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Abstract—In recent years, there have been significant efforts
on mitigating unethical demographic biases in machine learning
methods. However, very little work is done for kernel methods.
In this paper, we propose a novel fair kernel regression method
via fair feature embedding (FKR-F2E) in kernel space. Motivated
by prior works feature processing for fair learning and feature
selection for kernel methods, we propose to learn fair feature
embeddings in kernel space, where the demographic discrepancy
of feature distributions is minimized. Through experiments on
three public real-world data sets, we show the proposed FKR-
F2E achieves significantly lower prediction disparity compared
with the state-of-the-art fair kernel regression method and several
other baseline methods.

I. INTRODUCTION

In recent years, we’ve witnessed a tremendous growth of
machine learning applications in real-world problems that have
immediate impacts on peoples’ lives. However, standardly
learned models can have unethical predictive biases against mi-
nority peoples; e.g., in recidivism prediction, a commercialized
model has significant bias against innocent black defendants
[1]; other biases are found in hiring [2], facial verification [3],
violence risk assessment in prison [4], etc.

How to learn fair models has become a significant research
topic [5], and many methods have been proposed [6]–[12]. They
typically sacrifice certain prediction accuracy for improving
prediction fairness, bound to the accuracy-fairness tradeoff.

A promising direction is fair kernel learning [13], [14]. By
constructing sufficiently complex hypothesis spaces, they are
more likely to learn a model that can achieve an efficient
accuracy-fairness trade-off. However, this direction is sparsely
explored so far. A notable work is fair kernel regression [13],
which penalizes a model’s predictive bias in kernel space.

In this paper, we propose a novel fair kernel regression
method that learns fair feature embeddings (FKR-F2E) in the
kernel space. It is motivated by the work of Feldman et al [7],
which shows that in a properly transformed data space where
different demographic groups have similar feature distributions,
a standardly learned prediction model will be naturally fair.
We thus seek for such a fair transformation in the kernel space.

A major challenge is that kernel space is often implicit,
making it hard to find explicit fair transformations therein.
To tackle the problem, we borrow ideas from Cao et al
[15], which learns feature embeddings in the kernel space for

feature selection. Specifically, we propose to learn fair feature
embeddings in the kernel space, such that different demographic
groups have similar embedded feature distributions. We propose
to measure similarity using mean discrepancy [16].

Through experiments on three real-world data sets, we show
the proposed FKR-F2E achieves significantly lower prediction
bias than the existing fair kernel regression method as well as
several non-kernel fair learning methods, without sacrificing a
significant amount of prediction accuracy.

The rest of the paper is organized as follows: in Section II,
we revisit related works; in Section III, we present the proposed
method; in Section IV, experimental results are presented and
discussed; our conclusion is in Section V.

A. Notations and Assumptions

To facilitate discussions in related work, we introduce some
notations here. We describe an instance using a triple (x, s, y),
where x is a feature vector, s is a protected demographic (e.g.
gender, race) and y is label. Assume s is contained in x.

Similar to prior studies, we assume s is binary. Let there be
n instances in the training set, among which nu belong to the
unprotected group (s = 0) and np belong to the protected group
(s = 1). Without loss of generality, we assume the instances are
ordered such that the first nu ones x1, . . . , xnu are unprotected
and the rest xnu+1, . . . , xn are protected.

For kernel methods, let φ(·) be the feature mapping function,
and f be a prediction model mapping from φ(x) to y.

II. RELATED WORK

A. Fair Kernel Regression

Perez-Suay et al [13] propose a fair kernel regression method,
which directly extends the linear fair learning method [9]
to kernel space. Specifically, it minimizes prediction loss
while additionally penalizing the correlation between model
prediction and demographic feature in the kernel space as:

min
f

n∑
i=1
[ f (φ(xi)) − yi]

2 + µ

n∑
i=1
( f̄ (xi) · s̄i) + λΩ( f ), (1)

where the second term measures predictive bias as the correla-
tion between model prediction and the demographic feature,
and f̄ (x) and s̄ are centered variables; the last term measures
model complexity; µ and λ are hyper-parameters. Based on the
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Representer Theorem that f is a linear combination of φ(xi)’s,
task (1) admits an analytic solution for the linear coefficients.

Perez et al’s method adopts the regularization approach in
fair learning, which penalizes predictive bias during learning
(e.g., [8], [9]). In this paper, we adopt another popular approach
which first constructs a fair feature space and then builds a
standard model in it (e.g., [6], [7], [12]). In experiments, we
show our method can achieve higher prediction fairness.

B. Fair Feature Learning and Mean Discrepancy

An effective approach to learn fair models is to first construct
a fair feature space and then learn a standard model in it
(e.g., [6], [7]). A fair feature space is one where feature
distributions of different demographic groups are similar, e.g.,
different groups have similar CDF’s of the new features [7],
or the statistical dependence between the new features and the
demographic feature is low [6].

In this paper, we develop a new fair kernel regression based
on the idea of fair feature learning. Unlike previous studies, we
measure feature similarity using mean discrepancy [16]. MD
measures distance between distributions and is widely used in
machine learning [17]–[19]. Let x1, . . . , xn and z1, . . . , zm be
two sets generated from distributions Px and Pz respectively.
MD estimates the distance between Px and Pz as

MD(Px, Pz) =

������
������1n n∑

i=1
φ(xi) −

1
m

m∑
j=1

φ(zj)

������
������
2

. (2)

A technical challenge is that previous fair feature learning
approaches assume the feature space is explicit and then modify
it to obtain a fairer space. In kernel methods, however, the
feature space of φ(x) is implicit. To tackle this issue, we
propose to construct an explicit fair feature space for φ(x), by
learning fair feature embedding functions in the kernel space.
This approach is motivated by the literature of feature selection
in kernel methods (e.g., [15], [20]).

C. Feature Selection in Kernel Space

Feature selection is a common practice for improving the
robustness and interpretability of machine learning models [21].
However, its practice in kernel methods is not easy, since there
is not an explicit feature representation in kernel space. Only
a few approaches are proposed, e.g. [15], [20], [22].

Our study is motivated by Cao et al [15]. They propose to
learn explicit feature representation in the kernel space, by
learning feature embedding function η. They show the optimal
function is a linear combination of training instances, and learn
such functions by standard methods such as KPCA [23]. After
that, instance φ(x) is mapped onto η to obtain an explicit
feature representation on which feature selection is performed.

Motivated by Cao et al’s approach, we propose to learn
feature embedding functions that are fair, e.g.., different
demographic groups have similar distributions in the embedded
space. As explained in the previous subsection, similarity is
measured by mean discrepancy.

III. FAIR KERNEL REGRESSION VIA LEARNING FAIR

FEATURE EMBEDDINGS IN KERNEL SPACE (FKR-F2E)
In this section, we present the proposed fair kernel regression

via learning fair feature embeddings in kernel space (FKR-F2E).
Recall an individual is (x, s, y), where x is feature vector, s is
binary demographic feature and y is label. There are n training
instances, where x1, . . . , xnu are from the unprotected group
and xnu+1, . . . , xn are from the protected group.

Our proposed method works in two steps: (i) learn fair feature
embeddings in kernel space; (ii) build a standard regression
model based on the embedded features.

Step 1. Learn Fair Feature Embeddings in Kernel Space
Our goal is to learn an explicit and fair feature representation

for φ(x). To that end, we propose to learn a fair feature
embedding function η, such that in the embedded space, the
mean discrepancy between the protected group and unprotected
group is minimized:

min
η

�����
����� 1
nu

nu∑
i=1
〈φ(xi), η〉 −

1
np

n∑
i=nu+1

〈φ(xi), η〉

�����
�����2 . (3)

Problem (3) cannot be directly solved since there is no explicit
representation of φ(x). Motivated by Cao et al [15], we assume
the optimal η is a linear combination of training instances:

η =
∑n

i=1
αiφ(xi). (4)

To avoid overfitting, we further assume η has a unit norm:

| |η | |2 = 1. (5)

Solving (3) under constraints (4) and (5), we have that1(
1
n2
u

KT
u Ku −

2
nunp

KT
u 1u1TpKp +

1
n2
p

KT
p Kp

)
α = λKα, (6)

where α = [α1, . . . , αn]
T is the vector of unknown parameters

and λ is an eigenvalue; K is a standard n-by-n Gram matrix
of all instances; Ku is nu-by-n and Kp is np-by-n satisfying

K =
[
Ku

Kp

]
(7)

Formula (6) is a generalized eigenproblem, and α is the
least generalized eigenvector. After α is solved, we obtain the
first explicit and fair feature of φ(x) in the kernel space as

〈φ(x), η〉 =
∑n

i=1
αik(x, xi). (8)

The above analysis gives the first fair feature embedding
function η in the kernel space. Now we present how to obtain
the second η′, and the rest can be derived in similar fashions.

The second optimal embedding η′ is obtained in a similar
fashion as η, with an additional constraint that it should be
orthogonal to the previously obtained embeddings:

min
η′

�����
����� 1
nu

nu∑
i=1
〈φ(xi), η′〉 −

1
np

n∑
i=nu+1

〈φ(xi), η′〉

�����
�����2

s.t . η′ =
∑n

i=1
α′iφ(xi), | |η′ | |2 = 1, ηTη′ = 0.

(9)

1Detailed arguments are in Appendix A.
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Solving (9) shows that α′ = [α′1, . . . , α
′
n]

T is the second least
generalized eigenvector of the same eigenproblem (6)2 .

By similar arguments, we can show the linear coefficients of
k optimal fair embeddings η1, . . . , ηk are the least k generalized
eigenvectors of the eigenproblem (6).

After that, we obtain a k-dimensional explicit fair feature
representation of φ in the kernel space, i.e.,

φFS(x) = [〈φ(x), η1〉, . . . , 〈φ(x), ηk〉]T . (10)

Step 2. Learn a Standard Regression Model on φFS(x)

Given an explicit fair feature representation φFS(x), we learn
a standard regression model based on it. Let x1, . . . , xn be n
training instances. One can easily verify that

φFS(xi) = [〈φ(xi), η1〉, . . . , 〈φ(xi), ηk〉]T = (KT
:i A)T (11)

where K:i is the ith column Gram matrix K , and A is an n-by-k
matrix with column j being the linear coefficient vector of ηj
(e.g., the first column is α and the second column is α′).

Then, one can obtain an n-by-k training sample matrix

XFS =


(φFS(x1))

T

...
(φFS(xn))T

 =

KT

:1 A
...

KT
:nA

 = KT A = K A. (12)

Now, we learn a regression model β ∈ Rk on XFS by

min
β
| |XFS · β − Y | |2 + γ | |β| |2, (13)

where γ is a regularization coefficient.
For any testing instance z, we first compute its explicit fair

feature representation

φFS(z) = [〈φ(z), η1〉, . . . , 〈φ(z), ηk〉]T , (14)

and then compute its prediction as

ŷ = φFS(z)T β. (15)

For classification tasks, one can simply threshold ŷ.

IV. EXPERIMENT

A. Data Sets

We experimented on three public data sets, namely, the
Credit Default data set3, the Community Crime data set4, and
the COMPAS data set5.

The original Credit Default data set contains 30,000 individ-
uals described by 23 attributes. We treated ‘education level’ as
the sensitive variable, and binarized it into higher education
and lower education as in [12]; ‘default payment’ is treated as
the binary label. We removed individuals with missing values
and down-sampled the data set from 30,000 to 20,000. Our
preprocessed data sets are published at 6.

2Detailed arguments are in Appendix B.
3https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
4http://archive.ics.uci.edu/ml/datasets/communities+and+crime
5https://github.com/propublica/compas-analysis
6https://uwyomachinelearning.github.io/

The Communities Crime data set contains 1,993 communities
described by 101 informative attributes. We treated the ‘fraction
of African-American residents’ as the sensitive feature, and
binarized it so that a community is ’minority’ if the fraction is
above 0.5 and ’majority’ otherwise. Label is the ‘community
crime rate’, and we binarized it into high if the rate is above
0.5 and low otherwise.

The COMPAS data set contains 18,317 individuals with 40
features (e.g., name, sex, race). We down-sampled the data set
to 16,000 instances and 15 numerical features (e.g. name is
removed). Similar to [24], we treated ‘race’ as the sensitive
feature and ‘risk of recidivism’ as the binary label.

B. Experiment Design

On each data set, we randomly chose 75% of the instances for
training and used the rest for testing. We evaluated each method
over 50 random trials and reported its average performance
and standard deviation.

We compared the proposed FKR-F2E with the existing fair
kernel regression [13], and several other non-kernel methods.
For each compared method, we set its hyper-parameters as
described in the original paper.

For FKR-F2E, we used polynomial kernel on both Credit
and Community Crime data sets and sigmoid kernel on the
COMPAS data set. For polynomial kernel, we grid-searched its
optimal degree in {3, 4, 5, 6} and optimal additive coefficient
in [10−3, 10−2, 10−1, 100, 101]. For sigmoid kernel, we grid-
searched its optimal c among 5 values in the logarithmic range
of [10−4, 101], and we used the default γ in Scikit-Learn [25]
(i.e., inverse of feature dimension). For the ridge regression
regularization coefficient λ, we grid-searched an optimal value
among 6 values in the logarithmic range [10−3, 102].

Finally, an important hyper-parameter is the number of
feature embeddings k. We experimented with 4 values, namely,
n

250 , n
200 , n

150 and n
100 . In experiment these values yielded good

generalization performance on all data sets.
We evaluated model accuracy using the standard classifica-

tion error (Error), and evaluated model fairness using a popular
measure called statistical disparity (SD) [11], defined as:

SD( f , S) = |p( f (x) = 1 | s = 1) − p( f (x) = 1 | s = 0)|. (16)

Finally, all experiments were run on the Teton Computing En-
vironment at the University of Wyoming’s Advanced Research
Computing Center (https://doi.org/10.15786/M2FY47), and our
FFE implementation is at https://github.com/aokray/FFE.

C. Classification Results and Discussions

Our classification results are summarized in Table I.
Our first observation is that FKR-F2E consistently achieves

lower statistical disparity than the existing fair kernel regression
method (and other baselines) across the three data sets. This
implies that fair feature embedding is an effective approach
for learning fair models in kernel space.

We notice the superior fairness of FKR-F2E is not achieved
without any cost. In general, it has slightly higher prediction
error than the existing fair kernel regression and other baselines.
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Method
Credit Default Communities Crime COMPAS

SD Error SD Error SD Error

FKR-F2E .0021±.0017 .2277±.0050 .0392±.0267 .1384±.0125 .0025±.0018 .2307±.0057

FKRR [13] .0079±.0011 .2001±.0054 .0968±.0722 .1208 ±.0054 .0041±.0013 .2190±.0089

FLR [9] .0779±.0571 .2412±.0469 .0898±.0971 .1166±.0189 .0408±.0162 .2428±.0917

FRR [11] .0186±.0016 .2914±.0186 .3062±.0452 .1102 ±.0128 .0182±.0042 .2276±.0040

FPCA [12] .1716±.0149 .4025±.0382 .0859±.0479 .1731±.0089 .2806±.0182 .3204±.1032

TABLE I: Classification Performance of Different Methods across Different Data Sets. For polynomial kernel, we set degree as
4 and additive coefficient as 0.1. For sigmoid kernel, we used c = 0.01 and γ as the inverse of feature dimension. k is set to n

250 .

However, we argue the loss of accuracy is small compared with
the increase of fairness. For example, on the Credit Default
data set, FKR-F2E lowers prediction disparity by at least 75%
= (0.0079-0.0021)/0.0079 but only increases prediction error
by at most 13% = (0.2277-0.2001)/0.2001. We thus argue this
method has a more efficient accuracy-fairness trade-off.

Finally, we see fair kernel methods generally achieve lower
statistical disparity than other fair learning methods, suggesting
their promisingness for fair machine learning.

D. Sensitivity Analysis

In this section, we examined the performance of FKR-F2E on
the Communities Crime data set under different configurations.

We first examined its performance with different choices of
kernel. Results on testing samples averaged over 50 random
trials are reported in Figure 1. We see that polynomial kernel
achieves the highest prediction fairness, with slightly higher
prediction error. Sigmoid kernel is the second best, and linear
kernel does not give low disparity. This supports our hypothesis
that why fair kernel methods are promising – they construct a
complex hypothesis space that is more likely to include models
with efficient fairness-accuracy trade-off.

Next, we examined performance with polynomial kernel
under different k (number of feature embeddings). Results are
shown in Figure 2. We see that smaller k generally leads to
higher prediction fairness and slightly higher prediction error.
The former phenomenon implies that only the least eigenvectors
of problem (6) can effectively minimize the mean discrepancy
between two groups. The latter is easy to understand – higher
feature dimension provides more information for building
an accurate prediction model. However, the variation versus
k seems quite limited, suggesting our method has robust
classification performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel fair kernel regression
method FKR-F2E. It first learns a set of fair feature embeddings
in the kernel space, and then standardly learns a prediction
model in the embedded space. Through experiments across
three real-world data sets, we show it achieves significantly
lower bias in prediction compared with the state-of-the-art fair
kernel regression method as well as several non-kernel fair

Fig. 1: Sensitivity analysis for varying kernels with their
approximately optimal number of features selected.

Fig. 2: Performance versus k.

learning methods, while sacrificing only a small amount of
prediction accuracy.
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VI. APPENDIX

A. Derivation of Eigen-Problem (6)

We will show how to derive (6) by solving (3) under
constraints (4) and (5). Recall that η =

∑n
i=1 αiφ(xi) where

αi’s are unknown parameters. Rewrite the objective in (3) as

J(η) =

�����
����� 1
nu

nu∑
i=1
〈φ(xi), η〉 −

1
np

n∑
i=nu+1

〈φ(xi), η〉

�����
�����2

=
1
n2
u

(
nu∑
i=1
〈φ(xi), η〉

)2

+
1

n2
p

(
n∑

i=nu+1
〈φ(xi), η〉

)2

−
2

nunp

(
nu∑
i=1
〈φ(xi), η〉

) (
n∑

i=nu+1
〈φ(xi, η〉

)
=
αT KT

u Kuα

n2
u

+
αT KT

p Kpα

n2
p

−
2αT KT

u 1u1TpKpα

nunp

= αT Mα = J(α),

(17)

where M is a symmetric matrix defined as

M =
1
n2
u

KT
u Ku −

2
nunp

KT
u 1u1TpKp +

1
n2
p

KT
p Kp, (18)

matrix Ku ∈ R
nu×n has k(xi, xj) at row i column j and matrix

Kp ∈ R
np×n has k(xnu+i, xj) at row i column j; 1u ∈ Rnu and

1p ∈ R
np are vectors of ones, and α = [α1, . . . , αn].

Next, it is easy to verify that constraint (4) staisfies

ηTη = αT Kα = 1, (19)

where K ∈ Rn×n is the standard Gram matrix.
Thus we need to solve

min
α

J(α) s.t . αT Kα = 1. (20)

The Lagrange function is

L(α, λ) = J(α) + λ(αT Kα − 1). (21)

Setting ∂L(α,λ)
∂α = 0 and solving for α gives (6).

B. Derivation of the Solution to (9)

Here, we show why solution to (9) is also a solution to the
eigen-problem (6). Let α be the coefficient vector for the first
feature embedding η (known), and α′ be the coefficient vector
of the second embedding η′ (unknown). The new constraint
when learning η′ can be written as

ηTη′ =

(
n∑
i=1

αiφ(xi)

) (
n∑
i=1

α′iφ(xi)

)
= αT Kα′ = 0. (22)

Thus we need to solve

min
α′

J(α′) s.t . (α′)T Kα′ = 1, (23)

and
(α′)T Kα = 0. (24)

The Lagrange function is

L(α′, λ1, λ2) = J(α′) + λ1((α
′)T Kα′ − 1) + λ2α

T Kα′. (25)

Setting ∂L(α′,λ1,λ2)
∂α′ = 0 and left-multiplying both sides by αT ,

αT Mα′ − 2λ1α
T Kα′ − λ2α

T Kα = 0. (26)

Since αT Kα′ = 0 and α′T Kα′ = 1, we have

(α′)T Mα = λ2. (27)

Further, from (6) we know α is a generalized eigenvector of
M satisfying Mα = λKα. Thus (27) becomes

(α′)T Mα = (α′)TλKα = λ(α′)T Kα = 0 = λ2, (28)

where the second equality is due to the new constraint (22).
Comparing (21) and (25), with λ2 = 0, we see α and α′

have the same Lagrange function. Thus it is easy to show they
are solution to the same generalized eignproblem (6).
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