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Amonolithic coupling between the material point method (MPM) and the finite element method (FEM) is
presented. The MPM formulation described is implicit, and the exchange of information between parti-
cles and background grid is minimized. The reduced information transfer from the particles to the grid
improves the stability of the method. Once the residual is assembled, the system matrix is obtained by
means of automatic differentiation. In such a way, no explicit computation is required and the implemen-
tation is considerably simplified. When MPM is coupled with FEM, the MPM background grid is attached
to the FEM body and the coupling is monolithic. With this strategy, no MPM particle can penetrate a FEM
element, and the need for computationally expensive contact search algorithms used by existing coupling
procedures is eliminated. The coupled system can be assembled with a single assembly procedure carried
out element by element in a FEM fashion. Numerical results are reported to display the performances and
advantages of the methods here discussed.
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1. Introduction

The material point method (MPM) is a numerical method for
problems that involve large deformations and/or history depen-
dent materials. It has been originally introduced in [1–3] by Sulsky
et al. as an extension to solid mechanics of the hydrodynamics FLIP
method [4]. The MPM has been applied to simulate numerous
problems involving, for instance: membranes [5,6], granular mate-
rials [7,8], sea ice modeling [9], explosions [10], free surface flows
[11], snow modeling [12], viscoelastic fluids [13], phase-change
[14], fluid-structure interaction [15–17], and dynamic crack prop-
agation [18]. The MPM exploits the advantages of both the Eulerian
and the Lagrangian approaches. The body is discretized with a set
of particles (or material points) and is positioned on a background
grid, where the momentum equation is solved. The background
grid may be chosen to be a finite element grid, because interpolat-
ing functions are used to transfer information from the particles to
the grid and back. In the classical MPM, particles information is
transferred to the background grid, where the momentum equa-
tion is solved. The new information obtained from the solution of
the momentum equation at the grid nodes is used to update the
values of displacement, velocity and acceleration at the particles.
Then, the background grid is reset to its initial position. With such
a method, the drawbacks of using a purely Lagrangian approach
are avoided, because entanglement of the background grid is pre-
vented by resetting it to its initial state after every time step. More-
over, the numerical dissipation associated with an Eulerian
approach is eliminated, due to the absence of the convection term.

Historically, the MPM has been conceived as an explicit method.
Compared to the extensive amount of explicit MPM formulations
available in the literature, only a few efforts have been made so
far to set the analysis in an implicit framework [14,19–26]. An
implicit approach is desirable because it guarantees much larger
time steps compared to what can be obtained with explicit meth-
ods, but more importantly the implicit formulation facilitates the
monolithic coupling of the MPM with the FEM, which is the ulti-
mate goal of the present work. As other existing implicit MPM for-
mulations, here the assembly procedure for the problem on the
background grid is carried out in a finite element fashion. The only
difference between a standard FEM assembly is that, for elements
of the background grid that enclose MPM particles, the quadrature
points used for numerical integration are not the Gauss points as in
standard FEM, but rather the particles themselves. The implicit
MPM formulated here differs from existing implicit approaches
[19,20,23,24], because the exchange of information between parti-
cles and grid is minimized by avoiding unnecessary projections
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from the particles to the background grid nodes. In turn, as it is
shown later, the inertial contribution is evaluated directly at the
particles rather than at the grid nodes. This approach is consistent
with an assembly procedure where the particles are used in place
of the Gauss points. A drawback of using particles as quadrature
points consists of instabilities that may arise due to inaccurate
numerical integration, which may occur when an element of the
background grid does not host enough particles. To overcome this
issue, a soft stiffness matrix is added to the MPM system matrix as
in [20]. In the present work, the magnitude of the soft stiffness con-
tribution on a given element depends on how many particles the
element itself and its neighbors are hosting. This is measured with
appropriate flags whose determination procedure is discussed in
Section 3.3. Once these flags are obtained, scaling factors associ-
ated with them are computed. The scaling factors are involved in
the assembly procedure of the soft stiffness matrix and determine
the weight of its contribution on a given element. Such a technique
to compute the soft stiffness contributions represents a novel con-
tribution of the present work and was not explored in [20]. Clearly,
it is necessary to strike a balance between the need for numerical
stability, given by larger soft stiffness contributions, and the desire
for accuracy, which improves as the soft contributions tend to zero.
To further improve numerical stability and simplify the implemen-
tation, the background grid is divided in active and inactive back-
ground grid. The former is composed of all the elements of the
background grid that host at least one particle, whereas elements
that do not host any particle are collected in the inactive back-
ground grid. The active background grid is what is actually used
at a given instant of time to interpolate the particle instances from
the grid. Contributions from nodes that belong exclusively to ele-
ments of the inactive background grid are assembled in a separate
way using a lumped mass matrix. Details on this procedure are
given in Section 3.3. Taking into account the inactive background
grid contributions, we can avoid resizing the global system of
equations every time a particle moves to a different element.
Moreover, the solution corresponding to the lumped mass matrix
block is inexpensive (one Jacobi iteration), because it corresponds
to the inverse of a diagonal matrix. The introduction of the inactive
background grid becomes especially useful for the monolithic
MPM-FEM coupling, which is the ultimate goal of this paper, and
its main novelty. Another feature of the proposed formulation
resides on the use of implicit differentiation for the computation
of the system matrix. After the residual is assembled, the system
matrix is obtained differentiating the residual vector with the
library Adept [27]. With such a tool, the system matrix does not
have to be computed explicitly as in existing implicit MPM strate-
gies, and the implementation is strongly simplified.

For the coupling of MPM and FEM, only very few studies are
available in the literature [28–31]. For simplicity, it is assumed that
the interaction to be simulated is that of two solid bodies: one
undergoing large deformations, modeled with MPM and one sub-
ject to small deformations, modeled with FEM. Such a choice is jus-
tified by the respective advantages of the two discretization
methods when applied to different deformation regimes. The
assembly procedure is carried out according to a finite element
strategy and automatic differentiation is used to obtain the cou-
pled system matrix. The proposed monolithic algorithm solves
simultaneously for the MPM and FEM unknowns in a unique sol-
ver, so that the two solid bodies are treated as a single continuum.
To the best of our knowledge, the present work is the first to
address a monolithic coupling between an MPM body and a FEM
body. The stress balance and the kinematic conditions across the
MPM-FEM interface are automatically satisfied, resulting in a cou-
pling that is accurate, robust, and stable. To allow a simultaneous
solution of MPM and FEM unknowns, a finite element grid attached
to the FEM body is used as background grid for the MPM. With
such a feature, the interface between the MPM body and the
FEM body is automatically tracked. No MPM particle can penetrate
a FEM element, and a great advantage in terms of computational
time is obtained, because time consuming contact search algo-
rithms are eliminated. All the algorithms proposed in this work
are implemented in the in-house finite element library FEMuS [32].

The paper is structured as follows: in Section 2, the domain con-
figurations later employed in the mathematical formulation are
introduced. In Section 3, a detailed description of the implicit
MPM formulation proposed is provided. The new features of our
formulation and the complete numerical algorithm are presented
and discussed. In Section 4, the monolithic coupling between
MPM and FEM is addressed, and the characteristics of the coupled
problem are laid out. In Section 5, an algorithm for the receding
phase of the contact interaction is described. This algorithm is nec-
essary in order to prevent sticky phenomena induced by our mono-
lithic formulation for large values of the Young’s modulus. The
paper is concluded with Section 6, where numerical results are
reported to illustrate the performances of the proposed algorithms.
2. Domain configurations

In this section, the domain configurations for the mathematical
formulation are discussed. After a general description, the MPM
domain and the FEM domain are identified. Then, the problem of
the reset of the MPM background at the beginning of every time
step is addressed, for both the uncoupled and the coupled case.

2.1. The three domain configurations

Three different domain configurations are used in the mathe-
matical formulation. Schematics can be found in Fig. 1. The unde-

formed configuration, bX � Rd, represents the position of the
domain in its original state (at time t ¼ 0). The deformed configura-
tion X tð Þ refers to the domain in its deformed state for all t 2 0; T½ �.
It is obtained from the undeformed configuration as follows: for allbx 2 bX,

x bx; t� � ¼ bx þ u bx; t� �
; for t P 0; ð1Þ

where u bx; t� �
is the displacement field. The third configuration is

the reference configuration, denoted by eX. The reference configura-
tion does not change in the time interval tn; tnþ1

� �
, and it is obtained

from the undeformed configuration: for all bx 2 bX,

ex bx� � ¼ bx þ ureset bx� �; for t 2 tn; tnþ1
� �

: ð2Þ

The field ureset is the reset displacement field associated with the
given time interval tn; tnþ1

� �
. Any point in the deformed configura-

tion can be obtained from the reference configuration: for all ex 2 eX,

x ex; t� � ¼ ex þ eu ex; t� �
; for t 2 tn; tnþ1� �

; ð3Þ

where eu is the displacement field with respect to the reference
configuration.

2.2. The MPM and the FEM domains

For all t 2 0; T½ �, let Xmpm tð Þ and Xb tð Þ be open and bounded sub-
sets of Rd. Assume that Xmpm tð Þ � Xb tð Þ for all t 2 0; T½ �. From now
on, Xmpm tð Þ represents the body discretized with the MPM parti-
cles. The set Xb tð Þ is discretized with a regular finite element grid
T b [33,34], used as a background grid for the MPM body. While
Xmpm tð Þ may be subject to roto-translation and large deformations
due to the movement of the MPM body, Xb tð Þ undergoes only lim-



Fig. 1. Schematics for the domain configurations.
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ited deformations, because it follows the MPM body motion only in
the time interval tn; tnþ1

� �
.

Denoting by Ep the element of the background grid that hosts a
given particle p, we introduce

Xab tð Þ :¼
[

E2T ab

E ¼
[Np

p¼1

Ep; ð4Þ

where t 2 tn; tnþ1
� �

, and T ab � T b is the active background grid,
composed of all elements E of T b that host at least one particle p.
Similarly, we define T ib :¼ T b n T ab to be the inactive background
grid, composed of all elements of T b that do not enclose any parti-
cle. Schematics of the grids here described are shown in Fig. 2,
where the grid T fem used to discretize the FEM body has the darkest
color, the inactive background grid T ib has the intermediate color
and the active background grid T ab has the lightest color.

By definition, Xmpm tð Þ#Xab tð Þ#Xb tð Þ. We call Xab tð Þ the MPM
domain, because the MPM momentum equation is solved only on
the active background grid T ab.

The open and bounded set Xfem tð Þ � Rd is used to characterize
both the body discretized with FEM and the FEM domain. The
interfaces between the FEM domain and the background grid
Xb tð Þ and between the FEM domain and the active background grid
Xab tð Þ that arise during the coupling procedure are indicated with
the letters C and Ca, respectively.

2.3. Definition of the reset displacement field

In the classical MPM method, where no coupling between MPM
and FEM occurs, at the beginning of each time step interval
tn; tnþ1
� �

, the set Xb tð Þ is reset to its undeformed configuration,bXb, to avoid mesh entanglement. Namely, for any t 2 tn; tnþ1
� �

, if I
refers to any node of the grid, the grid displacement uI associated
to the node I is such that

lim
t! tnð Þþ

uI tð Þ ¼ 0: ð5Þ

Moreover, in general

lim
t! tnð Þ�

uI tð Þ ¼ uI tnð Þ– 0; ð6Þ

and as a result uI tð Þ is discontinuous in time. On the other hand, in
the classical uncoupled FEMmethod, the grid follows the solid body
deformation and its displacement is continuous in time

lim
t! tnð Þ�

uI tð Þ ¼ uI tnð Þ ¼ lim
t! tnð Þþ

uI tð Þ: ð7Þ
With a monolithic coupling approach, there is a unique displace-
ment field defined on the MPM background grid and on the finite
element grid discretizing the FEM body. Hence, when the coupling
between MPM and FEM is considered, the displacement at the grid
points of T b that lie on the interface C between Xb tð Þ and the FEM
body cannot be reset to zero.

When MPM is coupled with FEM, the background grid has to
fulfill the following constraints: in the FEM domain and on the
interface C, it has to follow the solid deformation; in the MPM
domain, in order to enforce domain continuity, it has to follow
the deformation of C, coming from the FEM domain. Moreover,
to avoid mesh entanglement, it is desirable to reset the background
grid to a configuration similar to the undeformed configuration on
all MPM nodes that are sufficiently far from C.

The background grid constraints are satisfied with the following
definition of the reset displacement field ureset

I . Let I be the set of
grid points of T ¼ T b [ T fem, where T fem denotes the finite ele-
ment grid used to discretize the FEM body. For all t 2 tn; tnþ1

� �
,

the reset displacement field satisfies

ureset
I ¼ lim

t! tnð Þ�
uI tð Þ; if xI 2 Xfem tð Þ

r � rureset
I þ rureset

I

� �T� �
¼ 0; if xI 2 Xb tð Þ n C

8<: ð8Þ

where xI denotes the position of node I 2 I . When MPM is coupled
with FEM, Eq. (5) is replaced with

lim
t! tnð Þþ

uI tð Þ ¼ ureset
I : ð9Þ

In this way, the continuity of the domain is preserved across C, and
the grid T b follows the solid body deformation on Xfem tð Þ, resulting
in a continuous displacement field uI tð Þ. As a consequence of Eq. (9),
at the beginning of each time step, the deformed configuration of
the background grid coincides with its reference configuration,
although it is in general different from its undeformed configurationbXb. To fulfill the classical MPM requirement in Eq. (5), a new MPM
displacement field based on the reference background grid configu-
ration is defined as

euI tð Þ ¼ uI tð Þ � ureset
I : ð10Þ

By Eq. (9), this new field satisfies

lim
t! tnð Þþ

euI tð Þ ¼ 0;

as in the classical uncoupled MPM method.



Fig. 2. Schematics of triangulations and domains used in the MPM-FEM coupled problem. The nodes marked with a cross belong exclusively to the inactive background grid
T ib , whereas those marked with a box are the nodes at the interface between the MPM background grid T b and the FEM grid T fem .
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3. Implicit material point algorithm

The mathematical formulation of the proposed implicit material
point and the complete numerical algorithm are described in this
section.

3.1. Mathematical formulation

For ease of notation, during the rest of this paper, the time
dependence of Xmpm; Xab, and of the fields involved in the formu-
lation is not made explicit. The mass conservation is automatically
satisfied by the material point method [35], therefore the govern-
ing equations for the MPM body consist of momentum conserva-
tion with appropriate boundary and initial conditions. For
simplicity, we consider zero boundary conditions for displacement
and normal stress

q €u�r � r ¼ qb; in Xmpm � 0; T½ �;
r � n ¼ 0; on @Xmpm;trac � 0; T½ �;
u ¼ 0; on @Xmpm;disp � 0; T½ �;
u x;0ð Þ ¼ u0; _u x;0ð Þ ¼ _u0 in Xmpm:

ð11Þ

In Eq. (11), u represents the displacement, r is the Cauchy stress
tensor, q is the MPM body density, b is the body force per unit mass,
_u is the velocity, €u is the acceleration and n is the unit outward nor-
mal of the boundary @Xmpm;trac , that represents the traction bound-
ary. Similarly, @Xmpm;disp represents the portion of the boundary
where displacement boundary conditions are prescribed. Constitu-
tive equations for the Cauchy stress need to be added to complete
the above set of equations. We describe the MPM solid bodies as
Neo-Hookean materials, with the Cauchy stress tensor given by [36]

r ¼ k
log Jð Þ

J
I þ l

J
B� Ið Þ: ð12Þ

In Eq. (12), k is Lamé’s first parameter, I is the identity matrix, l is
the shear modulus, B ¼ F FT is the left Cauchy-Green strain tensor, F
is the deformation gradient and J ¼ det Fð Þ. Let

DU ¼ du 2 H1 Xmpm
� � j duj@Xmpm;disp

¼ 0
n o

. The virtual displacements

are chosen as test functions for the weak formulation, which readsZ
Xmpm

q €ui dui þ
Xd
j¼1

rs
ij
@dui

@xj
� bi dui

 !
dV ¼ 0; for i ¼ 1; . . . ;d:

ð13Þ
where rs

ij ¼ rij=q x; tð Þ is the specific Cauchy stress. The interested
reader can consult [35] for more details on how to derive the above
weak formulation. The integrals involved in Eq. (13) can be trans-
formed in sums if the MPM density q is approximated using the
Dirac delta function d as

q x; tð Þ �
XNp

p¼1

mpd x� xp tð Þ� �
; ð14Þ

where xp denotes the position of particle p, and Np represents the
total number of particles used to discretize Xmpm. Substituting Eq.
(14) in Eq. (13) we obtain

XNp

p¼1

mp €ui xp
� �

dui xp
� �þXd

j¼1

rs
ij xp
� � @dui

@xj
xp
� �� bi xp

� �
dui xp
� �" #

¼ 0:

ð15Þ
In the above equation, rs

ij xp
� � ¼ J xp

� �
rij xp
� �

=q0, where q0 is the
density of the MPM body in the initial, undeformed configuration.

Remark 1. Because the MPM body is discretized with particles, the
values of the fields at the particles can be identified with the
particle fields. For instance, €ui xp

� � ¼ €ui;p, where €ui;p represents the
i-th component of the acceleration of particle p.

Considering the above remark, Eq. (15) can be rewritten as

XNp

p¼1

mp €ui;pdui xp
� �þXd

j¼1

rs
ij;p

@dui

@xj
xp
� �� bi;pdui xp

� �" #
¼ 0: ð16Þ

The weak formulation for the MPM equations in Eq. (16) is solved
numerically employing the active background grid T ab. For any
given particle p, an interpolation from the nodes of the element
Ep 2 T ab that encloses p is performed. This step is part of the assem-
bly procedure of the background grid system and is discussed
within the complete numerical algorithm.

3.2. Implicit time integration

The Newmark-beta integrator is adopted for the numerical inte-
gration of €ui;p in Eq. (16). If unþ1

p denotes the particle displacement

at time tnþ1 and the same notation is also adopted for particle
velocity and acceleration, the method gives

_unþ1
p ¼ _un

p þ 1� cð Þ Dt €un
p þ c Dt €unþ1

p ; ð17Þ

unþ1
p ¼ un

p þ Dt _un
p þ

1
2
Dt2 1� 2bð Þ€un

p þ Dt2b€unþ1
p ; ð18Þ

for c 2 0;1½ �;b 2 0;0:5½ � and Dt ¼ tnþ1 � tn. It follows that,

€unþ1
p ¼ 1

bDt2
unþ1
p � un

p

� �
� 1
bDt

_un
p �

1� 2b
2b

€un
p: ð19Þ
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3.3. The numerical algorithm

The complete numerical algorithm for the implicit MPM
scheme presented in this paper is described next. The algorithm
is divided into a series of stages and it is set in a parallel framework
where different processes handle their own share of the back-
ground grid and particles. For ease of reading, a flow chart is shown
in Fig. 3.

� Initialization of the MPM particles.
The first step consists of particle initialization. We assume that
the total number of particles Np, the volume Vp associated with
each particle, and the initial density q0 of the undeformed MPM
body are given. With this information, the mass of each particle
is computed as mp ¼ q0Vp. The initial position xp of each parti-
cle p is also known. The values of displacement up and velocity
_up of the particles are initialized as in Eq. (11). The acceleration
€up is set to zero, whereas the deformation gradient Fp at the par-

ticle is initialized to a given initial value F0
p :¼ Fp 0ð Þ. Once a par-

ticle has been placed on the FEM background grid, the element
Ep on the background grid that hosts the particle is determined,
using the point locating method described in [37].

� Assembly and solution of the background grid system.
For this step, it is assumed that the particle instances at time tn

are known and that those at time tnþ1 have to be determined.
Let Ib ¼ 1; . . . ;Nbf g be the set of grid points of T b. Let Iab be
the set of grid points of T ab and I ib :¼ Ib n Iab. The assembly
procedure is carried out differently depending on whether a
node of the background grid belongs to the active or inactive
background grid. Both assembly procedures are described in
detail in the next steps.
1. Assembly of the active background grid contributions.

A loop on the particles is executed to assemble the MPM
contributions. Given a particle p from the loop, the element
Ep on the active background grid T ab that is currently host-
ing the particle is extracted. In a sense, this procedure is
similar to a standard FEM procedure because the assembly
is still performed in an element-by-element fashion. The
differences are that now particles are used as quadrature
points instead of Gauss points, and that the quadrature
contributions on a given element are not computed
sequentially, because particles that belong to the same
element may not be all grouped together in the particle
loop.

Remark 2. Unlike other existing implicit MPM formulations
[19,20,23,24], our assembly procedure does not start with a
mapping from the particles to the grid nodes. The Newmark
scheme in Eq. (19) is used directly on the particle instances
instead of the grid instances as existing strategies do. For this
reason, no mapping from the particles to the background grid is
necessary.

According to a FEM approach, the particle virtual displacement in
Eq. (16) can be obtained through interpolation from the nodes of
Ep. If NEp denotes the number of nodes of element Ep, we have

dui;p ¼
PNEp

IEp¼1dui;IEp/IEp
xp
� �

, where dui;IEp represents the nodal value

of the virtual displacement at node IEp and /IEp
is the finite element

test function associated with node IEp . Thanks to the arbitrariness of
dui;IEp and the fact that by definition dui;IEp ¼ 0 on Ep \ @Xmpm;disp, the

equation for the IEp -th entry of the local residual vector associated
with MPM contributions is obtained from Eq. (16)
rmpm;i;IEp :¼
XNp

p¼1

mp €ui;p/IEp
xp
� �þ Xd

j¼1

rs
ij;p

@/IEp

@xj
xp
� � !

�bi;p/IEp
xp
� �" #

¼0;

IEp ¼1;. . .NEp : ð20Þ

In general, it may not be necessary to interpolate from the grid
nodes to the particles to evaluate the body force at the particles.
For instance, if the body force is a gravitational force, then no
interpolation is necessary and its value at the particles can be
computed directly. Therefore, the values of the body force
remain evaluated at the particles, and interpolation may be per-
formed if needed. The term €ui;p in Eq. (16) is computed with the
Newmark scheme in Eq. (19). Specifically, €ui;p is given by

€ui;p ¼ 1
bDt2

eui;g xp
� �� 1

bDt
_un
i;p �

1� 2b
2b

€un
i;p; ð21Þ

where eui;g xp
� �

denotes the reference background grid displace-
ment value at xp, defined as

eui;g xp
� �

:¼
XNEp

IEp¼1

eui;IEp
e/IEp xp

� �
; ð22Þ

where eui;IEp is as in Eq. (10). The value of rs
ij;p in Eq. (20) refers to

the specific Cauchy stress obtained with a partial interpolation
from the grid nodes, as in [19]. Recalling the constitutive law
in Eq. (12), rs

ij;p is given by

rs
p ¼

k log Jp
� �

q Jp
I þ l

Jp
Bp � I
� �

; ð23Þ

where Jp ¼ det Fp
� �

;Bp ¼ Fp Fp
� �T and

Fp ¼ ereug xp
� �þ I

� �
Fn
p: ð24Þ

In Eq. (24), er represents the Del operator with respect to the ref-

erence configuration and ereug xp
� �

is the background grid dis-
placement gradient with respect to the reference configuration,
evaluated at xp, defined as

ereuij;g xp
� �

:¼
XNEp

IEp¼1

eui;IEp

@e/IEp

@exj
xp
� �

: ð25Þ

The next step consists of determining the scaling factors for the
assembly of the soft stiffnessmatrix. Such factors depend on flags
ME assigned to each element of the active background grid T ab.
The value of a flag depends on the element’s relative position
with respect to the MPM particles. Let NE be the total number
of degrees of freedom associated with an element E on the active
background grid. The value of ME is initialized to NE and is mod-
ified according to the following rule: for any node IE of E that
also belongs to an element of T ib, ME is decreased by one.
Next, a loop on all elements that are part of the active back-
ground grid is carried out in the standard finite element fashion,
to compute the soft stiffness contribution of the local residual

rsoft;i;IE :¼ lCE

Z
E

ereu þ ereu� �T� �
i

� ere/IEdV ; for IE ¼ 1; . . . ;NE :

ð26Þ
The value of CE is a measure of the magnitude of the soft stiff-
ness contribution and it depends on the flags ME previously
determined. As a general rule, CE is a non-increasing function
of ME , and it is zero for any element fully surrounded by ele-
ments containing particles. The soft stiffness improves stability
while decreasing accuracy, and it is recommended to keep CE

as small as possible.



Fig. 3. Flow chart of the numerical algorithm in Section 3.3. The shorthand bg stands for background.
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Examples of values for CE are given in Section 6.
For all nodes that belong to I ib (so exclusively to the inactive
background grid), a fictitious equation is assembled using a
lumped mass matrix, as it is shown next.
2. Assembly of the inactive background grid contributions.

Let E be any element in T ib. Then, for any node IE 2 I ib, the
local residual is computed as the product of a lumped
mass matrix with the nodal displacement vector, as
follows
rmass;i;IE :¼
Z
bE ui;IE

b/IEdV ; ð27Þ

for IE ¼ 1; . . . ;NE ; IE 2 T ib. Recall that I ib contains only the nodes
that belong exclusively to the inactive background grid, so nodes
that are shared with elements that include at least one particle
are excluded from the inactive background grid contribution.
3. Differentiation of the residual vector.

Let rmpm;Ep ¼ rmpm;1;1; rmpm;1;2; . . . ; rmpm;d;NEp

h i
denote the local

residual vector associated with the MPM contributions
from element Ep. The global MPM residual vector is
denoted by
rmpm ¼ rmpm;1;1; rmpm;1;2; . . . ; rmpm;d;Ng

	 �
and is obtained in the standard finite element fashion, adding
the entries of the local MPM residual vectors associated with
the same global nodes. The global soft residual vector rsoft and
the global mass residual vector rmass are constructed in the same
way. It is important from an implementational point of view to
ensure that the three global residual have matching dimensions
and that they are all initialized to zero. Next, the global residual
vector r for the background grid system is defined as

r ¼ rmass þ rsoft þ rmpm: ð28Þ
Let ukþ1 ¼ ukþ1
1;1 ;ukþ1

1;2 ; . . . ; ukþ1
d;Ng

h i
represent the vector of displace-

ment values at the grid nodes at iteration kþ 1, then r ¼ r ukþ1
� �

is a nonlinear function of ukþ1 and the values of the displacement
at the grid nodes are given by the solution of the nonlinear
equation

r ukþ1� � ¼ 0: ð29Þ
Writing ukþ1 ¼ uk þ Dukþ1 and expanding Eq. (29) in a Taylor
series around uk, the following equation is obtained

0 ¼ r ukþ1� � ¼ r uk
� �þ @r uk

� �
@u

Dukþ1 þ O Dukþ1� �2� �
: ð30Þ

Neglecting the higher order terms, a linear system of equations
is recovered

K uk
� �

Dukþ1 ¼ �r uk
� �

; ð31Þ

where K uk
� �

:¼ @r ukð Þ
@u is the background grid stiffness matrix,

Dukþ1 is the solution increment vector and the forcing term
�r uk
� �

is the negative residual vector associated with the solu-
tion at the previous iteration. In the numerical implementation,
the tangent stiffness matrix K uk

� �
is obtained using automatic

differentiation, a tool provided by the Adept library [27], and
its computation is exact up to machine precision. Once the resid-
ual has been assembled, no explicit calculation has to be carried
out to obtain such a matrix.
After an appropriate reordering of the grid nodes, Eq. (31) can be
written as the following block system

Kab uk
ab

� �
0

0 Mib

264
375 Dukþ1

ab

Dukþ1
ib

264
375 ¼

�rab uk
ab

� �
�rib uk

ib

� �
264

375; ð32Þ
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where

Kab uk
ab

� �
:¼ Ksoft uk

ab

� �þ Kmpm uk
ab

� �
;

rab uk
ab

� �
:¼ rsoft uk

ab

� �þ rmpm uk
ab

� �
;

K soft uk
ab

� �
:¼ @rsoft uk

abð Þ
@uab

; Kmpm uk
ab

� �
:¼ @rmpm uk

abð Þ
@uab

;

rib uk
ib

� �
:¼ rmass uk

ib

� �
; Mib :¼ @rmass uk

ibð Þ
@uib

:

ð33Þ

4. Solution of the background grid system.
Let Dukþ1 denote the solution of system (32). The displace-
ment at the grid is advanced as ukþ1 ¼ uk þ Dukþ1. If the dis-
placement falls below a prescribed tolerance, the algorithm
moves to the next stage, otherwise further iterations are
carried out.

� Update of Particle Instances.
As for the assembly procedure, this step begins with a loop on
the particles. Then, for a given particle p, the element Ep that
hosts it is extracted. The deformation gradient is updated in
the following way
Fnþ1
p ¼ ereunþ1

g xp
� �þ I

� �
Fn
p; ð34Þ

where

eunþ1
g xp
� �

:¼
XNEp

IEp¼1

eunþ1
IEp
e/IEp xp

� �
: ð35Þ

The particle displacement is obtained via interpolation from the
displacement euI at the nodes of Ep. Namely, unþ1

p 	 eunþ1
g xp
� �

.
With this information and the particle instances at the previous
instant of time, velocity and acceleration are updated using the
Newmark scheme in Eqs. (17) and (19) respectively. Finally,
the particle positions are updated as xnþ1

p ¼ xn
p þ unþ1

p .

4. Monolithic coupling between MPM and FEM

In this section, the solid-solid monolithic coupling between the
proposed implicit material point method and the finite element
method is described. The two solid bodies are treated as a single
continuum, and a shared finite element grid is used for the FEM
body and the MPM background grid. In this way, the MPM back-
ground grid follows the solid deformations and the interface
between MPM and FEM bodies is automatically tracked. This
monolithic approach eliminates the need for time consuming con-
tact algorithms because the MPM particles do not penetrate the
FEM body (conservation of mass). In addition, the continuity of
the normal stress on the interface is automatically satisfied (con-
servation of momentum). The monolithic coupling proposed in this
work is highly inspired by monolithic coupling strategies for fluid-
structure interaction (FSI) problems [38–42]. As a matter of fact,
the MPM background grid is used in the same way as the finite ele-
ment grid employed to discretize the fluid domain in FSI problems.
In such problems, the displacement of the fluid grid at the interface
is required to match the displacement of the solid grid. The same
requirement is enforced here between the MPM background grid
and the FEM solid grid.

The weak system of equations solved in the coupled case is the
followingR

Xab
qmpm

€umpm � dumpm þ rs
mpm : rdumpm � bmpm � dumpm

� �
dV

� RCa
qmpm rs

mpm � dumpm

� �
� nmpm ¼ 0; 8dumpm 2 DUmpm;R

Xfem
qfem

€ufem � dufem þ rfem : rdufem � qfembfem � dufem dV

� RCa
rfem � dufem

� � � nfem ¼ 0; 8dufem 2 DUfem;

ð36Þ
where DUfem represents the set of the test functions for the FEM
weak formulation. Because two elastic bodies are simulated, the
momentum equation is the same for both the MPM and the FEM
body and the Cauchy stress is still given by Eq. (12) for both solids.
Recall from Section 2.2 that Ca ¼ @Xab \ @Xfemdenotes the interface
between the MPM and the FEM domains. The continuity of mass
and momentum between the equations in system (36) are satisfied.
Namely,

umpm ¼ ufem r � nð Þjfem;Ca
þ r � nð Þjmpm;Ca

¼ 0; ð37Þ
where the second equation means that the FEM and the MPM val-
ues of r � nð Þ match on Ca. Due to the monolithic approach, the
equations for the MPM body and for the FEM body are solved at
the same time with a unique assembly for the two. The assembly
procedure is carried out exactly in the same way as in Section 3.3
for the nodes on the MPM background grid T b. If T fem denotes
the finite element grid used to discretize Xfem, let I fem be the set
of grid points of T fem. The inactive grid contributions are given only
to the nodes in I n Iab [ I fem

� �
, so no coupling between inactive

nodes and FEM nodes exists. For any node in I fem, the assembly pro-
cedure is carried out in a standard finite element fashion, using
Gauss points as quadrature points. Recalling the constitutive law
in Eq. (12), for a given Gauss point ig , we define rs

ij;ig
by

rs
ig :¼

kfem log Jig
� �

qfem Jig
I þ lfem

Jig
Big � I
� �

; ð38Þ

where Jig ¼ det F ig

� �
; Big ¼ F ig F ig

� �T and

F ig ¼ brug xig
� �þ I

� �
: ð39Þ

In Eq. (39), brug xig

� �
represents the background grid displacement

gradient with respect to the undeformed finite element configura-
tion, evaluated at xig , given by

bruij;g xig
� �

:¼
XNEg

IE¼1

ui;IE
@b/IE

@bxj
xig
� �

: ð40Þ

For any E 2 T fem, the local residual is

rfem;i;IE :¼
XNEg

ig¼1

xig €ui;ig/IE xig
� �þ Xd

j¼1

rs
ij;ig

@/IE

@xj
xig

� � !"

�qfem bi;ig

Jig
/IE xig
� �# ¼ 0; for IE ¼ 1; . . . ;NE : ð41Þ

Because particles are replaced by Gauss points in the FEM assembly,
the Newmark scheme in Eq. (19) for the FEM body becomes

€unþ1
ig

¼ 1
bDt2

unþ1
ig

� un
ig

� �
� 1
bDt

_un
ig �

1� 2b
2b

€un
ig ; ð42Þ

where

unþ1
ig

¼ unþ1 xig
� �

:¼
XNE;g

IE¼1

unþ1
IE

/IE xig
� �

: ð43Þ

The displacement, velocity and acceleration at the Gauss point at
time tn in Eq. (42) are computed in an analogous way as the dis-
placement at the Gauss point at time tnþ1 in Eq. (43). The coupled
monolithic block system is again block diagonal and is given by

Kab uk
� �

Kab;fem uk
� �

0

K fem;ab uk
� �

K fem uk
� �

0
0 0 Mib

264
375 Dukþ1

ab

Dukþ1
fem

Dukþ1
ib

2664
3775 ¼

�rab uk
� �

�rfem uk
� �

�rib uk
� �

264
375; ð44Þ

where



Fig. 4. Schematics for the receding contact force algorithm.
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Kab uk
� �

:¼ K soft uk
� �þ Kmpm uk

� �
;

rab uk
� �

:¼ rsoft uk
� �þ rmpm uk

� �
;

K soft uk
� �

:¼ @rsoft ukð Þ
@uab

; Kmpm uk
� �

:¼ @rmpm ukð Þ
@uab

;

Kab;fem uk
� �

:¼ @rab ukð Þ
@ufem

; K fem;ab uk
� �

:¼ @rfem ukð Þ
@uab

;

rib uk
� �

:¼ rmass uk
� �

; Mib :¼ @rmass ukð Þ
@uib

:

ð45Þ

The (1,2) and (2,1) blocks represent the coupling between the active
background grid and the FEM body nodes. After the solution of the
monolithic system, the nodal values of velocity and acceleration at
the grid nodes in I fem are updated using the Newmark scheme

€unþ1
I ¼ 1

bDt2
unþ1
I � un

I

� �� 1
bDt

_un
I � 1�2 b

2b
€un
I ;

_unþ1
I ¼ _un

I þ Dt 1� cð Þ€un
I þ c €unþ1

I

� �
:

ð46Þ
Fig. 5. Schematics of the rolling disk test.
5. Receding contact force correction

The MPM domain may be subject to roto-translation and large
deformations, and it is possible for its boundary to come into con-
tact with a domain boundary where a Dirichlet boundary condition
is imposed, or with the FEM solid boundary. These situations
require the contact force modeling to be carefully described. The
contact force between two surfaces acts only when they touch,
and a mutual pressure is applied. During the receding phase, when
the bodies detach, the contact force must be zero. Moreover, com-
penetration between the touching domains should never occur.
The proposed monolithic formulation never allows for compene-
tration, and the force balance at the interface is automatically sat-
isfied in the touching phase of the contact. However, in the
receding phase, the contact suffers of small to moderate sticky
effects, that grow with increasing values of the Young’s modulus
of the MPM body.

To avoid the artificial stickiness in the receding phase, a simple
correction to the contact description is embedded in the implicit
monolithic formulation. This correction requires a small modifica-
tion in the MPM assembly for those elements of the active back-
ground grid for which a face is shared with an element of the
FEM body, or Dirichlet boundary conditions are imposed on it.
The nodal displacement values of such elements receive an addi-
tional contribution for each enclosed particle that moves away
from the face. The idea is to reduce the reaction force exerted by
the face in the evaluation of Fp in Eq. (24). In particular, a reduction

of the contribution of ereug xp
� �

to the deformation gradient Fp is
obtained. The algorithm has been implemented here only for bi-
quadratic Lagrangian quadrilateral elements but it readily extends
to other shapes and families of finite elements. Let p be a particle
and let Ep be the element that encloses it, depicted in Fig. 4. For
simplicity, we consider the case where Dirichlet zero boundary
conditions have been imposed on the lower face of Ep. Hence,
the lower face will remain undeformed in the time interval
tn; tnþ1
� �

. This implies that eu1 ¼ eu2 ¼ eu5 ¼ 0, whereas the other
nodes are free to move, see the dashed contour in Fig. 4. If the par-
ticle moves away from the Dirichlet boundary, the values of euIEp ,

with IEp ¼ 1; . . . ;NEp ¼ 9, are modified as follows

eu

1 ¼ 1� Ccð Þeu1 þ Cc

4
3
eu4 � 1

3
eu8

� �
;eu


2 ¼ 1� Ccð Þeu2 þ Cc
4
3
eu3 � 1

3
eu6

� �
;eu


5 ¼ 1� Ccð Þeu5 þ Cc
4
3
eu7 � 1

3
eu9

� �
;eu


IEp
¼ euIEp for IEp ¼ 3;4;6;7;8;9;

ð47Þ

with Cc 2 0;1½ �. The terms multiplied by Cc in the above equations
represent the correction terms. The new deformation field allows
the nodes on the lower face to move, see the red dashed line with
the crosses in Fig. 4. The crosses represent the positions of the nodes
1, 5 and 2, subject to this new deformation field. For Cc ¼ 0, the
Dirichlet boundary condition is restored. For Cc ¼ 1, the new dis-

placement field is such that ereu

g x1ð Þ ¼ ereu


g x2ð Þ ¼ ereu

g x5ð Þ ¼ 0,

and consequently for each particle p located on the lower face it
would be

Fp ¼ ereu

g xp
� �þ I

� �
Fn
p ¼ Fn

p; ð48Þ

with no new contribution to the stress tensor. For Cc 2 0;1ð Þ, the
resulting boundary condition can be considered of mixed type.
The equations in (47) can be used also for the case of non zero
Dirichlet boundary condition or contact of the MPM body with
the FEM body.

The value of the constant Cc has been investigated numerically
in the next section.
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6. Numerical results

First, the implicit MPM scheme is tested, followed by the mono-
lithic coupling between MPM and FEM. When possible, the numer-
ical results are compared to analytic solutions to highlight the
great accuracy of the methods presented. For simplicity, only 2-
dimensional numerical tests are performed, even if the methods
developed in this work can be applied to 3-dimensional problems
as well.
6.1. Initialization of the MPM bodies

In the numerical examples in Sections 6.2 and 6.3, two MPM
bodies are considered: a disk and a beam. Both bodies have a uni-
form particle distribution in their core and a progressively refined
distribution moving from an a priori chosen interior surface
Fig. 6. Rolling disk simulation for E ¼ E1 ¼ 4:2 � 106 Pa. The different shades of gray for th
to as Mat in the legend. One refinement (J ¼ 1) has been considered for the background

Fig. 7. Position of the center of mass of the rolling disk
towards the boundary. Recall that the particle mass is defined as
mp ¼ q0Vp, where q0 is the initial density of the MPM body and
Vp is the particle volume. This volume has a value that depends
on the location of the particle within the particle distribution used
to discretized the body. Two different initialization procedures are
carried out depending on the specific body, as explained next.

6.1.1. Initialization of the disk
The input parameters for the disk are: the coordinates of the

center of the disk xc; ycð Þ, the radius of the disk R, the radius of
the interior disk in which the uniform distribution is built R0,
and Nh0 , which is the number of particles located within the disk
of radius R0. The number of boundary layers Nb between the circles
can be obtained after R; R0, and Nh0 have been chosen. For each
particle, the output parameters are its initial coordinates and its
volume Vp.
e elements of the background grid identify different values of ME , which is referred
grid.

. (I): E ¼ E1 ¼ 4:2 � 106 Pa. (II): E ¼ E2 ¼ 4:2 � 108 Pa.



Table 1
Averaged relative error associated with the results in Fig. 7.

E CE J ¼ 1 J ¼ 2 J ¼ 3 J ¼ 4

4:2 � 106 Eq. (50) 5:545 � 102 3:921 � 102 2:571 � 102 2:253 � 102

4:2 � 108 Eq. (51) 4:520 � 102 3:502 � 102 2:423 � 102 1:720 � 102

Fig. 8. Cantilever beam simulation with J ¼ 2. The MPM particles are omitted on the right figure to highlight the deformations and the values of ME for the background grid
elements.

Fig. 9. Oscillations of the tip of the cantilever beam, as the resolution of the
background grid is varied.

Fig. 10. Schematics of the MPM-FEM coupling tests considered. Disk rolling on an
inclined plate (left) and disk bouncing on a plate (right). The MPM disk is in light
color whereas the FEM plate is in dark color. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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6.1.2. Initialization of the beam
The input parameters for the beam are: the coordinates of the

midpoint of the left boundary x0; y0ð Þ, the height H and length L
of the beam, the height H0 of the interior beam in which a uniform
distribution is built, and the number NH of particle rows in the
interior beam. The number of boundary layers Nb between the
beams can be obtained once H; H0 and NH are chosen. For each
particle, the output parameters are again its initial coordinates
and its volume Vp.

The pseudocode for the initialization of the two MPM bodies is
given in Appendix A. We remark that the performances of the
method do not depend on the specific particle distribution adopted
and other distributions may be possible.

6.2. Tests for the implicit MPM

We begin by considering a 2-dimensional example of a disk
rolling on an inclined plane. The case of a rolling disk (or ball in
3D) is a common test for the MPM, and it has been used in several
other works, we report for instance [8,29,28]. The plane has an
inclination of h ¼ p=4, the disk has radius R ¼ 1:6 m, and Young’s
modulus E. Two values of E are chosen for the simulations,
E1 ¼ 4:2 � 106 Pa and E2 ¼ 4:2 � 108 Pa. The coarse mesh is
composed of 4 horizontal layers, each with 20 bi-quadratic
quadrilateral elements, and each of them has unitary length in
the x-direction. Because the mesh is progressively refined moving
towards the plane, each layer has a different cell size in the y-
direction. These lengths are 1.72 m, 1.34 m, 1.09 m, and 0.85 m.
Finer grids are obtained with midpoint refinement. Hence, after
every refinement, the number of elements increases by a factor
of four. Let J denote the number of refinements carried out for a
given simulation. For instance, if J ¼ 3, the coarse background grid
is refined 3 times. If J ¼ 0, it means that the coarse grid is not
refined. The values of J ¼ 1; 2; 3; 4 are chosen for the tests. The
initial distance d0 Jð Þ of the center of the disk from the plane
depends on the refinement of the grid, and it is designed to keep
a small gap between the disk and the plane. For given J and E,
the gap is a fraction of the height of the element of the background
grid where the contact occurs. We choose d0 Jð Þ ¼ Rþ 0:2=2J�1 for
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E1, and d0 Jð Þ ¼ Rþ 0:3=2J�1 for E2. The reference frame is translated
and centered at the center of the disk as in Fig. 5. The analytic
expression of the x-coordinate of the center of mass assuming an
undeformable disk is given by

x tð Þ ¼ x0 þ 1
3
g t2 sin hð Þ; ð49Þ

where x0 is assumed to be zero. Concerning the other simulation
parameters, the density of the disk is 1000 kg=m3, the Poisson’s
Fig. 11. Position of the center of mass of the rolling disk for the coupled MPM-FEM
Efem ¼ 8:4 � 107 Pa. (III): Empm ¼ 4:2 � 108 Pa and Efem ¼ 8:4 � 108 Pa.

Table 2
Averaged relative error associated with the results in Fig. 11.

Empm Efem CE J ¼ 1

4:2 � 105 8:4 � 105 Eq. (54) 1:604 � 101

4:2 � 106 8:4 � 106 Eq. (55) 9:029 � 102

4:2 � 107 8:4 � 107 Eq. (56) 5:368 � 102
coefficient is m ¼ 0:4, and the step size is Dt ¼ 0:01 s. For Newmark’s
integrator, b ¼ 0:3 and c ¼ 0:5 are selected. Rolling without slip is
considered and Cc ¼ 0:5. The input parameters for the generation
of the disk are xc; ycð Þ ¼ 0; 0ð Þ;R0 ¼ 1:4 m;R ¼ 1:6 m;Nh0 ¼ 300,
and Nb ¼ 22, for a total of 48,739 particles.

In Fig. 6, the particle distribution (including the particle bound-
ary layers) and some details about the graded mesh for the back-
ground grid are visible. In the same figure the values of the flags
ME are also reported for the elements of the background grid.
case. (I): Empm ¼ 4:2 � 106 Pa and Efem ¼ 8:4 � 106 Pa. (II): Empm ¼ 4:2 � 107 Pa and

J ¼ 2 J ¼ 3 J ¼ 4

1:263 � 101 1:051 � 101 8:783 � 102

7:918 � 102 5:416 � 102 3:654 � 102

4:289 � 102 2:919 � 102 1:959 � 102
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Recall that because bi-quadratic elements are considered, the
maximum possible value of ME is 9, which is attained for interior
elements. The lightest gray refers to the elements of the inactive
background grid. The following values were chosen for the soft
stiffness scaling factor CE in Eq. (26)

For E1 : CE ¼
10�3 if ME < 5;
10�7 if 5 6 ME < 9;
0 if ME ¼ 9;

8><>: ð50Þ
Fig. 12. Disk falling on a horizontal plate.

Fig. 13. Deformation of the disk and plate as the disk impacts on the plate.

Table 3
Contact constant Cc and step size near the plate Dtplate for the bouncing disk case.

J ¼ 2 J ¼ 3 J ¼ 4

Cc

CE;1 0.06 0.1 0.2
CE;2 0 0.1 0.2

Dtplate s½ �
CE;1 0.0005 0.00025 0.000125
CE;2 0.001 0.0005 0.00025
For E2 : CE ¼
10�5 if ME < 5;
10�9 if 5 6 ME < 9;
0 if ME ¼ 9:

8><>: ð51Þ

The horizontal position of the center of mass obtained numeri-
cally solving our implicit MPM scheme is compared to the analytic
expression in Eq. (49) for different values of J, and E. Results for E1

are visible in Fig. 7(I), for different mesh sizes. The curves obtained
with the proposed implicit MPMmethod are in agreement with the
analytic equation of the center of mass in Eq. (49). It is also shown
that a progressive refinement of the mesh provides increasingly
accurate results, because the curve associated with J ¼ 4 is the
one that best overlaps with the analytic expression. The curve for
J ¼ 3 overlaps with that of J ¼ 4, this is why it is hardly visible in
the figure. Results for E2 are reported in Fig. 7(II). Once again, the
curves are in agreement with the analytic expression and larger
values of J give better accuracy.

Average relative errors are also shown, to provide a quantitative
measure of the error. If x tð Þ represents the position of the center of
mass defined in Eq. (49), let x tð Þ be the position computed with the
proposed method. Then the averaged relative error is defined as

1
Nt

XNt

i¼1

jx tið Þ � x tið Þj
x tið Þ ; ð52Þ

where Nt ¼ 250 is the total number of time steps considered.
Results for the above error are reported in Table 1 corresponding
to the curves in Fig. 7.

The section continues with simulations of a cantilever beam
with length L ¼ 0:625 m and height H ¼ 0:25 m, visible in Fig. 8.
The parameters to build the MPM beam are
x0; y0ð Þ ¼ 0;0ð Þ; L;H;H0 ¼ 0:15 m;NH ¼ 20, and Nb ¼ 21, for a total
of 23,041 particles. The domain is a unit box, whose midpoint of
the left boundary is placed at the origin, and the coarse mesh is
composed of 4 bi-quadratic quadrilateral elements. The back-
ground grid obtained when J ¼ 2 is visible in Fig. 8. The beam
has density q ¼ 10; 000 kg=m3, Poisson’s coefficient m ¼ 0:4, and
Young’s modulus E ¼ 1:74 � 106 Pa. These mechanical parameters
have been chosen to observe a sufficient oscillation of the beam.
The step size is Dt ¼ 0:008 s and, as before, b ¼ 0:3 and c ¼ 0:5
are chosen for Newmark’s integrator. The values of CE are

CE ¼
10�6 if ME < 5;
10�10 if 5 6 ME < 9;
0 if ME ¼ 9:

8><>: ð53Þ

The beam is initially subject to its self weight, so only the grav-
itational force is applied to it. Then, when it reaches its larges
deformation, is assumed that the gravitational force is removed
and the oscillations of the tip of the beam are monitored. If no sig-
nificant damping in the oscillations can be observed as time
increases, it means that the method is accurate. Graphs for such
oscillations are reported in Fig. 9, for values of J ¼ 2; J ¼ 3 and
J ¼ 4. From Fig. 9 it can be seen that, as time increases, the oscilla-
tions became slightly off-phase as the mesh becomes finer. Never-
theless, the damping of the oscillations is very small for all mesh
sizes considered, despite the long duration of the simulation which
is 8 seconds.

6.3. Tests for the MPM-FEM coupling

Numerical results for the MPM-FEM coupling are presented
here. We begin by considering a disk rolling on an inclined plate,
as in [28,29]. Please see Fig. 10 for schematics of this layout. The
disk is modeled with MPM whereas the plate is discretized with
FEM. The dimensions of the plate are 20� 1:6 m while the radius
of the disk is R ¼ 1:6 m. Rolling without slip is considered and
the inclination of the plate is h ¼ p=4. The MPM background grid
is the same as the one used for the rolling ball in the uncoupled
case, whereas for the FEM plate two horizontal layers of 20 ele-
ments each are considered, with x length 1 m and y length
0:85 m. Recall that the use of a background grid for the MPM
attached to the FEM body is one of the major contributions of
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the present work. The coupling coefficient Cc is equal to 0:5. The
coarse grid is refined by means of midpoint refinement, with J indi-
cating the number of refinements performed. The density and the
Poisson’s coefficient of both the disk and the plate are set to
1000 kg=m3 and m ¼ 0:4, respectively. For the time integration,
Dt ¼ 0:01 s, and the parameters for Newmark’s integrator are
b ¼ 0:3 and c ¼ 0:5. The Young’s moduli of the MPM and the
FEM bodies are respectively Empm ¼ 4:2 � 10a Pa and
Efem ¼ 8:4 � 10a Pa, with a ¼ 6;7;8. These values are not chosen to
represent any specific material. The initial vertical distance d0 Jð Þ
of the center of the disk from the plane is d0 Jð Þ ¼ Rþ 0:15=2J�1

for a ¼ 6, d0 Jð Þ ¼ Rþ 0:2=2J�1 for a ¼ 7, and d0 Jð Þ ¼ Rþ 0:25=2J�1

for a ¼ 8. With these definitions, there exists an initial small gap
between the disk and the plate, and the gap dimension is a fraction
of the height of the background grid element where the contact
occurs. The reference frame is then translated and centered at
the center of mass of the disk, hence the analytic expression of
the x-coordinate of the center of mass is given in Eq. (49). The
parameters for the initialization of the MPM disk are
xc; ycð Þ ¼ 0; 0ð Þ, R ¼ 0:16 m; R0 ¼ 0:14 m; Nh0 ¼ 600 and Nb ¼ 24,
for a total of 57,084 particles. The coefficients CE for the present
tests are as follows:

for a ¼ 6 : CE ¼
10�2 if ME < 5;
10�6 if 5 6 ME < 9;
0 if ME ¼ 9;

8><>: ð54Þ
Fig. 14. Vertical position of the center of mass of a disk bouncing on a pl
for a ¼ 7 : CE ¼
10�3 if ME < 5;
10�7 if 5 6 ME < 9;
0 if ME ¼ 9:

8><>: ð55Þ
for a ¼ 8 : CE ¼
10�4 if ME < 5;
10�8 if 5 6 ME < 9;
0 if ME ¼ 9:

8><>: ð56Þ

In Fig. 11, results are displayed for a ¼ 6; 7; 8. We observe that also
in the coupled case there is agreement between the numerical
results and the analytic position of the center of mass. Increasing
values of J provide better accuracy with respect to the analytic
curve. Moreover, to stiffer materials it corresponds a smaller error.
This is also expected because the analytic solution is obtained under
the assumption of an undeformable body. The averaged relative
errors reported in Table 2 confirm the accuracy and validity of the
proposed coupling method. This section is concluded with simula-
tions of a disk falling from above and bouncing on a horizontal
plate. For schematics of this layout, please see Fig. 10. As before,
the disk is modeled with MPM and the plate is discretized with
FEM. The coarse MPM background grid has dimensions
1:28� 1:84 m and it is made of 80 elements of x length 0:16 m
and y length 0:184 m. The FEM plate has dimensions
1:28� 0:64 m and is discretized with 2 horizontal layers of 8 cells
each, of x length 0.16 m and y length 0.08 m. The disk has radius
R ¼ 0:16 m and is placed initially at the center-top of the
ate. (I) CE ¼ CE;1 defined in Eq. (57). (II) CE ¼ CE;2 defined in Eq. (58).
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background grid such that its distance from the upper surface of the
plate is 1.68 m. The coarse background grid and the MPM dis-
cretization are visible in Fig. 12, whereas a picture of the impact
between the disk and the plate can be found in Fig. 13.

The parameters for the initialization of the MPM disk are now
xc; ycð Þ ¼ 0; 0ð Þ, R ¼ 0:16 m;R0 ¼ 0:14 m;Nh0 ¼ 300 and Nb ¼ 22,
for a total of 48,739 particles. Both the disk and the plate have den-
sity qmpm ¼ qfem ¼ 1000 kg=m3 and Poisson’s coefficient m ¼ 0:4.
The Young’s moduli for the MPM and FEM body are, respectively,
Empm ¼ 5:91 � 106 Pa and Efem ¼ 4:2 � 107 Pa. The aim of these tests
is to further demonstrate the accuracy of the proposed methods
and to highlight how it improves as the values of the coefficient
CE is decreased, considering fixed values of E. This behavior is
explained by the fact that for fixed Young’s modulus, smaller val-
ues of CE decrease the soft stiffness contribution and therefore
decrease the error added to the method. The values of CE for this
example are as follows

CE;1 ¼
10�2 if ME < 5;
10�6 if 5 6 ME < 9;
0 if ME ¼ 9;

8><>: ð57Þ

CE;2 ¼
10�5 if ME < 5;
10�9 if 5 6 ME < 9;
0 if ME ¼ 9:

8><>: ð58Þ

The value of the coupling coefficient Cc in this case depends on the
refinement level and on CE . Its values are reported in Table 3. To
speed up the simulation, the time stepping is adaptive, meaning
that Dt is large when the disk is far from the plate and it is suddenly
decreased after the disk reaches a given distance from the plate. The
value of Dt when the disk is near the plate is reported in Table 3. The
parameters for Newmark’s integrator are once again b ¼ 0:3 and
c ¼ 0:5.

The results for CE;1 are displayed in Fig. 14 I), where the vertical
position of the center of mass is tracked as time increases. It is
assumed that the reference frame is positioned on the initial posi-
tion of the center of mass and that the plate is not subject to the
gravitational force, to avoid oscillations not caused by the impact.
As the refinement of the background grid increases, a slight offset
between the curves is observed, the magnitude of which increases
with time. An analogous situation was observed in Fig. 9, for the
case of an oscillating cantilever beam. A different situation occurs
for CE;2, displayed in Fig. 14(II): comparing this figure to Fig. 14(I),
it can be seen that the offset is considerably reduced and now all
the curves are in better agreement, especially those for J ¼ 3 and
J ¼ 4. In both examples, no damping of the oscillations is observed,
confirming once again the reliability and accuracy of our mono-
lithic coupling. The results presented here show that, for fixed val-
ues of the Young’s modulus, it is important for the accuracy of the
simulation to choose the least possible values of CE that guarantees
convergence.

7. Conclusion

A new coupling procedure for the interaction of an MPM
body with a FEM body has been presented. The novelty consists
of a monolithic approach that treats the two bodies as a single
continuum, eliminating the need for contact search and detec-
tion algorithms. The proposed coupling has been tested on sev-
eral numerical examples with a particular focus on accuracy
and reliability. Results have shown that smaller errors are
obtained with a progressive refinement of the MPM background
grid, proving the consistency of the proposed strategy. We also
investigated numerically the magnitude of the stiffness matrix
contributions for a fixed value of the Young’s modulus and con-
firmed the importance of an appropriate balance between stabil-
ity and accuracy to have well performing simulations. This
preliminary study has shown potential of the proposed coupling
approach,and further work will be done in the future to fully
explore its capabilities. For instance, different types of couplings
other than solid-solid will be investigated, as well as techniques
to use our monolithic approach for the coupling of the MPM
with a fluid-structure interaction framework. This would pave
the way for the use of our methodology on many applications
of interest that go beyond the proof of concept examples shown
in this work.
Appendix A

A.1. Initialization of the MPM disk pseudocode

Input Parameters :xc;yc;R;R0;Nh0 ;Nb withNbP
R�R0
R0

ceil
Nh0
2p

� �� �
Nr ¼ceil

Nh0
2p

� �
; DR¼ R0

Nr

#UniformDistribution

p¼1; xp¼xc; yp¼yc

for i¼0; . . . ;Nr�1

ri¼R0� iDR; Nhi ¼ceil Nh0
ri
R0

� �
; Dhi¼ 2p

Nhi

for j¼0; . . . ;Nhi �1

p¼pþ1; xp¼xcþricos jDhið Þ; yp¼ycþri sin jDhið Þ

end for

end for

for i¼1; . . . ;p

mp¼qmpm
pR20
p

end for

#BoundaryLayers

Find a such that
XNb

k¼1

DRak¼R�R0

for i¼1; . . . ;Nb

ri¼R0þ
Xi

k¼1

DRak; Nhi ¼ceil
Nh0
ai

� �
; Dhi¼ 2p

Nhi

for j¼0; . . . ;Nhi �1

p¼pþ1; xp¼xcþricos jDhið Þ; yp¼ycþri sin jDhið Þ

mp¼qmpmriDhiDRa
i

end for

end for
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A.2. Initialization of the MPM beam pseudocode

Input Parameters : x0;y0;H;L;H0;NH;Nb withNbP
H�H0

2
NH�1
H0

� �
DH¼ H0

NH�1 ; L0¼L�H�H0
2 ; NL¼ceil L0

DH

� �
; DL¼ L0

NL�1

#UniformDistribution
p¼1
for i¼0; . . . ;NL�1

for j¼0;. . . ;NH�1
p¼pþ1; xp¼x0þ iDL; yp ¼y0�H0

2 þ jDH

mp ¼q0DLDH

end for
end for
#Boundary Layers

Find a such that
XNb

k¼1

DHak¼ H�H0
2

for i¼1;. . . ;Nb

Hi¼H0þ2
Xi

k¼1

DHak; NHi
¼ceil Hi

DH

� �
þ1; DHi¼ Hi

NHi
�1

Li¼L0þ
Xi

k¼1

DHak; NLi ¼ceil Li
DH

� �
þ1; DLi¼ Li

NLi
�1

for j¼0;. . . ;NLi �1

p¼pþ1; xp¼x0þ jDLi; yp¼y0þH0
2

mp ¼q0DLiDHi

end for
for j¼1; . . . ;NHi

�1

p¼pþ1; xp¼x0þLi; yp ¼y0þH0
2 � jDHi

mp ¼q0DLiDHi

endfor
for j¼1; . . . ;NLi �1

p¼pþ1; xp¼x0þLi� jDLi; yp ¼y0�H0
2

mp ¼q0DLiDHi

end for
endfor
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