2019 IEEE International Conference on Data Mining (ICDM)

A Distributed Fair Machine Learning Framework
with Private Demographic Data Protection

Hui Hu, Yijun Liu, Zhen Wang, Chao Lan
Department of Computer Science, University of Wyoming, WY, USA
Email: {hhul, yliu20, zwang10, clan} @uwyo.edu

Abstract—Fair machine learning has become a significant
research topic with broad societal impact. However, most fair
learning methods require direct access to personal demographic
data, which is increasingly restricted to use for protecting user
privacy (e.g. by the EU General Data Protection Regulation).

In this paper, we propose a distributed fair learning framework
for protecting the privacy of demographic data. We assume this
data is privately held by a third party, which can communicate
with the data center (responsible for model development) without
revealing the demographic information. We propose a principled
approach to design fair learning methods under this framework,
exemplify four methods and show they consistently outperform
their existing counterparts in both fairness and accuracy across
two real-world data sets. We theoretically analyze the framework,
and prove it can learn models with high fairness or high accuracy,
with their trade-offs balanced by a threshold variable.

I. INTRODUCTION

It is reported machine learning models are giving unfair pre-
dictions on minority people when applied to assist consequen-
tial decision makings: they are biased against black defendants
in recidivism prediction [3], female applicants in job hiring
[1] and female employees in facial verification [23]. How to
learn fair prediction model has become a pressing problem for
government [20], industry [13], [33] and academia [6], [10];
many solutions are developed, from label processing [25], [37],
feature processing [14], [36], to model regularization [12], [35]
and model post-processing [15], [18].

We note that most fair learning methods require direct
access to individuals’ demographic data, e.g., they need race
data to mitigate racial bias. However, such data are increas-
ingly restricted to use for privacy protection. In 2018, Europe
launches a General Data Protection Regulation (GDPR), which
prohibits ‘processing of personal data revealing racial or ethnic
original’ and allows users to request ‘erasure of personal data’
from the data controller. Besides, the privacy community has
been hiding sensitive personal data from analysis [2], [28].

We thus see fairness and privacy are running in a dilemma,
i.e., most fair learners need access to demographic data while
these data are restricted to use for privacy protection. Debates
are arising [34], [38]: should law permit the use of private
demographic data for the sake of fair learning? is it techni-
cally necessary to have direct access to such data? Very few
scientific studies are done to address these questions.

In this paper, we propose a distributed fair machine learning
framework that does not require direct access to demographic
data. Our key insight is as follows: we assume there is a third
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party that privately holds demographic data of the individuals,
to learn fair models, data center first constructs a random but
fair hypothesis space through private communication with the
third party; then it learns an accurate hypothesis in this space.
Our rational is that model fairness is ensured as the hypothesis
space is fair, and model accuracy is promised by random pro-
jection theory [4], [16]. In this paper, we exemplify how to re-
design four existing fair learning methods: fair ridge regression
[7], fair kernel regression [30], fair logistic regression [21]
and fair PCA [29], [32]. We show the redesigned methods
consistently outperform their counterparts in both fairness and
accuracy across two real-world data sets.

We prove theoretical properties of the proposed distributed
and private fair learning framework. Under proper conditions,
we prove the learned model is both fair and accurate, and
their trade-off is indirectly controlled by a threshold. Our result
also implies one can learn a fair model from a population with
balanced demographic distribution. For all the proofs and more
empirical studies, please see our extended paper on arXiv.

II. RELATED WORK
A. Fairness Measure

Several fairness notions have been proposed in the literature,
such as statistical disparity [14], equal odds [18], individual
fairness [12], causal fairness [24] and envy-free fairness [5].
We focus on statistical disparity, since it is most common and
perhaps most refutable.

In this paper, we propose to measure model fairness using
covariance between prediction and demographic variable, as
we find it extremely easy to use while giving very efficient
accuracy-fairness trade-off. Similar measures have been used
in the literature, such as mutual information [21], correlation
[30] or independence [36] between these two variables. But
none of them provide theoretical analysis on the used measure.
In this paper, we theoretically analyze the covariance measure.

B. Fair Learning with Restricted Access to Demographic Data

Several lines of studies are related to the restricted access
of demographic data, but do not directly address the problem.

A traditional fair learning method is to simply remove
demographic feature from the model, However, this approach
does not guarantee fairness due to the redlining effect [9].
Some studies use demographic data in other ways, such as,
[25] uses k-NN to detect unfair labels; they do not use
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Fig. 1: A Distributed and Private Fair Learning Framework

demographic data to measure instance similarity, but still use
it to measure label disparity in neighborhoods.

Specific discussions on the restricted use of demographic
data appears in [34], [38]; but there lacks scientific investi-
gations or solutions. Recently, Kilbertus et al [22] propose to
encrypt demographic data before learning. This is a promising
solution, but encryption also comes with extra cost of time
and protocols. Our framework seeks another direction based
on random projection; it is cheaper and easier to implement.
Hashimoto et al [19] propose a fair learning method which
automatically infers group membership and minimizes dispar-
ity across it; this method is also promising as it requires no
access to demographic data. However, that study focuses on
a less common fairness notion named distributive justice and
on-line setting. Comparatively, we focus on a most common
fairness measure named disparity and off-line setting. Besides,
we hypothesize that having restricted access to demographic
data would give fairer models than having no access at all.

IIT. NOTATIONS

In this section, we introduce the basic notations that will be
used throughout the paper. More will be introduced later.

We will describe a random individual by a triple (z, s, y),
where s € R is a sensitive demographic feature, z € R? is a
vector of p non-sensitive features and y € R is the label. For
example, when studying gender bias in hiring, s will be an
applicant’s gender, x is the non-sensitive feature vector (e.g.
education, working hours) and y indicates if the applicant is
hired or not. We will index observed individuals by subscript,
e.g., (;, Si,y;) is the iy, individual in a (training) sample set.

Let f: {z} — {y} be a prediction model, which does not
take s as input but can use s for training.

IV. A DISTRIBUTED FAIR LEARNING FRAMEWORK

In this section, we propose a distributed fair learning frame-
work that can protect privacy of sensitive demographic data.

We assume the scenario in Fig 1, i.e., there is a data center
and a third party, over which a training set {(x;, ;, i) }i=1,..n
is distributed. The center has {(z;,y;)} and focuses on learn-
ing fair model f; the party has {s;} and can assist learning
via private communications with the center that reveal no s.

To design fair learners, our key insight is to construct a
random but fair hypothesis space. We will show such space

Algorithm 1 A Distributed Fair Learning Framework

Input: training set {(z;,y;)}i=1,....n, hypothesis set , num-
ber of generated hypotheses m, generator variance o,
fairness threshold p, data center (DC) and third party (TP).

Output: A prediction model f at DC.

1: DC randomly generate m hypotheses hi,...,h,, € H
with each parameter i.i.d. drawn from N(0, 0?2).

2: DC applies each h; on {z;} to get a predicted label set
K = {ht(if})7 tLt("Ez), ces ht(ifn)}

3: DC sends Y7,Y5,...,Y,, to TP.

4: TP estimates cov(hy (), s) from Y; and {s;} for each t,
and returns ¢ to DC if |cov(h:(x), s)| < p.

5: DC receives a set of returned indices r1,79,..., 7k, and
trains a prediction model f on {(z;,y;)} assuming that

f=aihy, +ashe, +... 4+ aghy,, (1)

where @ = [aq, ..., ;)T is unknown coefficient to learn.

can be constructed at the center via private communications,
and any model learned in this space will be fair.

Alg 1 elaborates our design strategy. Steps 1 to 4 construct
a random and fair hypothesis space spanned by h,.,..., hy,
and step 5 learns an accurate model in it. Note the communi-
cations do not reveal s, and thus protect its privacy.

In the sequel, we exemplify how to apply Alg 1 to redesign
four existing non-private fair learners into private ones. (Other
fair learners may be redesigned in similar ways.) We will write
X = [21,...,2,])7 as a sample matrix, Y = [y1,...,yn]|T as
the associated label vector and H = [h,,, ..., h,,] as a matrix
of returned hypotheses. Since @ = [ay, . . ., a;]T, we can write

k
f= thlathm = Ha. 2)
A. Distributed Fair Ridge Regression (DFRR)

Calders et al [7] developed a fair ridge regression (FRR). It
minimizes squared loss on training sample, while additionally
penalizing prediction disparity across demographic groups. Let
1, I be the index sets of two demographic groups (e.g. female
and male) respectively. Their objective function is

Jerr(f) =Y. (f(z:) = y)* +A-MD(f),

where MD(f) = |T11\Eieh f(z) — ﬁZielz f(z;) is the
prediction disparity. We see min J(f) requires simultaneous
access to (x,y) and s; thus this method cannot be directly
applied in our private learning framework.

We propose a distributed fair ridge regression (DFRR) based
on Algorithm 1. Our objective function is

Torrr(f) =Y (F@:) =y + MIFI,

1

no [k 2 k )
= Z (Z Oéthn (l‘l> — yz> + A Z Ozthn
i=1 \t=1 t=1
Minimizing the above objective for «;’s gives
a=H"XTXH+ )Y (HT"XTY). 4)
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B. Distributed Fair Kernel Ridge Regression (DFKRR)

Perez-Suay et al [30] developed fair kernel ridge regres-
sion (FKRR). It minimizes squared loss in RKHS while
additionally penalizing the correlation between prediction and
demographic feature. Its objective function is

Jrkrr(f) = 2121“((75(%)) —y)? + Q) + pl(f;s),
where I(f;s) = Y1, (f(x;) - 5) is the correlation between
prediction and demographic and f and 5 are centered variables.
This method also needs simultaneous access to (x,y) and s.

We present a distributed fair kernel regression (DFKRR)
method based on Algorithm 1. Our high-level objective is

Torxrr(f) =Y (F(@@)) —u)* + AIfIP. 5)
i=1
Unlike the standard assumption that f is expressed by ¢(z;)’s,
we first assume f is expressed by h,,’s as in (1) and each h,,
is linearly expressed by ¢(x;)’s, i.e.,

hey =3 cud(a), (©)

where c;;’s are random coefficients associated with h,.,. This
is similar to the argument in [17].

Based on (5), we can generate a random hypothesis (and its
predicted label set) by randomly generating a set of associated
coefficients. Note the coefficients c;,’s are known and a;’s are
unknown. Minimizing J(f) gives

a=[CT(K+XI)T(K + O] 'CT(K + AD)TY. (1)

where K is the Gram matrix and C' is an n-by-k matrix with
c; being its element at the ¢;;, row and ¢4, column.

C. Distributed Fair Logistic Regression (DFGR)

Kamishima et al [21] developed a fair logistic regression
(FGR). It maximizes the likelihood of label while additionally
penalizing mutual information between model prediction and
demographic feature. Its objective function is

A
Jrar(f) == mp(yi | 7,5 f) + SIFIP +R(F),

where R(f) = Ep(f(z),s)In % measures the mutual

information and can be estimated from data. This method also
requires simultaneous access to (z,y) and s.

We propose a distributed fair logistic regression (DFGR)
based on Algorithm 1. Our high-level objective function is

JDFGR(f):—Zlnp(yi |xiaf)+)‘”f||2a )]
i=1

where p(y;|z;, f) is constructed in the same way as logistic
regression, with an additional assumption f has the form (1).
Optimizing the objective by Newton’s method, we have an
update rule @ = @ — (J' (f))~*(J (f)), where

’

with p'= [p(f(21) = 1213 f), ..., p(f(2n) = 1zn; f)]" and
diagonal matrix M with M;; = p(f(z:) = L|ag; f)-p(f(z;) =
0|z;; f) — both are standard quantities in logistic regression.

D. Distributed Fair PCA

Samadi et al [32] developed a fair PCA which minimizes
reconstruction error while equalizing this error across demo-
graphic groups. Let X; € R™*P be the sample matrix of ny
instances in one group, X5 € R™2*P be the sample matrix of
ngo instances in another group, and V' € RP*? be the projection
matrix. Their objective (to minimize) is

1 1
max {nloss(Xl7 x,vvTh, n—loss(Xg7 XQVVT)} )
1 2

where loss measures reconstruction error. Authors show the

optimal V' gives equal reconstruction errors across groups.
Matt Olfat et al [29] proposed another fair PCA method that

minimizes prediction disparity in the projected space, i.e.,

miél sup [plw? Ve <t|s = 1] — plw’ VTx < t|s = 0],
wV ¢

where w is the prediction model and V is the project matrix.
Both methods need simultaneous access to (z,y) and s.
We propose a distributed fair PCA (DFPCA) method based
on Algorithm 1. Let v be a projection vector. Our optimization
probelm is the same as PCA, i.e.,

Y

maxv! Y,v,  s.tjv]| = 1.
v

where 3., is the covariance matrix. Our additional assumption
is that v is linearly expressed by fair random vectors h,,, i.e.,

v=aih, +...+arh, = Ha. (12)
Solving problem (11) for & gives
HTY Ha = \HTHa, (13)

which implies @ is the leading eigenvector.

V. THEORETICAL ANALYSIS

Here we present the theoretical properties of Algorithm 1.

A. Preliminaries

Let (z,s) be a random instance. We say a hypothesis f is
p-fair with respect to s if |cov[f(z), s]| < p. Note it means, in
Algorithm 1, all returned hypotheses h,,,...,h,, are p-fair.

We will show p-fairness implies a popular fairness measure
called statistical parity (SP) [27], defined as

SP(f) = [p(f(x) = 1]s = 1) = p(f () = 1]s = 0)].

To establish the implication, we will employ the following
generalized covariance inequality [26, Theorem 2].

(14)

Lemma 1. Let X, Y be two positively or negatively quadrant
dependent random integers. Let Fx y (x,y) be their joint CDF

J(f) = HIXEY = p) + 200 HG, (9)  and Fx(z), Fy(y) be their marginal CDF’s respectively. Let
J(f)=H"XTMXH +2\H"H, (10) covp(X,Y)= [ | AFxy(wy)dudy,
1104
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be their Hoeffding covariance, where

AFxy(z,y) = Fxy(z,y) — Fx(z)Fy(y).  (16)
If covy (X,Y) is bounded, then
Supw,y|AFX,Y(x7y)| S |C0vH(X7 Y)| (17)

In the following, we will first present theoretical properties
on model fairness and then on model error. Note that all results
are presented in the context of Algorithm 1.

B. Theoretical Properties on Model Fairness
Our first result shows that p-fair implies statistical parity.
Lemma 2. If f(x) and s are positively or negatively quadrant

dependent', and if f is p-fair w.rt. s, then SP(f) < p/sos1,
where so = p(s =0) and s; = p(s = 1).

Our second result suggests that a hypothesis spanned by
fair hypotheses remains fair — this is the insight that motivates

the study. More specifically, in (1), we show that f is p-fair
because it is spanned by p-fair hypotheses h,,, ..., h,

Lemma 3. In (1), f is (Vk||@||p)-fair w.rt. s.

ke

Combining the above result, we immediately have

Theorem 4. In Algorithm 1, if f(x) and s are positively or
negatively quadrant dependent, then SP(f) < V'k||@||p/s0s1.

This theorem implies one can obtain a fair model through
several paths. First, we can choose a small threshold p, which
will reduce prediction disparity at a rate of O(p). Another way
is to choose a small & but it does not seem very efficient as (i)
it has a lower reduction rate O(+v/k) and (ii) it can be implied
by choosing a small p (thus returning fewer hypotheses).

One may also choose a small ||@||. In our proposed methods,
this is done indirectly via regularizing ||f||. In experiments,
we observe this is more effective than directly regularizing &.

Finally, we see a model may be more fair if the demographic
distribution is more balanced, i.e., the upper bound of SP(f)
is minimized when sg = s1 = 0.5. However, such distribution
is typically formed by nature and cannot be easily modified.

Our following result gives more insight on the number of
returned hypotheses k, and suggests it shall not be too small.

Lemma 5. Let h be a random hypothesis. Then
E[k] > m- (1 — Ecov(h(x),5)] /p*). (18)

where both expectations are taken over the randomness of h,
and the covariance is defined over the randomness of (x, s).
Further, if h is linear and generated from N'(0,02I), then

E[k] > m- (1= o®|cov(z, s)[[*/p®), (19)
where cdv(x,s)=3""_, cov(x;,s) and x; is ji, entry of x.

Lemma 5 suggests that F[k] will increase as p increases, at
a rate of O(1/p?). In particular, when p approaches infinity,
E[k] > m which means all hypotheses will be returned. The
lemma also suggests E[k] will increase as o2 decreases.

'Quadrant dependence is a common assumption e.g., [11], [31]. Later we
will show empirical evidence that our assumption holds in most cases.

C. Theoretical Properties on Model Generalization Error

To derive an error bound for the algorithm, our backbone
technique is the random projection theory [16]. It states that
data distance is likely to be preserved in a randomly projected
space and thus a model’s prediction error (dependent on such
distance) is also likely to be preserved.

To apply the theory, we assume f, h are linear and interpret
the returned hypotheses as basis of a randomly projected space,
i.e., hy, (z) is the kyp, feature of x in the projected space.

We also assume Step 4 applies a soft threshold policy. Let
h. be a hypothesis satisfying cov(h.(x),s) = 0. The soft
policy will return ¢ of any h; with probability (k. (z), 021),
where 1, () = [ha(21), - .., he(2,)]T and o, is constant. As
such, each returned hypothesis h,. in (1) is first drawn from a
zero-mean Gaussian (Step 1) and then selected by a h.-mean
Gaussian (Step 4). Therefore, we can say each h, in (1) is
generated from a Gaussian centered at H* Without loss of
generality, we assume this Gaussian has a unit variance.

Our first result extends the data distortion bound in [4] from
zero-mean Gaussian to non-zero mean Gaussian.

Lemma 6. Let x be any point and H = [h1,...,h., | be a
projection matrix with each projection vector h,, taken from

a normal distribution N'(h,,I). Let & = —=(H"x) be the

vk
projection of x by H. We have for 0 < c < 1,

- e
Pr{| ||z||* — ||=[]*| > cll2[[*} < g(x) - e™7F,

where g(z) = e(ck(ha,x)?) /(4—2¢) + e—ck(he,x)?)/(242¢)

(20)

Compared to the original bound, our new bound has an
additional term g(z). It is smaller when ||h.|| is smaller; if
h« =0, then g(x) = 2 and we recover the original bound.

Based on Lemma 6, we derive the following error bound.

Theorem 7. Suppose Algorithm 1 adopts the soft threshold
policy. Let er(f) and ér(f) be the expected and empirical
error of [ respectively. If f is linear and ||f|| = ||z|] = 1,
then with probability at least 1 — 40,

— kY >2
8(2+H(f 1L>|\)2

er(h) < ér( —|—T—|— Z (1)

where T = 2./[(k + 1) log(en/(k + 1)) + log 1/6]/n and

g(z:) = eleiklha,wi)®)/(4=2¢i) 4 o= (cik(ha,zi)?)/(2+2¢:) (22)

with ¢; = |(f,2:)|/ (2 + [(f, :)])-

An important parameter in the error bound is k. To facilitate
discussion, we can loosen the bound and have

Remark 8. In Theorem 7, if

(hey)? = 1/4) (I{f. 2| =22 +1 <0, @3)
then there exist positive constants ¢y and co such that
er(h) < ér(h) + ¢ + O(e k). (24)

We see the error bound decreases exponentially as £ in-
creases, suggesting one choose large k to get accurate models.
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Note this is opposite to Theorem 4, which suggests choosing
small £ to get fair models. So we see a trade-off between accu-
racy and fairness is established (and controlled) via parameter
k. In practice, we can adjust k& by adjusting the threshold p.

VI. EXPERIMENT
A. Experiment Data

We experimented on two public data sets: the Community
Crime data set and the COMPAS data set. The former contains
1993 communities described by 128 features; community
crime rate is the label; we treated a community as minority if
its fraction of African-American residents is above 0.5. The
latter contains 18317 records described by 40 features; risk
of recidivism is the label. We selected 16000 records and 15
non-empty numerical features. Similar to [8], we treated race
as the sensitive feature.

B. Experiment Design

On each data set, we randomly chose 75% instances for
training and the rest for testing. We evaluated each method
for 50 random trials and reported its average results.

We compared each proposed distributed fair learner with
its existing non-distributed counterpart, i.e., DFRR with fair
ridge regression (FRR) [7], DFKRR with fair kernel regression
(FKRR) [30]; DFGR with fair logistic regression (FGR) [21]
and DFPCA with two fair PCAs (FPCA) [29], [32]. We also
compared with a popular fair learner LFP [36].

We used five evaluation metrics: statistical parity (SP) [27],
normed disparate (ND) [27], classifier error, error parity and
error disparate. Let er(f|s = 1), er(f|s = 0) be the classifier
errors in two demographic groups respectively. We define

Error Parity(f) = |er(f|s = 1) —er(f|s = 0)|. (25)
and error disparate as
Error Disparte(f) = Z:gc:i;é; - 1‘ . (26)

C. Comparison Results and Discussions

Our experimental results on the two data sets are presented
in Table I and II respectively. Since results in both tables are
similar, our discussion will focus on Table I.

Our first observation is the proposed distributed fair learning
methods consistently outperform their non-distributed coun-
terparts. Take ridge regression as an example, DFRR not
only achieves much lower SP than FRR (0.05 vs 0.31), but
also simultaneously achieves lower classifier error (0.106 vs
0.110) and error parity (0.17 vs 0.23). Another example is
PCA, where DFPCA achieves lower SP than FPCA’s (0.03
vs 0.08), lower classifier error (0.14 vs 0.15) and lower error
parity (0.15 vs 0.19). Similar comparisons can be observed
for most methods on COMPAS data set. These observations
imply that, for fair learning, our proposed p-fairness measure
is more efficient than existing ones and our proposed learning
framework is more effective.

Our second observation is that the performance gap between
distributed and non-distributed methods is larger for linear
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Fig. 2: (a) Performance versus p and (b) cov(f(z),s) of 20
random trials on the Community Crime data set

models (ridge regression and PCA) and sometimes smaller for
nonlinear ones (e.g. logistic and kernel). The former is further
backed up by the desirable theoretical guarantees we proved
for linear models. As to why our framework occasionally gives
less performance improvement on non-linear base models, we
do not have a principled hypothesis at the moment.

Finally, we observe existing Fair PCA methods do not lead
to fair classification results (high SP and error). Our proposed
distributed fair PCA significantly reduces SP and error, making
itself a competitive method for classification tasks.

D. Sensitivity Analysis

Fig 2 (a) shows classifier error and SP of fair logistic regres-
sion versus p. We see that, as p decreases, error increases and
SP decreases, This means the model is fairer but less accurate,
which is consistent with the implications of Theorems 4 and 7.
Fig 2(b) shows that, in most cases, the covariance is positive
which implies f(x) and s satisfy the PQD/PND assumption.

VII. CONCLUSION

In this paper, we propose a distributed fair machine learning
framework for protecting the privacy of demographic data. We
propose a simple and effective approach to design fair learning
methods under this framework. We apply this approach to
redesign four existing fair learning methods, and show our
redesigns consistently outperform their counterparts on real-
world data sets. We theoretically analyze the framework and
prove its output model is both fair and accurate.
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