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Empirical Algorithms for General Stochastic Systems with Continuous
States and Actions
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Abstract—In this paper, we present Randomized Empirical
Value Learning (RAEVL) algorithm for MDPs with continuous
state and action spaces. This algorithm combines the ideas of
random search over action space with randomized function
approximation method to generalize the value functions over
state space . Our theoretical analysis is done under a ran-
dom operator framework combined with stochastic dominance
argument. This provides finite-time analysis of the proposed
algorithm as well as give the sample complexity.

I. INTRODUCTION

In this paper, we consider a controlled Markov process as
a model of a general stochastic system with finite memory.
Bellman’s dynamic programming principle can be used to
find optimal control laws. A large variety of algorithms
have been developed to find an exact solution to Bell-
man’s optimality equation. Unfortunately, when the state
space is continuous, designing algorithms that find exact
solutions (even if asymptotically) is near impossible. State
space discretization (or aggregation methods) may not work
numerically and certainly do not scale [14]. Function approx-
imation methods [12], [4], [3] can often have arbitrary (and
unknown) gaps to optimality. Thus, in [6], we introduced
an empirical value learning algorithm that used randomized
function approximation in universal function approximation
spaces (e.g., RKHS) to find arbitrarily accurate solutions with
high probability. This combined “empirical dynamic pro-
gramming” (EDP) ideas introduced in [5] with randomized
function approximation ideas [13] to yield algorithms that
work very well numerically, while still being able to provide
probabilistic guarantees on non-asymptotic performance.

In many robotics problems, action space (and state space)
is continuous with dimensions in low double digits [8]. And
it is not possible to discretize state or action space without
losing control performance (while also running into issues
of scalability). Continuous action space problems are much
harder. Current methods available for such settings include
considering parametric families of policies, and then doing
either following policy gradient [1], [10] or doing policy
optimization [15], [16]. While for some of these algorithms,
a proof of convergence is available, they can have arbitrary
gaps to optimality since it is nearly impossible to know which
parametric policy family is close enough to an optimal policy.

Moreover, training such algorithms requires a large amount
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of data which may not be available. In the reinforcement
learning (RL) literature, the closest useful techniques come
from deep RL that rely on using deep neural networks for
function approximation but can work with continuous action
spaces. As with deep learning methods, such techniques
suffer from long training times, no guarantees on optimality
or performance, and the need to tune a large number of
hyper-parameters before one can get reasonable performance
on a given problem [9].

In this paper, we take a different approach. First, our goal
is to develop algorithms that are universal (work on any
problem), simple to implement, computationally tractable
(and fairly easy), can provide arbitrarily good approximation
to optimal performance and come with some performance
guarantees, hopefully non-asymptotic, even if probabilistic.
We build on our work in [6] for continuous state space but
finite action space problems. The idea is very simple: Do
function approximation in a universal function approximation
space such as an RKHS. Do randomized function fitting by
picking basis functions randomly in each iteration. Replace
expectation in the Bellman operator with a sample average
approximation by drawing samples of the next state. To
optimize over the actions in the Bellman equation, sample
a few actions, and just optimize over those. We call this
algorithm Random Actions for Empirical Value Learning (or
RAEVL).

Thus, the algorithm we introduce for continuous action
and state space problems is pretty simple, and in fact
performs quite well numerically as we show in Section V.
But due to randomization and sampling of various kinds, its
convergence analysis becomes intricate. This is addressed
by viewing each iteration as operation of a random Bellman
operator. In [5], probabilistic contraction analysis techniques
were developed for analyzing iterated random operators.
Convergence is proved by constructing a simple stochasti-
cally dominating Markov chain (which also yields the rate
of convergence). We use the same framework but needed
to modify some details for use in this paper. The second
part of the analysis is related to concentration analysis of
randomized function approximation [11]. The third part of
the analysis is related to error analysis of the empirical
optimum (obtained by taking samples of a function) with
respect to the true optimum.

Putting all of this together then gives us RAEVL, one of
the first practical algorithms for finding near-optimal policies
in general (Markovian) stochastic systems with continuous
states and actions with probabilistic guarantees on non-
asymptotic performance (and explicit sample complexity
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bounds).

II. PROBLEM FORMULATION

Consider a MDP (X, U, P,r,~) where X is the state space
and U is the action space. The transition probability kernel
is given by P(:|z,u), i.e., if action u is executed in state x,
the probability that the next state is in a Borel-measurable
set B is P(xyy1 € Blz: = x,us = u) where z; and uy
are the state and action at time ¢. The reward function is
r: X xU — R. We are interested in maximizing the long-run
expected discounted reward where the discount parameter is
.

Let II denote the class of stationary deterministic Markov
policies mappings © : X — U which only depend on
history through the current state. We only consider such
policies since it is well known that there is an optimal
MDP policy in this class. When the initial state is given,
any policy 7 determines a probability measure P™. Let the
expectation with respect to this measure be E™. We focus on
infinite horizon discounted reward criterion. The expected
discounted reward or the value function for a policy 7 and
initial state x is given as

o = 1’]

IQI:|

and the policy which maximizes the value function is the
optimal policy, 7*. Now we make the following assumptions
on the regularity of the MDP.

Assumption 1: (Regularity of MDP) The state space X’
and the action space U are compact subset of dx and dy
dimensional Euclidean space respectively. The rewards are
uniformly bounded by 7max, i€, r(x,u) < rmax for all
(z,u) € X x Y. Furthermore U is convex.

The assumption above implies that for any policy 7, v™ <
Umax = "max/(1 — 7). The next assumption is on Lipschitz
continuity of MDP in action variable.

Assumption 2: (Lipschitz continuity) The reward and the
transition kernel are Lipschitz continuous with respect to the
action i.e., there exists constants L, and L, such that for all
(zr,u,u’) € X X U x U and a measurable set B of X, the
following holds

ZWtT(ﬂﬁmat)

t=0

v™(z) =E"

The optimal value function is given as

Z 'Vt T(xt: at)

t=0

v*(z) = Slellr)l E™
™

(2, u) = r(z,0)| < Lyflu— |

|P(Blz,u) = P(Blz,u')| < Ly|lu — /|

The compactness of action space combined with Lipschitz
continuity implies that the greedy policies do exist. Let B(X)
be the set of functions on X such that || f||cc < Umax. Let

us now define the Bellman operator T : B(X) — B(X) as
follows

To(z) = max [r(z,u) + VEp o p(fz,mv(2)] -

It is well known that the operator 71" is a contraction with
respect to || - |0 norm and the contraction parameter is the
discount factor, . Hence, the sequence of iterates vy =
Tv,—1 converge to v* geometrically. Since, we will be
analyzing the Lo norm, we do not have contraction property
with respect to this norm. Hence, we need bounded Radon-
Nikodym derivative of transitions which we illustrate in the
next assumption. Such an assumption has been used earlier
for finite action space [12], [7] and for continuous action
space in [2].

Assumption 3: (Stochastic Transitions) For all (z, u) €

X xU, P(-|z, u) is absolutely continuous with respect to
wand C), = SUP(z, wyexxu ||~ ap .

Since we have a sampling based algorithm, we need a
function space to approximate value function. In this paper,
we focus on randomized function approximation via random
features. Let © be a set of parameters and let ¢ : X' x0 — R
be a feature function. The feature functions need to satisfy
SUP(;, gyexrxo |9 (25 0) | < 1, for e.g., Fourier features. Let
F (©) be defined as

{r0= [ot0aalaoi<cvo. weel.

But we are interested in finding the best fit within finite sums
of the form ijl a;¢ (x; ;). Doing classical function fit-

< Q.

ting with Z}]=1 a;¢ (x; 6;) leads to nonconvex optimization
problems because of the joint dependence in « and 6. Instead,
we fix a density v on © and draw a random sample ¢; from ©
for j =1,2,...J. Once these (ej)}]:1 are fixed, we consider

the space of functions F (91“’ ) £

J
FO =65 0) (o, an) e <C/T

j=1

Now, it remains to calculate weights o by minimizing
a convex loss. Furthermore, let us define the L, norm
of a function for a given a probability distribution g on
X as 1£13,,, = (S If (@) |2,u(d:£')). The empirical norm
at given samples (z1,%2,...2zy) is defined as ”fH%u =
+ vazl |f(;)]?. Recall two distance measures for function
spaces:
o do (T f, F)Einfper||f —T fll2, . is the approxi-
mation error for a specific f;
o do , (TF,F) £ Supser da, p (T f, F) is the inherent
Bellman error for the entire class F.

III. THE ALGORITHM

We now present our RAndomized Empirical Value Learn-
ing (RAEVL) algorithm. It is an empirical variant of value
iteration for continuous state and action space. It samples
both states and actions. Note that the Bellman operator
computes expectation with respect to the next state and then
optimize over action space for each state. This is not feasible
for continuous state and action space. Instead, we replace
the expectation with an empirical average and use empirical
optimization in the original Bellman operator. This means
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for a given state € X’ and sample sizes M and L, we first
sample L actions uniformly and then generate M samples of
next state (for each sampled action). This leads us to define
an empirical Bellman operator Ty, 1, : B(X) — B(X) as

max

Ty,pv(x) = oy nax

where z;,, ~ P(:|z,u) forall | = 1,2...L and m =
1,2,... M. Instead of evaluating this operator at each state
z, we sample {x,}N_, from the state space X’ according to
distribution . Then we compute o(zp) = [TM LV (xy).

Given the data {(z,,, 0 (:):n))}17 1> we generalize the value
function over the state space by computing a best fit within
F (6%7) by solving

N J
mm— Z Z ;P (Tn; 0;

yag) oo <C/J

=0 () |?

S.t. || (0[1, R

This optimization problem only optimizes over weights o
since parameters @'/ have already been randomly sampled.
Let IT2(J, N) denote this optimization problem which we
denote as Il for compact notation. We are now ready to
present our algorithm.

1:J

Algorithm 1 RAEVL
Input: probability distribution g on X
N, M, J, L > 1; counter k = 0, initial seed vg

sample sizes

For k=1, 2,

1) Sample (xn) , from X accordlng to .

2) For each n, sample (ul)l . uniformly for the action
space

3) For each n and I,
P('lmm ul) .

4) Empirical value iteration: O (x,,) = T, V—1(Tn)

5) Function approximation: vy 1 = Iz U (2y)

6) Increment k < k + 1 and return to Step 1.

sample i.i.d. next states yi, ~

RAEVL can be seen as an iteration of a composition
of two random operators. Let us define G(N, M, L, J) =
(N, J )oTM 1, where o denotes the composition. Let G be
a compact notation for this operator. Hence, in our algorithm
vp+1 = Gu,. We will use the random operator framework
to analyze our algorithm. We now present our main theorem
for which we define

Theorem 1: Suppose Assumptions 1, 2 and 3 hold.
Choose an ¢ > 0 and 6 € (0,1). Set &' = 1 — (1/2 +
§/2)Y/(E"=1) and
log (C}/Qe) — log (2 vmax)

logy

K* =

Then if N > No(e,0"), M > My(e,d'), J > Jo(e,d) ,
L > Ly(e,0') and
)

K >10g (4/ ((1/2-6/2) (1~ a)q
the following holds with probability at least 1 — 4,
ok —v*[l2,s < Clda, . (T F (), F(O)) + 2]
)1/2 1/2

ey

where C =2 (1 —y5X+1)/(1 — )

IV. PROOF OF THEOREM 1

There are three sources of error in RAEVL: empirical
optimization, sample average and function approximation.
We will get a handle on each of these approximation errors
to give us a bound on the error in one iteration. We then use a
stochastic dominance argument to analyze the error process.
As mentioned before, we view RAEVL as an iteration of the
random operator G. Let €x be the gap between this random
operator and the exact Bellman operator at iteration k, i.e,

Vpp1 = Gup =T, + €

Let us also define a (random) operator, fL as follows

Ty v(x)

max
UL,U2;-

wl [T(.’II, ul) =+ ’YEJE’NP(»\I,ul)U(xl)}

where u; ~ Unif(L{) for [ = 1,2,...L. Let the ()-value
function be Q(z,u) = r(z,u) + VEp wp(.|o,uv(x’) for all
v € B(X). We now argue that the ()-value function is Ly-
Lipschitz continuous in action variable where Ly = L, +
Y UmaxLyp. For all (z,u,u’) € X xU x U and v € B(X),

Q(z,u) — Q(z, )]

< |T(:v,u) - T(.CC,U,/)|+ Y

(dylz,u) — P(dy|z,u’)) v(y)|

Nl

< Lofu — o] +7 Vs / \P(dy|r,u) — P(dy|z, )|
X
< (Ly + ¥ VmaxLyp) lu — ||

where the last inequalities follow from Assumption 2. The
next lemma bounds the error due to sampling for finding the

50 5 2 best action. The proof is given in the appendix.
Jo(e,0) = | — (1 +1/2 log 5)} , Lemma 2: Choose € > 0 and § € (0,1). Let diam(i/) be
¢ the diameter of the action space I. Then for all v € B(X),
51202 56 (J+1) [2evmax | if
N, S max | | . dy
o(&,9) = ( (e /7) ) ogl d ( (e/7)? ) ] L > (LUdlam(Z/{)) 10gl )
d - € 1)
e sy — [ ((Er 7 tmax Ly) diam() ! o T
o(€,0) = /7 085~ then ~
P (|Tv(x) ~ T ()] > e) <6
4 e ) — (20 g, [N L
and Mo(e, 8) = e/12) %% 3 for all z € X.
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Next, we bound the error due to sample average. This will
give us a sample complexity bound for next state samples.
The proof is a simple application of Hoeffding’s inequality
followed by an union bound.

Lemma 3: Choose € >0, 6 € (0,1) and L > 1. Then for

all v € B(X), if
202 2L
M 2 2 log ?

P (|7/;M’L v(z) — Ty v(z)| > 6) <0

then

for all z € X.

A. Bound on one-step error

Now, we will bound the error in one iteration of RAEVL.
We will use the bounds on M and L developed in the
previous section. The choice of N comes from bounding
the gap between the empirical norm and expected norm by
Pollard’s inequality. Lastly, the bound on .J comes through
an application of the bounded difference concentration in-
equality as given in [13].

Lemma 4: Choose v € F(©), ¢ > 0, and 6 € (0, 1).
Also choose N > No(e,0), M > My(e,6),J > Jo(e, 0) and
L > Ly(e,0). Then, for G (N, M, J, L, u, v) v, the output
of one iteration of our algorithm, we have

IGv—T ol < do,, (TF(O), F(O)) +e¢

with probability at least 1 — .

Proof: To begin, let ¢ > 0 be arbitrary and choose
J* € F(O) such that [|[f* — Tz, < infrcre|lf —
Tvl2,, + €. Using (z + y)? > 2? + y* for z,y > 0, we
have

P < sup
FeF(orv)
<P ( sup > (6/7)2>
FeFo17)

<8e(J+1) (4evmax>J exp (1\[(6/7)4> 3)
- (e/7)? 512 v?2

max

1F =T ollo = I1f = Tolloz] > e/7>

If =T ol3, = If =Tl3,

where the last inequality follows from Pollard’s inequality
and the fact that the psuedo-dimension for the function class
F (6%7) is J. Then, choose f € F (6%”) such that || f —
Tolla,, < ||f* —Tv|s, . + ¢/7 with probability at least
1—0/7 by choosing J > 1 to satisfy

C 1 €
\/j<1+ 210g(5/7)> S?:>

by Lemma [13, Lemma 1]. Now we have the following string
of inequalities, each of which hold with probability 1 —¢§/7:

||év_TU||2,/J.§ HaU—TvHQ,ﬂ+€/7 )
<||Gv —Tp |2, + 2€/7 6))
< Hév - TJV[,L Vll2,n + 3€/7 6)
<|Nf = Tarp vll2p +3¢/7 (7
<|f* —TM,LU||2,,1+46/7 (8)
< Hf*_TLUHQ,ﬁ+56/7 9)
<= Toll2, + 6€/7 (10)
<|fF=Tollau+e (11
Sfeigf@) |f=Tollg,,+€e+e (12)

We choose N from inequality (3) such that inequalities (4)
and (11) hold with atleast probability 1 — §/7. Now, using
Lemma 2 followed by an union bound argument we choose
L such that

IP’( max lT’U(:L‘n)—TLU(l‘n) <€
T1,T2,...TN

>1-4§/7

o)

Hence the empirical norm can also be bounded. This proves
inequalities (5) and (10). Similarly, one can prove inequal-
ities (6) and (9) using Lemma 3 followed by union bound
argument on both the sampled, giving us a bound on M.
Inequality (7) follows from the fact that G' gives the least
approximation error compared to any other function f €
F (6%7). The last inequality is by the choice of f*.

|
The previous Lemma 4 gives a bound on the error in one step
of RAEVL. We will now extend this result to understand the
convergence of {|lvx —v*||2, .}, in the next section.

B. Stochastic Dominance

Since we do not have contraction with respect to Ly norm,
we need a bound on how the errors propagate with iterations.
Recall that Gvp = T vi + €, we have the following by
analyzing the point-wise error bounds.

Lemma 5: [12, Lemma 3] For any K > 1, and € > 0,
suppose ||ex|l2,, < eforall k=0,1,..., K —1, then

* 1— it : 1/2 K/2
o vl < 2 (2~ (G2 + 4572 2 vma)] -
(13)

Now, from (13), we have

1
1 2
||UK _U*HQ-,M <2 (1—’)/) [C}/25+,YK/2 (2”max):|

which gives a bound on K such that 75/ (2 v, ) < C’,i/ze.
Denote

log (C}/%) —10g (2 Vmax)
log~y

K* = (14)
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We then construct a stochastic process as follows. We call
iteration k£ “good” if the error ||egl|2,,, is within our desired
tolerance € and iteration k£ “bad” when the accuracy is greater
than our desired tolerance. We then construct a stochastic
process { X}, with state space K as = {1, 2,..., K*}
such that -

max { X} — 1, 1}, if iteration & is "good”,
KXp1 =

K, otherwise.

The stochastic process {X},~ i3 easier to analyze than
{vk})>( because it is defined on a finite state space, however
{Xk} >0 is not necessarily a Markov chain. Whenever X, =
1, it means that we just had a string of K* “good” iterations
in a row, and that ||vy — v*||2, , is as small as desired.

We next construct a “dominating” Markov chain {Yj},~
to help us analyze the behavior of {X}},-,. We construct
{Yi},>o and we let Q denote the probability measure
of {Yi}>o- Since {Yj},-, will be a Markov chain by
construction, the probability measure Q is completely deter-
mined by an initial distribution on R and a transition kernel
for {Y},~o- We now use the bound on one-step error as
presented in Lemma 4 which states that when the samples
are sufficiently large enough for all &,

P(llexll2n <€) > q(N, M, J, L)

Let us denote this probability by ¢ for a compact notation.
Let us initialize Yy = K™, and then construct the transition
kernel as follows

max {Y;, — 1, 1},
Yiy1 = K",

w.p. ¢,
w.p. 1 —gq,

where ¢ is the probability of a “good” iteration which in-
creases with sample sizes N, M, J and L. We now describe a
stochastic dominance relationship between the two stochastic
processes { Xy}~ and {Yi},-,. We will establish that
{Yi}so is “larger” than {X}},., in a stochastic sense.
This relationship is the key to our analysis of {Xj}, -
Definition 1: Let X and Y be two real-valued random
variables, then X is stochastically dominated by Y, written
X <4 Y, when Pr{X > 60} < Pr{Y >0} for all 6 in the
support of Y.
Let {Fr};~, be the filtration on (Q°°, B(Q2*°), P) corre-
sponding to the evolution of information about { X} }, -, and
let [Xj11|Fk] denote the conditional distribution of Xj1
given the information Fj. We infer the following key result
from the relationship between {Xj}, <, and {Y3},~,-
Lemma 6: Choose ¢ > 0, and § € (0, 1), and suppose
N,M,J and L are chosen sufficiently large enough such
that P (|legll2,, <€) > ¢ for all k& > 0. Then for ¢ >
(1/2+6/2)"F =Y and

K > log (4/ ((1/2 —§/2)(1—q) qK*‘l)) :

we have
| 1/2
v = v*|l2, < 2 <1_7>

(15)

|:CL1L/26 + 'YK*/Q (2 'Umax)i|

with probability at least 1 — 4.

Proof: This proof proceeds in three steps. First, we
show that X, <, Yi holds for all £ > 0. This stochastic
dominance relation is the key to our analysis, since if we
can show that Yy is “small” with high probability, then Xy
must also be small and we infer that |[vg — v*||2,,, must be
close to zero. By construction, X < Yy for all £ > 0 (see
[5, Lemma A.1] and [5, Lemma A.2])

Second, we compute the steady state distribution of
{Yi}41>o and its mixing time, in particular, we use the
mixing time to choose K so that the distribution of Yjy
is close to its steady state distribution. Since {Yj}.~, is
an irreducible Markov chain on a ﬁnite state space, its
steady state distribution pu = {u (z)}ZK= ; on K exists. By
[5, Lemma 4.3], the steady state distribution of {3}, is

p={p (i)}, given by:

p(l)y=g""
p(i)=01-q¢* " Vi=2,... K -1,
p(K*)=1-gq.

The constant
[imin (¢ K*) = min {QK*_I, (1-q) g™ =2, (1~ Q>}

Vg € (0,1) and K* > 1 appears shortly in the Markov
chain mixing time bound for {Y;},-,. We note that
(1—¢q)¢"™ =" < pimin (¢; K*) is a simple lower bound for
fimin (g; K*). Let Q* be the marginal distribution of Y;, for
k > 0. By a Markov chain mixing time argument, we have

twix (') £ min {k >0+ [|Q" — llrv < '}
< lo ;
- 8 5//Lmin(Q§ K*)
<

o v
g
for any ¢’ € (0, 1).

Finally, we conclude the argument by using the previous
part to find the probability that Yx = 1, which is an upper
bound on the probability that Xx = 1, which is an upper
bound on the probability that ||vg — v*||2,, is below our
desired error tolerance. For K > log (1/ (6 (1 — ¢) ¢ 1))
we have [Pr{Yx =1} — p(1)] < 24" Since Xx <gu
Yk, we have Pr{Xg =1} > Pr{Yx =1} and so
Pr{Xg =1} > ¢X 1 — 24’ Choose ¢ and & to satisfy
¢ 1 =1/2+46/2and 26’ = ¢X 1 -5 =1/2-5/2 to
get g% =1 _ 96§ >4, and the desired result follows. [ |

Now, putting Lemma 4 and 6 together along with the
choice of K*, we can conclude Theorem 1.

V. NUMERICAL EXPERIMENTS

In this section, we try RAEVL on a synthetic problem
for which we can compute the optimal value function. This
allows us to compute error with each iteration. Let X = [0, 1]
and U/ = [0,1]. The reward is r(z,u) = —(x — u)? and
transition probability density p(y|z,u). Then the optimal
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value function can be found by solving the fixed point
equation

v*(z) = max
0<u<l1

2 v .

@=wp+ 2 [ vy
which gives v*(z) = 0 and «*(z) = z for all x € X. For
our experiments, we choose ¢(z,6) = cos(w’z + b) where
6 = (w,b). We sample w ~ N(0,1) and b ~ Unif[—1,1].
We fix number of features, J = 10. Fig. 1 shows the error
|lvk — v*||co On y-axis with number of iterations k on x-
axis for different choices of NV, M and L. The error reduces
to order of 104 when the the sample sizes are sufficiently
large N = M = L = 50. But even for low values of sample
sizes, we are able to get an error ~ 0.1 which indicates that
we can get good approximation with less computation.

5 T T T T T T T
——N=50, M=50, L=50
——N=50, M=1, L=5
—N=10, M=5, L=5
4 i
3 1
S
w
ol .
1t 4
D ! £Ex -
5 10 15 20 25 30 35 40

lterations

Fig. 1. Performance of RAEVL for different sample sizes
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APPENDIX

Proof: [Proof of Lemma 2] Let f(u) = r(z,u) +
YEv(z') for a given € X. Let u* be the maxima. Let
the ball centered at u and radius r be B (u,r). Now, the
volume of this dy- dimension ball is vol(B (u,r)) oc rv.
Let U = {u € U : f(u) < max, f(u) — €}. Moreover, let
Uer, = {u el : |Ju* —ul < e/Ly}. Since f is Ly-
Lipschitz, v ¢ Uy = u & U, 1,,,. Hence,

(U,.1,
P(u ¢u€=LU):1_V()vE)1(zJL))
dy
<1-(— (16)
- Ly diam (i)

where the last inequality follows from Lemma 5.2 in [17]
and diam(U) = sup,, ,,, |u — v’||. Now,

P () = s, ) <

1<I<L

6) =1-P (Nt {w ¢ U})
=1-P (N {u ¢U})"
>1-P (ﬂlel{Ul & ue,LU})L

where the second equality is due to the fact that
{u1,uy...ur} are ii.d. and the last inequality follows
Lipschitz continuity of the function f. Now, using (16) we
have
P ) — < >
(7)o s <€) >
L

du
€

-1
L,, diam(Uf)

duy
€ B 11 1
Lodiam@)] ~ L ®\3s
e~ ®, we have P (f(u*) — maxi<;<y, f(w) <€) >1—4 for

the choice of L as presented in (2). ]

Putting and using 1 —z <
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