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ABSTRACT ARTICLE HISTORY
For a wide range of phenomena, current computational ability does not always allow for atomistic Received 2 April 2019
simulations of high-dimensional molecular systems to reach time scales of interest. Coarse-graining Accepted 2 July 2019
(CQ) is an established approach to alleviate the impact of computational limits while retaining the KEYWORDS

same algorithms used in atomistic simulations. It is important to understand how algorithms such
as Langevin integrators perform on non-trivial CG molecular systems, and in particular how large
of an integration time step can be used without introducing unacceptable amounts of error into
averaged quantities of interest. To investigate this, we examined three different Langevin integra-
tors on a CG polymer melt: the recently developed BAOAB method by Leimkuhler and Matthews
[J. Chem. Phys. 138 (17), 05B601_1 (2013)], the Grgnbech-Jensen and Farago method [Mol. Phys.
111 (8),983-991 (2013)], or G-JF, and the frequently used Briinger-Brooks-Karplus integrator [Chem.
Phys. Lett. 105 (5), 495-500 (1984)], known as BBK. We compute and analyse key statistical proper-
ties for each. Our results indicate that the integrators perform similarly for a small friction parameter;
however outside this regime, the use of large integration steps produces significant deviations
from the predicted diffusivity and steady-state distributions for all methods examined with the
exception of G-JF.

Langevin integrator;
coarse-grained; polymer
melt; molecular dynamics
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1. Introduction . . .
large time scales, while accurately resolving smaller ones,

A central obstacle in using molecular dynamics (MD)
simulations for quantitative predictions in material sci-
ence and molecular biology is the presence of a wide
range of time scales that are not well-separated. To
investigate phenomena in such systems that occur over

a large number of integration steps is required. For
example, in fully atomistic simulations, the size of the
integration time step is constrained by the fastest physical
time scales and is typically on the order of femtoseconds.
It becomes computationally inefficient, yet necessary, to
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use these relatively small time steps for integrating the
medium to long-range time scale portion of the force
field.

There exist several methods for working around
this bottleneck. One such method is Nose-Hoover
chains with or without the reference system propaga-
tor algorithm, or more succinctly, RESPA [1-3]. Such
an algorithm allows one to propagate each degree of
freedom forward in time with a time step size appro-
priate for that degree of freedom’s characteristic time
scale. These resulting solution operators are then com-
posed via a symmetric Trotter splitting. Unfortunately,
the Nose-Hoover chain equations result in the introduc-
tion of many undetermined parameters and, depending
on the complexity of the system being simulated, may
require different atoms to be coupled to different ther-
mostats, thus complicating implementation. Other deter-
ministic approaches which attempt to constrain the fast
degrees of freedom are also used [4].

A Langevin thermostat is a simple and efficient way of
simulating constant temperature conditions and has the
intuitive physical interpretation of describing a molecular
system in the presence of an implicit solvent or heat bath.
The interaction between the heat bath and the system
is collapsed into the friction parameter y, thus avoiding
the need to represent the heat bath as a set of parti-
cles altogether. In the context of coarse-grained (CG)
models with explicit solvent, the missing microscopic
degrees of freedom can be described by such stochas-
tic forces, at least to a first approximation. For exam-
ple, the dissipative-particle-dynamics (DPD) methodol-
ogy [5] relies on this description to systematically build
coarse-grained models with low computational cost.

Because improvements in computer hardware are
being introduced more slowly in recent years, the use-
fulness of MD models that run at speeds higher than
atomistic simulations will also increase. As CG models
become more commonplace, there is a need to system-
atically understand the numerical performance and the
limitations of current temporal integration schemes on
CG systems, avoiding the reliance on rules of thumb that
were derived primarily for atomistic simulations.

In this work, we examine methods used to numer-
ically solve the Langevin equation, such as the ones
by Leimkuhler and Matthews [6] and Grenbech-Jensen
and Farago [7], known as G-JF, with particular con-
cern toward their respective sampling properties in CG
simulations. Among the family of integrators described
by Leimkuhler and Matthews [6], the BAOAB method
is the one characterised by the smallest configura-
tional sampling error, and the only one here consid-
ered. Both the G-JF and BAOAB methods are weakly
second-order accurate [6, 8] and produce the exact

configurational mean, variance and co-variance of the
harmonic oscillator. This important property is not pro-
duced by many other Langevin schemes [9, 10]. To com-
pare the two schemes with a representative of more tra-
ditional integration methods, our analysis includes the
well-established Briinger-Brooks—Karplus method [11],
or BBK. Out of the many formulations of BBK [12] we
chose one (indicated here as BBK*) that performs well
for the system under study: comparisons to the classical
formulation are also made.

Several numerical studies have been conducted on
the performance of these integrators in atomistic sim-
ulations (e.g. see [13, 14]). However, CG models tend
to use smoother potential energy functions than their
fully atomistic counterparts, and thus allow for much
larger integration time steps. A key question that arises
then is: how large can the time step h be made with-
out introducing unacceptable levels of error into averaged
static and dynamic quantities? In [15], G-JF is used to
simulate a CG lipid bilayer in implicit solvent and aver-
aged energy terms (both potential and kinetic) are exam-
ined: however, the system was simulated for relatively
short MD trajectories ( < 50,000 steps) and distributions
were not examined. Also included in that study was
the Schneider-Stoll Langevin integrator [16], the default
option in LAMMPS [17] and ESPResSo [18]. We elected
not to include this integrator in our work, because small
yh values are explicitly required in its derivation. Our
present work considers a wide range of values for y h. To
date, we are not aware of any CG studies for BAOAB.

There are several choices of CG-model resolutions to
choose from: a recent survey of several CG models [19]
suggested that an adequate representation of the phase
behaviour seen in atomistic simulations is given by mod-
els of polyethylene chains with three or four methylene
groups per CG particle. The model by Klein and cowork-
ers [20, 21], the MARTINI [22] and Salerno-Grest [19]
models are significant examples of this level of resolution,
and many other CG models featuring a wide-variety of
resolutions applied to a broad range of systems also exist
(e.g see [23-29]).1t is also recognised that technological
requirements will motivate further effort to develop accu-
rate CG models at lower levels of resolution (mapping
into fewer CG particles for the same system). Transi-
tioning into such models affects significantly the balance
between Hamiltonian, stochastic and inertial terms in the
equations of motion, and may require the use of exist-
ing Langevin methods outside of their typical range of
parameter values.

In fact, Langevin parameters near the high-friction
limit are of particular concern. Here, the acceleration
may be neglected and the second-order integrator can
safely be substituted with a first-order one for improved



numerical stability. However, due to large differences in
how existing CG models are formulated, as well as differ-
ences between potential energy terms in the same model,
it is far from unusual to see applications of a Langevin
thermostat that approach this region at least transiently.
Unfortunately, any resulting biases in sampling are often
difficult to detect due to the heterogeneous nature of the
physical system examined, or its proximity to a phase
transition.

Here we used a polyethylene melt (Cyg) as a bench-
mark system modelled with three methylene groups per
CG particle. All three schemes, BAOAB, BBK and G-JF,
were compared for a wide range of friction parameter
values and time step sizes by examining relevant statis-
tical quantities from the simulations. The key finding
of our study is that in the high-friction (y ~ 0.1 fs™!)
regime, the G-JF method performs measurably better
than BAOAB and BBK in reproducing molecular dif-
fusivity and configurational distributions. The results
obtained provide indications that Langevin integrators
with similar properties to G-JF should be considered
for use in CG simulations that aim to preserve dynamic
properties and stationary distributions equally accu-
rately. Though, diffusivity notwithstanding, BAOAB and
G-JF sample equally well the configurational distribu-
tions of the system considered here.

2. Background and theory

We consider an N-particle system with potential energy
U, immersed in a heat bath with the constant temperature
T, modelled by the Langevin equation:

dQ=M"'rds
dP = —VU(Q)dt — yPdt
+oMY2dw. (1)

Here 0 = /2k; Ty is the noise coefficient, k; is Boltz-
mann’s constant, y is the (spatially independent) col-
lision rate parameter (measured in units of ts71), M
a diagonal mass matrix, W is 3N-dimensional Brow-
nian motion, and H(Q,P) = %PTM_IP + U(Q) is the
Hamiltonian. The Langevin equation is a stochastic dif-
ferential equation (SDE), so we use capital letters to
remind us that position and velocity are stochastic pro-
cesses.

Usually in MD, it is not the exact dynamics gener-
ated by (1) that are of interest, but rather an accurate
sampling of the equilibrium distributions in phase space.
Assuming that H(g, p) is such that e~ "(@P) is integrable,
one expects (1) to be ergodic and have the stationary
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distribution
n(dqdp) = Qe THaP/RT dg dp,

where O is a normalisation constant and w is the Boltz-
mann-Gibbs, or canonical, distribution. For realistic MD
potentials, such as Lennard-Jones and/or Coulombic
interaction forces, the solution to (1) needs to be approxi-
mated numerically. Moreover, in many applications, such
as the one here, U is non-globally Lipschitz and singu-
lar. Consequently, many standard results in SDE theory
do not apply, thus limiting the possibilities of a complete
formal analysis of numerical schemes for (1). One must
therefore study these schemes computationally.

The fidelity to which numerical schemes reproduce
the Boltzmann-Gibbs distribution p is our principal
interest. It is the hope that infinite time-averaged observ-
ables obtained from these numerical schemes would
reproduce correct statistical averages with respect to u.
However, even with ergodicity typically assumed, the
steady states produced by each numerical scheme, ;g-jF,
UBAOAB, and wppk, respectively, will in general differ
from p, and depend on the friction parameter y and
time step h. Therefore we expect two distinct sources of
error in the calculation of distributions and observables:
the use of a finite trajectory instead of an infinite one
and the error due to the numerical scheme’ steady state
distribution differing from the canonical distribution.

Although, in general, statistical averages generated by
numerical approximations of (1) cannot be derived ana-
Iytically, exact formulas for mean, variance and correla-
tion can be calculated in the flat and harmonic potential
case, which is enough to characterise any stationary dis-
tribution when starting with Gaussian initial conditions.

2.1. Numerical methods studied

In this work, we examined three different Langevin inte-
gration schemes: G-JE, BAOAB, and the Briinger-Brooks
-Karplus method [11], known as BBK, on a CG poly-
mer melt. Both G-JF and BAOAB are included as options
in LAMMPS and NAMD, respectively [30, 31]. The
G-JF thermostat is a stochastic two-stage partitioned
Runge-Kutta method [8, 32] and was shown to have
highly desirable configurational properties [7]; particu-
larly, Einstein’s diffusion relation holds exactly and the
configurational averages for the harmonic oscillator are
independent of both the time step h and the friction
parameter y.

As described in [6], BAOAB is but one of many split-
ting schemes obtained by composing solution operators
in various orderings which evolve the A, B and O portions
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of the Langevin vector field (1):

dQ\ (M7'p 0
(dP)‘( 0 )‘“*(—VU(Q))C”
S——— S——

A B

0
+ (—yP dt + oM/ dw)'

(@)

BAOAB is the result of a Strang splitting with a full step
for O in the middle. That is, taking half steps for B and
then A, a full step for O and then half steps again for A and
then B.

Similar to G-JF, BAOAB also reproduces exact sam-
pling for the harmonic oscillator. Moreover, it possesses
an additional favourable configurational sampling prop-
erty, termed ‘super-convergence’ [6]: when y is suffi-
ciently large, the leading order error terms of averaged
phase space quantities will exhibit a 4th order error scal-
ing in h for typical time step values, thereby yielding
more accurate averages with the same computational
effort. This property provides some motivation as to why
BAOAB is of interest to practitioners.

BBK has been a well-known Langevin discretisation
method for the last three decades and is the default
Langevin integrator in the popular MD suite, NAMD
[31]. Similar to BAOAB, BBK is also a splitting method.
It is weakly first-order accurate [10] and in the free
particle case reproduces the Einstein relation. However,
exact statistics are not recovered in the case of the har-
monic oscillator, in sharp contrast to G-JF and BAOAB.
Equation (1) is often re-formulated in terms of position
and velocity, instead of momentum:

dQ =vds,
dv=-M"'VUQ)dt —yVdi + oM 2dW. (2)

This form will serve as the governing equation for
our forthcoming analysis and discussion. Set a:=
(1 —yh/2)(1 4+ yh/2)"land b := (1 4+ yh/2)~ 1, with h
being the time step used for discretisation. Note that, for
v h sufficiently small, one has

a= % = e L O((y ),
which leads to a” = 7" + O((yh)?) when nh=t. The
quantities a and a” appear several times in the subsequent
paragraphs and sections.

We start by displaying the recursion formulas for
the considered numerical schemes discretising (2).
For a fixed time step h>0 and initial configuration

of (Qo, Vo), the position and velocity at time t=nh
for each scheme are displayed below. Define & =

VkyT(1 — e=2rh), Then, the G-JF update rule is:
b2
Qu=Qu-1 +bhV,_; — TM VU(Qun-1)

bo h3/?
2

Mil/zsn—l’

Vi=aVy1— gM_l(aVU(anl) +VUQw)
+ bO\/ﬁMil/zgn_l, (3)

the BAOAB method is:

Qn=Qu-1+ 5(1 +e "V, — Z(1 +e v

_ och_ _
x M™'VU(Qu-1) + M YV, L,

h
V,=e "V, , — EM—l(e—y”VU(Qn_l)
+VUQn) +6M Y2, |, (4)

and finally the BBK method is:

h2
Qu=Qu_1 +h(l —yh/2)V,_y — 7M*1VU(QH)

O_h3/2
2

M_l/zgnfl’

bh
V,=aV,_j — 7M‘1(VU(Qn_1> +VU(Qn)

+ %EM—W(&H +£,). (5)

+

In its original formulation [11], the BBK numeri-
cal scheme is given for only the position, leaving
some ambiguity as to how the velocities are defined.
Using the second-order approximation V, ~ (Qu4+1 —
Qu—1)/2h, the splitting formulation of BBK for both
position and velocity is obtained (e.g. as seen in [33]).
This is the same substitution one employs in trans-
forming the position-only Verlet integrator to velocity
Verlet:

h
Vii2 = Voot + 5M7 (= VUQu1) = Y MV,
+ %Ml/zgn—l) ’
Q: = Qu-1 +hVy_1)2,
hy -1
V.= Vn71/2 + EM

x (-VU@n) - yMV, + 2Mg, ). (6)



It is then a simple exercise to derive (5) from (6). In
particular, this method requires two independent ran-
dom variables &,_; and &, where &, is then re-used in
the next step. However, [12] suggests the use of several
variations of BBK which vary in how these random vari-
ables are selected. One such variation, which we denote
by BBK*, is obtained by taking &, _; = &,, in (6), and not
conducting any re-use in the next step. This BBK* vari-
ant is not equivalent to the original version of BBK; and
in fact, numerical tests indicated better all-around per-
formance with our particular CG molecular system of
interest in the commonly used regime of yh < .01 (see
Figure 7).

2.2. Analytical properties of the methods in one
dimension

Before moving to the computational results, we first sum-
marise the key statistical properties for each of the three
schemes in one dimension. This section attempts to high-
light some key structural differences (and similarities) of
the three schemes. Some schemes reproduce certain sta-
tistical quantities exactly whereas others reproduce such
quantities only approximately.

We consider the standard examples of a single particle
diffusing in a heat bath, and a standard harmonic oscilla-
tor, modelling for instance a covalent bond between two
particles. In these cases, we can directly compare statisti-
cal quantities generated by the numerical schemes with
those generated by the true analytical solution of (2).
Though simplistic, these examples illustrate some impor-
tant properties. Most of the calculations for these exam-
ples have, in parts, been previously exposited [6, 7, 9, 10,
32, 34].

2.2.1. Harmonic potential

We consider a potential function of the form U(Q) =
wQ?/2, with w > 0, so that H(Q, P) = P?/2m + wQ?/2,
and (2) becomes

dQ = Vdt,
dV = —wQdt — yV dt
+om V2dw. (7)

The following calculations show that the variance
of position for the BAOAB and G-JF integrators
is independent of y and h. This is not true for
BBK*. For the linear system (7), stationary distribu-
tions can be analytically derived for the three meth-
ods, denoted by upsoas, UBBk*> and UG.jr, respec-
tively. We re-write (3) applied to (7) into matrix
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form:
2
L bwh b
Qn+1 _ 2m Qn
Vag1| | —hob L hz_a) . Wob | |V,
m 4m 2m
bo h3/2
2/m £ ®)

e

This is a two-dimensional ergodic Markov chain with
a unique stationary measure, pg.jr. We can then cal-
culate a corresponding matrix equation for Q2 ;, V2,
and Qu1Vy41. Taking expectations on both sides of
this equation, and taking n — oo, yields a subse-
quent 3 x 3 linear system for E(ng), E(Vgo) and
E((QV)x), the vector of steady-state averages. Solving
the resultant linear system yields the G-JF stationary

distribution:

nGr(dgdv)
2 2
xexp|—8 Lhzw_‘_% dgdv.
2(1-57)

Using (4) and (5) one can derive analogous linear
equations and expressions for BBK* and BAOAB, as
follows.

¢ BBK*:
o yh
1—— hl{l—-—
Qu _ 2m 2)
Vol —hbw( h2w> < h2w>
—(1-22) af1-==2
m m 2m
_anl
x _an]
B oh3/?
2ym"!
Ll . o . )
L /m am )"
and
upBK* (dg dv)
mv? (1- TT? g
xep <_5 (z Tk oY) 2
dgdv.
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e BAOAB:
2
L= (4L et
12 4m 2
[%ﬂ} = - (1 - —w> Ko
n+1 4m e—yh (1 _ _>
w 4m
(I+e") —
2m
Qn
X |:Vn:| (10)
T
g kb_(l — e—th)
m
+ o\ [T 5m
1—— ),/ — (1 —e2rh
4m m
(11)
and
uBaoaB(dgdv)

mv? g
& exp <—,3 (m + T)) dgdv.

The variances and co-variances for position and veloc-
ity are listed in Table 1. These expressions show the
dependence on the dimensionless quantity yh and the
time step h. In particular, both BAOAB and G-JF pro-
duce the exactly correct configurational variance and
co-variance.

Table 1 also shows that neither G-JF or BAOAB pro-
duce the correct velocity statistics for the harmonic
potential. Two very recent papers [35, 36] extend the G-
JF method (the resulting variants are called GJF-2GJ and
GJE-E respectively) by updating velocities on the half-
step instead of at integral increments of the time step h.
The authors show that this slight modification allows for
both correct position and velocity statistics in the case
of a one-dimensional harmonic oscillator. Moreover, the
trajectories in both methods are the same as in G-JF
and in fact for GJF-2G]J, no modification to an already

Table 1. Numerical stationary averages, as functions of h and y,
for the three numerical methods applied to the one-dimensional
harmonic oscillator.

Method (Qny (V3 (QnVn)n,y
kT kT
Exact ke i 0
kT T
G-JF =2 2 (1—hw/am) 0
m
kT [ 1—yh/2 h/2)? kyT
BBK* i }//—+2(J//) ol 0
1 h*w m
kT am kT
BAOAB i 20— Raw/am) 0
w m

Note: Both G-JF and BAOAB are exact for position variance, while BBK* is not.

implemented G-JF algorithm is necessary. This is due to
the velocity update, V,41, being constructed from the
same Q1 and Qy, as the original G-JF, so one can com-
pute half-step velocities either during the simulation or
in post-processing.

The GJF-2GJ and GJF-F corrections alleviate a
known issue: because temperature statistics are calcu-
lated in most MD software packages by using averaged
kinetic energies from the variance of atomic veloci-
ties, numerical schemes with inaccurate velocity statistics
yield a biased estimate of the resulting temperature at
finite 4. In these cases, adherence to equipartition should
not be used as the main criterion to whether the system
has correct temperature. Instead, the practitioner should
estimate the system’s temperature by less direct routes,
such as computing diffusion profiles (the approach taken
here) or steady-state positional distributions. Although
the latter is typically a difficult task for realistic systems,
methods such as the one in [37] can be used with any inte-
grator to implement temperature calculation using only
positional degrees of freedom.

2.2.2. Thermal diffusion

The simplest possible case for (2) is when F = 0, i.e. free
diffusion. Albeit simple, it is insightful to understand
the behaviour of the integrators in this case. In thermal
diffusion, (2) reduces to

dQ = v dt,
dV = —yVdt+om= Y2 dw,

which can be solved analytically. The velocity V; is an
Ornstein-Uhlenbeck process and has solution:

t
(o2
Vi=e "'V + ﬁ/ e 79 dw,. (12)
0

The particle position, Qy, is then

1 t
Qt=QO+_/ Vudu=Q0+%(1—€_yt)V0
m Jo

o t u
- —y (u—s)
+ ﬂ/o (/0 eV dWS) du. (13)

Equation (13) is used to find the mean position and
mean squared position. Assuming E(Q;) = 0,

=0

et t
E(Q?) = E(Q) +2E(Qy) E ( /0 Vudu>

—HE(/OtVudu)

2



=EQ) + %(1 — e VHIE(VD)

2 1
+ 2D (t ——(1—-e"H+—01- e_zyt)> ,
Y 2y

where D := k,T/my is the diffusion coefficient. The
large time asymptotic behaviour of the mean squared
position for mean zero initial position is then

E(Q?) ~ 2Dt. (14)

The velocity autocorrelation function and the covari-
ance can also be computed from (12) and (13). These
quantities are displayed in Table 2.

2.2.3. Diffusive behaviour of the numerical schemes
We set w = 0 in (8)-(11) to obtain the update rules for
each numerical scheme in the zero potential case. A key
quantity of interest is the mean square displacement for
the particle position. For BBK*,

Qn=Qu-1+h(1—yh/2)Vy_1+

bax/_
\/E nfl-

fén 1>

Vi=aVy_1 + —— (15)

Given a fixed time step size h > 0, iterate the above recur-
sive formula backwards to write the position as a finite
sum of independent Gaussians and the initial conditions:

(1-%)ha —ah

Qn=Q+ Vo
1—a
—1 k+1
1 —
Z <a( am) n _) .
2
k:
Therefore,

1— a(ﬂ+1)
V(Qu) = V(Q+( = yh/2)’h* | ———— ] V(Vo)
2 n 2
+2D (t — ;(1 —a"(1 — yh/2)
o —a - yh/2>4) .
2y

where t=nh. Sending n — oo shows that the scheme
preserves the Einstein diffusion relation in the limit. As
with BBK*, G-JF preserves the Einstein diffusion rela-
tion in the long time limit as well. The position and its
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variance at time t = nh are:

bk —atthy  obh S
Qu=Q+ = — VNt I;sk
1—dthy 1
% ( l1—a + 5) ’
b2h2(1 — g tDy2
VQn = V(Qo) + L= oy )

(1—a)?
2 n 1 2ny 2

+2D|{t——10—-a"Ya+—AQ—-a"a" ],
Y 2y

which has the same limiting behaviour as in [7]. Addi-
tionally, both BBK* and G-JF generate the correct steady-
state behaviour for velocity. For a fixed time step h, the
BAOAB scheme approximates thermal diffusion via:

_ _,—2yh
Qi=Qu + i1+ ey, ) 4 by RI0e e
_ _e2vh
V,=e "'V, | + V —ka(lme Ve, 1.

An important distinction here is that V,; is given by
the exact Ornstein-Uhlenbeck flow (in law), whereas
the velocity updates are only approximate for BBK* and
G-JE. As is done with BBK* and G-JF, by iterating back-
wards, we can write the position as a finite sum of i.i.d
random variables:

h vh
Q=Q+; (H—e) (1—e"HVy

1—erh
hkpT e~ 2vh
007 1 2y
+ 3 ( )
_ ) h
x ZEk( T (1= vk 1). (16)
Then V(Q,,) is

yh
V(Qo)+yh (f—i) (1 — e 7H*V (Vo)

1
yh(l1+e vhy2
+2D<21_——2yht

B yh (1 —e M1 + et
2 (1—e7h)3

—}—i(l _ e—Zyt)e—th )
2y

(1—e VhHevh

This appears to be vastly different than the other schemes,
but one can check that (14) is recovered when send-
ing yh — 0. So whenever y and h are fixed such that
yh is sufficiently small, lim,_,  V(Q,)/nh ~ 2D, and
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Table 2. The analytic and numerical schemes’ averages in the case of Brownian motion
(Einstein diffusion) with §g—distributed Qy and Maxwell-Boltzmann-distributed V;.

Method (@)hy (V3 (QnVin)ny Ch,y (nh)
kT
Exact ~ 2Dnh kyT/m (1—evmp emvhnol
m
kT
GJF ~ 2Dnh koT/m (1—a"D a”%
h keT
BBK* ~ 2Dnh keT/m (1 —a"DA + ”7) a”%
1+e7h yh1+4e?h ke T
~ _ p—vhn 7 —yhn 20"
BAOAB (vh) (1 B el’h) Dnh kT/m  (1—e ™D ( " evin

Notes: The averages for the numerical schemes are given as functions of h and . Both G-JF and BBK* are
exact for position variance, while BAOAB is not. Cy,,, (nh) is the velocity autocorrelation function of the
numerical scheme with time step h and friction parameter y at time nh.

BAOAB produces an acceptable approximation to the
correct diffusive behaviour. More particularly, the time
evolution of the variance for BAOAB at large times
evolves according to 2Dt where

—yhy2

1~)=D<V_h(1+e v ),
2 1—e2rh
is the effective BAOAB diffusion coefficient, showing how
the calculated diffusion for BAOAB deviates from the-
ory when yh is sufficiently large. The quantity inside
the parentheses tends to 1 as yh — 0 but exhibits linear
behaviour as y h is increased. Key statistical quantities for
each numerical scheme are tabulated in Table 2 for sim-
ple initial conditions. In fact, among all methods within
the aforementioned A,B,O family of splitting schemes,
when a single random sample per time step is desired,
the incorrect diffusive behaviour elucidated above is uni-
versal. In the free particle case, B induces the identity
operator, so that the number of possible lettered combi-
nations reduce to AO, OA, and AOA. A quick calcula-
tion reveals that none of these methods reproduces the
Einstein relation.

3. Computational methodology

In our computational study we considered a collection
of 128 polyethylene chains (CygHog), simulated at a
fixed temperature of 450 K (i.e. well above the melt-
ing point) in a box with side lengths of 58.065 A and
periodic boundary conditions. This resulted in a den-
sity of 0.4415 amu/A® = 0.7331 g/ml. We used a coarse-
grained model for the polymer melt obtained directly
from liquid-phase physical properties [21]. The hydro-
carbon chains are modelled in coarse-grained resolution,
where the —CH,CH;CH;—and CH3CH,;CH,— groups
are mapped to spherical ‘beads’, called CM and CT,
respectively [21]. Compared to atomistic resolution, this
reduces the system from a total of 18,432 atoms to 2048
CG beads. Initial positions of the CM and CT particles

are taken from their respective centres-of-mass, and are
evolved according to the following interaction energy:

U@= Y ka0 —6)"+ Y ko(r—rp)?

acangles bebonds

+ U ),

where (a, ) € {(CT, CT), (CT,CM), (CM,CM)} and
Uf}l’ﬂ ) is the 9-6 Lennard-Jones potential [21]

N 9 6
(@B) 27 Ou,f Oa,p

;}. 4 lqi — qjl 19 — qjl

X 1{1qi—qjl<5)>

with ect,cT = 0.42 kcal/mol and ocr,cr = 4.506 A for
the CT—CT interaction, ect,cm = 0.444 kcal/mol and
ocr,cMm = 4.5455 A for the CT—CM interaction, and
ecm,cMm = 0.469 kcal/mol and ocm,cm = 4.585 A for the
CM—CM interaction. Here § represents the Lennard-
Jones cut-off distance of 15 A. The function 1{qi—qjl<8}
is defined to be 1 for all pairs i,j satisfying |q; — q;| < 8
and 0 otherwise. The CM—CM bonds have force field
constant kj, = 6.16 kcal/mol and equilibrium length ry =
3.64 A, and the CM—CT bonds have force field con-
stant k; = 6.16 kcal/mol and equilibrium length ry =
3.65 A. The force field parameters for the CM—CM—CM
and CM—CM—CT angles were the same value: k, =
1.19 kcal/mol-rad?, equilibrium angles were 6y = 173°
and 6y = 175°, respectively.

To construct a reference ensemble, we first identified
a value for the integration time step that was guaranteed
not to introduce artefacts. The fastest CG bond oscilla-
tion is of the type CM—CM. The mass of a CM particle
is 42.7097 amu, giving a frequency of oscillation between
two CM particles of

1 /0.03175286 _ _
Vhond = =,/ ——— {8
2 n

1 —0.00613710132 fs !



with reduced mass pu = 21.35485 amu and a numeri-
cal units conversion factor of 0.002577344. So, the CG
bond oscillation period is 1/vpong = 162.94 fs. Thus a
time step of 5 fs resolves well the time evolution of the
CG bond vibration forces, more than 30 time steps per
oscillation. Meanwhile, the Lennard-Jones forces have a
characteristic frequency of about

1 € 1 -1
=1 = |—~— fs°,
1 V mo2 2205

showing that the L] forces are extremely well-resolved for
all choices of time step. Both vpong and vry suggest that
our choice of h =5 fs is sufficiently small.

We used the molecular dynamics engine
LAMMPS [17], and implemented the integrators con-
sidered here using its Python interface (£Eix python/
move) to the underlying data structures. The BAOAB,
BBK and BBK* integrators are not available as pack-
ages in LAMMPS and were instead implemented using
this Python interface. Although a G-JF option is avail-
able with the fix langevin command, the version of
LAMMPS at the time of writing does not implement G-JF
in same way as given in [7]. Instead, it uses uniform ran-
dom variables to approximate the Gaussian noise, in an
effort to increase computational speed. However, such an
approximation is only valid for small enough time steps
[38]. As we are interested in the large time step regime,
we implemented the original version of G-JF with Gaus-
sian noise using the Python wrapper based on equations
(20) and (21) in [7].

For each choice of y and h, 100 independent simula-
tions were conducted to reduce the error associated to
finite length simulations in approximating phase space
averages. Each simulation was performed from an iden-
tical spatial configuration for approximately 250 ns. This
starting configuration was obtained by an initialisation
run using LAMMPS’ £ix npt command, which imple-
ments an MTK thermostat/barostat [39], for 100 ns with
a temperature of 450 K and pressure set to 1 bar. All simu-
lations used to benchmark the Langevin integrators were
run in the NVT ensemble.

4, Simulation results

The goal of our study is to understand how faith-
fully the different integrators reproduce relevant sta-
tistical averages of the coarse-grained model, particu-
larly in the regime of large time steps and y values.
To that end, numerical experiments were performed
using a range of friction parameters and time steps. We
examined the cases of y € {0.1,0.01,0.001, 0.0001} and
h € {5,10, 15,20, 25,30, 35} with units of fs~! and fs,
respectively.
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In the simple case of a Brownian particle in a fluid,
y represents the rate of collision of the Brownian par-
ticle with bath particles. So the dimensionless quantity
v h gives a measure as to how many collisions occur over
the length of the time step k. Similarly here, the number
y h determines the strength of the interaction between the
system and the heat bath and is a fundamental quantity
of the dynamics.

In applications of Langevin dynamics with atomistic
models, friction rate parameters of the order of .01 fs~Lor
less are typically used, as they give a reasonable approxi-
mation of the experimental diffusion coefficients of small
molecules. Indeed in [11], the authors used BBK in an
atomistic water simulation as their benchmark test, and
y was chosen quite small, 0.0000196 fs7!. In [6], the
BAOAB method was tested and compared to other inte-
grators based on its performance on an atomistic alanine
dipeptide molecule in water with y = 0.001 fs!.

However, in CG simulation models, much of the mag-
nitude of the inter-atomic forces shifts from the conser-
vative to the stochastic terms, and a higher friction rate
y may be needed to retain the same diffusivity. Alterna-
tively, high-friction rates are also used simply to improve
numerical stability of MD simulations near particular
conditions (for example, near phase transitions). There-
fore, we consider here a relatively broad range of y values,
0.0001 fs~! to 0.1 fs~!: given the choice of integration
time step h used in the following, the upper end of this
interval may result in values of y h larger than 1.

For smaller y values, i.e. y < 0.001 fs—!, the three
integrators become numerically unstable around / = 38
fs. Hence, 35 fs was chosen as the upper bound for our
range of time step values. This stability limit for G-JF
and BAOAB increases significantly for the largest choice
of y = 0.1 fs™! to slightly more than 50 fs. In contrast,
this larger value for y seemed to not have as much of
an effect on BBK* - simulations still exhibited instability
at 40 fs.

4.1. Diffusive behaviour

To characterise diffusion, the mean squared displace-
ment (MSD) of individual molecules was computed as
a function of the simulation time. After each time step
in the simulation, we computed the MSD of the centre-
of-mass for each polymer chain over that time step, using
the LAMMPS command compute msd, and then aver-
aged this result over all chains and added this to the same
calculation from the previous step, i.e. we computed:

N
1
Di(t) = ) 1Q7 () = Q7 ) + Dalti),

i=1
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where ty =kh, 1 <k <N, and QiCM represents the
centre-of-mass position for the i-th polymer chain
(i=1,..,128). The centre-of-mass drift of the entire sys-
tem was subtracted from the MSD data at each time step
before computing the MSD. The resulting MSD data was
then block-averaged [40] over the 100 independent runs
for each choice of y and h, yielding 5000 independent
samples (each block was taken long enough to allow for
correlations to die off). This was done for each of the

Figure 1. Graphical representation of the polymer meltinside the
unit cell (blue): 128 CG C4g polymer chains. This rendering was
made using VMD after an initial thermalisation run.

three integrators. The MSD was observed to be linear
with respect to time within statistical error. These plots
were fitted with regression lines and the means of the
slopes of these lines are plotted as a function of the time
step h in Figure 2.

As discussed earlier, the diffusion coefficient for
BAOAB in the case of the one-dimensional single par-
ticle with zero net external potential does not adhere to
the Einstein diffusion relation (see Table 2). In that same
spirit, the diffusion coefficient increases linearly in the
upper left plot of Figure 2 as h (and thus yh) increases.
The computed diffusion coefficients for the G-JF and
BBK* integrators are relatively unchanged as a function

Figure 3. Foreach y value and each integrator, the CM—-CM radial
distribution function for h =5 fs was calculated. These radial dis-
tribution functions were then used as a proxy for the true CG radial
distribution function. For a given y value, we denote these refer-
ence RDF's as g (1), 9 a0 (1) and g« (r). These were visually
indistinguishable and so we only show g291.(r) here.

5 =1 25 v =01
-%- G-JF -%- G-JF
— 41 - BAOAB o T2 - BAOAB
= | - BBK* & | = | & BBK*
= 3 - = 21
[0} _,-/“‘ (5]
o o
(o] o
- 2 »
15 e : e : 17 =
5 100 15 20 25 30 35 5 10 15 20 25 30 35
time step [fs] time step [fs]
50 ~ = .001 - ~ = .0001
-%- G-JF -%- G-JF
— 1351 - BAOAB — 225\ 4@~ BAOAB
= -® BBK* = -®- BBK*
<L, 1201 =
(] (]
o o
o 2 175
90 150

5 10 15 20 25 30 35
time step [fs]

5 10 15 20 25
time step [fs]

Figure 2. Diffusion coefficients (with units of A2/ns) were calculated from numerical simulation for different y values as a function of the
time step h. The plotin the upper left displays the same kind of linear behaviour for BAOAB as the method exhibits in the one-dimensional
free particle. In the remaining cases, all three methods produce the same calculated slopes within statistical error as a function of h.



of the time step, again, in line with the behaviour in the
simple one-dimensional case. This is a desirable property,
as it provides evidence that using larger time steps with
G-JF and BBK* does not corrupt the system’s diffusive
behaviour for any choice of . For y < 0.01 fs~!, all inte-
grators exhibit statistically similar diffusive behaviour,
giving confidence that the choice of integrator should not
influence diffusion in this regime.

We would like to stress the fact that in this study,
we observe only classical diffusion, unlike some previous
studies. In [41] and [19], polymer melts with CG particles
composed of three CH, monomers, as considered here,
were studied. Sub-diffusion was observed for the quantity
Dy, for simulation times up to and exceeding our simula-
tion time of 250 ns (although the polymer lengths were at
least double ours). Therefore we initially considered the
possibility of anomalous diffusion during our simulation,
however no such power law was observed. Further exam-
ination of error residuals with MSD data and regression
lines did not provide evidence of non-linear relationships
between MSD and simulation time.

4.2. Configurational averages

An important quantity typically used in statistical ther-
modynamics is the radial distribution function (RDF).
To discriminate the distributions of intermolecular
contacts from intra-molecular ones, we restricted the

0025 r=1

s opl ¥ GF

o .

£ - BAOAB
2, 0015

(5]
2 001
o
&2 .0005

0 . _
10 15 20 25 30 35
time step [fs]

0025 v =001

s opl ¥ GF

£ - BAOAB
2, .0015 @ BBK*

(5]
2 001
)
o2 .0005

100 15 20 25 30 35
time step [fs]
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computation of the RDF to pairs of particles from distinct
chains. The CM-CM distributions are here examined:
because the system is mainly made up of CM particles,
this RDF is the most fully sampled.

For each friction parameter y and time step h, the
RDF for the intermolecular CM—CM particle pairing
was calculated every 1000 time steps, and these calcu-
lated distributions were then averaged over time. This
was done for each of the 100 independent simulations,
followed by a final averaging over these 100 simulations
in order to reduce sampling error.

Lacking analytical expressions for the true RDF, com-
putations conducted with time step h=>5 fs are used as
a reference solution. Given how small h =5 fs is relativel
to the time scale of the overall processes, it is reasonable
to assume that the true intermolecular CM—CM RDF for
the CG system will be well-approximated by the one cal-
culated for h=5 fs. For each y value, we calculate the
reference RDF’s: gé_]F (), g]); Asoap(r) and ggBK* (r). Then
the L? relative differences between the reference RDFs
and the RDFs obtained for the other choices of /1, denoted
here as géi?F(r), ggj’fo Ap(7) and ggé};(* (r), are computed
and plotted as functions of h. These results are displayed
in Figure 4. Given both y and h, this relative error for a
given method is defined to be:

Y y,h
| |gmeth0d (r) — 8method (n] |L2

rel.error = 7
| |gmeth0d (MIlz2
0025 =01
S oo -%- G-JF
o .
£ - BAOAB
2, 0015 @~ BBK*
(5]
2 001
o
o2 0005
0l
10 15 20 25 30 35
time step [fs]
0025 7 =.0001
5 o0 -%- G-JF
£ - BAOAB
21,0015 @ BBK*
(5]
2 001
o
o2 .0005
0

100 15 20 25 30 35
time step [fs]

Figure 4. Relative error of radial distribution functions for the three numerical schemes for four different values of y . For the largest ¢
value, we notice minimal change in error as the time step is increased for G-JF and BAOAB; but a more significant error for BBK*. Although
outside the range of the panel (a), for the largest integration step, we recorded an error of approximately 0.75% in the RDF, which can
make an impact on the quality of results. For smaller choices of y, we observe behaviour consistent with Hamiltonian dynamics: an

increasing time step leads to increased error.
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In the large y regime, BBK* exhibits more and more
deviation from its baseline RDF as h is increased, while
the other two methods remain unchanged. In fact,
although not displayed in the plot, for h=35 fs, the
BBK* error is larger than that of BAOAB and G-JF
by an order of magnitude. If one considered here the
original BBK formulation, the resulting error would be
slightly lower than BBK* (Figure 7), but still much higher
than BAOAB and G-JE When y < 0.01 fs—1, all three
integrators (BAOAB, BBK* and G-JF) perform almost
identically. This fact should be useful to the practitioner

Radial distribution function

working in the small y regime when trying to strike a bal-
ance between diffusivity and adherence to the canonical
distribution. Note also that for BBK*, this is a distin-
guishing property of the formulation used in this paper:
the original BBK formulation has a larger error in this
regime (Figure 7). Some intuition is available. If we con-
sider the harmonic potential, the mean square position
for BBK is given by k, T~ (1 — ’Z—VZ")_I; therefore in the
simple linear case, the configurational statistics depend
only on the size of the time step, much like what is seen in
Figure 7.

Bond angle distribution

0.01
-8- y=.01f""! -8- y=.01fs""?
- = .01778fs! - 7 =.01778 s !
—&— = 03162 fs! —— = .03162fs"!
-@- 7 =.05623 fs! —-@- y=.05623 fs!
00054 A& v=1 fs~t | == y=1f""

Relative L2 error

10 15 20 25 30
time step [fs]

3% 10 15 20 25 30 35
time step [fs]

Figure 5. Relative L2 error for radial and bond angle distribution functions for the BBK* method as y varies between 10~2fs~" and 10"
fs~1,taking on the values 1072, 107175,10~1%,10712>, 10" fs—!. We see a smooth transition as y becomes smaller, not an abrupt phase
transition, further suggesting dependence of the steady-state distribution on the dimensionless quantity y h.
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Figure 6. Relative error of the bond distribution for the three numerical schemes when y = 0.1 fs”, 0.01 fs’1,0.001 fs’1,0.0001 fs 1.
The reference is taken to be h = 5 fs. As with the RDF, minimal change in error occurs when the time step is increased for G-JF and BAOAB,
but for BBK* it is much larger. At 35 fs, BBK* experiences an almost 1% error in its bond angle distribution. Convergence to Hamiltonian

dynamics is seen in the bottom row.



The divergence of the BBK* RDF from the other
RDFs when y is largest, led us to question what hap-
pens when an intermediate y value is used. Figure 5
displays these results. A smooth transition of error
occurs between y = .01 fs~! and y = .1 fs~1. This sug-
gests that the BBK* RDF exhibits a yh dependence
that is not present in the other RDFs — which is not
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surprising, given that a similar behaviour occurs in the
simple 1-d harmonic oscillator case. Again, we stress
that in most atomistic applications, y is simply not
large enough for the yh dependence to be notice-
able. However, this may no longer be the case for CG
dynamics where the larger y regime becomes more
relevant.

Intermolecular RDF
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Figure 7. A comparison of radial and angle distribution errors for BBK and BBK*.
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Another configurational quantity of interest for poly-
mer chains is the bond angle distribution. Many proper-
ties of polymer melts, as well as their transition between
liquid and solid phases, are determined by the propensity
of the polymer chains to align. Failing to accurately repro-
duce the angle distribution can dramatically influence the
accuracy of the simulation’s thermodynamic properties.

Of the two possible triplets CM-CM-CT and CM-CM
—-CM, the latter was the best sampled and so was more
amenable to statistical inference. For larger y, G-JF and
BAOAB produce minimal to no variation in error as h
is increased. Figure 6 displays the results. BBK* again
exhibits systematic errors for larger y values. The top
row in Figure 6 indicates a large relative distortion of
the bond angle distribution for BBK*. This evidence may
lead one to use caution in applying BBK* to liquid-phase
CG systems with larger y values, especially since this
behaviour for BBK* is also observed with the CM—-CM
intermolecular RDE For smaller y, that is as the system
gets closer to pure Hamiltonian dynamics, again all three
integrators perform similarly, indicating no significant
preference of integrator for this regime. Table 1 showed
that in a harmonic potential, the configurational statistics
were dependent on y & for BBK*. So it is not unreasonable
to expect that a similar yh dependence for other con-
figurational quantities may occur in more complicated
situations when using BBK*, as seen in our simulations.

We observe very good agreement of BBK* with G-JF
and BAOABfory < .01fs~lin Figures4 and 6. However,
for all choices of y, the original BBK exhibits a clear trend:
the relative error increases as the time step # is increased.

5. Conclusions

In this paper, we systematically studied three different
Langevin integrators on a CG polymer melt. For the
ideal cases of the Brownian motion and harmonic oscil-
lator, key statistical properties were calculated analyti-
cally for each integrator, which provided guiding insights
into diffusive and statistical behaviour of realistic molec-
ular systems. In particular, for pure Brownian motion,
both BBK* and G-JF capture the true diffusive behaviour
exactly for all choices of y and h; but BAOAB is only
approximate, with the diffusion coefficient depending on
the dimensionless parameter y h. This carried over to the
CG polymer simulation results. In Section 4.1, the calcu-
lated diffusion coefficient as a function of time step, Dy,
was found to be statistically independent of the time step
h for BBK* and G-JF for all y values, whereas BAOAB
displayed the same type of linear behaviour for y h values
of O(1) as in the free particle case.

The computational results indicate that G-JF is
the only integrator among those considered here that

describes equally well configurational distributions and
diffusive behaviour over all y choices. As expected, BBK*
and BBK perform poorly for the largest choice of y.
BAOAB samples equally well the configurational dis-
tributions, but exhibits a spurious dependence of the
diffusivity on the integration time step near the high-
friction regime. These conclusions have implications for
CG MD simulations, where large ratios between friction
and Hamiltonian forces are more frequently encountered
than in atomistic ones. The evidence presented in this
paper should be useful to the practitioner in supporting
the use of the G-JF thermostat for CG simulations.
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