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Abstract
We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split
fibration between proper groupoids can be made Riemannian, and we use these metrics to
linearize proper groupoid fibrations. As an application, we derive rigidity theorems for Lie
groupoids, which unify, simplify and improve similar results for classic geometries. Then
we establish the Morita invariance for our metrics, introduce a notion for metrics on stacks,
and use them to construct stacky tubular neighborhoods and to prove a stacky Ehresmann
theorem.
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1 Introduction

Lie groupoids and differentiable stacks provide a framework to perform differential geometry
on singular spaces. The interaction between these theories is twofold. Lie groupoids gener-
alize group actions, fibrations, and foliations [19], and their transverse geometry is encoded
by differentiable stacks. Differentiable stacks, an incarnation of Grothendieck’s ideas, first
developed in algebraic geometry, give rise to Lie groupoids when endowed with a presenta-
tion ([3,18]). For example, orbifolds are the stacks corresponding to proper, étale groupoids
([16,19]).

Many results and techniques for smooth manifolds have been succesfully extended to orb-
ifolds, with applications to Poisson geometry, non-commutative geometry and mathematical
physics. For instance, Riemannian metrics on orbifolds have allowed important generaliza-
tions of the Hodge Theorem or the Gauss-Bonnet formula. However, little is known when
dealingwith general differentiable stacks, onwhich the dimension of the isotropymay vary. In
particular, a notion of Riemannian metrics for general differentiable stack has been missing.

Recent developments in the theory of Lie groupoids allow us to shed some light on
the Riemannian geometry of differentiable stacks. In [11] we have constructed compatible
Riemannian metrics on proper Lie groupoids, called 2-metrics, and used them to linearize
groupoids using exponential maps, improving Weinstein-Zung Linearization Theorem and
its generalizations considerably ([7,25,26]). Here we develop the relative version of our
theory, constructing compatible metrics on fibrations of Lie groupoids, proving linearization
results for maps, and presenting two major applications, namely, (i) rigidity theorems for
Lie groupoids, and (ii) a Morita invariance of 2-metrics, leading to a notion of metric on
differentiable stacks.

A special kind of Lie groupoid map, playing a key role here, is a smooth version of the
notion of fibration between categories, introduced by Grothendieck. Our first main result
concerns the construction of 2-metrics adapted to a fibration, based on the so called gauge
trick, an averaging argument introduced in [11]:

Theorem (Existence of fibered groupoid metrics). Let φ : G̃ → G be a split fibration
between proper Lie groupoids. Then there exist 2-metrics η̃ on G̃ and η on G making φ into
a Riemannian submersion.

Our second main result combines the methods developed by us in [11], to linearize Rie-
mannian groupoids by means of exponential maps, with a thorough analysis on the structure
of Lie groupoid fibrations and cleavages. The outcome is a linearization result for fibrations
between proper Lie groupoids. Given G ⇒ M a Lie groupoid and given S ⊂ M an embedded
saturated submanifold, we denote by GS = s−1(S) ⇒ S the restriction to S, that is itself a
Lie groupoid.

Theorem (Linearization of proper groupoid fibrations). Let φ : (G̃, η̃) → (G, η) be a
fibration between proper Lie groupoids, let S ⊂ M be an embedded saturated submanifold,
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Riemannian metrics on differentiable stacks 105

and set S̃ = φ−1(S). Then φ is linearizable around S, namely there are linearizations α̃, α

of G̃, G around S̃, S making the diagram commutative:

ν(G̃ S̃) ⊃ G̃Ũ

dφ

α̃
G̃Ṽ ⊂ G̃

φ

ν(GS) ⊃ GU
α

GV ⊂ G

Moreover, if φ is proper, we can take Ũ = φ−1(U ) to be an open tube around S̃.

The above results are categorifications of basic facts on differential geometry, and at the
same time, they are quite powerful and have deep, interesting, geometric consequences.
We include in this paper two major applications. First, we give simple geometric proofs of
rigidity results on Lie groupoids, generalizing various theorems for classical geometries, such
as groups ([21]), group actions ([23]) and foliations ([13,15]). They were obtained recently
and independently in [6], where the authors use instead a theory of deformation cohomology.
Our main result in this direction is the following:

Theorem (Rigidity of compact Lie groupoids). Every proper deformation of a compact Lie
groupoid G ⇒ M is trivial.

Our second application is a form of Morita invariance for our metrics. Every Lie groupoid
G ⇒ M determines an orbit stack [M/G] with a presentation M → [M/G], and two
groupoids determine the same differentiable stack if and only if they are Morita equivalent.
AMorita equivalence can always be realized by a fraction of Morita fibrations, an adaptation
of Verdier’s hypercovers [2, V.7]. Pulling back and pushing forward 2-metrics along Morita
fibrations we get:

Theorem (Morita invariance of groupoidmetrics). If two Lie groupoids are Morita equivalent
and one admits a 2-metric, then so does the other.

We will introduce a notion of equivalence of 2-metrics on a given Lie groupoid, and
we will show that a Morita equivalence yields a 1–1 correspondence between equivalence
classes of 2-metrics. We thus obtain a notion of Riemannian metric on a differentiable stack,
generalizing the usual concepts of Riemannian metrics on manifolds and orbifolds. This
opens up the possibility to extend to singular spaces modeled by stacks classical concepts in
Riemannian geometry such as geodesics and curvature, as well as classical results such as
Hopf-Rinow, Bonnet, etc. Some of these questions will be addressed in [10]. Here, as a first
application of our stackymetrics,we build stacky tubular neighborhoods and, after developing
all the required geometric notions for differentiable stacks, we prove the following:

Theorem (Stacky Ehresmann). Let φ : [M̃/G̃] → [M/G] be a surjective submersion
between separated stacks, and let [S/GS] ⊂ [M/G] be an embedded substack. Then φ

is linearizable around [S/GS], and if φ is proper, the linearization can be made over an open
tube φ−1([U/GU ]) around φ−1([S/GS]).

This last result, in an appropriate sense, generalizes and encompasses all the above lin-
earization and rigidity results for groupoids and classic geometries. It can be thought of as a
categorification of a basic result. In fact, one can interpret our usage of metrics to prove it as
a categorifying the proof of that basic result.
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106 M. del Hoyo, R. Loja Fernandes

Organization. In Sect. 2 we review basic facts about fibrations between Lie groupoids and
their cleavages. In Sect. 3 we recall the main properties of Riemannian groupoids and we
adapt the gauge trick construction of [11] to the case of fibrations, proving that split fibrations
between proper groupoids can be made Riemannian. In Sect. 4 we prove our linearization
theorems for Riemannian groupoid submersions and proper groupoid fibrations. In Sect. 5 we
give applications of our linearization results to deduce rigidity theorems for Lie groupoids.
Finally, in Sect. 6, we present a stacky version of our theory, developing fundamental notions
such as stacky immersion and submersions, proving the Morita invariance of our metrics,
and establishing a stacky Ehresmann theorem.

2 Lie groupoids fibrations

We review here definitions and basic facts on fibrations between Lie groupoids, provide
examples, and discuss the key concept of a cleavage, that play a role in a sense analo-
gous to connections in ordinary differential geometry. Then we review the correspondence
between split fibrations and semi-direct product. Finally, we discuss basic facts on proper
maps between Lie groupoids, to be used later.

2.1 Definitions and examples

Given a Lie groupoid G = (G ⇒ M), we denote by s, t, m, u, i its maps of source, target,
multiplication, unit and inverses, and by G(k) the manifold of k-tuples of composable arrows.
In particular, G(1) = G are the arrows and G(0) = M are the objects. By a map of Lie
groupoids φ : G → H we mean a smooth functor, and we denote by φ(k) : G(k) → H (k)

the induced smooth map. By convention, all our manifolds (including all our groupoids) are
second countable and Hausdorff.

Definition 2.1.1 A map of Lie groupoids φ : G̃ → G is called a fibration if both φ(0) :
M̃ → M and φ̂ : G̃ → G ×M M̃ , φ̂(g) = (φ(1)(g), s(g)), are surjective submersions. We
call G the base groupoid and G̃ the total groupoid.

Examples 2.1.2 (1) A fibration between manifolds φ : M̃ → M , regarded as groupoids
with only identity arrows, is a surjective submersion. A fibration between Lie groups
φ : G̃ → G, regarded as groupoids with only one object, is a surjective homomorphism.

(2) By a family of Lie groupoids parametrized by a manifold M we mean a fibration
φ : (G̃ ⇒ M̃) → (M ⇒ M) with base M . This amounts to give a surjective submersion
M̃ → M that is constant along the G̃-orbits.

(3) If G ⇒ M is a Lie groupoid acting along a surjective submersion μ : M̃ → M , the
projection from the corresponding action groupoid (G � M̃ ⇒ M̃) → (G ⇒ M) is a
fibration. Every fibration for which φ̂ is bijective arises in this way – such a φ is called
an action fibration.

(4) If G ⇒ M is a Lie groupoid, then the projections T G → G and T ∗G → G are fibrations
of the tangent and cotangent groupoids over G. More generally, for any VB-groupoid
� → G (see, e.g., [4]) the projection is a fibration.

(5) Morita maps play an important role in the theory of differentiable stacks. We will study
them in Sect. 6. If φ : G̃ → G is a Morita map such that φ(0) is a surjective submersion,
then φ is a fibration.

123



Riemannian metrics on differentiable stacks 107

If φ : G̃ → G is a fibration then φ(k) is a submersion for every k. Moreover, by a standard
transversality criterion (cf. [4, A]), the groupoid-theoretic fiber product of φ and any other
groupoidmap exists and iswell-behavedwith respect to the topologies and the tangent spaces.
In such a fiber product,

H̃

fpψ

G̃

φ

H G

if φ is a fibration, then the same holds for its base-change ψ .

Definition 2.1.3 Given a fibration φ : G̃ → G, its kernel K ⇒ M̃ and its fibers G̃x ⇒ M̃x

are the fiber products between φ and the groupoid inclusions M → G and idx → G,
respectively.

The kernel K consists of the arrows in G̃ that are mapped into identities. It is a family of
Lie groupoids, the fibers, parametrized by the base. We remark that φ is an action fibration
if and only if K = M̃ , and φ is a Morita fibration if and only if K = M̃ ×M M̃ . In a fibration
φ : G̃ → G we can think of the total groupoid G̃ as an extension of the base G by the kernel
K , and visualize G̃ as sitting over G, φ as a projection, and K as the vertical arrows.

Definition 2.1.4 A cleavage σ for a fibration φ : G̃ → G is a smooth section for the
map φ̂ : G̃ → G ×M M̃ . The cleavage is unital if it preserves identities, namely
σ(idφ(x̃), x̃) = idx̃ , and is flat if it is closed under multiplication, namely σ(g2g1, x̃) =
σ(g2, t̃(σ (g1, x̃)))σ (g1, x̃).

One can think of a cleavage as a choice of horizontal arrows which allow us to relate
different fibers, playing a role similar to a connection in differential geometry. A fibration
endowed with a unital flat cleavage is called a split fibration.

Examples 2.1.5 (1) If φ : G̃ → G is a fibration between Lie groups, then a cleavage σ is just
a smooth section, and is unital and flat if and only if it is a morphism. Therefore, φ splits
if and only if G̃ is a semi-direct product G � K .

(2) A family of Lie groupoids φ : G̃ → M is a split fibration, for the unit map ũ : M̃ → G̃
yields a unital, flat, cleavage in an obvious way.

(3) In an action fibration (G̃ ⇒ M̃) → (G ⇒ M) the map φ̂ is invertible, hence there exists
a unique cleavage, which is both unital and flat.

(4) Cleavages for the tangent bundle projection T G → G that are both linear and unital
are called connections of G in [1,11]. Every Lie groupoid admits a connection, but in
general there is not a flat one. Linear cleavages for a general VB-groupoid � → G are
called horizontal lifts in [4].

(5) For an example on which does not exists a cleavage, consider the Morita fibration φ :
(R × R ⇒ R) → (S1 × S1 ⇒ S1) induced by the standard covering map R → S1.

Given a cleavage σ and y
g←− x ∈ G, we can define a base-change functor between the

fibers by parallel transport:

θg : G̃x → G̃ y θg(x̃) = t̃σ(g, x̃) θg(x̃2
k←− x̃1) = σ(g, x̃2)kσ(g, x̃1)

−1

This defines quasi-actions θ : G�̃M̃ and θ : G�̃K , for g �→ θg does not preserve, in
general, identities nor compositions. It does so if and only if σ is unital and flat.
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108 M. del Hoyo, R. Loja Fernandes

2.2 Split fibrations and semidirect product

In a split fibration φ : G̃ → G the horizontal arrows define a wide Lie subgroupoid, the
horizontal groupoid

(H ⇒ M̃) ⊂ (G̃ ⇒ M̃),

and the base-change functors define a groupoid action of the base over the kernel, in the sense
of definition ([17, Definition 2.5.1]), that we recall now.

Definition 2.2.1 Let G ⇒ M be a Lie groupoid, and let q : (K ⇒ M̃) → M be a family of
Lie groupoids parametrized by M . Then an action

θ : (G ⇒ M) � (K ⇒ M̃)

consists of a pair of groupoid actions θ : G � K , θ : G � M̃ , in such a way that the
structural maps of K ⇒ M̃ are G-equivariant.

The whole split fibration can be recovered out of the base, the kernel and the base-change
action. For the inverse procedure, i.e., to construct a split fibration out of an action, we have
the following generalization from groups to groupoids of the notion of semi-direct product
(see, e.g., [17]):

Definition 2.2.2 Given an action θ : (G ⇒ M) � (K ⇒ M̃), the semidirect product
G � K = (G ×M K ⇒ M̃) is the Lie groupoid where:

• the arrows consist of pairs (g, k) such that q(k) = s(g);
• the source and target are given by s(g, k) = s(k), t(g, k) = θg(t(k));
• the multiplication is given by (g′, k′)(g, k) = (g′g, θg−1(k′)k).

In the semi-direct product G � K , the obvious projection (g, k) �→ g defines a split
fibration (G ×M K ⇒ M̃) → (G ⇒ M), with a canonical unital flat cleavage given by
σ(g, x̃) = (g, idx̃ ). These two constructions are mutually inverse:

Theorem 2.2.3 ([17, Theorem2.5.3]).There is a 1–1 correspondence between (isomorphisms
classes of) split fibrations and actions of a groupoid over another one. Every split fibration
is isomorphic to a semi-direct product.

Remark 2.2.4 This can be seen as a smooth version of the correspondence between cate-
gorical split fibrations φ : G̃ → G and functors G◦ → {Categories}, which extends to a
correspondence between arbitrary fibrations and pseudo-functors (see, e.g., [24, Sect. 3.1])).
A smooth correspondence for arbitrary fibrations is yet to be explored.

Recall that given φ1 : G1 → H and φ2 : G2 → H Lie groupoid maps, their homotopy

fiber product G1×̃H G2 (see, e.g., [9,19]) is the Lie groupoid of triples (x1, φ1(x1)
h←−

φ2(x2), x2), where an arrow between two such objects is a pair of arrows in G1 × G2

inducing a commutative square in H . The homotopy fiber product fits into a universal square,
commutative up to isomorphism.

Every Lie groupoid map φ : G → H has a canonical factorization, a formal analog to
the path fibration used in topology to show that any map is a fibration up to homotopy:

G ′
φ′

G

ι

φ
H
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Riemannian metrics on differentiable stacks 109

Here G ′ is the homotopy fiber product H×̃H G over idH and φ, which always exists, the

maps ι and φ′ are given, on objects, by ι : x �→ (φ(x), φ(x)
id←− φ(x), x) and φ′ : (y, y

h←−
φ(x), x) �→ y, and they are extended to arrows in the obvious way. It is clear that ι is an
embedding and a categorical equivalence.

Lemma 2.2.5 If φ : G → H is a fibration then φ′ : G ′ → H is a split fibration with
a canonical cleavage. A unital cleavage σ for φ is the same as a Lie groupoid retraction
r : G ′ → G such that r ι = idG and φr = φ′.

Proof By assumption φ(0) : M → N is a surjective submersion, then so does the base-
change π1 : M ′ = H ×N M → H , and the composition φ′(0) = tπ1. Let us show that
G ′ → H ×N M ′ is a surjective submersion as well. We can identify G ′ ∼= H ×N H ×N G
by encoding an arrow(

y2, y2
h2←− φ(x2), x2

)
←

(
y1, y1

h1←− φ(x1), x1

)

as the triple (h, h1, g). Under this identificaiton, G ′ → H ×N M ′ = H ×N H ×N M
is just (h, h1, g) �→ (h, h1, s(g)), which is a submersion, with global section (h, h1, x) �→
(h, h1, idx ). It follows thatφ′ is a fibration, and this section is a unital flat cleavage. The second
statement, identifying cleavages of φ with retractions r : G ′ → G is proven set-theoretically
in [8, Proposition 2.2.3], and its adaptation to the smooth setting is straightforward. �


2.3 Fibrations and properness

Let us recall that an (Hausdorff) groupoid G ⇒ M is called proper if the anchor (t, s) :
G → M × M is a proper map. Concerning properness, for a split fibration, we have:

Lemma 2.3.1 Let φ : G̃ → G be a split fibration with kernel K and horizontal groupoid H.

(a) If G and K are proper, then G̃ is proper,
(b) If G̃ is proper then both H and K are proper.

Proof We can assume that G̃ = G ×M K . To prove (a), denoting by s̃ and t̃ the source and
target of G̃, we find that if C ⊂ M̃ × M̃ then:

(s̃ × t̃)−1(C) ⊂ (G ×M K ) ∩
(
(sG × tG)−1(φ(0) × φ(0))(C)) × (sK × tK )−1(C)

)

IfC is compact, then the right-hand side is clearly compact, sowemust have that (s̃× t̃)−1(C)

is compact. This shows that G̃ = G ×M K is proper.
We can prove (b) by using that a closed subgroupoid of a proper groupoid is proper.

Since a section of a surjective submersion is a closed map, the set of horizontal arrows
H ⊂ G̃ is a closed submanifold. Similarly, M ⊂ G is a closed submanifold, and therefore

K = φ(1)−1
(M) ⊂ G̃ is also closed. �


Example 2.3.2 Both implications in the previous lemma are, in general, strict. For instance,
the action by translations (R ⇒ ∗) � (R ⇒ R) leads to a split fibration with proper total
groupoid but whose base is not proper. Besides, translations on the units and arrows of the
pair groupoid (R ⇒ ∗) � (R × R ⇒ R) yields a fibration for which kernel and horizontal
groupoids are proper but the total groupoid is not.
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110 M. del Hoyo, R. Loja Fernandes

Besides proper groupoids, we are interested in proper maps between groupoids, which
play a crucial role in one of our main results, namely the groupoid version of Ehresmann’s
theorem. We propose the following definition:

Definition 2.3.3 A map between Lie groupoids φ : G̃ → G is proper if φ(1) is, or equiva-
lently, if φ(k) is proper for some, and hence all, k ≥ 1.

In a proper fibration, the total groupoid is proper if and only if the base groupoid is proper.
Also, one can show that a fibration is proper if and only if its kernel is a proper family,
namely a fibration φ : (G̃ ⇒ M̃) → (M ⇒ M) that is proper. These statements are easy to
prove and left to the reader.

Properness of a map is intimately related to the tube principle, see e.g. [9]. Within the
context of Lie groupoids, we say that a map φ : G̃ → G satisfies the tube principle if for
any saturated embedded submanifold S ⊂ M and any open subgroupoid Ũ = (Ũ1 ⇒ Ũ0),
G̃ S̃ ⊂ Ũ ⊂ G̃, where S̃ = (φ(0))−1(S), there exists an open subgroupoid GS ⊂ V ⊂ G

such that φ−1(V ) ⊂ Ũ .

Proposition 2.3.4 Let φ : G̃ → G be a proper submersion. If either (i) G is proper or (ii) φ

is a fibration, then φ satisfies the tube principle.

Proof Given S ⊂ M and an open subgroupoid G̃ S̃ ⊂ Ũ ⊂ G̃, let us set:

W := G\
(
φ(1)(G̃\Ũ )

)
.

Notice that W is an open set, since φ(1) is a proper map, hence closed.
(i) If G is proper then there is an open S ⊂ U ⊂ M such that GU ⊂ W (see [11, Lemma

5.3]) and we can take V = GU . To be precise, this follows from the proof rather than from
the statement: the requirement of the open neighborhood being a subgroupoid is not used
along the proof.

(ii) If φ is a fibration then we assert that W is already an open subgroupoid, so we can
take V = W . In fact, given g, h ∈ W two composable arrows, and given k̃ an arrow over
the product gh, we can lift h to an arrow h̃ with the same source as k̃. Then both h̃ and k̃h̃−1

are in Ũ , for its projections are in W . Since Ũ is closed under products it follows that k̃ also
belongs to Ũ . This shows that gh is in W . The fact that W is closed under inversion is proved
similarly. �


3 Riemannian submersions

We recall the definition and main properties of Riemannian groupoids presented in [11], in
particular the gauge trick, a recipe to construct metrics on proper groupoids. Thenwe develop
a fibered version of Haar systems, and we adapt the gauge trick to fibrations, obtaining our
first major result: every split fibration between proper groupoids can be made Riemannian.

3.1 Riemannian groupoids

Recall that a submersion p : E → B is Riemannian if E, B are manifolds endowed with
metrics ηE , ηB such that de p : Te F⊥ → Tb B is an isometry for every e ∈ E . Here F ⊂ E
denotes the fiber. Equivalently, we can require the map (de p)∗ : T ∗

b B → Te F◦ to be an
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Riemannian metrics on differentiable stacks 111

isometry with respect to the dual metrics. Given a Riemannian submersion p : E → B, the
metric ηE is p-transverse, in the sense that for any two points e, e′ in the same fiber Fb

the composition Te F◦
b

∼= T ∗
b B ∼= Te′ F◦ is an isometry. Any p-transverse metric induces a

push-forward metric p∗ηE = ηB on the base.
Given a Lie groupoid G ⇒ M , and recalling that G(2) stands for the pairs of composable

arrows, there is a natural group action S3 � G(2) by permuting the vertices of the corre-
sponding commutative triangles. There are also three proper and free commuting groupoid
actions G � G(2), given by:

k · (g, h) = (kg, h), k · (g, h) = (
gk−1, kh

)
, k · (g, h) = (

g, hk−1) .

The associated principal G-bundles are given, respectively, by the face-maps:

π2 : G(2) → G, m : G(2) → G, π1 : G(2) → G,

(g, h) �→ h, (g, h) �→ gh, (g, h) �→ g.

Definition 3.1.1 A 2-metric on G ⇒ M is a metric η(2) on the manifold G(2) which is
invariant under S3 and that is transverse to one (and hence all) the face-maps G(2) → G. The
pair (G ⇒ M, η(2)) is called a Riemannian groupoid.

Equivalently, 2-metrics can be described, and this is how it appears in [11], by saying that
they are G-invariant. Given a Lie groupoid action over a manifold G � E , a metric η on E
is G-invariant if the normal representations of the action groupoid θ̃(g,e) : Te O◦ ∼= Tge O◦
are by isometries. Here O ⊂ E denotes the orbit of e. Note that when the action is free and
proper, a metric ηE is G-invariant if and only if it is transverse to the underlying submersion.

It is shown in [11] that many classes of Lie groupoids admit 2-metrics, including all proper
groupoids.Our construction ofmetrics on proper groupoids is by averagingmetrics. To do this
we choose a connection on G (cf. Example 2.1.5.d), yielding a quasi-action G�̃S2(T G(2))

on symmetric 2-tensors, and a normalized Haar density μG , that exists by properness. We
give here a brief outline for later reference.

Definition 3.1.2 Given θ : G � E a groupoid action, and η a metric on E , the cotangent
average η ∈ �(E, S2(T ∗E)) is defined by averaging the dual metric:

(η)∗e(α, β) := Iθ (η
∗)e(α, β) =

∫
G(−,x)

η∗
ge(gα, gβ)μx (g)

where q : E → M is the moment, x = q(e), g runs over G(−, x), and α, β ∈ T ∗
e E .

One must use cotangent averages rather than tangent averages, as explained in [11], to
get a G-invariant metric on E , for G-invariant metrics on the tangent bundle do not form a
convex set. Note that when the action G � E is free and proper, a metric ηE is G-invariant
if and only if it is transverse to the underlying submersion. The fundamental properties of
the cotangent average are listed in the following proposition, whose proof is straightforward.

Proposition 3.1.3 (a) If η is G-invariant, then η and η agree in the directions normal to the
orbits.

(b) If p : (E, ηE ) → (B, ηB) is a Riemannian submersion equivariant for actions θ E :
G � E and θ B : G � B, then p : (E, ηE ) → (B, ηB) is also Riemannian.

(c) If p : (E, ηE ) → (B, ηB) is a Riemannian submersion and invariant for an action
θ E : G � E, then p : (E, ηE ) → (B, ηB) is also Riemannian.
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We can summarize now our method to construct 2-metrics on proper groupoids, referred
to as the gauge trick in [11], that will be adapted later to the fibered case:

Remark 3.1.4 (Gauge Trick).

(a) One starts by invoking the existence of an s-transverse metric η = η[1] on G, since any
submersion admits a transverse metric.

(b) Then, one endows the 3-fold s-fiber product G[3] with the fiber product metric of η[1]
with itself, denoted η[3] (see [11, Remark 2.5]). This is a 2-metric η[3] for the submersion
groupoid G[2] ⇒ G arising from s : G → M .

(c) Finally, one replaces η[3] by its cotangent average η[3] with respect to the free proper
action

G[3]
� G (h1, h2, h3) · g = (h1g, h2g, h3g).

The metric η[3] is still a 2-metric for G[2] ⇒ G, but in addition it is G-invariant, so it

descends to a metric η(2) on G(2) = G[3]/G, that is a 2-metric on G ⇒ M .

We know that a 2-metric induces a 1-metric and also a 0-metric. The gauge trick yields
out of an s-transverse metric η on G a 2-metric η(2), but also subsidiary metrics that make
all maps in the following diagram Riemannian submersions:

(G[3], η[3]) (G[2], η[2]) (G, η)

t

(G(2), η(2)) (G(1), η(1)) (M, η(0)).

The inducedmetrics η[2] and η are exactly the cotangent averages for the obvious right actions
(cf. Proposition 3.1.3). In general, we have little control over the resulting metrics for they
rely on the choice of connection and Haar system. Even if we start with a 1-metric η, in
general, we have η(1) �= η(1). Still, we have:

Lemma 3.1.5 If η is a 1-metric on G ⇒ M and η(2) is the 2-metric obtained by the gauge
trick, then both η and η(2) induce the same 0-metric on the units.

Proof This follows from the above diagram: since η is G-invariant then, by Proposition 3.1.3
(c), both η and η agree in normal directions to the orbits, and therefore they have the same
pushforward metric along t . �


3.2 Riemannian submersions

We are interested in maps between Riemannian groupoids which preserve the metrics:

Definition 3.2.1 A Lie groupoid map φ : G̃ → G is a called a Riemannian submersion if
both G̃ andG are endowedwith 2-metrics, forwhichφ(2) becomes aRiemannian submersion.

Note that if φ(2) is a Riemannian submersion then the same holds for φ(1) and φ(0).
Requiring the metrics to be compatible both with the groupoid structure and the submersion
may seem too restrictive a priori. However, we will show that such metrics exist when the
groupoids are proper and φ is a split fibration. This is our first major result and yields plenty
of examples on which such metrics exist. It will be used later to deduce some fundamental
properties of groupoids and stacks.
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Theorem 3.2.2 Every split fibration φ : G̃ → G between proper groupoids can be made
Riemannian, i.e., there exist 2-metrics η̃ on G̃ and η on G for which φ is a Riemannian
submersion.

Equivalently, a semidirect product G � K of proper groupoids admits a 2-metric such that
the projection onto G is a Riemannian submersion. We will prove the theorem by adapting
the gauge trick from the previous section, now choosing themetric η on G̃ already compatible
with the fibration, and performing an averaging with respect to suitable fibered Haar densities
and connections.

3.2.1 Fibered Haar densities

In a semi-direct product groupoid G � K the source-fiber over x can be written as (G �

K )(−, x) ∼= G(−, φ(x))× K (−, x), and consequently, we have the following vector bundle
isomorphisms involving the Lie algebroids of G � K , G, K and H :

AG�K ∼= φ∗ AG ⊕ AK ∼= AH ⊕ AK .

In fact, it is possible to define fibrations and semi-direct products at the infinitesimal level,
and to show that the Lie functor preserves these structures ([17, Sects.4.4–5]), but we do not
need to go further than the above vector bundle isomorphisms here.

Recall that aHaar density in a Lie groupoid G ⇒ M is a density μ on the vector bundle
underlying its algebroid AG , which by pullback, yields a smooth family of densities {μx }x∈M

on the tangent bundles of the source-fibers T G(−, x) ∼= t∗ A. TheHaar density isnormalized
if supp(μx ) is compact for all x ∈ M and∫

G(−,x)

μx (g) = 1.

Every proper groupoid admits a normalizedHaar density, see [11,A.2] and references therein.
Let μG and μK be Haar densities in G and K respectively. Recalling that AG�K is

isomorphic, as a vector bundle, to φ∗ AG ⊕ AK , we can endow G � K with the fibered
density μG � μK , defined as the pointwise product between the pullback density of μG and
μK .

When working with semi-direct products between proper groupoids, the total groupoid is
also proper (cf. Lemma 2.3.1), hence it admits a normalized Haar density. However, in order
to apply Fubini’s Theorem we do need a fibered density, so the following lemma becomes
important:

Lemma 3.2.3 If μG and μK are normalized, then so does the fibered density μG̃ = μG �μK .

Proof If x̃ ∈ M̃ , then the support of (μG̃)x̃ on the s-fiber G̃(−, x̃) ∼= G(−, x) × K (−, x̃)

identifies with the product of the supports of μx
G and μx̃

K , so it is compact. Moreover, by
Fubini’s Theorem, we have∫

G̃(−,x̃)

μG̃(g, h) =
∫

G(−,x)×K (−,x̃)

μG(g) × μH (h)

=
∫

G(−,x)

[∫
K (−,x̃)

μG(g)

]
μH (h) = 1.

�
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3.2.2 Fibered connections

Recall that a connection on G ⇒ M is a linear unital cleavage for the fibration T G → G (cf.
Example 2.1.5 (d)), or in other words, a vector bundle map σ : s∗T M → T G over G such
that ds · σ = id and σ |T M = du. Connections are important for they allow us to extend a
given action G � E to a quasi-action over the tangent bundle T E , and ultimately to average
metrics.

Lemma 3.2.4 Given G � K
φ−→ G a split fibration, and given σ G and σ K connections on G

and K respectively, the formula

σ̃(g,k)(v) =
(
σ G

g (dφ(v)), σ K
k (v)

)

defines a connection for the semi-direct product G̃.

Proof The following is a good fiber product of manifolds, in the sense of [9, 2.2],

G̃

fp

π

φ

K

φs

G s M,

and therefore it induces a fiber product between their tangent bundles, that can be displayed
as a short exact sequence of vector bundles over G̃:

0 → T G̃ → φ∗T G ⊕ π∗T K → (φs)∗T M → 0.

Hence we can identify T G̃ with the kernel of the map (v,w) �→ ds(v) − dφ · ds(w). Since
ds · σ G

g (dφ(v)) = dφ(v) = dφ · ds · σ K
k (v), the above formula does define a vector bundle

map σ̃ : s̃∗T M̃ → T G̃. It is easy to check directly from the formula that ds̃ · σ̃ = id and
that σ̃ |T M̃ = du. �


When working with semi-direct products, we shall always use a connection constructed
as in this lemma, which we call a fibered connection.

3.2.3 Fibered averaging

Given φ : G̃ = G � K → G a split fibration between proper groupoids, we fix a fibered
normalized Haar density μ̃ and a fibered connection σ̃ , built out of data from G and K , as
in the previous discussion. The averaged metrics produced with them enjoy the following
fundamental property:

Proposition 3.2.5 Let p : (E, ηE ) → (B, ηB) be a Riemannian submersion, and assume
that G̃ � E and G � B are groupoid actions compatible with the projection p : E → B,
in the sense that p((g, k)e) = g(p(e)) for all (g, k) ∈ G̃ = G � K .

G̃

φ

� E

p

G � B
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Denote by ηE and ηB the cotangent averages of ηE and ηB with respect to G̃ and G, with

averaging data as above. Then p : (E, ηE ) → (B, ηB) is also Riemannian.

Proof We work at the level of cotangent bundles. The map p : (E, ηE ) → (B, ηB) is a
Riemannian submersion if and only if (de p)∗ : (T ∗

p(e) B, ηB) → (T ∗
e E, ηE ) is an isometric

embedding for each e ∈ E . After a choice of fibered connection, the fact that the groupoid
actions commute with the projections yields for any (g, k) ∈ G̃ = G � K and α, β ∈ T ∗

p(e) B:

μE ((g, k) · (de p)∗α, (g, k) · (de p)∗β) = μE ((d(g,k)e p)∗(g · α), (d(g,k)e p)∗(g · β))

= μB(g · α, g · β).

Integrating relative to a fibered normalized Haar density μ̃, and using Fubini, we conclude
that the cotangent average metrics satisfy:

μE ((de p)∗α, (de p)∗β) = μB(α, β).

In other words, (de p)∗ : (T ∗
p(e) B, ηB) → (T ∗

e E, ηE ) is an isometric embedding for every

e ∈ E , so p : (E, ηE ) → (B, ηB) is a Riemannian submersion. �

We are finally ready to prove our first main theorem:

Proof of Theorem 3.2.2 We will construct the 2-metrics η̃(2) on G̃(2) and η(2) on G(2) by
performing the gauge trick 3.1.4 simultaneously on G̃ and G.

Step 1: Construction of initial metrics η̃ on G̃ and η on G which are s-transverse and
compatible with the fibration.

We choose first a metric η on G which is s-transverse. To construct the metric η̃ on G̃, we
note that we have the following fiber products of manifolds

G̃
fp

fp

K

H M̃

G M .

Now chose a metric η̃M on M̃ which is φ(0)-fibered. Then construct a metric ηK on K that
is transverse to s : K → M̃ and induces the previous metric η̃M on the base. After that,
compute the fiber product metrics first on H = G ×M M̃ , and then on G̃ = H ×M̃ K . The
resulting metric η̃ will be both s-transverse and compatible with the fibration.

Step 2: Construction of metrics on the 3-fold products G̃[3] and G[3].
We can perform this step without any modification: we take the iterated fiber product

metrics η̃[3] and η[3] on G̃[3] andG[3]. These are 2-metrics on theLie groupoids G̃[2] ⇒ G̃ and
G[2] ⇒ G respectively, and they make the canonical projection G̃[2] → G[2] a Riemannian
submersion of Lie groupoids. To see this, note that by construction the map s : G̃ → M̃
preserves the horizontal distributions, or in otherwords, the horizontal lift yield a commutative
square:

Tg̃G̃
ds

ds

Tx̃ M̃

TgG Tx M .
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In particular ker dgs lifts to ker dg̃s, fromwhere the horizontal lift TaG[3] → TãG̃[3] preserves
the canonical orthogonal decomposition of the fiber product metrics, and is therefore an
isometry.

Step 3: Averaging of the metrics on G̃[3] and G[3].
This last step consists in averaging the two metrics on G̃[3] and G[3] with respect to the

right actions of G̃ and G, respectively. If one uses for G̃ a fiber averaging data, by Proposition
3.2.5, we conclude that the resultingmetrics descend to 2-metrics η̃(2) and η(2) on the original
groupoids G̃ and G and make the following diagram a commutative diagram of Riemannian
submersions:

G̃[3] G̃(2)

G[3] G(2)

Hence, η̃(2) and η(2) fulfill all the desired properties. �


4 Linearization of fibrations

In this section we show our main theorem, which asserts that any fibration between proper
groupoids can be linearized. We achieve this by applying the results in [11] on linearization
of groupoid by exponential maps, combined with our construction of Riemannian metrics
on split fibrations (Theorem 3.2.2), and relating any fibration with a split one by means of
Lemma 2.2.5. This is the cornerstone from which we will later derive as applications our
results on rigidity of Lie groupoids, metrics over stacks and the stacky Ehresmann’s Theorem.

4.1 Linearization of groupoids

Let G ⇒ M be a Lie groupoid and let S ⊂ M be a saturated submanifold, so the restriction
GS ⇒ S is a Lie subgroupoid. The linear localmodel ofG around S is the groupoid-theoretic
normal bundle ν(GS) ⇒ ν(S), whose objects and arrows are given by ν(S) = TS M/T S
and ν(GS) = TGS G/T GS , and structure maps are induced by differentiating those of G. A
linearization of G around S is a pair of open subgroupoids GS ⊂ U ⊂ G and GS ⊂ V ⊂
ν(GS), together with a groupoid isomorphism α : U

∼=−→ V .
Recall that a subgroupoidU ⊂ G is full if it contains every arrow of G between its objects.

We say that:

• G is weakly linearizable around S if there exists some linearization;
• G is linearizable around S if one can take U , V to be full subgroupoids;
• G is strictly linearizable if, in addition, U (0) and V (0) can be taken to be saturated.

These different notions may agree if G is “nice enough”: it is proved in [11] that any open
subgroupoid U can be shrinked to a full one when G is proper, and to a full saturated one
when G is source-proper. The various results on linearization of groupoids can be derived
from the following fundamental theorem:

Theorem 4.1.1 ([11]). Given (G ⇒ M, η(2)) a Hausdorff Riemannian groupoid and given
S ⊂ M a saturated embedded submanifold, the exponential maps arising from η define a
(weak) linearization of G around S.

123



Riemannian metrics on differentiable stacks 117

This follows by extending the usual method to build tubular neighborhoods on manifolds
using metrics. Given (M, η) a Riemannian manifold and S ⊂ M an embedded submanifold,
we say that an open S ⊂ U ⊂ T S⊥ is admissible if exp |U is an open embedding. The
existence of admissible opens for manifolds is a consequence of the following well-known
result: If S ⊂ M is an embedded submanifold and f : M → N is such that f |S is an
embedding and dx f is invertible for all x ∈ S, then f |U is an open embedding on some open
S ⊂ U . The key point here is to show global injectivity.

In order to extend this to groupoids, given a Riemannian groupoid G ⇒ M and an
embedded saturated submanifold S ⊂ M , we will say that an open subgroupoid GS ⊂ U ⊂
ν(GS) is admissible if (i) its objects U (0) form an admissible open, and (ii) the pairs of
composable arrows U (2) = U (1) ×U (0) U (1) are within the domain of the exponential map of
η(2). We then have:

Lemma 4.1.2 If G ⇒ M is a proper groupoid, S ⊂ M is saturated embedded and φ : G →
H is a Lie groupoid map such that φ|GS is an embedding and dgφ is invertible for all g ∈ GS

then φ|GU is an open embedding for some open S ⊂ U.

Proof By themanifold version of the lemma applied at the level of the arrows, we know of the
existence of an open GS ⊂ V ⊂ G over which φ(1) is an open embedding. By [11, Lemma
5.3] there exists an open S ⊂ U ⊂ M such that the restriction groupoid GU is included in V
(even though the statement of that lemma requires V to be a subgroupoid, this is not used in
the proof). The result follows. �


The following simple example shows that the properness assumption in the previous
lemma is crucial.

Example 4.1.3 Let G be the constant group bundle over R with fiber (R,+), and K ⊂ G
the subgroupoid with fiber Kt = (1/t)Z. The quotient G/K is a group bundle with fiber S

1

if t �= 0, and fiber R at t = 0. The projection G → G/K is an embedding at S = G0, but
not in any open S ⊂ U .

This way proper groupoids admit 2-metrics and full admissible open neighborhoods
around saturated embedded submanifolds, so they can be linearized by exponential maps.
More generally, the existence of admissible open subgroupoids holds for arbitrary Hausdorff
Riemannian groupoids (see Propostion 5.9 and Theorem 5.11 in [11], where the assumption
of Hausdorff is missing).

4.2 Linearization of fibrations

Let φ : G̃ → G be a submersion and S ⊂ M a saturated submanifold. Then S̃ = φ−1(S) ⊂
M̃ is a saturated submanifold as well, and we have an induced map dφ : ν(G̃ S̃) → ν(GS)

between the corresponding linear local models:

ν(G̃ S̃)

dφ(1)

ν(S̃))

dφ(0)

ν(GS) ν(S)

123



118 M. del Hoyo, R. Loja Fernandes

Definition 4.2.1 We say that φ is linearizable around S if there is a linearization α̃ of G̃
around S̃ = φ−1(S) and a linearization α of G around S forming a commutative square:

ν(G̃ S̃) ⊃ Ũ

dφ

α̃
Ṽ ⊂ G̃

φ

ν(GS) ⊃ U
α

V ⊂ G

As one could guess, the existence of compatible 2-metrics on G̃ and G provide a lineariza-
tion by exponential maps.

Proposition 4.2.2 Let φ : (G̃, η̃) → (G, η) be a Riemannian submersion between Rieman-
nian groupoids, let S ⊂ M be embedded saturated, and let S̃ = φ−1(S). Then the exponential
maps of η̃ and η define a linearization of φ around S.

Proof We know that the exponential maps restricted to an admissible open subgroupoid
defines a linearization. Hence, it is enough to construct admissible open subgroupoids Ũ and
U such that φ(Ũ ) ⊂ U , for then we obtain a linearization diagram:

ν(G̃ S̃) ⊃ Ũ

dφ

expη̃

Ṽ ⊂ G̃

φ

ν(GS) ⊃ U
expη

V ⊂ G

Wedenote by E the domain of the exponential map. Let us fix S ⊂ U (0) ⊂ ν(S) an admissible
open, define Ũ (0) = EM̃ ∩ φ−1(U (0)), and now consider

U (1) = ds−1
(

U (0)
)

∩ dt−1
(

U (0)
)

∩ EG ∩ ν(GS)

Ũ (1) = ds−1
(

Ũ (0)
)

∩ dt−1
(

Ũ (0)
)

∩ EG̃ ∩ ν(G̃ S̃) ∩ φ−1
(

U (1)
)

As in the proof of Theorem 4.1.1, U is an admissible open subgroupoid. Then Ũ is the
intersection of an admissible open subgroupoid with the preimage of an open subgroupoid,
and therefore, it is an admissible open subgroupoid too. �


According to Theorem 3.2.2 for a fibration φ : G̃ → G between proper Lie groupoids
to be Riemannian it is enough to be split. We do not know if this condition is necessary.
Nevertheless, the splitting condition is fulfilled in important examples, such as those we
will use in the subsequent sections to prove rigidity of compact groupoids, and the Morita
invariance of metrics. Moreover, one has the following stronger linearization result.

Theorem 4.2.3 Any fibration φ : G̃ → G between proper Lie groupoids is linearizable
around any saturated embedded submanifold S ⊂ M.

Proof We split the proof into several cases.
Case 1: φ admits a unital flat cleavage.
In this case φ is a split fibration so, by Theorem 3.2.2, it can be made Riemannian. By

Proposition 4.2.2, we can linearize φ using the exponential maps. Note that, since G̃ and G
are proper, we can take the open neighborhoods to be full.
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Case 2: φ admits a unital cleavage.
We use the canonical factorization φ = φ′ι, explained in Sect. 2.2. Since ι : G̃ → G̃ ′ is an

equivalence and G̃ is proper, G̃ ′ is proper as well. Endow the split fibration φ′ : G̃ ′ → G with
a Riemannian submersion structure. Identify G̃ with a subgroupoid of G̃ ′ via ι, and consider
the retraction r : G̃ ′ → G̃ given by the cleavage (see Lemma 2.2.5). If we set S̃′ = φ′−1(S),
by Proposition 4.2.2, there are admissible open neighborhoods giving a linearization of φ′
around S. Since the ambient groupoids are proper, we can take these admissible opens to be
full. By restricting the VB-groupoid ν(G̃ ′

S̃′) to G̃ S̃ we get a groupoid diagram as follows:

ν(G̃ ′
S̃′)|G̃ S̃

⊃ Ũ ′ expη̃′

dr

dφ′

Ṽ ′ ⊂ G̃ ′

φ′
r

ν(G̃ S̃)

dφ

G̃

φ

ν(GS) ⊃ U
expη

V ⊂ G

Here Ũ ′ = Ũ ′′|G̃ S̃
, where Ũ ′′ ⊂ ν(G̃ ′

S̃′) is an admissible open groupoid, Ṽ ′ = expη̃′(Ũ ′) is
an embedded subgroupoid of G̃ ′ containing G̃ S̃ , expη̃′ : Ũ ′ → Ṽ ′ is a groupoid isomorphism

and dr : ν(G̃ ′
S̃′)|G̃ S̃

→ ν(G̃ S̃) is an isomorphism. The square and the triangles commute. In

general, Ṽ ′ is neither open nor included in G̃.
Consider the composition

α = r ◦ expη̃′ ◦(dr)−1 : dr(Ũ ′) → G̃.

Note that α|G̃ S̃
is an open embedding and dgα is invertible for g ∈ G̃ S̃ . Moreover, dr(Ũ ′)

is a full subgroupoid of a proper groupoid, hence it is proper. Then, by Lemma 4.1.2, we
conclude that α defines an open embedding of groupoids on some full neighborhood Ũ of
G̃ S̃ , yielding a linearization of φ.

Case 3: φ is any fibration.
Recall that a cleavage for φ is a global section σ for φ̂ : G̃ → M̃ ′ = G ×M M̃ , and that

the cleavage is unital if it extends the section ũ : M̃ → G̃, where M̃ is seen as a submanifold
of M̃ ′ via x̃ �→ (idφ(x̃), x̃). Even when no such cleavage exists, we can still construct a
local cleavage. By this we mean an horizontal lift for arrows g that are closed to an identity,
in the form of a section σ : W → G̃ extending ũ, defined over a tubular neighborhood
M̃ ⊂ W ⊂ M̃ ′. One way to do this is by linearizing φ̂ around M̃ . Then the section σ gives
rise to a Lie groupoid retraction r : G̃ ′

W → G̃, with the same formulas as in Lemma 2.2.5,
now defined only over the restriction of G̃ ′ to W . The proof now follows as in the previous
case, by eventually shrinking the opens Ũ ′, Ṽ ′ so as to insure Ṽ ′ ⊂ G̃ ′

W . �

The classical Ehresmann’s Theorem states that proper submersions betweenmanifolds are

locally trivial. This can be seen as a combination of two facts: (i) submersions are linearizable,
and (ii) any open around the fiber of a proper map contains a tube, i.e., a saturated open
neighborhood of the fiber. In light of Theorem 4.2.3 and the tube principle 2.3.4, we have
the following groupoid version:
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Corollary 4.2.4 (Groupoid Ehresmann). Let φ : G̃ → G be a proper fibration between
proper Lie groupoids, and let S ⊂ M be a saturated submanifold. Then there exist open full
subgroupoids GS ⊂ U ⊂ ν(GS) and GS ⊂ V ⊂ G, and linearization maps:

ν(G̃ S̃) ⊃ (dφ)−1(U )

dφ

α̃
φ−1(V ) ⊂ G̃

φ

ν(GS) ⊃ U
α

V ⊂ G

5 Rigidity of compact groupoids

The theory developed so far, comprising some basic facts on fibrations and metrics within
the groupoid framework, is actually quite powerful. We illustrate this by deriving from it
some results on the structural stability of Lie groupoids. These results, that generalize classic
deformation theorems in the geometry of actions, fibrations and foliations, were obtained
recently in [6] by different, less direct, methods.

Recall that we have defined a family of Lie groupoids parametrized by M to be a fibration
(G̃ ⇒ M̃) → (M ⇒ M) over the unit groupoid. Given x ∈ M , we are interested in the
behavior of the fiber G̃x ⇒ M̃x when x varies.

Definition 5.0.5 Let G ⇒ M be a Lie groupoid and I a manifold with base point 0 ∈ I . A
deformation of G parametrized by I consists of a family of Lie groupoids

φ : (G̃ ⇒ M̃) → (I ⇒ I )

such that φ(1), φ(0) are locally trivial and the central fiber G̃0 is isomorphic to G. The
deformation is called proper if φ is a proper map (cf. Definition 2.3.3), and it is called trivial
if it is equivalent to the product family G × I → I .

The most relevant case is when I ⊂ R is an open interval, in which case we speak of
a 1-parameter deformation. Of course, we can also consider k-parameter deformations,
where I ⊂ R

k is some open set, and in general we can allow I to be any manifold. Note that
proper deformations ofG onlymake sensewhen G is compact. Also, in a proper deformation,
the conditions that φ(1) and φ(0) be locally trivial become automatic.

In a deformation G̃ → I , the fact that φ(1) and φ(0) are assumed locally trivial, allows us
to think that themanifolds G and M remain fixedwhile, when the parameter ε ∈ I varies, one
deforms the structure maps sε, tε, mε, uε, iε of the groupoid G. More precisely, we obtain
for each ε ∈ I a groupoid structure on the manifold G = G̃0 by conjugating with some
trivializations α(0) : M̃ → M × I and α(1) : G̃ → G × I . For instance, the source sε will be
given by

(sε(g), ε) = α(0) ◦ s̃ ◦ (α(1))−1(g, ε) g ∈ G, ε ∈ I .

Examples 5.0.6 (1) (cf. [11, Example 4.1.3]) Let G =]0,+∞[×R and consider a family of
groups φ : G × R → R, (x, y, ε) �→ ε, with multiplication:

(x1, y1)�ε(x2, y2) := (x1 + x2, y1 + (x1)
ε y2).

This is a non-trivial 1-parameter deformation of the 2-dimensional abelian Lie group,
since for t �= 0 the multiplication �ε is non-abelian.
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(2) Consider the family of group actions of R on T
2 = R

2/Z
2 given by:

x�ε(θ1, θ2) = (θ1 + x, θ2 + εx).

This can be seen as a non-trivial 1-parameter deformation φ : G × R → R, for clearly
the topology of the orbits varies with ε.

(3) Let F0 be the foliation on S
1 ×R given by the projection on R. The 1-forms εdr +dt and

dε define a foliation F on S
1×R×R tangent to the fibers of the projection (x, t, ε) �→ ε.

We can think of it as a one-parameter deformation of F0, that is non-trivial: if ε �= 0
the leaves of Fε are diffeomorphic to R. Writing R → S

1, x �→ eix for the universal
cover, the monodromy groupoid Mon(F) ⇒ S

1 ×R×R identifies with a quotient of the
groupoid arising from the submersion R × R × R → R × R, (x, t, ε) �→ (t + εx, ε). It
is a non-trivial 1-parameter deformation of Mon(F0) ⇒ S

1 × R.

Here we use our linearization results for fibrations to achieve a simple, geometric, proof
that proper families of Lie groupoids are trivial. This rigidity result was obtained indepen-
dently by M. Crainic, J. Mestre and I. Struchiner [6] by developing a deformation theory of
Lie groupoids based in cohomological methods.

Theorem 5.0.7 ([6, Theorem 7.4]). Compact Lie groupoids are rigid: a proper deformation
G̃ → I of a compact Lie groupoid G ⇒ M is locally trivial.

Proof By working locally we can assume I = R
k . Let G be a compact Lie groupoid and let

φ : (G̃ ⇒ M̃) → (Rk ⇒ R
k) be a deformation. Since φ is a proper fibration, it follows from

Corollary 4.2.4 that the family is linearizable over open sets U , Ũ = φ−1(U ). Observe that
the local linear model around the central fiber is just the trivial family G × R

k → R
k . The

result follows. �

Theorem 5.0.7 is a far-reaching generalization of several classic rigidity results in differ-

ential geometry, which one can deduce as immediate corollaries:

• the rigidity of Lie group structures on a compact manifold, implied by the deformation
theory of Lie algebras ([21]);

• the rigidity of smooth actions K � M of a fixed compact group on a fixed compact
manifold, obtained by Palais and Stewart ([23]).

The classical results on rigidity of compact fibrations, and more generally foliations,
obtained by Epstein-Rosenberg and Hamilton ([13,15]), also admit versions that can be
derived from our framework. This is elaborated in [12].

It is natural to wonder if rigidity holds more generally in the context of proper Lie
groupoids. In [25, Rmk 7.3], Weinstein raises the question of rigidity, first with fixed source
and target, and then in the general case. For the general case, the answer is negative as can
be shown by constructing an example of non-trivial deformation of proper group actions.

Example 5.0.8 Every smooth action ρ : G � R
n with at least one fix point, say 0, can be

easily deformed into a linear action, by setting ρε
g(x) := 1

ε
ρg(εx). Thus, the construction of

actions whose fixed locus is not diffeomorphic to a linear subspace is a source of examples of
non-trivial deformations [6,22]. For a concrete simple example, let Z2 act on R by reflection
in the origin and trivially on an exotic R

4
e . Then the induced diagonal action ρ : Z2 �

R × R
4
e � R

5 is not isomorphic to a linear action, for its fixed point sets is just R
4
e .

One can also use this example to produce s-proper foliation groupoids, with connected
s-fibers, which are not rigid. These examples show that rigidity does not hold in general for
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proper groupoids or for source-proper groupoids, not even if the source map is locally trivial.
However, using our methods, one can easily prove that deformations of proper groupoids
with prescribed source and target are trivial, a result conjectured by A. Weinstein and also
proved in [6] by less direct methods:

Theorem 5.0.9 ([6, Theorem 7.3]). A k-parameter deformation G × R
k → R

k of a proper
groupoid G that fixes the source and target is trivial.

Proof By hypothesis, the source and target of the total groupoid G × R
k ⇒ M × R

k can be
written as product maps s × id and t × id, though the multiplication, inversion and unit may
vary with the parameter. Let η(1) be any 1-metric on G ⇒ M (which exists, because G is
proper), and let η0 be the euclidean metric on R

k . The product metric η(1) × η0 is a 1-metric
on G̃ and the projection G × R

k → R
k is Riemannian. Hence, we can use it as an input for

the fibered gauge trick (see Theorem 3.2.2), and obtain a 2-metric η̃(2) on G̃ that induces the
metric η(0) × η0 on the units (cf. Lemma 3.1.5). It follows that ˜exp(0) : ν(M) → M × R

k

is globally defined and a diffeomorphism. Since G → M × M is proper, the same holds
true for ˜exp(1). Hence, we have a groupoid isomorphism ˜exp : ν(G) → G × R

k . Since
ν(G) � G × R

k is just the trivial fibration, the result follows. �


6 The stack perspective

A stack can be thought of as a generalization of the notion of space, which allows at the same
time for internal symmetries and singular behavior, of the type one often encounters in the
study ofmoduli spaces of geometric or algebraic structures.We refer for details to the original
monograph byGiraud [14], or themore recent survey [24]. The smooth version, discussed for
instance in [3,16,18], admits an alternative formulation, avoiding the classic paraphernalia,
under which differentiable stacks are Lie groupoids modulo Morita equivalences. We adopt
here this approach and we express our linearization results from the previous sections in the
language of stacks. Before we can formulate our results, will we need to develop some basic
notions related to maps between stacks, such as immersions and submersions, which do not
seem to be available in the literature.

6.1 Morita maps and differentiable stacks

Let us recall that a Lie groupoid map φ : G̃ → G is Morita if it is fully faithful and
essentially surjective. The first condition means that it induces a good fiber product of
manifolds ([9, 2.2])

G̃

fp

φ

(s̃×t̃)

G

(s,t)

M̃ × M̃
φ×φ

M × M,

while the second condition means that the following map is a surjective submersion:

G ×M M̃ → M (y
g←− φ(x), x) �→ y.

A Lie groupoid G ⇒ M defines an orbit stack [M/G]. Two Lie groupoids G, H are
Morita equivalent, or equivalently, yield isomorphic orbit stacks, if there is a third Lie
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groupoid G̃ and Morita maps G ← G̃ → H . By a differentiable stack we will mean the
orbit stack [M/G] of some groupoid.

In [9, Theorem 4.3.1] the notion of Morita map φ : G̃ → G was reformulated in terms of
the map induced between the orbit spaces φ̄ : M̃/G̃ → M/G, the morphisms between the
isotropy groups φx : G̃x → Gφ(x), and the morphisms between the normal vector spaces
to the orbits dxφ : νx (O) → νφ(x)(O). We need the following slight improvement, which
gives independent characterizations of fully faithful and essentially surjective maps.

Proposition 6.1.1 Let φ : G̃ → G be a Lie groupoid map. Then:

(i) φ is fully faithful if and only if φ̄ is injective, φx is an isomorphism for all x ∈ M̃, and
dxφ is a monomorphism for all x ∈ M̃.

(ii) φ is essentially surjective if and only if φ̄ is surjective and dxφ is an epimorphism for all
x ∈ M̃; in such a case, the map φ̄ is open.

Thus, φ is Morita if and only if φ̄ is a homeomorphism, and φx and dxφ are isomorphisms
for all x ∈ M̃.

Proof In [9, Theorem 4.3.1] it is proved the second statement and half of the first one. It only
remains to show that if φ̄ is injective and φx is a monomorphism for every x , then φ is fully
faithful. Under these assumptions, it is easy to see that the anchor maps define a set-theoretic
fiber product. To see that it is in fact a good fiber product of manifolds we need to show that
the subset

S = {(t(g), s(g), φ(g)) : g ∈ G̃} ⊂ M̃ × M̃ × G

is an embedded submanifold with the expected tangent space. Note that S can be written as
the intersection of the two embedded submanifolds

S1 = {(y, x, g′) : s(g′) = φ(x)} S2 = {(y, x, g′) : t(g′) = φ(y)}
and, from the assumption on the tangent spaces, the intersection is clean, namely Tx S =
Tx S1 ∩ Tx S2 for all x ∈ S. Item (i) now follows from the general fact that clean intersection
of embedded submanifolds is embedded, that we leave as exercise. �


The previous proposition gives some geometric intuition into the notion of orbit stack of
G ⇒ M : it is an enhanced version of the orbit space M/G, endowedwith smooth information
encoded in the normal representations Gx � νx (O).

A map φ : G̃ → G is aMorita fibration if it is Morita and it is a fibration. There is some
redundancy among these axioms: φ is a Morita fibration if and only if it is fully faithful and a
surjective submersion on objects, or equivalently, if and only if φ is a fibration whose kernel
is the submersion groupoid M̃ ×M M̃ ⇒ M̃ .

As a converse for the last statement, if G̃ ⇒ M̃ is a Lie groupoid and K ⇒ M̃ is a
subgroupoid that is proper and free (trivial isotropy), we can define a quotient groupoid
G ⇒ M by setting M = M̃/K and G = G̃/K × K , where K × K � G̃ is the action by left
and right multiplication. These are well-defined manifolds (see eg. [9, 2.3]), and the structure
maps descend to yield a Lie groupoid G ⇒ M , for which the projection G̃ → G is a Morita
fibration. This way we get the following:

Proposition 6.1.2 There is a 1–1 correspondence between Morita fibrations G̃ → G and
free proper wide subgroupoids K → G̃.

123



124 M. del Hoyo, R. Loja Fernandes

6.2 Stacky immersions, submersions and embeddings

Recall the discussion of homotopy fiber product in Sect. 2.2 (see also [9,19]). Given φ1 :
G1 → H and φ2 : G2 → H Lie groupoid maps, their homotopy fiber product G1×̃H G2 fits
into a square that commutes up to isomorphism of Lie groupoid maps, and that is universal
for that property.

G1×̃H G2

hfpφ̃2

φ̃1
G2

φ2

G1
φ1

H

We refer to φ̃1 and φ̃2 as thehomotopy base change ofφ1 andφ2, respectively. The homotopy
fiber product may not exist for general φ1 and φ2. The following is a sharp formulation of
a well-known result (see e.g. [9, 4.4]). It readily implies that Morita maps are stable under
homotopy base change.

Proposition 6.2.1 If φ1 is essentially surjective then the homotopy fiber product exists and
its homotopy base change map φ̃1 is a split fibration. Moreover, φ1 is fully faithful if and only
if φ̃1 is so.

Amap of stacks ψ/φ : [M̃/G̃] → [M/G] is given by a fraction of Lie groupoid maps,

(G̃ ⇒ M̃) (H ⇒ N )
φ

∼
ψ

(G ⇒ M)

where the first leg φ is a Morita map. We identify two fractions ψ/φ and ψ ′/φ′ if there
are Morita maps α, α′ and isomorphisms of maps φα ∼= φ′α′, ψα ∼= ψ ′α′. Maps of stacks
can be composed using homotopy fiber products. It is an instructive exercise to check that
composition is well-defined, associative, and that a Morita equivalence is the same as an
invertible map.

Immersion and submersion of stacks arise naturally, once we think of the orbit stack
[M/G] as a “smooth orbit space”, with the normal representation Gx � νx (O) playing
the role of the tangent space to [M/G] at the point [x] = O . We say that a stacky map
ψ/φ : [M̃/G̃] → [M/G] is a surjective submersion if ψ is essentially surjective, and a
injective immersion if ψ is fully faithful. It follows from Proposition 6.1.1 that surjective
submersions and injective immersions arewell-defined, and that they extend the usual notions
for manifolds. Using the canonical factorization φ = φ′ι from Sect. 2.2, one can find nice
representatives of such maps, showing that our definitions agree with those in [5, Def 2.9].

In order to define embedding of stacks we need first to define what the image is. Given
φ : G → H any Lie groupoid map, its essential image consists of the objects and arrows
that are in the image up to isomorphism, or more precisely, is the image of the associated
map φ′ : G ′ → H with respect to the factorization φ = φ′ι.

Proposition 6.2.2 The essential image of a fully faithful map φ : G → H is a full saturated
Lie subgroupoid i : I → H.

Proof In the canonical factorization φ = φ′ι the map ι is a categorical equivalence, hence
Morita. It follows from Proposition 6.1.1 that φ′ is fully faithful as well. The kernel K ′ of
φ′ is a well-defined embedded subgroupoid of G ′, for the manifold K ′ can be seen as the
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preimage of the units along G ′ → M ′ ×N H , and this is a surjective submersion (see Lemma
2.2.5). Since φ′ is also fully faithful, the kernel K ′ is free and proper. By Proposition 6.1.2,
we conclude that the quotient G ′/K ′ is a well-defined Lie groupoid, and that the quotient
map is Morita. Then the induced map G ′/K ′ → H is fully faithful and, by Proposition 6.1.1,
it is an injective immersion. Its image is clearly full and saturated. �


Wecan nowdefine the image of a stacky injective immersionψ/φ : [M̃/G̃] ��� [M/G] as
the orbit stackof the essential imageofψ .We say that a stackymapψ/φ : [M̃/G̃] ��� [M/G]
is an embedding if it is an injective immersion and the essential image of ψ is an embedded
subgroupoid. This extends the usual notion for manifolds. Our next lemma shows that this
is a good definition, for it does not depend on the groupoids presenting the stacks.

Lemma 6.2.3 Let φ : G̃ → G be a Lie groupoid fibration.

(i) The pull-back φ∗(GS) of a full (embedded) Lie subgroupoid GS is a full (embedded) Lie
subgroupoid.

(ii) If φ is Morita, the pull-back GS �→ φ∗(GS) defines a 1–1 correspondence between full
(embedded) Lie subgroupoids of G and G̃.

Proof If φ : G̃ → G is a fibration and S ⊂ M is saturated or embedded then the preimage
φ−1(S) is clearly saturated and or embedded. The first statement follows easily. Regarding the
second statement, if φ : G̃ → G is a Morita fibration and S̃ ⊂ M̃ is saturated, then it is also
saturatedwith respect to the action of the kernel K , for thefibers are included in the orbit. Since
the action K � S̃ is free and proper, we can construct the orbit manifold S = S̃/K � φ(S),
that comes equipped with a canonical map S → M . Note that (S̃ → S) → (M̃ → M) is a
map of principal K -bundles, thus S̃ is (embedded) submanifold if and only if S is so. �


A stacky map between the orbit stacks ψ/φ : [M̃/G̃] → [M/G] induces a continuous
map between the orbit spaces ψ/φ : M̃/G̃ → M/G (cf. Proposition 6.1.1). In the case of
proper groupoids, whose orbit stacks are called separated stacks, we have the following
characterization of embeddings:

Proposition 6.2.4 A map ψ/φ between separated stacks is an embedding if and only if it is
an injective immersion and ψ/φ is a topological embedding.

Proof It is easy to see that every stacky embedding satisfies this properties. So let us show
the converse. We will make a number of reductions to simplify the proof. To start with, by
Proposition 6.2.2, we can assume that φ = id and that ψ : (GS ⇒ S) → (G ⇒ M) is the
inclusion of a full saturated subgroupoid that induces a topological embedding in the orbit
spaces.

Given x ∈ S, by the linearization theorem, the restriction of G to some saturated open S ⊂
U ⊂ M is Morita equivalent to K � V ⇒ V , the action groupoid of a linear representation
of a compact group. Hence, by Lemma 6.2.3, we can assume that G is of this type, so we set
G = K × V , M = V and x = 0.

We claim that the action K � V restricts to a smooth action K � S, so that GS becomes
the action groupoid K × S. A priori, we have two different good fiber product of manifolds,
with a map α : GS → K × S relating them. They are depicted in the front and the back of
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the following cube:

GS

(t,s)
α

K × V

(ρ,π)

K × S

π

K × V

πS × S

π

V × V

π
S V

Since S is saturated, α is bijective. Since GS → K × S → K × V is an immersion, α is also
an immersion, and we conclude that α is a diffeomorphism. The restricted action K × S → S
can therefore be written as t ◦ α−1, and so it is smooth.

Finally, we show that S is embedded in V : given xn, x ∈ S such that lim xn = x in V , we
claim that convergence also holds in S. Consider the diagram:

S V

S/K V /K

The sequence x̄n = xn K has limit x̄ = x K in V /K and also in S/K , since the later is
embedded. Now, the vertical maps are proper, being the quotient maps of compact group
actions. Hence, there is a convergent subsequence {xnk } in S, whose limit must be x . We
conclude that lim xn = x in S and the result follows. �


It should be noted that if one drops the separated assumption then the previous charac-
terization of an embedding does not hold: there are examples of full saturated subgroupoids
that are not embedded but induce embeddings on the orbit space.

6.3 Metrics on differentiable stacks

Weare now ready to present our firstmain result on the geometry of stacks: aMorita invariance
of groupoid metrics, which leads to a notion of metrics on differentiable stacks. From the
stack perspective a Lie groupoid is the same as a submersion onto the orbit stack:

G ⇒ M � M → [M/G].
It is natural to expect that a 2-metric on a Lie groupoid G ⇒ M induces a metric on the

orbit stack [M/G] making M → [M/G] a Riemannian submersion. In order to make this
precise we need to understand how to relate 2-metrics on Morita equivalent groupoids. Note
that different 2-metrics, even on the same groupoid, may lead to the same metric on the orbit
stack, so we need to identify the resulting equivalence relation between 2-metrics.

By playing with homotopy fiber products, every Morita equivalence can be realized as a
fraction of split Morita fibrations. Thus we are led to consider the pullback and pushforward
of 2-metrics along Morita fibrations. The pullback of 2-metrics along Morita fibrations is
simpler:

Proposition 6.3.1 If φ : G̃ → G is a Morita fibration and η a 2-metric on G, then there
exists a 2-metric η̃ on G̃ that makes the fibration Riemannian.
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Proof Let V ⊂ T M̃ be the vertical bundle of φ(0) and let E ⊂ T M̃ be an Ehresmann
connection for φ(0), so T M̃ = E ⊕ V . Since φ is fully faithful the following are good fiber
products of manifolds:

G̃

fpφ(1)

q

φ(0)×φ(0)

q ′

M̃ × M̃

G M × M

G̃(2)

fpφ(2)

q

φ(0)×φ(0)×φ(0)

q ′

M̃ × M̃ × M̃

G(2) M × M × M .

It follows thatwe can identify the vertical bundles ofφ(1), φ(2) with the pullbacks ofV ×V and
V × V × V , and that E induces pullback connections E (1), E (2) on φ(1), φ(2). Hence, we can
define a metric η̃(2) by lifting to E (2) the 2-metric η(2), using in q∗(V ×V ×V ) the product of
some fixedmetric ηV in V , and declaring the decomposition T G̃(2) = E (2) ⊕q∗(V ×V ×V )

to be orthogonal. The resulting metric is φ(2)-fibred and a 2-metric on G̃, for the action
S3 � G̃(2) and the face maps G̃(2) → G̃(1) preserve the orthogonal decomposition, and the
metrics on each factor are invariant under S3 and transverse to the face maps. �


The pushforward of 2-metrics along Morita fibrations is harder. It is already clear in the
case of manifolds (unit groupoids), that not every 2-metric can be pushed forward, or in other
words, not every 2-metric on G̃ is φ-transverse. In order to fix this problem, given a 2-metric
on G̃ we slightly modify it so as to make it φ-transverse:

Proposition 6.3.2 If φ : G̃ → G is a Morita fibration with kernel K and η̃ is a 2-metric on
G̃, then the cotangent average metric η̃′ on K 3

� G̃(2) with respect to a product averaged
data is a 2-metric and descends to G, making φ Riemannian.

Proof This requires many of the techniques we have developed before. Consider the three
principal groupoid bundles, arising from Proposition 6.1.2:

θ(0) : K � M̃ → M θ(1) : K 2
� G̃ → G θ(2) : K 3

� G̃(2) → G(2)

Fix averaging data for K ⇒ M̃ and endow the products K 2, K 3 with the product averaging
data. The various projections among these groupoids make these averaging data fibered, the
sense of Sect. 3.2. Now replace the metrics η̃(2), η̃(1), η̃(0) by their cotangent averages with
respect to the above actions. It follows from Proposition 3.2.5 that the resulting metrics make
all the face maps Riemannian submersions. It is now easy to check that η̃(2) is a 2-metric that
descends through φ so as to make it a Riemannian submersion. �


Motivated by the previous result, we say that 2-metrics η1, η2 on a Lie groupoid G ⇒ M
are equivalent if for every G-orbit O ⊂ M the metrics induced on the normal bundle ν(O)

by the associated 0-metrics η
(0)
1 , η

(0)
1 coincide. It turns out that our pullback and pushforward

constructions are well-defined and mutually inverse modulo equivalence of metrics.

Theorem 6.3.3 A Morita equivalence yields a 1–1 correspondence between equivalence
classes of 2-metrics. In particular, if two Lie groupoids are Morita equivalent and one admits
a 2-metric, then so does the other.

Proof First, we observe that given a Morita fibration φ : (G̃, η̃i ) → (G, ηi ) that is Rieman-
nian with respect to two pairs of 2-metrics (i = 1, 2), then η1 is equivalent to η2 if and only if
η̃1 is equivalent to η̃2. This follows because the fibers of φ are included in the orbits, namely
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the orbits of G̃ are of the form Õ = φ−1(O), with O an orbit of G. Therefore, the induced
map on the normal vector bundles

dφ : ν(Õ) → ν(O),

is a fiberwise isometry for each set of metrics. This proves that the pullback ofmetrics defined
in 6.3.1 gives a well-defined injective map on classes of metrics.

To see that it is surjective, it is enough to show that, in the pushforward construction of
Proposition 6.3.2, the averagedmetric η̃′, which descends to ametric on the base, is equivalent
to the original metric η̃. For this, note that in ν(Õ) the metric η̃ is already G̃-invariant, and
since the K -action preserves the G̃-orbit Õ , the metric η̃ over ν(Õ) is also K -invariant, and
it remains the same after averaging. �


The previous theorem suggests a definition for Riemannian metrics over differentiable
stacks. We define a metric on the orbit stack [M/G] of a Lie groupoid G ⇒ M as an
equivalence class of a 2-metric η(2) on G. This notion of metric generalizes the usual notions
of metrics for manifolds and orbifolds, and allow us to perform Riemannian geometry on
more general differentiable stacks.

Examples 6.3.4 (1) (Manifolds) For a unit groupoid M ⇒ M , a 2-metric is the same as
a metric on M , and distinct 2-metrics are always inequivalent. It follows that for every
proper groupoidwithout isotropy equivalence classes ofmetrics are in 1:1 correspondence
with metrics on the orbit manifold. Hence, our definition extends the usual definition of
metric for manifolds.

(2) (Orbifolds) When G ⇒ M is a proper effective étale groupoid the orbit stack [M/G] is
an (effective) orbifold (cf. [19]). A 2-metric on G ⇒ M is determined by a G-invariant
metric on M (see [11, Example 4.1]). It follows that 2-metrics on G are equivalent if and
only if they induce the same orbifold metric on [M/G] in the usual sense on M/G.

(3) (Lie groups) In a transitive Lie groupoid G ⇒ M any two 2-metrics on G are equivalent.
Metrics on a Lie group, viewed as a stack, are trivial in the sense of our definition, which
does not detect any relevant information on the isotropies, and only sees the transverse
directions.

In the forthcoming paper [10] we develop the theory of these metrics over differentiable
stacks, exploring the corresponding notion of geodesics, and establishing a stacky version of
Hopf-Rinow theorem, among other results.

6.4 Tubular neighborhoods and stacky Ehresmann

A natural application of metrics on stacks is the construction of tubular neighborhoods of
substacks. We first need to show that the local linear model (normal bundle) of a stack around
an embedded stack is well-defined. This is a consequence of the following proposition.

Proposition 6.4.1 Let φ : G̃ → G be a Morita fibration, let S ⊂ M be a saturated embedded
submanifold, and let S̃ = φ−1(S). Then the induced map dφ : ν(G̃ S̃) → ν(GS) is a Morita
fibration.

Proof The map dφ is a surjective submersion on objects, so we only need to show that it is
also fully faithful. This follows from a standard argument on the commutative cube below:
since the left, right and front face are good fiber products of manifolds, then so does the
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bottom face.

ν(G̃ S̃) ν(S̃) × ν(S̃)

G̃ S̃ S̃ × S̃

ν(GS) ν(S) × ν(S)

GS S × S

�

We have seen in Sect. 6.2 that an embedding between differentiable stacks can be modeled

by the inclusion GS → G of a full saturated embedded subgroupoid GS ⇒ S into G ⇒ M .
We define the normal bundle ν([S/GS]) of the corresponding stack embedding as the orbit
stack of the groupoid ν(GS) ⇒ ν(S). The previous proposition shows that this is well-
defined. Notice that the orbit stack [S/GS] is also a substack of [ν(S)/ν(GS)] by means of
the zero section.

Having established a notion of normal bundle, we can easily make sense of linearization
of a stack around a substack, i.e., tubular neighborhoods. Let [M/G] be the orbit stack of
G ⇒ M and let [S/GS] be an embedded substack modeled by a full saturated embedded
subgroupoidGS ⇒ S. A tubular neighborhood of [S/GS] in [M/G] is a stack isomorphism
[U/ν(GS)U ] ∼= [V /GV ] between open embedded substacks of [ν(S)/ν(GS)] and [M/G]
that restricts to the identity on [S/GS].

A linearization of a groupoid G ⇒ M around a saturated submanifold S ⊂ M yields a
tubular neighborhood of the substack [S/GS] inside [M/G]. A priori, the groupoid lineariza-
tion is stronger than the existence of a stacky tubular neighborhood, for it involves groupoid
isomorphism rather thanMorita equivalences. However, these two notions are actually equiv-
alent.

Proposition 6.4.2 (Morita invariance of linearization). Given G ⇒ M a Lie groupoid and
S ⊂ M saturated embedded, the orbit stack [S/GS] admits a tubular neighborhood in [M/G]
if and only if G is linearizable around S.

This type of result on Morita invariance of linearization goes back to the original paper
[25]. The statement presented here generalizes (and is strongly inspired in) a result of [7].

For the proof, we follow the alternative approach to Morita equivalences by means of
principal bibundles. Its correspondence with generalized maps is explained, e.g., in [9]. We
will use the fact that a bibundle represents an actual Lie groupoid map if and only if it admits
a global section, and it represents the identity map if and only if it is isomorphic to the trivial

bundle G
s←− M

t−→ M .

Proof Supposte there exists a stacky tubular neighborhood, namely a Morita equivalence
between saturated neighborhoods GS ⊂ GU ⊂ G and GS ⊂ ν(GS)V ⊂ ν(GS), given by a
bibundle P , whose restriction to S is trivial:

s t

qU qV

u

⊂
α

S GS S

U ′ U P V
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The global section u : S → GS extends to a section α of qU defined in a neighborhood
S ⊂ U ′, for instance by linearizing qU around S. Writing P ′ = q−1

U (U ′) and V ′ = qV (P ′),
the bibundleU ′ ← P ′ → V ′ admits a section and is then given by a groupoidmapφ : GU ′ →
ν(GS)V ′ . This φ is Morita, and since φ(0)|S is invertible and dφ(0) is invertible over S, then
φ(0) is invertible over some open S ⊂ U ′′ ⊂ U ′. It follows that φ|GU ′′ : GU ′′ → ν(GS)V ′′ is
an isomorphism and therefore a linearization. �


As an immediate consequence of previous result and the linearization of proper Lie
groupoids by exponential maps we get the following:

Proposition 6.4.3 (Stacky Tubular Neighborhood). A metric on a separated stack [M/G]
yields a tubular neighborhood around any embedded substack [S/GS] by the exponential
maps.

Note that non-full subgroupoids do not define substacks, and therefore, weak linearization
of groupoids does not translate into tubular neighborhoods. In [10] we will address the issue
of the independence of the stacky exponential map with respect to the groupoid metric
representing it.

Givenφ : [M̃/G̃] → [M/G] a stacky surjective submersion, and given [S/GS] ⊂ [M/G]
a stacky injective immersion, it follows fromLemma 6.2.3 that the preimage φ−1([S/GS]) is
awell-defined substack of [M̃/G̃], actually represented by the restriction of G̃ to S̃ = φ−1(S),
and that it is embedded if [S/GS] is.

We say that φ is linearizable around [S/GS] if there are tubular neighborhoods α̃ :
[Ũ/ν(G̃ S̃)Ũ ] ∼= [Ṽ /G̃Ṽ ] and α : [U/ν(GS)U ] ∼= [V /GV ] such that φα̃ = αdφ.

Theorem 6.4.4 (Linearization of submersions). A stacky surjective submersion between sep-
arated stacks is linearizable around any embedded substack.

Proof Without loss of generality, we can suppose that the stacky surjective submersion is
represented by a fibration φ : G̃ → G between proper groupoids, and that the embedded
substack is represented by a saturated embedded subgroupoid GS ⇒ S. By Theorem 4.2.3,
φ is linearizable around S, and since G̃ and G are proper, we can take the groupoid opens Ũ
and U to be full, hence defining stacky tubular neighborhoods and a stacky linearization. �


We say that a stacky map ψ/φ is proper if it can be presented by a fraction on which φ

proper.

Corollary 6.4.5 (Stacky Ehresmann). Every stacky proper surjective submersion φ/ψ :
[M̃/G̃] → [M/G] between separated stacks admmits a tube linearization around any
embedded substack, namely one on which [Ũ/G̃Ũ ] = (dφ)−1[U/GU ] and [Ṽ /G̃Ṽ ] =
φ−1[V /GV ].
Proof We can model the stacky proper surjective submersion with a proper split fibration
φ : G̃ → G between proper groupoids, and apply the groupoid version of Ehresmann
Theorem 4.2.4. �


These two stacky results generalize and unify many of the linearization and rigidity results
about Lie groupoids and related geometries:

• When [M̃/G̃] and [M/G] are manifolds we recover the linearization of submersions and
the classical Ehresmann’s Theorem, respectively.
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• When [M̃/G̃] is a manifold, ψ/φ is a (proper) presentation of [M/G], which is the
same as an (s-)proper Lie groupoid G ⇒ M with orbit stack [M/G]. The Linearization
Theorem yields the Weinstein-Zung linearization theorem for proper Lie groupoids,
while the stacky Ehresmann’s Theorem yields the invariant linearization of s-proper Lie
groupoids. Special cases of these include the classic linearization of actions, fibrations
and foliations.

• When [M/G] is a manifold and ψ/φ is proper we recover the rigidity of compact Lie
groupoids (Theorem 5.0.7). This includes as special cases the rigidity for actions, fibra-
tions and foliations (see Sects. 5 and [12]).
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