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Abstract

Monarch butterflies are known for their spectacular annual migration in eastern North America,
with millions of monarchs flying up to 4,500 kilometers to overwintering sites in central Mexico.
Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter
along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct
evolutionary units, but genomic studies to support this notion are lacking. We used a tethered
flight mill to show that migratory eastern monarchs have greater flight performance than western
monarchs, consistent with their greater migratory distances. However, analyzing more than 20
million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between
eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic
diversity, and demographic analyses indicated similar effective population sizes and ongoing
gene flow between eastern and western monarchs. Gene expression analysis of a subset of
candidate genes during active flight revealed differential gene expression related to non-muscular
motor activity. Our results demonstrate that eastern and western monarchs maintain migratory
differences despite ongoing gene flow, and suggest that migratory differences between eastern
and western monarchs are not driven by select major-effects alleles. Instead, variation in
migratory distance and destination may be driven by environmentally induced differential gene

expression, or by many alleles of small effect.

Introduction

Seasonal migration is common in nature (Dingle, 2014) and allows many different animals to
escape deteriorating habitats, escape predators and parasites, and benefit from seasonally
available resources in multiple regions (Dingle, 1972; Alerstam, Hedenstrom & Akesson, 2003;
Alerstam, 2006; McKinnon et al., 2010; Altizer, Bartel & Han, 2011; Fricke, Hencecroth & Hoerner,
2011; Dingle, 2014). Migration is likely to be polygenic (Dingle, 1991) and studies have
demonstrated that genes involved in muscle development, energy metabolism and circadian
rhythm tend to show genetic divergence or differential expression patterns between migratory and
non-migratory individuals (McFarlan, Bonen & Guglielmo, 2009; O'Malley, Ford & Hard, 2010;
Postel, Thompson, Barker, Viney & Morris, 2010; Trivedi, Kumar, Rani & Kumar, 2014). While it
is clear that migration imposes selection for specific gene variants or transcription levels, the
interplay between animal migration and genome evolution remain understudied. Genomes may

be affected by migration in varying ways. Populations of the same species often vary in their
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migratory propensity, with some populations migrating and others not, or with populations
migrating over different distances and to different destinations. This could result in spatial or
temporal separation between different migrants, and consequently reduced gene flow and
increased genome-wide genetic differentiation, as found in beluga whales and noctule bats
(O'Corry-Crowe, Suydam, Rosenberg, Frost & Dizon, 1997; Petit & Mayer, 2000). Alternatively,
the use of common breeding or overwintering grounds can result in a lack of genome-wide
differentiation, even if differential selection acts on individuals during part of the year (Dallimer &
Jones, 2002; Dallimer, Jones, Pemberton & Cheke, 2003). An extreme example occurs in Pacific
salmon, in which the genetic differentiation between early (premature) and late (typical, mature)
migrants is restricted to a single gene, GREB1L (Prince et al., 2017); while selection acts on this
gene seasonally, large amounts of gene flow homogenize the remainder of the genome. Insights
into the genetic basis of animal migration thus require genome-wide studies, to identify genes that
are under selection against a potential background of variable gene flow (Bensch, Andersson &
Akesson, 1999; Liedvogel, Akesson & Bensch, 2011).

Eastern North American monarch butterflies undergo one of the most well-known and spectacular
migrations of the animal kingdom (Gustafsson, Agrawal, Lewenstein & Wolf, 2015; Reppert & de
Roode, 2018), with up to hundreds of millions of butterflies migrating up to 4,500 km to reach their
overwintering sites in central Mexico (Urquhart & Urquhart, 1978; Brower, 1995; Flockhart et al.,
2017). Monarch caterpillars are specialist feeders of milkweed host plants, which die back
seasonally in North America, thereby preventing monarchs from breeding throughout the year. In
the fall, developing monarch caterpillars respond to changing temperature, shortening day length
and senescing host plants to enter a state of reproductive diapause (Goehring & Oberhauser,
2002), which enables them to survive the 6-8 months that it takes to migrate south, overwinter,
and re-migrate north in the spring (Herman & Tatar, 2001). Prior to spring re-migration,
overwintering monarchs complete reproductive development and mate at the Mexican
overwintering sites or in their recolonized breeding areas (Herman, Brower & Calvert, 1989).
Monarchs recolonize the southern parts of the United States and lay eggs on re-emerging
milkweed, and 2-4 successive generations of reproductive monarchs recolonize their entire 4.5

million km? breeding range (Flockhart et al., 2013).

While monarchs are best known for this long-distance migration from eastern North America to
Mexico, monarchs that inhabit breeding grounds west of the Rocky Mountains migrate shorter

distances to overwinter in groves of Eucalyptus and native conifers along California’s Pacific
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Coast (Nagano et al.,, 1993; James et al., 2018). Whereas eastern monarchs may fly over
4,500km to reach the Mexican overwintering sites, western monarchs reach the California Coast
by flying as little as 500km, with the greatest recorded distances being 1,600km (Yang, Ostrovsky,
Rogers & Welker, 2016). Whether these dramatic differences in migration distance are the result
of differential selection, or plasticity from genotype by environment interaction remains unknown.
Eastern and western North American butterflies have divergent wing morphology (Altizer & Davis,
2010; Freedman & Dingle, 2018), and it is often assumed that they form distinct genetic
populations (Brower et al., 1995; NatureServe, 2019). However, observational studies (Brower &
Pyle, 2004) and limited allozyme and microsatellite studies (Shephard, Hughes & Zalucki, 2002;
Lyons et al., 2012) have indicated large amounts of genetic exchange between eastern and
western monarchs. This lack of genome-wide genetic differentiation suggests that migratory
differences may instead be driven by restricted loci or differential environment-induced gene
expression (Liedvogel et al., 2011). Here, we compare flight performance of eastern and western
monarchs, carry out an analysis of 43 genomes (Fig. 1), and measure the expression of a small

number of candidate genes in eastern and western monarchs during flight trials.

Materials and Methods

Flight trials

We collected eastern monarchs (n=32; 17 male, 15 female) from migratory stopover site St.
Marks, FL in October 2016 and western monarchs (n=31; 16 male, 15 female) from an
overwintering site near Oceano, CA in December 2016 to perform flight trials. All butterflies were
housed in overwintering-like conditions in an incubator to ensure they were in the same
overwintering state during flight trials in December 2016. We used two flight mills as described
in Bradley et al 2005 (Bradley & Altizer, 2005) and an ASCO PS-2000 datalogger (Pasco
Scientific, Roseville, CA, USA) to allow eastern and western monarchs to fly in continuous circles
of 4.27 m circumference. We recorded the time elapsed between each rotation (to measure
instantaneous speed), the cumulative flight time, and the body mass of the monarch pre- and

post- flight trial.

Flight trials were performed in a laboratory space maintained at 25°C and controlled for light
conditions. One day prior to flight trials, monarchs were removed in groups and a steel wire

attachment (32 gauge, 9 cm long) was glued to the dorsal side of the thorax using rubber cement.
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Following wire attachment, monarchs were held in cylindrical mesh flight cages (diameter= 0.38
m, height= 0.56 m) to allow acclimation to the wire and for free feeding. We calculated five
measures of flight performance: flight duration, distance, loss of body mass relative to total
distance flown, power, and speed. During the flight trials, we allowed monarchs to fly for 30
minutes with trials ending prior to the 30 minute maximum if monarchs suspended flight for more
than 10 seconds on 3 separate occasions. Flight trials were considered unsuccessful if the
monarch refused to fly at least one full rotation on the flight mill. We then measured flight
performance for the 29 western monarchs (14 male, 15 female) and 27 eastern monarchs (14
male, 13 female) which successfully completed flight trials. Distance was measured as total
distance in meters of a flight trial. Loss of body mass was calculated as the change in body mass
(massinitial - Massiinal) divided by distance flown (in m), then log-transformed. Power was calculated
as (1/2*mass*velocity?) divided by time (in s). Speed (m/s) was averaged across 2-minute

intervals for the duration of each flight in order to calculate the average flight speed.

We also measured morphological traits relevant to flight, including wing size and wing shape. We
measured these traits to determine if any differences in flight behavior were due to differences in
wing morphology. Following existing protocols (Altizer & Davis, 2010; Li, Pierce & de Roode,
2016), forewings were scanned on a flatbed scanner and the Fovea Pro plugin (Reindeer
Graphics, Inc., Asheville, NC) for Adobe Photoshop was used to measure forewing area, length,
breadth and perimeter. From these measurements we calculated aspect ratio, by dividing length
by breadth of the forewing, and roundness, by using the equation 4*m*area/ (perimeter)? (Altizer
& Davis, 2010). Using Principal Component Analysis (PCA), forewing area, length, and width
were reduced into one variable (PC1) to measure forewing size, while forewing aspect ratio and

roundness were reduced to a second variable (PC2) to measure forewing shape.

We used analysis of variance (ANOVA) in R 3.1.3 (R Development Core Team, 2012) to test for
differences in PC1 (wing size) and PC2 (wing shape) between eastern and western monarchs.
We used analysis of covariance to test for differences in flight duration, flight distance, loss of
body mass relative to total distance flown, flight power, and flight speed between eastern and
western monarchs. In these analyses, we included butterfly sex as an additional explanatory
variable and included PC1 (wing size) and PC2 (wing shape) as covariates. Significance of terms
in analyses of variance and covariance was assessed by model simplification followed by model
comparison using the command “anova” (Crawley, 2007). Models were plotted to verify the

assumptions of homogeneity of variance and normality of errors (Crawley, 2007).
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Genome sequencing

We used publicly available re-sequencing data from 14 eastern monarchs (8 males, 6 females)
from Zhan et al. 2014 (Zhan et al., 2014), which were collected in 2007-2009, and 30 newly re-
sequenced western monarchs (15 males, 15 females), which were collected in January 2015
(Table S1). These numbers far exceed the number of genomes required to provide high power
estimates of genetic differentiation (Willing, Dreyer & Van Oosterhout, 2012). The eastern
monarchs from Zhan et al. were collected among multiple stopover points along the east coast
and the Mexican overwintering sites (Fig. 1). Western monarchs were sampled from three
overwintering locations along the California Coast: Big Sur, Oceano, and Carpinteria (Fig. 1). The
newly sequenced western samples were sequenced on an lllumina HiSeq2000 platform. Paired-
end libraries were prepared using an Illlumina paired-end library kit. We combined 10 samples in
a sequencing lane (2 x 100 bp) to generate 12X depth of coverage on average (Table S1).

Sequences have been submitted to European Nucleotide Archive (ENA) project PRIEB33413.

Read mapping and genotyping

Reads obtained from sequencing were trimmed to remove adapter sequences and bases with
Phred quality less than 20 using Cutadapt v. 1.14 (Martin, 2011). Trimmed reads were then
mapped to the publicly available monarch reference genome assembly (Zhan & Reppert, 2012),
using BWA-MEM v. 0.7.12 (Li & Durbin, 2009). The resulting alignment files were then sorted
using SAMtools v. 1.2 (Li et al., 2009). Indel realignment, base recalibration and variant
recalibration were performed using GATK v. 3.8.0 (McKenna et al., 2010). Variants were called
for each sample using the Haplotypecaller module in GATK v. 3.8.0 and were then genotyped
using the GenotypeGVCFs module in GATK v. 3.8.0 (McKenna et al., 2010). High confidence
variants with variant quality score greater than 80 were selected to recalibrate variant quality
scores using VQSR filtering in GATK v. 3.8.0 (McKenna et al., 2010). Indels and variants within
the repeat regions of the reference genome were then removed using Vcftools v. 0.1.15 (Danecek
et al., 2011). One sample (PL3) with the lowest mapping success and genome-wide depth was

removed prior to downstream analysis. Our bioinformatic pipeline is visualized in Fig. S1.

Population structure analysis
SNPs that were covered in all the individuals were used to estimate the genetic structure of North
American monarchs. Principal component analysis (PCA) of the SNPs was performed using

SNPRelate (Zheng et al., 2012) in the R/Bioconductor package. Cross validation error rates were
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checked using ADMIXTURE (Alexander, Novembre & Lange, 2009) for ‘K’ values ranging from 1

to 5 to determine the total number of populations in the dataset.

Window-based population genetic analysis

To understand genetic differentiation in monarchs, we calculated various population genetic
statistics using Vcftools v. 0.1.15 (Danecek et al., 2011) for individual populations and for pairwise
population comparisons. To reduce the number of false positives, we only considered SNPs that
were covered in all individuals in the population for the population-based statistics and SNPs that
were covered in all individuals in both populations in pairwise comparison statistics. Nucleotide
diversity (6r) and Tajima's D (Tq) were calculated in windows of 10,000 base pairs (10kb) across
the genome using Vcftools v. 0.1.15 (Danecek et al., 2011). Western monarchs were down-
sampled to match the number of eastern samples (8 males and 6 females) to calculate Tajima's
D (Tq) and allele frequencies using Vcftools v. 0.1.15 (Danecek et al., 2011). We calculated
genetic differentiation (Fsr) for each site using Vcftools v. 0.1.15 (Danecek et al.,, 2011) and
averaged across the genome in windows of 10kb. To ensure that our conclusions were not driven
by genomic window size, we also calculated genetic differentiation (Fsr) for different window sizes
(100 bp, 500 bp and 5,000 bp) to verify our findings. Absolute divergence (Dxy) was calculated in
windows of 10kb across the genome using the allele frequencies. Windows with less than 10% of
total sites covered were filtered out to eliminate extremely high values. Fixed, shared and private
polymorphisms were calculated between eastern and western monarchs using the allele
frequencies. Fst values were Z-transformed (Fst* = (Window Fst / Genome Average Fst) /
Standard deviation of Genome wide Fsr) to obtain the relative genetic differentiation in the
windows to the genomic mean to identify outlier windows. The top 1% of the Fst* values were
selected as the genetic differentiation outliers and the bottom 1% Tajima's D values were selected

as Tajima's D outliers.

Chromosome assignment

The current publicly available monarch genome used in this study consists of 5,397 scaffolds with
an N50 value of 715.6 kB. These scaffolds were assigned to chromosomes using coverage-based
chromosome assignments produced by Mongue et al. (Mongue, Nguyen, Volenikova & Walters,
2017). Fst, 65, T4 and Fst” outliers were calculated for autosomes, Z-chromosome, and neo-Z

chromosomes separately.
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Genome-wide phylogenetic relationships

We used SAGUARO (Zamani et al., 2013) to investigate genome-wide phylogenetic relationships
between samples, and to identify differentiated genomic regions and regions that may have
introgressed between populations. We used the program VCF2HMM, implemented in
SAGUARO, to convert VCF file to HMM format, and implemented this file to analyze phylogenetic

patterns across autosomes and the Z chromosome.

Genetic diversity and demographic history

Genetic diversity (6r) was calculated for different site categories across the genome based on the
publicly available genome annotation in MonarchBase (Zhan & Reppert, 2013). This was done
separately in windows of 10kb for eastern and western monarchs. Genomic positions were

categorized as intergenic, intronic, 1, 2", 3 codon positions and 4-fold degenerate sites (4D).

We used two different approaches to analyze demographic history. First, we used a diffusion

approximation method of dadi (Gutenkunst, Hernandez, Williamson & Bustamante, 2010) to

investigate the joint demographic history of eastern and western monarchs. For this analysis we
only considered autosomal scaffolds as Z chromosomes have different effective population sizes
and a low density of SNPs, which could affect the resulting site frequency spectrum. We

generated a Two-Dimensional Joint Site Frequency Spectrum (2D-JSFS) of eastern and western

monarchs using the “dadi.Misc.make_data_dict_vcf’ function provided with dadi. We scanned for

the likelihoods of a set of 15 demographic models to address the following questions (Fig. S9):
(1) have eastern and western monarchs diverged in the past; (2) if there is divergence, is there
migration between the two populations; (3) if there is migration, what is the rate of migration; (4)

what is the most likely scenario to explain changes in effective population size? We simulated 4

two-population models provided with dadi (Fig. S9-L to S9-O) and 11 two-population models

provided with dadi_pipeline (github.com/dportik/dadi pipeline) (Portik et al., 2017). We used log

likelihoods to find the most likely model that can explain the joint site frequency spectrum of
eastern and western monarchs. We performed parameter optimization by running 100 iterations
performed in a total of 4 rounds (10, 20, 30 and 40 iterations for the first, second, third and fourth
round, respectively). Parameters with the highest log-likelihood were used as starting parameters
of the next round. We used the Broyden Fletcher Goldfarb Shanno (BFGS) algorithm to optimize

the parameters. Results of all 16 optimized models were summarized using
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“Summarize_Outputs.py” provided with “dadi_pipeline”. This script extracts the iterations with the
highest log-likelihood and compares them between models. The model with the highest log-
likelihood score and the lowest Akaike Information Criterion (AIC) was considered the most likely
model to explain the 2D-JSFS.

As a second approach to understand the demographic history of eastern and western monarchs,
we analyzed the genome-wide patterns of Tajima's D (Tp) calculated in windows of 10 kb using
Vcftools v. 0.1.15 (Danecek et al., 2011) to determine if eastern and western monarchs have

different demographic histories.

Coverage-based SNP filtering

As we used previously sequenced genomes as well as new ones, sequencing coverage in the
dataset varied from 7X to 25X. To remove coverage bias in our analysis we only used positions
that are covered in all individuals within a population to calculate site frequency spectrum and
population genetic statistics. To calculate genetic differentiation (Fst) and absolute divergence
(Dxy) we used positions covered in all individuals considered in the comparison. Filtering was
done equally on polymorphic and non-polymorphic sites. We calculated nucleotide diversity for
different coverage filters for all individuals (1X to 7X) to verify that the genome-wide nucleotide

diversities are unbiased to coverage (Fig. S2).

Gene expression analysis

Eastern (n=10; 5 males, 5 females) and western (n=10; 5 males, 5 females) monarchs were
randomly selected following the flight trials described above. They were subsequently flown on
the flight mill for an additional two minutes and then immediately frozen in liquid nitrogen. Tri
Reagent (Sigma) was used to extract RNA from the thorax of frozen samples. cDNA was
synthesized from 600ng of total RNA using High Capacity cDNA Reverse Transcription kit

(Thermofisher) according to manufacturer instructions.

Gene expression of six candidate genes was quantified relative to two housekeeping genes: 18S
and 28S (Pan et al., 2015). The six candidate genes included two dynein genes (DPOGS201379,
DPOGS211203) and a myosin gene associated with motor activity (DPOGS200868) that were
related to monarch migration phenotypes in the genomic analysis by Zhan et al. (Zhan et al.,
2014). We also measured expression of a neurotransmitter gated ion channel (GABA receptor)

gene (DPOGS202675) that is involved in the invertebrate neuromuscular system (Lummis, 1990;
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Schuske, Beg & Jorgensen, 2004), and a putative protein (DPOGS211604) whose homolog was
found to be expressed in the wing disc of the silkworm (Mita et al., 2003). Finally, we quantified
expression of a myosin heavy chain gene associated with non-muscular motor activity
(DPOGS215054) that controls flight in fruit flies (Wells, Edwards & Bernstein, 1996). For each
monarch, we carried out three replicate PCR reactions for 18S, 28S and each of the six candidate

genes. Expression of candidate genes relative to 18S and 28S was calculated as:

relative expression — 27(CT,ccmdidatc gene—(Ct 1gs+CT,285)/2)

Gene-specific primers were used in PCR reactions (20ul) containing 7ul of ddH,0, 10ul of

2xSYBR Green MasterMix (Bio-Rad), 1ul of each specific primer (10mM), and 1ul of first-strand
cDNA template. The gPCR program included an initial denaturation for 3 min at 95°C followed
by 40 cycles of denaturation at 95°C for 10s, annealing for 30s at 55°C, and extension for 30s at
72°C. For melting curve analysis, a dissociation step cycle (565°C for 10s, and then 0.5°C for 10s
until 95°C) was added. All primers were tested for efficiency prior to use, and only primer pairs
with the same efficiency as the primers for housekeeping genes were used. Primers for 18S and
28S were obtained from Pan et al. (Pan et al., 2015). Candidate gene-specific primers used
were as follows (F, forward primer; R, reverse primer): DPOGS201379-F, 5'-
CTGACCAGCACGAAGAGAAA-3’; DPOGS201379-R, 5- GACAATATCCCGGCGAATAGAA-3’;
DPOGS211203-F, 5-GATGCGATTGCTGCATTGAATA-3’; DPOGS211203-R, 5'-
ATACCGCTGCCATCACTAAC-3’; DPOGS202675-F, 5-CTCCCTTGTCGTGATGTTGT-3’;
DPOGS202675-R, 5-GTCGGCTCTCAATCCAGTAAA -3’; DPOGS200868-F, 5'-
TCGGAACAGGAGGAGTATCT-3’; DPOGS200868-R, 5-GCCTCTATGCCTCTCTTCTATG-3’;
DPOGS215054-F, 5-GTCGCTGACTTCTCCATCATAC-3’; DPOGS215054-R; 5'-
GTTCTCGTTCAGAGGATCCATATT-3’; DPOGS211604-F, 5'-
CAACGAGGAAGCCAGACTAAA-3’; DPOGS211604-R, 5-TGTGGCATTGGTCTTCCATAA-3'.

Due to homogeneity-of-variance and error normality assumptions, we could not use linear models
to analyze gene expression. Instead, we used one-tailed Mann-Whitney U tests in R 3.1.3 (R
Development Core Team, 2012) to determine whether gene expression was higher in eastern

than western monarchs.

10
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Results

Flight performance

When testing monarchs on a tethered flight mill (Fig. 2A), eastern monarchs flew longer
(F154=8.81, P=0.004) and thereby realized greater flight distances than western monarchs (Fig.
2B, C; F154=4.56, P=0.037). In contrast, western monarchs flew with greater power than eastern
monarchs (Fig. 2D; F154=6.00, P=0.018), which is expected in butterfly populations adapted to
shorter flight distances (McKay, Ezenwa & Altizer, 2016). Female and male butterflies did not
differ in flight duration (F151=0.052, P=0.82), flight distance (F151=0.10, P=0.75), or power
(F151=0.007, P=0.93). These differences in flight performance between eastern and western

migratory monarchs correspond with their drastically different migration distances.

We also found significant differences in wing morphology of eastern and western monarchs. Wing
morphology measurements showed that eastern monarchs had larger wings than western
monarchs (PC1: F15=11.0, P=0.002), confirming previous studies (Altizer & Davis, 2010;
Freedman & Dingle, 2018). Wing morphology is an important determinant of migration in many
winged animals (Altizer & Davis, 2010) and migratory monarchs have larger forewings than non-
migratory monarchs (Dockx, 2007; Altizer & Davis, 2010; Dockx, 2012; Li et al., 2016; Yang et
al., 2016; Flockhart et al., 2017). In contrast, eastern and western monarchs did not differ in wing
shape (PC2: F154=2.05, P=0.16). Additionally, wing size and shape did not significantly affect
flight duration (PC1: F153=1.40, P=0.24; PC2: F15,=0.34, P=0.56), flight distance (PC1: F153=1.73,
P=0.19; PC2: F15,=0.82, P=0.36) or flight power (PC1: F15=0.47, P=0.50; PC2: F15,=1.68,
P=0.20). We also found no differences in wing size (PC1: F153=0.042, P=0.84) and shape (PC2:

F153=1.42, P=0.24) between females and males (within location).

Average speed did not vary significantly between eastern and western monarchs (F154=0.001,
P=0.98) or between male and female butterflies (F151=0.20, P=0.66); moreover, wing size and
wing shape did not affect average speed (PC1: F15=1.05, P=0.31; PC2: F15=1.81, P=0.19).
Similarly, average weight loss during flight trials did not vary between eastern and western
monarchs (F154=0.0007, P=0.98), and also was not affected by sex, wing size, and wing shape
(Sex: F151=0.84, P=0.36; PC1: F15:=0.002, P=0.97; PC2: F15,=1.42, P=0.24).

11
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Population structure and genetic differentiation

The observed differences in flight performance may suggest strong population differentiation, but
our genomic analyses revealed that this is not the case. The GATK genotyping pipeline resulted
in a total of 32.2 million SNPs. A total of 25.9 million SNPs passed quality control filtering to be
used for further analysis. A total of 20.9 million SNPs that were covered in all 43 samples were
used for Principal Component Analysis (PCA) and ADMIXTURE (Alexander et al., 2009) analysis
to determine the genetic structure in the dataset. The PCA generated using the SNPrealte (Zheng
et al., 2012) package showed no evidence for clustering of eastern and western monarchs (Fig.
3), and determined that all samples in the data set belong to one population with K=1 showing
the lowest error rate (Fig. 3; Table S2). While eastern and western monarchs could not be

separated, three samples from Big Sur, California, seemed to cluster.

Genome-wide genetic differentiation (Fst) and absolute divergence (Dxy) between eastern and
western monarchs, calculated in windows of 10kb, were extremely low (Table 1, Fig. 4). Genetic
differentiation between monarchs from the three western overwintering sites was likewise low
(Tables 2, S3; Fig. S3). The genome-wide differentiation landscapes of eastern and western
monarch comparisons were highly correlated with the genome-wide differentiation landscapes of
the comparisons between western monarchs from different overwintering sites (Fig. S4). The
maximum values of Fsrin all comparisons were also extremely low (Table S3), as was the genetic
differentiation within genes (eastern vs. western Fst cenes)= 0.0008 + 0.0004). Fst* window outliers
were calculated separately for autosomes, Z-chromosome and neo-Z-chromosome, and were
very low (Table 3). The extremely low maximum measures of genetic differentiation and the top
1% Fst*window outliers suggest that there are no regions in the genome with reduced gene flow.
This is in contrast with many other species, where islands of differentiation appear to be common
(Jiggins, Naisbit, Coe & Mallet, 2001; Martin et al., 2013; Cruickshank & Hahn, 2014; Nadeau et
al., 2014; Talla, Kalsoom, Shipilina, Marova & Backstrém, 2017; Irwin et al., 2018). These results
were not driven by window size, as low differentiation was also found for window sizes of 100,
500 and 5,000bp (Fig. S5, Table S4).

In line with these results we also did not identify any fixed nucleotide differences between eastern

and western monarchs (Fig. 5). The majority of polymorphisms are shared between eastern and

western monarchs, while similar proportions of private polymorphisms are observed in both

12



394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

eastern and western monarchs (Fig. 5). This supports the conclusion that there are no regions in

the genome with restricted gene flow or islands of genetic differentiation.

Genome-wide phylogenetic relationships

SAGUARO (Zamani et al., 2013) analysis resulted in a total of 11 possible phylogenetic
relationships across the genome (Fig. S6). None of the phylogenetic relationship matrixes could
separate eastern and western monarchs, consistent with the lack of differentiation based on PCA
and ADMIXTURE analysis. The Z-chromosome showed a different pattern of phylogenetic
relationships compared to the autosomes (Fig. S7, Table S5), with an over-representation of
certain cacti (Cactus 0,1,7,8, and 10). As with our ADMIXTURE results, while eastern and western
monarchs could not be separated, three monarchs from Big Sur, California, did appear to cluster
(Fig. S6).

Genetic diversity and demographic history

Levels of genetic diversity were calculated in 10kb windows separately for eastern and western
monarchs. Genomic windows were classified into autosomes, Z chromosome and neo-Z
chromosome. Levels of genome-wide genetic diversity of eastern and western monarchs were
essentially identical (Fig. 6A, S8, Tables 1, S6), with the genome-wide genetic diversity landscape
of eastern and western monarchs showing an almost perfect correlation (Fig. S8). This provides
further evidence for a lack of genome-wide genetic differentiation. The Z chromosome had a lower
nucleotide diversity than the autosomes, and the neo-Z chromosome had an intermediate
nucleotide diversity, reflective of their effective population sizes (Table 1). The neo-Z chromosome
was identified to be an ancestral autosome but fused to the Z chromosome in the monarch
butterfly (Gu et al., 2019). The dosage compensation of the neo-Z chromosome segment looks
more similar to the autosomes than the ancestral Z chromosome (Gu et al., 2019). Consistent
with this finding, we found that the genetic diversity of the neo-Z chromosome segment is higher
than the ancestral Z-chromosome (Table 1). In line with genetic diversity (6,), genome-wide
Tajima's D was also highly similar in eastern and western monarchs (Table 1; Fig. 4, 6B)
suggesting that eastern and western monarchs have a similar demographic history. The negative
genome-wide Tajima’s D in both eastern and western monarchs indicates a recent recovery from
a past bottleneck. We found a total of 128 common Tajima's D outlier windows between eastern
(out of 223 windows) and western (out of 202 windows) monarchs (Table S7). We did not identify

any common windows between the Tajima's D outliers and genetic differentiation outliers,
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suggesting that the low genome-wide genetic differentiation is the effect of consistent gene flow

between these two groups rather than random genetic drift.

We used dadi to scan the likelihoods of 15 models in total to find the best demographic model to

explain the 2D-SFS of eastern and western monarchs (Fig. S9). A summary of the likelihood
scores of the optimized models is given in Table S8. An extended table with the best 5 iterations
in each model and their optimized parameters is given in Table S9. The model
“bottlegrowth_split._ mig” showed the highest log-likelihood score and the lowest Akaike
Information Criterion (AIC) (Fig. 7, S9, Table S9). This model assumes a bottleneck before
divergence between the two populations, followed by an exponential growth in population size
with migration. Top 5 iterations of “bottlegrowth_split_mig” gave consistently higher likelihood
scores than all other models. Both “no divergence” and “no migration” models had low likelihood
scores in the optimization. Models with bottleneck and exponential growth before the split showed
the highest likelihood scores, giving the weight to this scenario (Tables S8, S9). The model
“bottlegrowth” which considers a bottleneck followed by exponential growth without a split into two
populations had low likelihood (Fig. S9, Tables S8, S9). We visually verified the most likely model
by plotting data and model outputs using the “Plot_2D” function in dadi (Fig. S10). We used the
parameters of the iteration with the highest log-likelihood score for the model
“bottlegrowth_split_mig” to calculate effective population sizes, migration rate and time of the
bottleneck (Appendix 1 in Supplementary Materials). According to these parameter estimates,
eastern and western monarchs experienced a bottleneck about 412 thousand years, underwent
exponential growth, then diverged about 112 thousand years ago with a migration rate of 7.33*10
97 per generation (Fig. 7). dadl analysis also showed that eastern and western monarchs have
similar effective population sizes with a symmetric migration (Fig. 7, S9, Table S6, Appendix 1).
This finding was also confirmed by the Tajima's D values calculated across the genome in

windows of 10kb. Tajima's D was similar for eastern and western monarchs (Fig. 4, 6B, Table 1).

Gene expression

Eastern and western monarchs were randomly selected, flown on the flight mill for two minutes,
and immediately frozen in liquid nitrogen prior to RNA extraction. Overall, the expression of the
six candidate genes varied widely between individual butterflies, and expression of several genes

tended to be higher in western monarchs (Fig. 8). Mann-Whitney U tests showed that western
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monarchs had significantly higher expression of the myosin heavy chain gene associated with
non-muscular motor activity (Fig. 8; DPOGS215054; P=0.039).

Discussion

Our analysis of more than 20 million SNPs shows that eastern and western North American
monarchs have extremely low genome-wide genetic differentiation. We did not detect any fixed
nucleotide differences between eastern and western monarchs, and even the smallest window
(100bp) size analyses indicated low maximum Fst values of 0.06, indicating a lack of genomic
islands of differentiation. The windows with maximum genetic differentiation between eastern and
western monarchs were low compared to the genome-wide average genetic differentiation
between subpopulations in other butterflye species (Nadeau et al., 2013; Talla et al., 2019; Martin
et al., 2020). We found an almost perfect genome-wide correlation between nucleotide diversity
in eastern and western monarchs, and genome-wide phylogenetic analyses indicated no
clustering of eastern and western monarchs. Both dadi and Tajima's D results suggest that
eastern and western monarchs have a similar effective population size. Importantly, both methods
contrast with population census data, which show much smaller numbers of western than eastern
monarchs (Schultz, Brown, Pelton & Crone, 2017; Malcolm, 2018; Pelton, Schultz, Jepsen, Black

& Crone, 2019), and support the notion of frequent genetic exchange between these monarchs.

Our results are in line with previous studies based on more limited genetic markers, including
allozymes (Shephard et al., 2002) and microsatellites (Lyons et al., 2012). These findings also
support observational, geographical, and tagging studies that have suggested regular
interchange between eastern and western monarchs (Brower & Pyle, 2004; Dingle, Zalucki,
Rochester & Armijo-Prewitt, 2005; Morris, Kline & Morris, 2015). Because the Rocky Mountains
form a dispersal barrier for monarchs, the high levels of interchange between eastern and western
monarchs indicated by our genomic analyses most likely occur during both the spring migration
— when north-flying monarchs from Mexico could end up west of the Rocky Mountains (Brower &
Pyle, 2004) — and autumn migration, when monarchs from western North America can end up
migrating south to Mexico (Morris et al., 2015; Billings, 2019). Indeed, population genetic analyses
of microsatellites are consistent with a radial dispersal of monarchs from Mexico, including north-
ward dispersal to western North America (Pierce, Altizer, Chamberlain, Kronforst & de Roode,
2015). Further tagging studies will be necessary to map the migration routes of western monarchs

(Dingle et al., 2005; James et al., 2018) and to determine where actual genetic exchanges
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between eastern and western monarchs are occurring. It is interesting to note that in our study,
three samples from Big Sur, California, appeared to cluster in both the ADMIXTURE and
SAGUARO analyses. This suggests potential genetic sub-structuring in western North America,
consistent with the non-random migratory pathways of western overwintering monarchs inferred

by tagging and stable isotope studies (Nagano et al., 1993; Yang et al., 2016).

As with many migratory species, monarch migration has a genetic basis, and genome
comparisons between migratory and non-migratory populations have revealed strong evidence
for the existence of migration-related genes (Zhan et al., 2014). While migration per se is
genetically determined and associated with large-effect alleles, the lack of genomic divergence
observed here suggests that differences in migration routes, distances and destinations for
migratory monarchs are not. Our flight trials clearly demonstrated differences in flight performance
between eastern and western monarchs, and these phenotypic differences may be driven by
either a large number of small-effect alleles or by differential gene expression (Liedvogel et al.,
2011) induced by environmental triggers in eastern and western North America. To conclusively
discern between these two alternatives, one would ideally carry out genetic crosses between
eastern and western monarchs, and then release both parental genotypes and cross-progeny
offspring on both sides of the Rocky Mountains to study migratory behavior, for example through
the use of radio-tracking tagged monarchs (Wilcox et al., 2020). However, current United States
Department of Agriculture regulations prohibit the transfer and release of monarchs across the
Rocky Mountains — partly based on the assumption that eastern and western monarchs are

genetically distinct populations — preventing such a definitive study design.

However, some progress could be made by comparing the transcriptomes of eastern and western
monarchs throughout the year. Our preliminary gene expression studies showed a trend for
differential gene expression, and one gene related to non-muscular motor activity was significantly
differentially expressed. While these results show that eastern and western monarchs may
differentially express migration-related genes during active flight, it is likely that many other genes
are differentially expressed both during active flight, and in the developmental stages leading up
to migration. Previous studies have shown different transcriptome profiles between breeding and
migratory monarchs in eastern North America, including differences in expression of genes
related to juvenile hormone production (Zhu, Gegear, Casselman, Kanginakudru & Reppert,
2009). Other studies have shown that non-migratory monarchs in Australia, which evolved from

migratory monarchs in North America (Zhan et al., 2014), have retained the ability to enter
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reproductive diapause (Freedman et al.,, 2017), and that exposing eastern North American
monarchs to artificial light and temperature conditions disrupts migration orientation behavior
(Tenger-Trolander, Lu, Noyes & Kronforst, 2019). Our study further suggests that environmental
variation on the east and west of the Rocky Mountains triggers monarchs to follow different
pathways to develop into eastern and western migrants. Such factors may include the different
species of milkweeds that monarchs use in eastern and western North America (Woodson, 1954;
Dilts et al., 2019), as recent work shows that milkweeds can significantly affect wing morphology
(Davis & de Roode, 2018; Freedman & Dingle, 2018; Decker, Soule, de Roode & Hunter, 2019).
A transcriptomics study examining differences during development and flight between eastern
and western monarchs would be important in uncovering gene regulatory networks involved in
migration ability, and further shine light on how these highly similar genomes can give rise to

divergent migratory behavior.

Ultimately, determining the genetic or epigenetic basis of differential migration in eastern and
western monarchs will not only advance our understanding of migration genetics, but may also
have relevance for conservation biology. The population size of eastern migrating monarchs has
dwindled over the last three decades (Vidal & Rendodn-Salinas, 2014; Malcolm, 2018; Boyle,
Dalgleish & Puzey, 2019), with some estimates indicating a decline over 80% from a high in 1996
(Semmens et al., 2016). While studies disagree on the primary cause, an emerging picture is that
monarch population decline is due to a combination of illegal logging at the Mexican overwintering
sites, climate change, agriculture-induced loss of milkweed host plants in North America, and
reduced availability of nectar sources along the fall migration flyways (Pleasants & Oberhauser,
2013; Vidal, Lépez-Garcia & Renddn-Salinas, 2014; Inamine, Ellner, Springer & Agrawal, 2016;
Thogmartin et al., 2017; Boyle et al., 2019; Saunders et al., 2019; Wilcox, Flockhart, Newman &
Norris, 2019). Western monarch population size has also declined (Espeset et al., 2016; Schultz
etal., 2017), reaching critically low levels in the 2018-2019 migrating season (Pelton, 2018; Pelton
et al.,, 2019). Monarch migration has been coined an endangered phenomenon (Brower et al.,
2012), and the population decline has led a group of organizations and scientists to petition the
US Fish and Wildlife Service to protect monarchs under the Endangered Species Act (Center for
Biological Diversity, Center for Food Safety, Xerces Society & Brower, 2014). Following recent
advances in merging evolutionary biology with conservation biology (Hendry et al., 2011; Lankau,
Jargensen, Harris & Sih, 2011; Sgro, Lowe & Hoffmann, 2011; Smith, Kinnison, Strauss, Fuller &
Carroll, 2014), a crucial aspect of this process is to determine the adaptive capacity of monarch

butterflies. This includes asking how much adaptive genetic variation monarch populations
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harbor, and which populations must be preserved to allow the species to adapt to changing
conditions and to preserve the processes that allow evolution to occur. If future studies reveal that
differential eastern and western migration is driven by gene expression rather than by genetic
differentiation, then this would suggest that preservation of eastern monarchs could potentially
rescue western migration and vice versa. Future studies, ideally involving reciprocal translocation

experiments, will be needed to address this important question.
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Tables

Table 1
Genetic diversity (65), Tajima's D (Tp) and absolute divergence (Dxy) calculated for eastern and

western monarchs separately for autosomes, Z-chromosome and neo-Z chromosome.

Auto z neo Z Genome wide
Or (East) 0.0118 £ 0.0042 0.0072 + 0.0033 0.0097 £ 0.0034 0.0115 £ 0.0043
Or (West)  0.0115 £+ 0.0040 0.0070 + 0.0030 0.0094 + 0.0031 0.0112 + 0.0041
Ta (East) -1.1694 + 0.3180 -1.0388 + 0.4054 -0.9418 + 0.2616 -1.1595 + 0.3255
Ta (West)  -1.1901 + 0.3205 -1.0201 + 0.4015 -0.8975 + 0.2491 -1.1772 £ 0.3288
Dxy 0.0082 £ 0.0026 0.0049 + 0.0020 0.0063 £ 0.0020 0.0079 + 0.0027

Table 2
Genome wide genetic differentiation between monarchs collected in eastern North America and

those collected at different overwintering sites in western North America.

Big Sur, CA Oceano, CA Carpinteria, CA Eastern
Big Sur, CA 0
0.001237 +
Oceano, CA 0.000516 0
0.001332 + 0.000908 +
Carpinteria, CA |0.000544 0.000381 0
0.001425 + 0.001009 + 0.001115 +
Eastern 0.000550 0.000391 0.000422 0

Table 3
Levels of genetic differentiation (Fsr) across the genome calculated for autosomes, Z-
chromosome and neo-Z chromosome. Fstwas also calculated within 1% Fst? window outliers and

genes.

Auto Y4 neo Z Genome wide

All windows 0.001071 +£ 0.000358 0.000711 + 0.000292 0.000867 + 0.000292 0.001048 + 0.000364
1% Fst* outliers 0.001930 + 0.000132 0.001481 + 0.000058 0.001691 + 0.000002 0.001901 + 0.000168
Genes 0.000863 = 0.000445 0.000493 +0.000289 0.000629 + 0.000351 0.000840 + 0.000446
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Figure 2. Flight performance of eastern and western North American monarchs. Butterflies

were collected from St. Marks, a stopover of eastern monarchs on their way to Mexico, and Pismo

Beach near Oceano, an overwintering site of western monarchs in California. Butterflies were

placed on a tethered flight mill (A), and flight time (B), distance (C), and power were recorded

during standardized flight trials. Data points show individual butterflies, while horizontal lines

indicate means. Eastern butterflies flew significantly longer (P=0.004) and greater distances

(P=0.04) than eastern monarchs, while western monarchs had higher powered flight (P=0.02).
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clustering was based on principal component analysis (PCA) of SNPs covered in all the samples
of eastern and western monarchs, generated using SNPrealte (Zheng et al., 2012). Each point
represents one sample in the data set (black: eastern monarchs; red: western monarchs).
Although there are a few outliers from the western population, we did not observe any clear
clustering patterns of eastern and western monarchs (top 5 Principle components are given in
Figure S5). (B) Admixture plot for eastern and western monarchs with values of ‘K’ set to 2, 3 and

4. No specific pattern of clustering was observed between eastern and western monarchs.
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Figure 4. Genome-wide genetic differentiation (Fs7r), regional variation in absolute
divergence (Dxy), Tajima's D (Tp) and nucleotide diversity (65) in eastern and western
monarchs. These summary statistics were calculated in non-overlapping windows of 10kb across
the genome. The alternating gray blocks represent different chromosomes in the genome. Fsr
and Dxy are between-group comparisons, and a single yellow line is shown for these measures.
In contrast, Tajima's D (T4) and nucleotide diversity (8,) are group-specific measures, and eastern
and western monarchs are indicated with black and red respectively; due to genome-wide

overlap, the black (eastern) data are mostly hidden behind the red (western) data.
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Figure 7. Visual representation of the most likely model in the demographic history

analysis conducted using dadi. According to the model, eastern and western monarchs

diverged 112 thousand years ago with a migration rate of 7.33*107. The populations went through

a pre-divergence bottleneck about 412 thousand years ago. The effective population size during

the bottleneck was estimated to be nuB 13,284,249 and the joint effective population size of

eastern and western monarchs was estimated to be 47,616,680.
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Table S1
A summary of sample ID, collection site, collection date, sex, and mapping success of the samples

to the monarch reference genome.

ID Collection site Date Sex Mapped % Depth (X) Accession Population
HH1 Halcyon Hill, Oceano, CA, USA January 2015 M 98.55 9.60 ENA: ERS3567792  West
HH2 Halcyon Hill, Oceano, CA, USA January 2015 M 98.57 23.84 ENA: ERS3567793  West
HH3 Halcyon Hill, Oceano, CA, USA January 2015 M 98.61 23.94 ENA: ERS3567794  West
HH4 Halcyon Hill, Oceano, CA, USA January 2015 M 98.54 11.58 ENA: ERS3567795  West
HH5 Halcyon Hill, Oceano, CA, USA January 2015 M 98.64 23.95 ENA: ERS3567796  West
HH6 Halcyon Hill, Oceano, CA, USA January 2015 F 98.46 11.95 ENA: ERS3567797  West
HH7 Halcyon Hill, Oceano, CA, USA January 2015 F 98.51 11.32 ENA: ERS3567798  West
HH8 Halcyon Hill, Oceano, CA, USA January 2015 F 98.58 11.66 ENA: ERS3567799 West
HH9 Halcyon Hill, Oceano, CA, USA January 2015 F 98.26 24.20 ENA: ERS3567800 West
HH10 Halcyon Hill, Oceano, CA, USA January 2015 F 98.61 10.27 ENA: ERS3567801  West
PL1 Carpinteria, CA, USA January 2015 M 98.56 22.46 ENA: ERS3567813  West
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NJ203
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NJ1

H1023
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Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA
Carpinteria, CA, USA

Esalen, Big Sur, California, USA
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Table S2

Cross validation (CV) error rates calculated for SNPs to show the potential number of populations

in a dataset.

K CV error
1 0.35338
2 0.40578
3 0.4481

4 NA
Table S3

Maximum value for Fsr calculated in windows of 10kb across the genome for different population

comparisons.

Comparisons Max value of Fsr
East vs West 0.002525
Carpinteria vs Oceano 0.002752
Big_Sur vs Oceano 0.003849
Big_Sur vs Oceano 0.003849
Big_Sur vs Carpinteria 0.003693
Carpinteria vs East 0.003281
Oceano vs East 0.002958
Big_Sur vs East 0.004363
Table S4

Genome wide average Fst and maximum Fsr calculated in varying window sizes of 100 bp, 500
bp, 5,000 bp and 10,000 bp.

Window size Genome wide Average FST Max value of FST
100 0.001213 + 0.0012334 0.06025
500 0.001113 + 0.0007157 0.01634
5000 0.001036 + 0.0004367 0.00297
10000 0.001048 + 0.000364 0.00253




Table S5
Summary of the genome-wide phylogenetic relationships (Cacti) calculated using Saguaro. The

table shows the number of occurrences of each cactus on the Z chromosome and Autosomes.

Cacti Z chromosome Autosome
Cactus 0 33 3
Cactus 1 376 7
Cactus 2 3917 10398
Cactus 3 126 384
Cactus 4 9 14
Cactus 5 3 16
Cactus 6 1 7
Cactus 7 17 2
Cactus 8 47 33
Cactus 9 7 24
Cactus 10 764 381
Table S6

Summary table showing the genetic diversity (617) calculated for each site class. These values

were calculated across the genome in non-overlapping windows of 10kb.

West (6m7) East (6m)
Intergenic 0.0105 + 0.0133 0.0110 £ 0.0136
Intron 0.0121 + 0.0058 0.0126 + 0.0062
Codon 1 0.0047 + 0.0057 0.0044 + 0.0057
Codon 2 0.0052 + 0.0072 0.0049 + 0.0071
Codon 3 0.0081 + 0.0071 0.0075 + 0.0068
4D 0.0096 + 0.0089 0.0089 + 0.0087
All 0.0112 + 0.0041 0.0115 + 0.0043




Table S7

Total number of Tajima’s D outliers (bottom 1%) in eastern and western monarchs and the

windows shared between them in Autosomes, Z chromosome and Neo-Z chromosome.

Autosome Z neo-Z
TaOutliers East 188 33 2
TaOutliers West 188 12 2
Common 120 7 1
Table S8

Best replicate of each of the optimized demographic models using dadi. These replicates were

ordered as-per their log-likelihoods. The model with the highest log-likelihood was considered as

the most likely model.

Model Replicate log-likelihood AIC AAIC chi-squared theta

bottlegrowth_split_ mig Round_4_Replicate_26 -3306.97 6623.94 0 4637.08 980321.63
bottlegrowth_split Round_4 Replicate_22 -3815.46 7638.92 1014.98 5637.83 1011527.18
IM_pre Round_3_Replicate_1 -12679.39 25374.78 18750.84 23631.5 2099707.76
sec_contact_asym_mig Round_4_Replicate_17 -13172.32  26356.64 19732.7 24304.28 1107235.68
asym_mig Round_4_Replicate_9 -13801.03 27612.06 20988.12 25491.42 1111105.32
asym_mig_size Round_4_Replicate_8 -16014.33  32044.66 25420.72 30223.73 1110507.6
anc_asym_mig Round_4_Replicate_5 -17059.42  34130.84 27506.9 31580.5 1068577.35
sec_contact_sym_mig Round_3_Replicate_6 -19130.62 38271.24 31647.3 36124.26 1118371.68
bottlegrowth Round_4_Replicate_39 -23066.45 46138.9 39514.96 44883.45 1032181.21
sym_mig_size Round_2_Replicate_7 -34416.96  68847.92 62223.98 65460.71 611412.62
M Round_2_Replicate_13 -187843.39 375698.78 369074.84 355437.54 1081438.58
no_mig Round_4_Replicate_16 -416097.42 832200.84 825576.9 902416.8 1646813.81
anc_sym_mig Round_1_Replicate_5 -516780.88 1033571.76 1026947.82 1684798.33 161024.88
no_mig_size Round_4_Replicate_4 -542602.75 1085217.5 1078593.56 1154052.67 1749776.67
no_divergence Round_1_Replicate_1 -2224842.77 4449687.54 4443063.6 4738269.74 2614739.86




Table S9

An extended table of demographic models optimized using dadi. The table shows the top 5

replicates scored using their log-likelihoods for each model.

Model
bottlegrowth_split_mig
bottlegrowth_split_mig
bottlegrowth_split_mig
bottlegrowth_split_mig
bottlegrowth_split_mig
bottlegrowth_split
bottlegrowth_split
bottlegrowth_split
bottlegrowth_split
bottlegrowth_split
IM_pre
sec_contact_asym_mig
sec_contact_asym_mig
sec_contact_asym_mig
sec_contact_asym_mig
sec_contact_asym_mig
asym_mig

asym_mig

asym_mig

asym_mig

asym_mig
asym_mig_size
anc_asym_mig
anc_asym_mig
sec_contact_sym_mig
sec_contact_sym_mig
sec_contact_sym_mig
sec_contact_sym_mig
anc_asym_mig
sec_contact_sym_mig
anc_asym_mig
asym_mig_size

asym_mig_size

Replicate
Round_4_Replicate_26
Round_4_Replicate_6
Round_4_Replicate_35
Round_4_Replicate_10
Round_4_Replicate_14
Round_4_Replicate_22
Round_4_Replicate_24
Round_4_Replicate_16
Round_4_Replicate_35
Round_4_Replicate_29
Round_3_Replicate_1
Round_4_Replicate_17
Round_4_Replicate_2
Round_4_Replicate_11
Round_4_Replicate_7
Round_4_Replicate_9
Round_4_Replicate_9
Round_4_Replicate_7
Round_4_Replicate_16
Round_4_Replicate_10
Round_4_Replicate_12
Round_4_Replicate_8
Round_4_Replicate_5
Round_4_Replicate_11
Round_3_Replicate_6
Round_3_Replicate_5
Round_3_Replicate_4
Round_3_Replicate_7
Round_3_Replicate_6
Round_3_Replicate_8
Round_4_Replicate_2
Round_4_Replicate_12

Round_4_Replicate_22

log-likelihood AIC

-3306.97

-3307.1

-3307.2

-3307.24

-3307.25

-3815.46

-3815.49

-3815.5

-3815.51

-3815.61

-12679.39

-13172.32

-13356.99

-13361.61

-13393.61

-13475.91

-13801.03

-13807.43

-13808.25

-13808.82

-13810.49

-16014.33

-17059.42

-17423.88

-19130.62

-19604.78

-19799.93

-19909.45

-20130.37

-20159.65

-20392.34

-20441.68

-21628.74

6623.94

6624.2

6624.4

6624.48

6624.5

7638.92

7638.98

7639

7639.02

7639.22

25374.78

26356.64

26725.98

26735.22

26799.22

26963.82

27612.06

27624.86

27626.5

27627.64

27630.98

32044.66

34130.84

34859.76

38271.24

39219.56

39609.86

39828.9

40272.74

40329.3

40796.68

40899.36

43273.48

chi-squared
4637.08
4637.82
4637.67
4637.31
4637.62
5637.83
5638.32
5637.61
5637.92
5638.46
23631.5
24304.28
24611.98
24592.56
24693.85
24856.75
25491.42
25503.46
25502.65
25503.3
2552211
30223.73
31580.5
32369.49
36124.26
37119.29
37461.01
37745.65
37429.51
38238.38
37750.08
37996.03

40787.82

theta

980321.63

980516.77

981590.2

976952.93

981768.24

1011527.18

1010968.27

1011563.04

1011315.46

1011865.68

2099707.76

1107235.68

1109510.92

1107911.33

1110689.89

1109637.06

1111105.32

1110938.26

1111667.29

1111333.75

1111051.37

1110507.6

1068577.35

1053833.33

1118371.68

1123856.01

1126446.22

1124771.33

1132598.63

1127388.28

1133222.63

1044196.14

1005417.89



anc_asym_mig
bottlegrowth
bottlegrowth
bottlegrowth
bottlegrowth
bottlegrowth
asym_mig_size
asym_mig_size
sym_mig_size
IM_pre

IM_pre
sym_mig_size
IM_pre

M
sym_mig_size
IM_pre

M
sym_mig_size
sym_mig_size
no_mig
no_mig
no_mig
no_mig
no_mig
anc_sym_mig
no_mig_size
no_mig_size
IM
no_mig_size
no_mig_size
no_mig_size
anc_sym_mig
anc_sym_mig
M

M
anc_sym_mig
no_divergence
no_divergence
no_divergence

no_divergence

Round_4_Replicate_10
Round_4_Replicate_39
Round_4_Replicate_10
Round_4_Replicate_31
Round_4_Replicate_17
Round_4_Replicate_33
Round_4_Replicate_3
Round_4_Replicate_7
Round_2_Replicate_7
Round_1_Replicate_5
Round_2_Replicate_10
Round_2_Replicate_14
Round_1_Replicate_9
Round_2_Replicate_13
Round_2_Replicate_16
Round_3_Replicate_18
Round_1_Replicate_3
Round_3_Replicate_2
Round_3_Replicate_1
Round_4_Replicate_16
Round_4_Replicate_1
Round_2_Replicate_10
Round_4_Replicate_3
Round_4_Replicate_7
Round_1_Replicate_5
Round_4_Replicate_4
Round_4_Replicate_28
Round_1_Replicate_8
Round_4_Replicate_9
Round_4_Replicate_38
Round_4_Replicate_34
Round_1_Replicate_1
Round_1_Replicate_4
Round_1_Replicate_10
Round_1_Replicate_5
Round_1_Replicate_2
Round_1_Replicate_1
Round_1_Replicate_2
Round_1_Replicate_3

Round_1_Replicate_4

-21688.56

-23066.45

-23066.5

-23066.74

-23067.26

-23069.3

-24520.58

-24730.61

-34416.96

-47027.58

-58432.45

-89038.18

-183087

-187843.39

-199810.02

-208553.05

-247348.65

-289788.82

-312280.77

-416097.42

-416099.35

-416104.44

-416108.28

-416111.53

-516780.88

-542602.75

-550320.14

-573259.32

-638987.74

-658551.6

-674082.67

-912880.54

-1033490.47

-1129007.21

-1586466.39

-2019707.72

-2224842.77

-2224842.77

-2224842.77

-2224842.77

43389.12

46138.9

46139

46139.48

46140.52

46144.6

49057.16

49477.22

68847.92

94071.16

116880.9

178090.36

366190

375698.78

399634.04

4171221

494709.3

579591.64

624575.54

832200.84

832204.7

832214.88

832222.56

832229.06

1033571.76

1085217.5

1100652.28

1146530.64

1277987.48

1317115.2

1348177.34

1825771.08

2066990.94

2258026.42

3172944.78

4039425.44

4449687.54

4449687.54

4449687.54

4449687.54

42336.13

44883.45

44888.02

44882.23

44891.81

44897.06

46558.6

46682.75

65460.71

89313.16

114099.3

169280.62

396547.83

355437.54

394830.23

426057.68

481068.01

574974.54

626270.96

902416.8

902412.34

902265.68

902937.69

901563.18

1684798.33

1154052.67

1171633.89

1169150.97

1569683.36

1392713.67

1392012.18

1710370.22

2009989.38

2652043.88

3012671.12

4423788.46

4738269.74

4738269.74

4738269.74

4738269.74

1036632.6

1032181.21

1032788.39

1032340.6

1033863.61

1034226.22

1196443.42

989573.67

611412.62

1561174.95

2631910.67

1150049.25

650656.34

1081438.58

675074.86

1101831.59

1436670.21

1026012.07

654776.05

1646813.81

1646618.45

1647331.94

1646652.8

1649035.21

161024.88

1749776.67

1750530.39

1484066.85

1518467.52

1779673.4

1824827.44

377100.26

1098132.31

3531478.47

1882015.03

5563655.17

2614739.86

2614739.86

2614739.86

2614739.86



no_divergence Round_1_Replicate_5 -2224842.77 4449687.54 4738269.74 2614739.86

anc_sym_mig Round_1 Replicate 3 = -11021112.9 22042235.8 72389626.2 1669358.18
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Schematic illustration of the pipeline used for genotyping the samples.
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Figure S2
Nucleotide diversity (6,) estimates calculated in windows of 10 kb across the genome with

coverage filters ranging from 1X to 7X. These filters were applied on polymorphic and non-

polymorphic sites respectively.
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Figure S3

Boxplot illustrating the lack of genetic differentiation between monarchs collected in eastern North
America and those collected at different overwintering sites in western North America.
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Figure S4

Correlation map of the genome wide genetic differentiation (Fsr) landscapes of different sampling

locations.
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Figure S5

Genetic differentiation (Fst) calculated in non-overlapping windows of 100bp, 500bp and 5,000bp

across the genome.
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Figure S6

lllustration of phylogenetic relationship matrixes (Cacti) obtained from Saguaro. Both horizontally
and vertically the first samples are from the west and then followed by the eastern samples. The
horizontal and vertical white lines separate the eastern from the western samples. The yellow line
separates the samples from Mexico from other samples. While none of the relationships
separated eastern and western monarchs, three samples from Big Sur (visible as the differently

shaded bands) appeared to cluster together.
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Figure S7
Genome-wide representation of the phylogenetic relationship matrixes (Cacti) obtained from
Saguaro. These occurrences are summarized in Table S8. Note: The cacti are plotted based on

their occurrences and length was not accounted for.
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Figure S8

a) Correlation of genome-wide genetic diversity (6,) of eastern and western monarchs (Pearson’s
r -value = 0.98, P-value < 0.001). b) Linear relationship between average genetic diversity (6,) of
eastern and western monarchs and the absolute divergence (Dxy; Pearson’s r -value = 1.0 , P-
value < 0.001) .
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Figure S9
Visual illustrations of models screened using dadi.
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Visual illustration of the 2D-site frequency spectrum (data) of eastern and western monarchs with

the model site frequency spectrum

obtained from the best optimized model

(‘Bottlegrowth_split_mig’) using dadi. The bottom graph shows the distribution of residuals of the

model.

16



-04 0.0 0.4 0.8 -0.6 -0.2 0.2

PC1 -3
3.2% [ -
. | T | O -
S PC2
s g 2.7% o it
; ; # : : h s
PC3 -
2.7% T
LE ¥ # PC4
T 2.6%
ofo | 0?2 | ol.4 | _OIB | _(;.4 I ofo
Figure $11

Principal component analysis of top four Eigenvectors for 20.9 million SNPs in the dataset.



Appendix 1

Here we describe the calculations to convert the optimized parameters from the most likely

model from demographic history analysis using dadi.

Obtained parameters from the model.

nuB nuF m T Ts

1.7745 | 6.3606 | 10.9812 | 0.9189 | 0.2505

Other stats from the model

0 = 980321.63

L = sum of all the sites used in the site frequency spectrum = 11288846.4
u = mutation rate = 2.9*10° (from Heliconius melpomene)

Generation time =0.3

Conversion of parameters into time, effective population size and migration rate

6 = 4*Nepen™u*L

Neen = 6 /(4*u*L)= 7,486,193

Neren is the measure of effective population size that is used to scale the magnitude of the

bottleneck.

nuB = nuB (from model parameters) * Neyen = 1.7745*7,486,193= 13,284,249
nuF = nuF (from model parameters) * Nejen = 6.3606%7,486,193= 47,616,680
m = 10.9812/(2*Neyen) = 10.9812/(2*7,486,193) = 7.33*107

T =0.9189*2*Neren*Generation time = 0.9189%2*7,486,193*0.3 = 4127437
Ts = 0.2505*2*Neen* Generation time = 0.2505*2%7,486,193*0.3 = 1125174
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