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Abstract— In this paper, we present Randomized Empirical

Value Learning (RAEVL) algorithm for MDPs with continuous

state and action spaces. This algorithm combines the ideas of

random search over action space with randomized function

approximation method to generalize the value functions over

state space . Our theoretical analysis is done under a ran-

dom operator framework combined with stochastic dominance

argument. This provides finite-time analysis of the proposed

algorithm as well as give the sample complexity.

I. INTRODUCTION

In this paper, we consider a controlled Markov process as
a model of a general stochastic system with finite memory.
Bellman’s dynamic programming principle can be used to
find optimal control laws. A large variety of algorithms
have been developed to find an exact solution to Bell-
man’s optimality equation. Unfortunately, when the state
space is continuous, designing algorithms that find exact
solutions (even if asymptotically) is near impossible. State
space discretization (or aggregation methods) may not work
numerically and certainly do not scale [14]. Function approx-
imation methods [12], [4], [3] can often have arbitrary (and
unknown) gaps to optimality. Thus, in [6], we introduced
an empirical value learning algorithm that used randomized
function approximation in universal function approximation
spaces (e.g., RKHS) to find arbitrarily accurate solutions with
high probability. This combined “empirical dynamic pro-
gramming” (EDP) ideas introduced in [5] with randomized
function approximation ideas [13] to yield algorithms that
work very well numerically, while still being able to provide
probabilistic guarantees on non-asymptotic performance.

In many robotics problems, action space (and state space)
is continuous with dimensions in low double digits [8]. And
it is not possible to discretize state or action space without
losing control performance (while also running into issues
of scalability). Continuous action space problems are much
harder. Current methods available for such settings include
considering parametric families of policies, and then doing
either following policy gradient [1], [10] or doing policy
optimization [15], [16]. While for some of these algorithms,
a proof of convergence is available, they can have arbitrary
gaps to optimality since it is nearly impossible to know which
parametric policy family is close enough to an optimal policy.
Moreover, training such algorithms requires a large amount
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of data which may not be available. In the reinforcement
learning (RL) literature, the closest useful techniques come
from deep RL that rely on using deep neural networks for
function approximation but can work with continuous action
spaces. As with deep learning methods, such techniques
suffer from long training times, no guarantees on optimality
or performance, and the need to tune a large number of
hyper-parameters before one can get reasonable performance
on a given problem [9].

In this paper, we take a different approach. First, our goal
is to develop algorithms that are universal (work on any
problem), simple to implement, computationally tractable
(and fairly easy), can provide arbitrarily good approximation
to optimal performance and come with some performance
guarantees, hopefully non-asymptotic, even if probabilistic.
We build on our work in [6] for continuous state space but
finite action space problems. The idea is very simple: Do
function approximation in a universal function approximation
space such as an RKHS. Do randomized function fitting by
picking basis functions randomly in each iteration. Replace
expectation in the Bellman operator with a sample average
approximation by drawing samples of the next state. To
optimize over the actions in the Bellman equation, sample
a few actions, and just optimize over those. We call this
algorithm Random Actions for Empirical Value Learning (or
RAEVL).

Thus, the algorithm we introduce for continuous action
and state space problems is pretty simple, and in fact
performs quite well numerically as we show in Section V.
But due to randomization and sampling of various kinds, its
convergence analysis becomes intricate. This is addressed
by viewing each iteration as operation of a random Bellman
operator. In [5], probabilistic contraction analysis techniques
were developed for analyzing iterated random operators.
Convergence is proved by constructing a simple stochasti-
cally dominating Markov chain (which also yields the rate
of convergence). We use the same framework but needed
to modify some details for use in this paper. The second
part of the analysis is related to concentration analysis of
randomized function approximation [11]. The third part of
the analysis is related to error analysis of the empirical
optimum (obtained by taking samples of a function) with
respect to the true optimum.

Putting all of this together then gives us RAEVL, one of
the first practical algorithms for finding near-optimal policies
in general (Markovian) stochastic systems with continuous
states and actions with probabilistic guarantees on non-
asymptotic performance (and explicit sample complexity
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bounds).

II. PROBLEM FORMULATION

Consider a MDP (X ,U , P, r, �) where X is the state space
and U is the action space. The transition probability kernel
is given by P (·|x, u), i.e., if action u is executed in state x,
the probability that the next state is in a Borel-measurable
set B is P (xt+1 2 B|xt = x, ut = u) where xt and ut

are the state and action at time t. The reward function is
r : X⇥U ! R. We are interested in maximizing the long-run
expected discounted reward where the discount parameter is
�.

Let ⇧ denote the class of stationary deterministic Markov
policies mappings ⇡ : X ! U which only depend on
history through the current state. We only consider such
policies since it is well known that there is an optimal
MDP policy in this class. When the initial state is given,
any policy ⇡ determines a probability measure P⇡ . Let the
expectation with respect to this measure be E⇡ . We focus on
infinite horizon discounted reward criterion. The expected
discounted reward or the value function for a policy ⇡ and
initial state x is given as

v⇡(x) = E⇡

" 1X

t=0

�t r(xt, at)

����x0 = x

#

The optimal value function is given as

v⇤(x) = sup
⇡2⇧

E⇡

" 1X

t=0

�t r(xt, at)

����x0 = x

#

and the policy which maximizes the value function is the
optimal policy, ⇡⇤. Now we make the following assumptions
on the regularity of the MDP.

Assumption 1: (Regularity of MDP) The state space X
and the action space U are compact subset of dX and dU
dimensional Euclidean space respectively. The rewards are
uniformly bounded by rmax, i.e, r(x, u)  rmax for all
(x, u) 2 X ⇥ U . Furthermore U is convex.
The assumption above implies that for any policy ⇡, v⇡ 
vmax = rmax/(1� �). The next assumption is on Lipschitz
continuity of MDP in action variable.

Assumption 2: (Lipschitz continuity) The reward and the
transition kernel are Lipschitz continuous with respect to the
action i.e., there exists constants Lr and Lp such that for all
(x, u, u0) 2 X ⇥ U ⇥ U and a measurable set B of X , the
following holds

|r(x, u)� r(x, u0)|  Lrku� u0k
|P (B|x, u)� P (B|x, u0)|  Lpku� u0k

The compactness of action space combined with Lipschitz
continuity implies that the greedy policies do exist. Let B(X )
be the set of functions on X such that kfk1  vmax. Let
us now define the Bellman operator T : B(X ) ! B(X ) as
follows

T v(x) = max
u

⇥
r(x, u) + �Ex0⇠P (·|x,u)v(x

0)
⇤
.

It is well known that the operator T is a contraction with
respect to k · k1 norm and the contraction parameter is the
discount factor, �. Hence, the sequence of iterates vk =
T vk�1 converge to v⇤ geometrically. Since, we will be
analyzing the L2 norm, we do not have contraction property
with respect to this norm. Hence, we need bounded Radon-
Nikodym derivative of transitions which we illustrate in the
next assumption. Such an assumption has been used earlier
for finite action space [12], [7] and for continuous action
space in [2].

Assumption 3: (Stochastic Transitions) For all (x, u) 2
X ⇥ U , P (· |x, u) is absolutely continuous with respect to
µ and Cµ , sup(x, u)2X⇥U

���dP (· | x, u)
dµ

���
1

<1.
Since we have a sampling based algorithm, we need a

function space to approximate value function. In this paper,
we focus on randomized function approximation via random
features. Let ⇥ be a set of parameters and let � : X⇥⇥! R
be a feature function. The feature functions need to satisfy
sup(x, ✓)2X⇥⇥ |� (x; ✓) |  1, for e.g., Fourier features. Let
F (⇥) be defined as
⇢
f (·) =

Z

⇥
� (·; ✓)↵ (✓) d✓ | |↵ (✓) |  C ⌫ (✓) , 8✓ 2 ⇥

�
.

But we are interested in finding the best fit within finite sums
of the form

PJ
j=1 ↵j� (x; ✓j). Doing classical function fit-

ting with
PJ

j=1 ↵j� (x; ✓j) leads to nonconvex optimization
problems because of the joint dependence in ↵ and ✓. Instead,
we fix a density ⌫ on ⇥ and draw a random sample ✓j from ⇥
for j = 1, 2, . . . J . Once these (✓j)

J
j=1 are fixed, we consider

the space of functions bF
�
✓1:J

�
,

8
<

:f (·) =
JX

j=1

↵j� (·; ✓j) | k (↵1, . . . , ↵J) k1  C/J

9
=

; .

Now, it remains to calculate weights ↵ by minimizing
a convex loss. Furthermore, let us define the L2,µ norm
of a function for a given a probability distribution µ on
X as kfk22, µ =

�R
X |f (x) |2µ (dx)

�
. The empirical norm

at given samples (x1, x2, . . . xN ) is defined as kfk22, µ̂ =
1
N

PN
i=1 |f(xi)|2. Recall two distance measures for function

spaces:
• d2, µ (T f, F) , inff 02F kf 0 � T fk2, µ is the approxi-

mation error for a specific f ;
• d2, µ (T F , F) , supf2F d2, µ (T f, F) is the inherent

Bellman error for the entire class F .

III. THE ALGORITHM

We now present our RAndomized Empirical Value Learn-
ing (RAEVL) algorithm. It is an empirical variant of value
iteration for continuous state and action space. It samples
both states and actions. Note that the Bellman operator
computes expectation with respect to the next state and then
optimize over action space for each state. This is not feasible
for continuous state and action space. Instead, we replace
the expectation with an empirical average and use empirical
optimization in the original Bellman operator. This means
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for a given state x 2 X and sample sizes M and L, we first
sample L actions uniformly and then generate M samples of
next state (for each sampled action). This leads us to define
an empirical Bellman operator bTM,L : B(X )! B(X ) as

bTM,L v(x) = max
u1,u2,...uL

"
r(x, ul) +

�

M

MX

m=1

v(x0
lm)

#

where x0
lm ⇠ P (·|x, ul) for all l = 1, 2 . . . L and m =

1, 2, . . .M . Instead of evaluating this operator at each state
x, we sample {xn}Nn=1 from the state space X according to
distribution µ. Then we compute bv(xn) = [ bTM,L v](xn).

Given the data {(xn, bv (xn))}Nn=1, we generalize the value
function over the state space by computing a best fit within
bF
�
✓1:J

�
by solving

min
↵

1

N

NX

n=1

|
JX

j=1

↵j� (xn; ✓j)� bv (xn) |2

s.t. k (↵1, . . . , ↵J) k1  C/J.

This optimization problem only optimizes over weights ↵1:J

since parameters ✓1:J have already been randomly sampled.
Let ⇧ bF (J,N) denote this optimization problem which we
denote as ⇧ bF for compact notation. We are now ready to
present our algorithm.

Algorithm 1 RAEVL
Input: probability distribution µ on X ; sample sizes
N,M, J, L � 1; counter k = 0, initial seed v0

For k=1, 2, . . .
1) Sample (xn)

N
n=1 from X according to µ.

2) For each n, sample (ul)
L
l=1 uniformly for the action

space
3) For each n and l, sample i.i.d. next states ylm ⇠

P (·|xn, ul)
4) Empirical value iteration: bvk(xn) = bTM,L vk�1(xn)
5) Function approximation: vk+1 = ⇧ bF bvk(xn)
6) Increment k  k + 1 and return to Step 1.

RAEVL can be seen as an iteration of a composition
of two random operators. Let us define bG(N,M,L, J) =
⇧ bF (N, J)� bTM,L where � denotes the composition. Let bG be
a compact notation for this operator. Hence, in our algorithm
vk+1 = bGvk. We will use the random operator framework
to analyze our algorithm. We now present our main theorem
for which we define

J0(✏, �) =

"
5C

✏

 
1 +

r
2 log

5

�

!#2

,

N0(✏, �) =

 
512 v2max

(✏/7)4

!
log

"
56 e (J + 1)

�

✓
2 e vmax

(✏/7)2

◆J
#

L0(✏, �) =

 
(Lr + � vmax Lp) diam(U)

✏/7

!dU

log
7N

�

and M0(✏, �) =

✓
2 v2max

(✏/7)2

◆
log


14N L

�

�
.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold.
Choose an ✏ > 0 and � 2 (0, 1). Set �0 = 1 � (1/2 +
�/2)1/(K

⇤�1) and

K⇤ =

2

666

log
⇣
C1/2

µ ✏
⌘
� log (2 vmax)

log �

3

777
.

Then if N � N0(✏, �0), M � M0(✏, �0), J � J0(✏, �0) ,
L � L0(✏, �0) and

K � log
⇣
4/

⇣
(1/2� �/2) (1� q) qK

⇤�1
⌘⌘

,

the following holds with probability at least 1� �,

kvK � v⇤k2, µ  eC [d2, µ (T F (⇥) , F (⇥)) + 2✏] (1)

where eC = 2
�
(1� �K+1)/(1� �)

�1/2
C1/2

µ .

IV. PROOF OF THEOREM 1
There are three sources of error in RAEVL: empirical

optimization, sample average and function approximation.
We will get a handle on each of these approximation errors
to give us a bound on the error in one iteration. We then use a
stochastic dominance argument to analyze the error process.
As mentioned before, we view RAEVL as an iteration of the
random operator bG. Let ✏k be the gap between this random
operator and the exact Bellman operator at iteration k, i.e,

vk+1 = bGvk = T vk + ✏k

Let us also define a (random) operator, eTL as follows

eTL v(x) = max
u1,u2,...uL

⇥
r(x, ul) + �Ex0⇠P (·|x,ul)v(x

0)
⇤

where ul ⇠ Unif(U) for l = 1, 2, . . . L. Let the Q-value
function be Q(x, u) = r(x, u) + �Ex0⇠P (·|x,u)v(x

0) for all
v 2 B(X ). We now argue that the Q-value function is LU -
Lipschitz continuous in action variable where LU = Lr +
� vmaxLp. For all (x, u, u0) 2 X ⇥ U ⇥ U and v 2 B(X ),

|Q(x, u)�Q(x, u0)|

 |r(x, u)� r(x, u0)|+ �

Z

X
|(P (dy|x, u)� P (dy|x, u0)) v(y)|

 Lr|u� u0|+ � vmax

Z

X
|P (dy|x, u)� P (dy|x, u0)|

 (Lr + � vmaxLp) ku� u0k

where the last inequalities follow from Assumption 2. The
next lemma bounds the error due to sampling for finding the
best action. The proof is given in the appendix.

Lemma 2: Choose ✏ > 0 and � 2 (0, 1). Let diam(U) be
the diameter of the action space U . Then for all v 2 B(X ),
if

L �
 
LU diam(U)

✏

!dU

log
1

�
(2)

then
P
⇣
|T v(x)� eTL v(x)| > ✏

⌘
< �

for all x 2 X .

6346

Authorized licensed use limited to: Rahul Jain. Downloaded on July 14,2020 at 03:33:51 UTC from IEEE Xplore.  Restrictions apply. 



Next, we bound the error due to sample average. This will
give us a sample complexity bound for next state samples.
The proof is a simple application of Hoeffding’s inequality
followed by an union bound.

Lemma 3: Choose ✏ > 0, � 2 (0, 1) and L � 1. Then for
all v 2 B(X ), if

M �
2v2max

✏2
log

 
2L

�

!

then
P
⇣
| bTM,L v(x)� eTL v(x)| > ✏

⌘
< �

for all x 2 X .

A. Bound on one-step error

Now, we will bound the error in one iteration of RAEVL.
We will use the bounds on M and L developed in the
previous section. The choice of N comes from bounding
the gap between the empirical norm and expected norm by
Pollard’s inequality. Lastly, the bound on J comes through
an application of the bounded difference concentration in-
equality as given in [13].

Lemma 4: Choose v 2 F (⇥), ✏ > 0, and � 2 (0, 1).
Also choose N � N0(✏, �),M �M0(✏, �), J � J0(✏, �) and
L � L0(✏, �). Then, for bG (N, M, J, L, µ, ⌫) v, the output
of one iteration of our algorithm, we have

k bGv � T vk2, µ  d2, µ (T F (⇥) , F (⇥)) + ✏

with probability at least 1� �.
Proof: To begin, let ✏0 > 0 be arbitrary and choose

f⇤ 2 F (⇥) such that kf⇤ � T vk2, µ  inff2F(⇥) kf �
T vk2, µ + ✏0. Using (x + y)2 � x2 + y2 for x, y � 0, we
have

P
 

sup
bf2 bF(✓1:J )

���k bf � T vk2,µ � k bf � T vk2,µ̂
��� > ✏/7

!

 P
 

sup
bf2 bF(✓1:J )

���k bf � T vk22,µ � k bf � T vk22,µ̂
��� > (✏/7)2

!

 8 e (J + 1)

 
4 e vmax

(✏/7)2

!J

exp

 
�N (✏/7)4

512 v2max

!
(3)

where the last inequality follows from Pollard’s inequality
and the fact that the psuedo-dimension for the function class
bF
�
✓1:J

�
is J . Then, choose f̂ 2 bF

�
✓1:J

�
such that kf̂ �

T vk2, µ  kf⇤ � T vk2, µ + ✏/7 with probability at least
1� �/7 by choosing J � 1 to satisfy

Cp
J

 
1 +

s

2 log
1

(�/7)

!
 ✏

7
)

J �
"✓

7C

✏

◆ 
1 +

r
2 log

7

�

!#2

by Lemma [13, Lemma 1]. Now we have the following string
of inequalities, each of which hold with probability 1� �/7:

k bGv � T vk2,µ  k bGv � T vk2,µ̂ + ✏/7 (4)

 k bGv � eTL vk2,µ̂ + 2✏/7 (5)

 k bGv � bTM,L vk2,µ̂ + 3✏/7 (6)

 kf̂ � bTM,L vk2,µ̂ + 3✏/7 (7)

 kf⇤ � bTM,L vk2,µ̂ + 4✏/7 (8)

 kf⇤ � eTL vk2,µ̂ + 5✏/7 (9)
 kf⇤ � T vk2,µ̂ + 6✏/7 (10)
 kf⇤ � T vk2,µ + ✏ (11)
 inf

f2F(⇥)
kf � T vk2, µ + ✏0 + ✏ (12)

We choose N from inequality (3) such that inequalities (4)
and (11) hold with atleast probability 1 � �/7. Now, using
Lemma 2 followed by an union bound argument we choose
L such that

P
✓

max
x1,x2,...xN

���T v(xn)� eTL v(xn)
��� < ✏

����{xn}Nn=1

◆

� 1� �/7

Hence the empirical norm can also be bounded. This proves
inequalities (5) and (10). Similarly, one can prove inequal-
ities (6) and (9) using Lemma 3 followed by union bound
argument on both the sampled, giving us a bound on M .
Inequality (7) follows from the fact that bG gives the least
approximation error compared to any other function bf 2
bF
�
✓1:J

�
. The last inequality is by the choice of f⇤.

The previous Lemma 4 gives a bound on the error in one step
of RAEVL. We will now extend this result to understand the
convergence of {kvk � v⇤k2, µ}k�0 in the next section.

B. Stochastic Dominance

Since we do not have contraction with respect to L2 norm,
we need a bound on how the errors propagate with iterations.
Recall that bGvk = T vk + ✏k, we have the following by
analyzing the point-wise error bounds.

Lemma 5: [12, Lemma 3] For any K � 1, and ✏ > 0,
suppose k✏kk2, µ  ✏ for all k = 0, 1, . . . , K � 1, then

kvK�v⇤k2, µ  2

✓
1� �K+1

1� �

◆ 1
2 h

C1/2
µ ✏+ �K/2 (2 vmax)

i
.

(13)
Now, from (13), we have

kvK � v⇤k2, µ  2

✓
1

1� �

◆ 1
2 h

C1/2
µ ✏+ �K/2 (2 vmax)

i

which gives a bound on K such that �K/2 (2 vmax)  C1/2
µ ✏.

Denote

K⇤ =

2

666

log
⇣
C1/2

µ ✏
⌘
� log (2 vmax)

log �

3

777
(14)
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We then construct a stochastic process as follows. We call
iteration k “good” if the error k✏kk2, µ is within our desired
tolerance ✏ and iteration k “bad” when the accuracy is greater
than our desired tolerance. We then construct a stochastic
process {Xk}k�0 with state space K as , {1, 2, . . . , K⇤}
such that

Xk+1 =

(
max {Xk � 1, 1} , if iteration k is ”good”,
K⇤, otherwise.

The stochastic process {Xk}k�0 is easier to analyze than
{vk}k�0 because it is defined on a finite state space, however
{Xk}k�0 is not necessarily a Markov chain. Whenever Xk =
1, it means that we just had a string of K⇤ “good” iterations
in a row, and that kvk � v⇤k2, µ is as small as desired.

We next construct a “dominating” Markov chain {Yk}k�0
to help us analyze the behavior of {Xk}k�0. We construct
{Yk}k�0 and we let Q denote the probability measure
of {Yk}k�0. Since {Yk}k�0 will be a Markov chain by
construction, the probability measure Q is completely deter-
mined by an initial distribution on R and a transition kernel
for {Yk}k�0. We now use the bound on one-step error as
presented in Lemma 4 which states that when the samples
are sufficiently large enough for all k,

P (k✏kk2,µ  ✏) > q(N,M, J, L)

Let us denote this probability by q for a compact notation.
Let us initialize Y0 = K⇤, and then construct the transition
kernel as follows

Yk+1 =

(
max {Yk � 1, 1} , w.p. q,
K⇤, w.p. 1� q,

where q is the probability of a “good” iteration which in-
creases with sample sizes N,M, J and L. We now describe a
stochastic dominance relationship between the two stochastic
processes {Xk}k�0 and {Yk}k�0. We will establish that
{Yk}k�0 is “larger” than {Xk}k�0 in a stochastic sense.
This relationship is the key to our analysis of {Xk}k�0.

Definition 1: Let X and Y be two real-valued random
variables, then X is stochastically dominated by Y , written
X st Y , when Pr {X � ✓}  Pr {Y � ✓} for all ✓ in the
support of Y .
Let {Fk}k�0 be the filtration on (⌦1, B (⌦1) , P) corre-
sponding to the evolution of information about {Xk}k�0, and
let [Xk+1 | Fk] denote the conditional distribution of Xk+1

given the information Fk. We infer the following key result
from the relationship between {Xk}k�0 and {Yk}k�0.

Lemma 6: Choose ✏ > 0, and � 2 (0, 1), and suppose
N,M, J and L are chosen sufficiently large enough such
that P (k✏kk2,µ  ✏) > q for all k � 0. Then for q �
(1/2 + �/2)1/(K

⇤�1) and

K � log
⇣
4/

⇣
(1/2� �/2) (1� q) qK

⇤�1
⌘⌘

,

we have

kvK � v⇤k2, µ  2

✓
1� �K⇤+1

1� �

◆1/2 h
C1/2

µ ✏+ �K⇤/2 (2 vmax)
i

(15)

with probability at least 1� �.
Proof: This proof proceeds in three steps. First, we

show that Xk st Yk holds for all k � 0. This stochastic
dominance relation is the key to our analysis, since if we
can show that YK is “small” with high probability, then XK

must also be small and we infer that kvK � v⇤k2, µ must be
close to zero. By construction, Xk st Yk for all k � 0 (see
[5, Lemma A.1] and [5, Lemma A.2])

Second, we compute the steady state distribution of
{Yk}k�0 and its mixing time, in particular, we use the
mixing time to choose K so that the distribution of YK

is close to its steady state distribution. Since {Yk}k�0 is
an irreducible Markov chain on a finite state space, its
steady state distribution µ = {µ (i)}K

⇤

i=1 on K exists. By
[5, Lemma 4.3], the steady state distribution of {Yk}k�0 is
µ = {µ (i)}K

⇤

i=1 given by:

µ (1) = qK
⇤�1

µ (i) = (1� q) qK
⇤�i, 8i = 2, . . . ,K⇤ � 1,

µ (K⇤) = 1� q.

The constant

µmin (q; K
⇤) = min

n
qK

⇤�1, (1� q) q(K
⇤�2), (1� q)

o

8q 2 (0, 1) and K⇤ � 1 appears shortly in the Markov
chain mixing time bound for {Yk}k�0. We note that
(1� q) qK

⇤�1  µmin (q; K⇤) is a simple lower bound for
µmin (q; K⇤). Let Qk be the marginal distribution of Yk for
k � 0. By a Markov chain mixing time argument, we have

tmix (�
0) , min

�
k � 0 : kQk � µkTV  �0

 

 log

✓
1

�0µmin (q; K⇤)

◆

 log

✓
1

�0 (1� q) qK⇤�1

◆

for any �0 2 (0, 1).
Finally, we conclude the argument by using the previous

part to find the probability that YK = 1, which is an upper
bound on the probability that XK = 1, which is an upper
bound on the probability that kvK � v⇤k2, µ is below our
desired error tolerance. For K � log

�
1/

�
�0 (1� q) qK

⇤�1
��

we have |Pr {YK = 1} � µ (1) |  2 �0. Since XK st

YK , we have Pr {XK = 1} � Pr {YK = 1} and so
Pr {XK = 1} � qK

⇤�1 � 2 �0. Choose q and �0 to satisfy
qK

⇤�1 = 1/2 + �/2 and 2 �0 = qK
⇤�1 � � = 1/2 � �/2 to

get qK
⇤�1 � 2 �0 � �, and the desired result follows.

Now, putting Lemma 4 and 6 together along with the
choice of K⇤, we can conclude Theorem 1.

V. NUMERICAL EXPERIMENTS

In this section, we try RAEVL on a synthetic problem
for which we can compute the optimal value function. This
allows us to compute error with each iteration. Let X = [0, 1]
and U = [0, 1]. The reward is r(x, u) = �(x � u)2 and
transition probability density p(y|x, u). Then the optimal
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value function can be found by solving the fixed point
equation

v⇤(x) = max
0u1

(
�(x� u)2 +

�

1� u

Z 1

u
v⇤(y)dy

)

which gives v⇤(x) = 0 and ⇡⇤(x) = x for all x 2 X . For
our experiments, we choose �(x, ✓) = cos(wTx+ b) where
✓ = (w, b). We sample w ⇠ N (0, 1) and b ⇠ Unif[�1, 1].
We fix number of features, J = 10. Fig. 1 shows the error
kvk � v⇤k1 on y-axis with number of iterations k on x-
axis for different choices of N , M and L. The error reduces
to order of 10�4 when the the sample sizes are sufficiently
large N = M = L = 50. But even for low values of sample
sizes, we are able to get an error ⇡ 0.1 which indicates that
we can get good approximation with less computation.

Fig. 1. Performance of RAEVL for different sample sizes
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APPENDIX

Proof: [Proof of Lemma 2] Let f(u) = r(x, u) +
�Ex0v(x0) for a given x 2 X . Let u⇤ be the maxima. Let
the ball centered at u and radius r be B (u, r). Now, the
volume of this dU - dimension ball is vol(B (u, r)) / rdU .
Let U✏ = {u 2 U : f(u)  maxu f(u) � ✏}. Moreover, let
U✏,LU = {u 2 U : ku⇤ � uk  ✏/LU}. Since f is LU -
Lipschitz, u 62 U✏ =) u 62 U✏,LU . Hence,

P (u 62 U✏,LU ) = 1�
vol(U✏,LU )

vol(U)

 1�
 

✏

LU diam(U)

!dU

(16)

where the last inequality follows from Lemma 5.2 in [17]
and diam(U) = supu,u0 ku� u0k. Now,

P
✓
f(u⇤)� max

1lL
f(ul)  ✏

◆
= 1� P

�
\Ll=1{ul 62 U✏}

�

= 1� P
�
\Ll=1{ul 62 U✏}

�L

� 1� P
�
\Ll=1{ul 62 U✏,LU }

�L

where the second equality is due to the fact that
{u1, u2 . . . uL} are i.i.d. and the last inequality follows
Lipschitz continuity of the function f . Now, using (16) we
have

P
✓
f(u⇤)� max

1lL
f(ul)  ✏

◆
�

1�

0

@1�
 

✏

Lu diam(U)

!dU
1

A
L

Putting

 
✏

Lu diam(U)

!dU

=
1

L
log

 
1

�

!
and using 1�x 

e�x, we have P (f(u⇤)�max1lL f(ul)  ✏) � 1� � for
the choice of L as presented in (2).
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