~, f5, f©). We are using lowercase
letters to emphasize that these are gauge fields in 7d supergravity. Naively, each one of
these fields should lead to a U(1) gauge symmetry on the external spacetime which then
induces a U(1) flavor symmetry on the worldvolume theory on the branes. However, the
(3 potential can also have a three-form fluctuation, c3, on the external spacetime with field
strength, g4 = dcs. These terms can be collected as

Cs=a“Awn+a° Awg+a® Awe +c5+ ... (3.25)

When we reduce the effective action of M-theory, the effective action of the seven-
dimensional theory will have terms

S = /b1g4 A %Gy + boNoa® A gy + ... (3.26)

where the b’s are numbers. We observe that g4 couples to a linear combination of the gauge
field. This coupling implies that g4 can be dualized to a Stiickelberg field which is eaten by
the gauge field N,a®. Here and in what follows, the index o enumerates harmonic 2-forms
and takes the values a = N, S, C. We refer the reader to [1] for a more detailed discussion
of this Stiickelberg mechanism.

Symmetries of the system. The low-energy quantum field preserves a U(l)g
R-symmetry and the SU(2),, flavor symmetries corresponding to the isometries of Si and
SS,. Naively there is an U(1)x x U(1)s x U(1)¢ corresponding to the fluctuations of Cs
along the harmonic two-forms (wy,ws,wc). One linear combination is broken and only a
U(1)? is preserved, which we denote as U(1)x x U(1)g. In the special cases when g = 0, the
Riemann surface is a two-sphere, in the low-energy limit it can admit an SU(2) isometry
group. The flavor symmetry will further enhance by an SU(2) flavor symmetry.

Now we are in a position to construct the gauge invariant and globally defined boundary
condition for the G4 flux in presences of curved branes. We have the action of the symme-
tries in G4 by adding suitable connection forms and curvature terms to make it closed:
Dy

Gy — By = (dyp NeS +dys Aey) A o

FY
+(1pef +rmer) A <_2€§—X€QE+22W)

FN FS FC
+N—AwN+N_—Aws+N— Adc, with F*N, =0. (3.27)
2w 2w 2w
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The last condition imposes the fact that one of gauge fields in the fluctuations of the Cs
potential is massive. In the expression for £, we have gauged the isometry group as

AV

Dy di
Dy _ dy -

— 2 AP — X9
2 2T A XA"+

dAY = F¥, dA® =ef, dAZ =¢c5.  (3.28)

The quantity A, is the 4d connection for U(1),. The two-forms, e5 and ey are the closed
and gauge invariant volume forms of Si and X, respectively. The expression for ef is

1
ef = o cae (Dy" ADy"y* = Fyf), Dy =dy" — A"y, (3.29)

The indices a,b,c = 1,2, 3 are vector indices of SO(3),, raised and lowered with 5. The
three quantities y® are constrained coordinates on Si, with 4% 3, = 1.* The 1-forms A® are
the components of the external SO(3), connection, and F b are the components of the field
strength. When g > 1, e is simply the volume form on the Riemann surface, e5 = V.

When g = 0 and the surface is a sphere, €3 is given similarly as (3.29). We need the integrals

[ =1 [ dvoo [ @2 psoE)r. s—ona.. (63
D 52 52

where p1(SO(3),) is the first Pontryagin class of the SO(3),, bundle over Wj.

The tilde over the harmonic 2-forms wn g c in (3.27) signals the fact that we have
gauged the isometry group and we have restored closure, as explained below.

Harmonic 2-forms. Before gauging the isometry group, the harmonic 2-forms wq,
a=N,S,C, can be uniformly parametrized as

D
o= d [Ham) 2;”] LV VD, (3.32)

where t, tg are suitable constants and H, is a suitable function of u. We promote w, to

We by writing

_ D
Wo = d[Ha(u) 2:“ +t0ed 4 tZ ey . (3.33)

This object is indeed manifestly closed and gauge-invariant.

4More explicitly,
y' =sind cos, y? =sind sin ¢, y® = cos®. (3.30)
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Our parametrization of w, is subject to a 1-parameter redundancy related to shifts of
H, by a constant. We fix this redundancy by demanding HY + HS = 0. Moreover, we
want to basis w, to be dual to the basis V§ of 4-forms defined in (3.18), in the sense that

«

‘Hg‘tﬁ‘tz

Vonwg =58 = CTC[ 0ot (3.34)
wpg = . .
Mg 4 ﬁ B Oé:N % — —%

a=S| 3 |[1]%

The table summarize all information about w, that is needed for the computation of
anomaly inflow in the next section.

4 Anomalies for the low energy QFT

Now we are in a position to compute anomalies for M5-branes probing the k = 2 orbifold
singularity. The construction of the boundary data above will allow for an explicit com-
putation for the anomaly polynomial for the field theories that describe the low energy
dynamics of the branes [1, 40, 42]. These are captured by a 12-form M-theory anomaly
polynomial given as

1
Ty = —<E}— BEiAXs, X pi(TM)* = dpo(TM)] - (41)

“ 0zl
where p1 (T M;i1), and po(T'My;) are the first and second Pontryagin classes of the tangent
bundle of the eleven-dimensional M-theory spacetime, T'M1;. The four-form FEj is precisely
the gauge invariant boundary and globally defined boundary condition for the G4 flux. The
anomaly six-form for the four-dimensional theories discussed above is given as

Jinflow /M T2, (4.2)
6

where we use the corresponding Ey given in (3.27).

The task at hand is the computation of the 8-form Xy for the geometry (3.6) and of
the integrals st Ey Xy, fMe E3} with Ey as in (3.27). The full derivation is reported in
detail in [1]. Here we point out some salient features of the analysis.

The 8-form Xg is constructed with the first and second Pontryagin classes of the 11d
tangent bundle T'Mj;, see (4.1). For the class of 4d theories under examination, these
classes can be computed using the following splitting of T' M1,

TMy = TWie TS, & TS2 & TS2,. (4.3)

The above expression is motivated recalling that the space Mg is a fibration of My (the
resolved orbifold S*/Zs) over Y4, and that M, is a fibration of the 2-sphere S/QW spanned
by , ¥ over the 2-sphere Sfj. The gauging of the isometry SO(3),, shifts the Chern root of
T Sfa with a contribution with legs along Wy. By a similar token, the Chern root of T wa is
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shifted by the fact that S}b is non-trivially fibered over S;, Y4, and Wy, as can be inferred
from the expression of Dy in (3.28). The split (4.3) implies

n 2
p1(TMi1) = p1(TWy) + p1(SO(3),) + [dl;:ﬂ ;
I 2
paTM) = [ (W) + ;(50G3),)] a5 | (1.0

We noticed that terms with more than six external legs, such as pi (TWy) p1(SO(3),), can
be dropped, because they cannot contribute to the inflow anomaly polynomial. We notice
that, if the Riemann surface is a sphere, we can keep track of its SO(3)y isometry. To this
end, we simply have to replace p1(SO(3),) with p1(SO(3),) + p1(SO(3)x) in (4.4).

As pointed out earlier, the background curvatures for the U(1) symmetries associated
to harmonic 2-forms are subject to the constraint F*N, = 0. This is due to the argu-
ment given around (3.26) for the emergence of a massive vector in 7d supergravity. This
argument, however, is valid under the technical assumption

64 N wy = 0. (4.5)

In the previous expression Gy is as in (3.12) and the 2-form wy, is the coefficient of the
linear term in F¥ inside Ejy,

Ey=FYAwy+..., wy =202m) 7 (v, 65 +ysed). (4.6)

The requirement (4.5) ensures that the linear combination of 7d U(1) vectors that gets
massive via Stiickelberg mechanism is built exclusively with the vectors associated to har-
monic 2-forms, without any mixing with the vector A% associated to the isometry U(1)y.
The interested reader can find a more detailed discussion of this point in [1]. If we com-
bine (4.5) with the relations (3.14), we can express the four quantities 7}2 , ’yg, AN A8 in
terms of the three flux quanta (N, Ny, Ng),

N (Nx + Ng) 1

N,S

S—_ LN 47
Te 2(2xN + Ny — Ng) 27 (47)

N,S (NN + Ns)(xN + Nx — Ns) _ 1
== —(xN + Ny — Ng) . 4.

It is worth noticing that the values of the integrals |[ v, Ea Xs, i) Me E} are insensitive
to the specific profile of the functions 7,, vs, H, entering E,, but only depend on the
values that these functions attain at the endpoints of the y interval. For v, and vx, these
values are given in (4.7), while for H, they are collected in (3.34). We also notice that
integration over Sf, of powers of ef is conveniently preformed making use of (3.31), and
similarly for integration along the Riemann surface.
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After these preliminary remarks, we can give the full expression for the inflow anomaly

polynomial Iénﬁo"" computed via (4.2). We solve the constraint FF*N, = 0 by expressing
F©in (3.27) in terms of FNS, FC = — L1 (N FN + Ng F5). We introduce the notation

FY NS FNS
= — P = U(1 =
2o ) Cq Cl( ( )N,S) o y

and we write [§ inflow i) terms of the quantities

1 1
N2:—§(NX+NN—N3), M:§(NN+N3).
We find
: N2Ns,(xN —2Ns+2M)(xN —2Ns,—2M) xN
flow __ =X b)) X = X P\2/ N, S
— inflow OV —2Ny)? +7 (c1)(cy +c7)
_ N?(xIN—2Ns+2M)(xN +2Nx —2M) & ()2
2(xN —2Ny) “ala
_ N?(xN +2Ns+2M)(xN —2Nx —2M) ()2
2(xN —2Nyx) 1
N2(X*N?—ANE—AM?) 4 N g
- €161 ¢
xN—2Ny
1 1
+6N2(XN—6NE+6M) (c¥)3+6N2(XN—6NE—6M) ())?
1 1
+§N2(XN+2NE+2M) (c¥)2c§+fN2(XN+2Ng—2M) ()%
XN +2Nys, 4 XN XN +2Nsx
T (TW4)—ﬂ(C1 +C1)p1(TW4) T(C%)?’
N N?(x*N?—12Ng+4xN N +12M?) xN L(S0(3),.)
24(xN —2Ny) 3 |im

(4.9)

(4.10)

(4.11)

1
NQ(XN+2N2 2M)c; pl(80(3)w)+§N2(XN+2N2+2M)C§p1(30(3)s&)

U p1(SO(3)sx)

i
N _ NZ(BN*-Ng—-2NNy—-3M?) Ny
12(N —Ny) 6
1
+ZN2(N+M)(N+NE—M)C¥P1(80(3)2)
1

+ 3 Ns(N = M)(N+ N+ M) p1 (SO3)x)

In the last three lines we have collected the terms related to the symmetry SO(3)y, which

is only present if the Riemann surface is a sphere.

5 Holographic solutions

In the previous sections we have adopted a UV point of view: we fixed the supersymmetric
M-theory background (3.1) and we inserted a stack of M5-branes extended along Wy x ¥4
and sitting at the origin of C2/Zsy x R, specifying also the appropriate background fluxes

along the Riemann surface. In this section we argue that, in the large- N limit, this class
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of UV setups corresponds in the IR to a well-known class of AdSs solutions in M-theory,
first described in GMSW [46].

In the vicinity of the M5-branes, the UV picture of 11d spacetime is described in (3.2).
Our expectation for the near-horizon IR picture, based on [55], is that the overall radial
direction R combines with Wy to yield an AdSs factor, leaving the geometry Mg as
internal space. Taking into account backreaction effects, the Ansatz for the 11d metric in
the near-horizon limit has the form

ds*(Mi1) = e** [ds*(AdSs) + ds*(Ms)] (5.1)

with ds?(Mg) of the form (3.6), and A a warp factor depending on Mg. Let us stress that all
metric functions in the ansatz (3.6) for the metric on Mg depend on the interval coordinate
w only. It is natural to also demand that the warp factor A be a function of x only.

In [46] a class of solutions is described, in which Mg and A have exactly the properties
described in the previous paragraph. More precisely, the fully backreacted geometry of
M6 is
e, cos?¢

25 Dy? 5.2
cos2<“+ o DV (5.2)

ds*(Ms) = e | F, ds*(S2) + Fo ds*(Sg) | +

where the warp factor A and the metric functions F,, Fy, cos( depend on p only. Their
expressions are recorded in appendix A, where we summarize some key features of the
GMSW solutions. The G4-flux configuration of the holographic solution is given in (A.4).
As expected, it has exactly the same structure as G4 in (3.12).

The fact that the topology of the internal space Mg in the GMSW solutions matches
exactly with the topology of Mg in our UV setup is a strong hint that the GMSW solution
provides the gravity dual to the field theory setups we discussed in section 3. Furthermore,
the GMSW solutions provide evidence for the fact that the 4d construction yields a non-
trivial IR fixed point, at least at large N.

In the remainder of this section we perform two quantitative checks of our proposed
field theory interpretation of the GMSW solutions. Before entering the details of the
computation, let us briefly discuss our stategy.

On the field theory side, the inflow anomaly polynomial (4.11) is expected to be exact in
N, but to contain both the anomalies of the interacting SCFT of interest and of decoupled
sectors. It is natural to assume that the decoupled sectors do not contribute to the leading
order N3. As a result, from (4.11) we can safely extract the anomaly polynomial for the
interacting SCFT at large N. We then perform a-maximization [49] at large N in order
to identify which linear combination of U(1)y, U(1)n,s is the superconformal R-symmetry.
Once the latter is determined, its 't Hooft anomaly coefficients give us the central charge
c and the flavor central charge B for the SO(3), symmetry originating from isometries of
S?O. The quantities ¢ and B can also be computed holographically in the GMSW solutions.
This supergravity computation is reported in appendix A. We find a perfect agreement
with the field theory results.

Let us discuss in greater detail the field theory derivation of the quantities ¢, B. The
first step is simply to isolate the leading terms in (4.11) at large N. For simplicity, in this
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section we do not keep track of the SO(3)y symmetry that is present in the case in which
the Riemann surface is a sphere. We may then write

2
[SOF T targe v _ NZNS (N 27;;3]\24]2;;‘)]2\7 205 = 2M) (2 (N 4 o) (5.3)
N2(xN —2Ns5, + 2M)(xN +2Nx; —2M) 4 nyo
- 2(xN — 2Ny e (1)
B N2(xN + 2Nx, +2M)(xN — 2Ny, — 2M) & ()2
2(xN — 2Ny)) L
N2(X*N? —ANE —AM?) 4 \ g
— N 2Ny ¢ ccf
n éNQ(XN 6Ny + 6M) () + éNQ(XN — 6N, — 6M) (cf)?

1 1
+ 5NQ(XN +2Ng +2M) () & + 5NQ(XN + 2Ny — 2M) (c§)2

N?(x?N?% — 12NZ + 4xN Ny, + 12M?)

N 24(xN — 2Ny,) 1 11(S0B)e)

1
+ §N2(XN +2Nx, — 2M) ) p1(SO(3),,)

1
+ gN?(XN +2Ng + 2M) ¢ p1(SO(3),,) -

Next, we perform a-maximization. The trial superconformal R-symmetry is a linear com-
bination of U(1)y with U(1)n,s, parametrized as

R=Ty+sNTx+ s T, (5.4)
where Ty, Ti,s denote the generators of U(1)y, U(1)n,g, and sNS
fixed. At leading order at large NNV,

are parameters to be

1
IOt = gt R (cf)?,  a=c= 3% tr R, (large N) (5.5)

where cft is the first Chern class of the background curvature for the superconformal R-

symmetry. At the level of the anomaly polynomial, (5.4) is equivalent to the replacements
cqf — R, CII\I’S — sNS lt (5.6)

It follows that a-maximization at large N can be carried out by taking (5.3), performing the
replacements (5.6), and maximizing the coefficient of (F*)? with respect to the parameters
sNS. The result of this computation is most conveniently written in terms of the quantities
Ny, M defined in (4.10). The central charge reads

3/2
ON2NZ [X2N? + 2NNy + 4 N2 — 30|
= 4(3M2 + 2yNNy,) 2
_ ONNZ (2Ns + xN) (2N + 20V Ns + 8N — 9M?)
8 (3M2 + 2NNy 2 '

(5.7)
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For completeness, let us also record the values of the parameters s™5,
N _ 20NNy — 8NE & M (X*N? — 4xNNs — ANG) F 6)4°
2(xN —2Ny) (3M?2 + 2xN Ny,)
2Ny ¥+ M
2 (3M? 4+ 2xN Ny,

| VXEN? £ 20N Ns + 4 N2 — 302 (5.8)

Let us now discuss the flavor central charge B for the SO(3),, symmetry. The quantity
B appears in the 2-point function of two SO(3), symmetry currents. For its normalization,
we follow the conventions of [56]. The superconformal algebra relates B to the 't Hooft
anomaly between the superconformal R-symmetry and SO(3),, [47, 48]. Let us define the
't Hooft anomaly coefficient Aggs),, by

I5CFT — Aso3)., ' p1(SO(3),) + ... (5.9)

We then have
B = 4,450(3)% . (5.10)

The quantity Ago(s), is extracted from (5.3) by performing the replacements (5.6) and
using (5.8). The result for B then reads

N? (4x?N2Ny, + 12xNNZ + 24Ng — 30M%Ny, — 9yM?N)
6 (3M?2 + 2xN Nx)
N? (xNNx +2N3 — M?)
3M?2 + 2yN Ny,

B =

\/X3N? 4+ 2XN Ny + 4 N2 — 3M2. (5.11)

For definiteness, the supergravity computation of appendix A is performed in the case
in which the Riemann surface has genus ¢ > 2 and the flux parameter M is set to zero. The
results for ¢ and B are given in (A.25), (A.26) in terms of the quantity 7 = —2Nx/(Nx).
They agree perfectly with (5.7), (5.11), respectively.

5.1 Comments on the reduction of the 6d anomaly polynomial

In this section we contrast the approach of section 4 with the direct reduction on the
Riemann surface of the anomaly polynomial of the parent 6d (1,0) theory. More precisely,
let us consider the inflow anomaly polynomial Iénﬂow in (2.16), and let us integrate it on
¥4. To this end, it is useful to express cg and tr(Fé\;’S)2 in terms of 6d Chern roots.
Following [22], we have

Y b |2 (Foq)? N.S\2
The 6d Chern roots split as
”gd =y -2 VQZ ) n?f = NCIF’S + Nnjs ‘/22 , (5.13)

2
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with V3~ normalized as in (3.13). We are not twisting SU(2),, whose connection is thus
purely external. Upon integration on X4, we obtain

3 2
+x N2l [(e)? + ()?] = 2 N2 [Ny ())? + Ng (c))]

. 1 3
- gt = (W= ) P - 2 (e N ) (e
g

1
+ 2N2 [NN Cll\I (C?)2 + NS C? (011\1)2] — ﬂ XNC%pl(TWAO

—%X(N3—N) V2 —2N? (N + Ngcf) ef . (5.14)
By virtue of anomaly matching across dimensions, the above polynomial captures the
anomalies of symmetries that are manifest in six dimensions. We stress that the quan-
tity (5.14) generically receives contributions from modes that decouple along the RG flow
from the 6d SCFT to the 4d SCFT. As a result, caution must exercised in extracting 4d
central charges from (5.14).

For example, if we perform a-maximization at large N using (5.14) as an input, we
get a central charge ¢ that does not agree with (5.7). Working for simplicity in the case
M =0, or equivalently NN + NS = 0, we obtain the results

9N (5x2N?% + 12yNNs, + 12N3) NS Ny 1
—_— S ) —_—

— = M=0 5.15
3ox , FNTy ( ) (5.15)

c=
which have a different structure compared to (5.7), (5.8) at M = 0, due to the absence
of radicals. We have verified numerically in a few examples that the discrepancy between
the correct central charge (5.7) and the central charge obtained from (5.14) persists for
M # 0. This test can be regarded as a basis-independent check that (5.14) and (4.11)
are inequivalent anomaly polynomials. We interpret this discrepancy as due to decoupling
modes in the RG flow from six to four dimensions. A more detailed understanding of this
RG flow would be useful in studying the decoupling sector, but is beyond the scope of this
work.”

If the Riemann surface has genus g > 2, we can consider the limit M = 0, Ny = —§ N.
This is equivalent to setting NN5 = 0. As a result, we are blowing down the resolution
2-cycles, and the geometry re-develops orbifold singularities. In this scenario, the reduction
of the 6d anomaly polynomial gives a large-IN central charge that agrees with our 4d inflow
anomaly polynomial (4.11). We detect, however, a mismatch in the ’t Hooft anomaly
coeflicients for U(1)n,s. We interpret this discrepancy as being due to decoupled modes in
the resolved phase, which have to be re-included in the limit N™5 — 0.

6 Discussion

In this work we have mainly focused on the 6d (1,0) theory living on a stack of N Mb5-
branes probing a C2/Z, singularity. We expect, however, that many features of this setup
should persist for branes probing C?/Z;, for k > 3. By resolving the orbifold singularities

®We thank Shlomo Razamat for interesting correspondence on this matter.
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at the north and south poles of S*/Zy, the flavor symmetry SU(k)x x SU(k)g is broken to
[U(1)*=1]x x [U(1)*~1]s. We can then compactify on a Riemann surface with a non-trivial
twist for this symmetry. We expect the emergence of an accidental U(1) symmetry and
the spontaneous breaking of a U(1) generator to occur in such setups.

In the case k = 2 the geometry of the resolution of S*/Zy is particularly simple.
This facilitates the identification of the gravity duals. Nonetheless, it would be interesting
to investigate the gravity duals also for & > 3. In this case, the internal geometry My,
associated to the 6d QFT in its resolved phase, is expected to have a smaller U(1), x U(1),,
isometry, and a more complicated topology. The identification of the dual AdSs solutions
would be particularly useful, since it would allow us to perform large- N supergravity tests
similar to the ones considered in this work for £ = 2. These solutions should be obtained
from BPS system described in [57].

The examples studied in this paper show the power of geometric methods in the study
of strongly coupled dynamics of 4d QFTs. In particular, by constructing the 4-form FE,
that governs anomaly inflow from the M-theory ambient space, we are able to track directly
the emergence of accidental symmetries and spontaneous symmetry breaking. Our analysis
fits into a broader geometrization program, aimed at using geometric and string theoretic
tools define and classify non-trivial QFTs, and to uncover their non-perturbative dynamics.
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A Supergravity computations

A.1 Review of the GMSW solutions

In this appendix we review a class of M-theory solutions with 4d N = 1 superconformal
symmetry, first described in GMSW [46]. The 11d metric reads

ds}) = e [ds?(AdSs) + ds*(Mp)|

ds?(Mg) = e~ [F ds*(S2) + Fy ds*(% )] L g Oy
0 v ® > g cos? ¢ 9 ’
Dy =em 2V~ [vi=1 [wen @
7 g

We have set the AdSs radius to 1, so that the Ricci scalar of AdSs is R = —20. The metric
on the Riemann surface Y, has curvature k = %1, with Ricci scalar R = 2k. Compared
with [46], we have flipped the sign of 1) and we have renamed y into . All metric functions
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depend on u only. They are given by

- 2 (ap — p?) (ax — k p?) 1 1
6 ¥ 2 2
- Fp = Z(ap — Fy = ~(ax — k A2
‘ ax +kay+2kp (u—3v) 7 3(a‘P K, Iy 3(6‘2 n),  (A2)

where a,, asx;, v are constant parameters. The quantity 0 < cos( <1 is determined by
e sin¢=2p. (A.3)
The G4-flux configuration is given by
Gy:%d“%Vf+%ﬂ§)Aﬁﬂ
=2 |dy AV + s AV A DY = (27)2 (275 + XFp + 2X90) VE AVS, (A)
with the functions ¥, 7x. given as

~ Qkagu—Gkagvo~l—a¢u+,u3

T = 9k (ay — kpu?) ’
~ 2/~ca¢,u—6k:a<p'yo+agy+k:u3

= ) A5
mo Ok (g, —11%) —

We have put a tilde on 7,, V5 to distinguish these functions, coming from the holographic
solution, from the functions ~,, vs that enter the parametrization (3.27) of E, in the
main text. In this appendix, we are adopting conventions in which the quantization of G4

flux reads
Gy

——= €7, (A.6)
/C4 (271—617)3
where Cy4 is a 4-cycle and ¢, is the 11d Planck length.

Let us now focus on solutions with vy = 0. We verify that in this class of solutions the
fluxes N5 defined in (3.11) satisfy

NN+ NS =0. (A7)

The range of the coordinate p is determined from the zeros of cos{ and has the form
[—pN, pn], with ux > 0. We find it useful to distinguish the cases in which the genus g of
the Riemann surface is g > 2 contrasted to g = 0. We find

P! 1 , 1
g=0: puy= 2(a¢+ag)+2 (a¢+az)+3a¢ag, ag,ax >0,

1 1 4
g>2: uk 2(az—a¢)—2\/(ag—aw)Q—?}as@az, as;, >3a, >0. (A.8)

Recall that the fluxes N and Ny are defined as

G4 / G4
N = . Ny= . (A.9)
szxsz, (2mlp)? syxs2, (2mlp)°
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We can express the ratio as;/a, in terms of the ratio Ny;/N,

0 axy,  2rf—r+242(r—1)Vr2+r+1 Ny,
= N _— = ri= —
9 ay 3r ’ N’
272 + 7P+ 242V B 7+ 1 2 N
§>2 ay, _ 2r4r+24 Nr + 74T+ , oo 2 (A.10)
Ay, 37 x N

Moreover, we can express the ratio between the Planck length and the AdSjs scale (which
was set to 1 in the line element) in terms of ayx;, ay, un, N,

G 2un (2as + ap + 1)

g = 0 : - )
LidS 97 N (ax — M%)
o 2un (2ax — ay, — p#)
g>2: L3p = N £ N (A.11)

A.2 Effective action in five dimensions

In order to compute holographically the central charge ¢ and the flavor central charge for
the SO(3),, isometry of Sf,, we need to extract the coefficients of the Einstein-Hilbert term
in the 5d effective action, as well as the coefficient of the kinetic terms for the SO(3),
vectors. To this end, we only need two terms in the 11d M-theory action,

1
Sll = 272 / |:R(11) 11 1 — 5 G4 A\ *11G4 + .. :| s 2:‘1%1 = (271')8 ég . (A12)
ki S

The dimensional reduction from 11d to 5d is performed activating the external 5d metric
and the gauge fields for SO(3),. The 11d line element then reads

ds?, = e [dsQ(M5) + dSQ(MG)} ,

2 —6A 2/ a2 \g 2 e, cos®(~ ,
ds?(Mg) = e [Ep ds*(S2)8 + Fy ds (zg)} ool + =g DY
dDy = (2m) (=2€5 — x Vi), / e5 =1, Vo =1,

S2 S

ds*(S2)8 = Dy Dyo, Y ya=1, Dy =dy®— A%y, A®=eA,.  (A13)

The 2-form e} is defined in (3.29). The gauge fields A® for SO(3), also enter Gy, as
described around (3.27). We replace V7 with €5, and D1 with Di. Therefore, the form
of G4 we use for the reduction is

Gy =21 d[(% e + 72 Vo) A D’w] . (A.14)
The dimensional reduction of the 11d Ricci scalar yields

1 1
Ry = Rig) = e {9 e cos® Cyy’ + e TN F, (07 — g yb)} Fg, F'm™m 4

(A.15)
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where m,n = 0,...,4 are indices in external 5d spacetime, R(s) is the Ricci scalar of the
external 5d metric, and we have only written down the terms that are relevant for our
discussion. We also have

1
=g e N E, Fe (4n V) A (=21 Vo) Adu A dip A (x51), (A.16)

with V7, V3~ normalized as in (A.1), and *5 denoting the Hodge star with respect to the
external 5d metric. Finally, one computes

e N F, 2 o (P | 6 o~ ~ 2| La b
G4/\*11G4:12X72FZ 9x° I% m + e (29n + X Tp)7 | 2% 2" Fu A x5 Ep A
A AT VLY A (=2mx Vi) Adp A dep + . .. (A.17)

where we have only written down the terms that can saturate the integration along
the internal directions. Notice that our conventions for the Hodge star is such that
FONs5F, =3 F8 FIm™ x5 1.

We are now in a position to perform the integral over the internal directions. The
result reads

1
/ [R(n) 111 — -Gy N *11G4} = / [oq Risy*s 1+ F AxsFy+ ..., (A.18)
M11 2 M5

with the coefficients oy, as given by

+uN

8
alz[—81773,ux(3a2+3ka¢—|—2k:p2)] )

—pN
A’y 6 2 2 2 3 3 3
g = [2187 (as — k2)3 6ku’ax, — 15ku asay, + ku“as, + 3k‘aga(p + 45kaxa,
6 4.2 4 2 2 2 2 3 2 2 4 8 T
+ 18pay + 15p"as, + Ip”ay, — Ip“asa, — prag + 24as,ay, + 24ay, + 8 ﬂ
—HN
(A.19)
We adopt the following parametrization of the 5d effective action,
1 1
S5 = 7(5)}%(5) x5 1 + TTI‘f(F/\*5F)—|-... , (AQO)
Ms L167G 9sa
where the trace is in the fundamental representation of SU(2),, with conventions
a b 1 ab 1 a
Tre(T*T°) = 5(5 , Tre(F A x5 F) = §F A *x5Fy (A.21)

where T are the generators of SU(2),. Our definition of g%G agrees with the conventions
of [56]. Keeping into account the prefactor 1/(2x%;) in the M-theory action (A.12), the
reduction result (A.18) translates into

Gg\?) =247 Eg ot g3 =2"78 Ez ayt. (A.22)
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The holographic central charge ¢ and SO(3),, flavor central charge B, in the notation of [56],

are given in terms of G(5), gsa as

L3 872
C:Lf?g)s, B="1, (A.23)
8Gy 9sa
so that we have the identifications
7 6| b - 46| b -
c=2""1"7"|—"—| ai, B=2""71"|—""| a2. (A.24)
Lgs Lags

For definiteness, we proceed in the case in which the Riemann surface has genus g > 2
and the parameter 7 is set to zero. We may then use the relations (A.8), (A.10), (A.11)
and express ¢ and B in terms of 7,

c= gV G- @R -y -2 - )], (A.25)
1 s 8 . o _ ——
B:—l—GXN —§(3r —3F+2)+8(F 1)Vt -7+ 1. (A.26)

To get the above expressions we had to de-nest some nested radicals. The supergravity
results for ¢, B match perfectly with the large-N field theory analysis performed in the
main text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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