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Abstract—Fair machine learning is a topical problem. It studies
how to mitigate unethical bias against minority people in model
prediction. A promising solution is ensemble learning – Nina et al
[1] first argue that one can obtain a fair model by bagging a set
of standard models. However, they do not present any empirical
evidence or discuss effective ensemble strategy for fair learning.

In this paper, we propose a new ensemble strategy for fair
learning. It adopts the AdaBoost framework, but unlike AdaBoost
that upweights mispredicted instances, it upweights unfairly
predicted instances which we identify using a variant of Luong’s
k-NN based situation testing method [2]. Through experiments on
two real-world data sets, we show our proposed strategy achieves
higher fairness than the bagging strategy discussed by Nina et al
and several baseline methods. Our results also suggest standard
ensemble strategies may not be sufficient for improving fairness.

I. INTRODUCTION

Machine learning models are ubiquitous today. However,
studies show that many models are unethically biased against
minority people. For example, they systematically score more
innocent black defendants as high risk reoffender [3] (compared
with non-black defendants), systematically underscore qualified
female job applicants in Amazon’s AI-hiring system [4] and
job platform XING [5] (compared with male job applicants), or
make higher mis-classification rates on black customers in facial
verification tasks [6] (compared with non-black customers).
There is an urgent need to mitigate these biases [7] to maintain
public trust in machine learning applications in society.

In recent years, many approaches have been proposed to
mitigate prediction bias, such as label preprocessing [2], [8] ,
feature preprocessing [9], [10], model regularization [11], [12]
and model postprocessing [13].

We notice that a promising approach is ensemble learning. In
2017, Nina et al [1] first argue that one can obtain a fair model
by bagging a set of standard models, since unethical biases in
these models may be averaged out through bagging. However,
their arguments remain at theoretical level and no empirical
evidence is presented. Besides, their arguments are based on the
standard bagging strategy, and there is no discussion on what
ensemble strategy is more effective for learning fair models.

In this paper, we propose a new ensemble heuristic and
show it achieves higher model fairness than several baseline
methods on real-world data sets. Surprisingly, in our experi-
ments, standard ensemble strategies such as bagging [1] do
not effectively improve fairness. Comparatively, our properly
designed ensemble heuristic significantly improves fairness.

Technically, our heuristic adopts the AdaBoost framework.
But unlike AdaBoost that upweights mis-predicted instances,
we upweight unfairly predicted instances by properly designed
weights; unfairly predicted instances are identified using the
k-NN based situation testing technique developed by Luong et
al [2]. Our hypothesis is that, if a model learns to pay more
attention on instances that can be easily unfairly predicted, the
model can reduce (or avoid) bias in its prediction.

Through experiments on two real-world data sets [14], [15],
we show the proposed heuristic achieves significantly higher
model fairness than the bagging strategy discussed in [1]
as well as several other baseline methods. We also observe
that ensemble models can achieve higher fairness than single
models, but only with properly designed ensemble strategies.

The rest of the paper is organized as follows: in Section
II, we review related works; in Section III, we present the
proposed ensemble strategy; experimental results are presented
and discussed in Section IV and conclusions in Section V.

II. RELATED WORK

A. Overview of Fair Machine Learning

Fair machine learning is an emerging field that investigates
and mitigates unethical bias in algorithm predictions [16].

Several fairness notions have been studied, such as statistical
disparity [10], equalized odds [13], individual fairness [11] and
preference [17]. The most common notion is statistical disparity,
which states a model is fair if it has similar positive prediction
rates across different demographic groups. It is rooted in the
legal notion of 80%-rule in the United States labor law [18].
In this work, we focus on statistical disparity.

Many fair learning approaches are proposed. Label prepro-
cessing [2], [8] assumes there are unfair labels in training data;
they detect and correct these labels before standard learning
is performed on training data. Feature preprocessing [9], [10]
assumes a model is fair if it is built on fair features; they first
learn fair features and then learn a standard model on them.
Model regularization [11], [12] directly penalizes unethical bias
during learning. Model postprocessing [13] learns a standard
model and modifies its predictions to make them fair. Finally,
model ensemble [1] assumes an ensemble of standard (unfair)
models is fair as their biases may be averaged out.
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B. Overview of Ensemble Methods

Ensemble learning is a powerful tool [19]. Its central idea
is to ensemble a set of (typically weak) base models to obtain
a strong and robust model.

There are many strategies to ensemble models. Two common
ones are bagging and adaboost. In bagging, each base model is
trained on a bootstrap of the training set; all base models are
then averaged to generate a strong model. In adaboost, base
models are trained in order, and each model is optimized by
minimizing a weighted loss on the training set; an instance has
higher weight if it is mis-predicted by the previous models;
finally, all base models are averaged in a weighted fashion
to generate a strong model, where a base model has higher
weight if it performs more accurately on the training set.

C. Ensemble Method for Fair Machine Learning

Nina et al [1] is the first work that points out ensemble
method can improve model fairness. Their key argument is
that, even if each base model is biased, their averaged model
may be fair as those biases can cancel each other. This is an
interesting argument. We present an example below.
An Example of How Bagging can Improve Fairness

Consider the task of applying machine learning to predict
whether an employee deserves to be promoted or not. Our goal
is to remove gender bias in prediction. Let x be a random
employee and f1, f2 be two base models. Suppose f1 is biased
against females with predicted promotion probabilities

p1a = Pr{x is promoted | x is male, f1} = 0.5
p1b = Pr{x is promoted | x is female, f1} = 0.1,

(1)

where ‘x is promoted’ means ‘x’ is predicted by the model as
deserving to be promoted.

Then, by definition, the statistical disparity of f1 is

SD( f1) = p1a − p1b = 0.4. (2)

Similarly, suppose f2 is biased against male with

p2a = Pr{x is promoted | x is male, f2} = 0.1

p2b = Pr{x is promoted | x is female, f2} = 0.5,
(3)

and thus
SD( f2) = p2a − p2b = −0.4. (4)

Now, consider an ensemble model f that randomly picks f1
or f2, each with 50% chance, to make prediction.1 Its predicted
promotion probability for males is

pa = Pr{x is promoted | x is male}
= p1ap( f1) + p2ap( f2)

= 0.5 · 50% + 0.1 · 50% = 0.3.
(5)

Similarly, its predicted promotion probability on female is

pb = p1bp( f1) + p2bp( f2) = 0.3. (6)

1This is the theoretical model discussed in Nina et al [1]. We can easily
verify the expected prediction of this model equals the prediction of bagging
model (that averages all model outcomes as the final outcome).

Thus, the statistical disparity of this ensemble model is

SD( f ) = pa − pb = 0.3 − 0.3 = 0. (7)

Comparing SD( f ) with SD( f1), SD( f2), we see each base
model has large statistical disparity (thus unfair); however, the
ensemble model has zero statistical disparity (thus fair).

Limitations in Nina et al’s Work

While Nina et al points out the potential of using ensemble
to improve model fairness, their work has two limitations.

First, their arguments remain at the theoretical level, and
no empirical evidence is presented in the work. How much
fairness can ensemble models achieve on real-world data sets?
This is the first question we aim to address in this paper.

Second, their arguments are based on a standard ensemble
strategy named bagging. Are standard ensemble strategies
optimal for learning fair models? Can we design new ensemble
strategies to improve fairness more efficiently? We will also
address these questions in the paper.

D. K-NN Situation Testing

Luong et al [2] proposes a k-NN based technique to detect
unfair labels in a data set. Motivated by the legal technique
of situation testing, they make the assumption that an instance
has unfair label if (i) the instance lies in a neighborhood
that has large statistical disparity, (ii) the instance belongs
to the minority group such as female and (iii) the label is
disadvantaged such as ‘not promoted’. They propose to first
detect and correct these unfair labels in the training set, and then
perform standard machine learning on the set. They empirically
show this improves model fairness.

In this paper, we modify Luong et al’s method and apply it
to identify unfairly predicted labels. There are modifications.
First, we perform detection based on predicted labels instead
of true labels. Second, we identify unfairly predicted labels
only based on (i) but not (ii) or (iii). We will elaborate the
detailed detection algorithm in the methodology section.

III. PROPOSED ENSEMBLE STRATEGY FOR FAIR LEARNING

A. Preliminaries

We will describe an instance using a tripe (x, s, y), in which
x is non-sensitive feature, s is sensitive demographic feature
(e.g., gender or race) and y is label.

Let there be a training set L = {(xi, si, yi)}i=1,...,n, where
(xi, si, yi) is the ith instance in the set.

Let f be an ensemble model mapping from x to y.2 Let ft
be the tth base model of f , and assume t = 1, . . . ,m.

B. The Proposed Ensemble Strategy

We begin with the AdaBoost framework. It defines the
ensemble model as

f (x) =
m∑
t=1

αt ft (x), (8)

2We can also assume f maps from (x, s) to y w.l.o.g..
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where αt is the model weight for ft . The base models will be
trained sequentially, and model ft will be trained by minimizing
a weighted loss on L, i.e.,

ft = arg min
h

n∑
i=1

w
(t)
i · loss(h(xi), yi), (9)

where loss(·) is any loss function and w
(t)
i is the weight for xi .

Instance weights of the first model are initialized to one.
We define a function δ

(t)
i to indicate whether xi is unfairly

predicted by ft , i.e.,

δ
(t)
i =

{
1, if xi is unfairly predicted by ft
0, otherwise

(10)

We will elaborate how to identify unfair predictions later.
For now, motivated by AdaBoost, we design model weights as

αt = ln
{

1 − εt
εt

}
, (11)

where

εt =

∑n
i=1 w

(t)
i δ
(t)
i∑n

i=1 w
(t)
i

. (12)

Intuitively, model ft receives higher weight in the ensemble
if it makes fair prediction on more instances. Indeed, being
fair on more instances means more δ(t)i will be zero, implying
smaller εt and thus larger αt .

Then, we design update rule for instance weight as

w
(t+1)
i = w

(t)
i · exp{αt · δ(t)i }. (13)

Intuitively, an instance receives higher weight if it is unfairly
predicted by the previous model – it is our hypothesis that
paying more attention to learning such data could improve
fairness of the ensemble model more efficiently.

Now, it remains to design the algorithm to identify unfairly
predicted instances in (10).

C. Identify Unfairly Predicted Instances

We will modify the k-NN based situation testing method
[2] and apply it to detect unfairly predicted instances.

For training instance xi , let Ni,k be the set of its k-nearest
neighbors (identified based on Euclidean distance between
instances). From the context in Section II.C., we first define
the statistical disparity of model ft in Ni,k as

SD( ft ; Ni,k) = Pr{x is promoted | x is male, x ∈ Ni,k}

− Pr{x is promoted | x is female, x ∈ Ni,k}

(14)

Then, we identify xi as unfairly predicted if SD( f ; Ni,k) is
bigger than a threshold r (and vice versa). Thus (10) becomes

δ
(t)
i =

{
1, SD( ft ; Ni,k) > r

0, SD( ft ; Ni,k) ≤ r .
(15)

To better understand the detection process, we give an exam-
ple in Figure 1. Let ∗ be the instance being examined and set
k = 5. We see that Pr{x is promoted | x is male, x ∈ Ni,k} =

Fig. 1. K-NN situation testing

2/3 and Pr{x is promoted | x is female, x ∈ Ni,k} = 1/2.
Therefore, SD( ft ; Ni,k) = 2/3−1/2 ≈ 0.17. If we set threshold
r = 0.1, then SD( ft ; Ni,k) > r and instance ∗ will be considered
as unfairly predicted by ft .

D. Summary of Ensemble Learning Algorithm

The proposed ensemble fair learning method is summarized
in Algorithm 1. It is built on AdaBoost, but differs at steps 3
and 4. At Step 3, AdaBoost increases model weight αt if ft is
accurate, but we increase it if ft is fair. At Step 4, AdaBoost
increases instance weight w(t+1)

i if xi is mis-predicted by ft ,
but we increase it if xi is unfairly predicted by ft .

Algorithm 1 Proposed Ensemble Fair Learning Method
Input: training set L, ensemble size m, neighborhood size
k and identification threshold r .
Initialize: instance weight w(1)i = 1/n, i = 1, . . . , n
for t = 1, . . . ,m do
1: train base model ft based on (9).
2: compute identifier δ(t)i based on (14), (15)
3: compute model weight αt based on (11), (12)
4: update instance weight w(t+1)

i based on (13)
end for
Output: ensemble model f =

∑m
t=1 αt ft .

IV. EXPERIMENT

A. Experiment Data

We experimented on two public data sets that are commonly
used for fair learning: the Credit Default data set3 and the
Community Crime data set4.

The Credit Default data set contains 30,000 instances and
23 features (e.g.,default payments, gender, history of payment).
We treated education degree as the sensitive attribute and
binarized it into ‘higher’ and ‘lower’ in the same way as [20].
We treated default payment (1=yes, 0=no) as the binary label.
We down-sampled the data set from 30,000 to 20,000.

The Communities Crime data set contains 1,993 instances,
each described by 101 features (e.g. percent of the population
under the poverty line, percent of divorced males in the

3https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
4http://archive.ics.uci.edu/ml/datasets/communities+and+crime
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community, violent crimes per population). We treated the
fraction of African-American residents as the sensitive feature,
and binarized it so that a community is considered minority if
the fraction is above 0.5 and majority otherwise.The predictive
variable is the community crime rate that is binarized into high
if the rate is above 0.5 and low otherwise.

Both our preprocessed data sets are available at https://
uwyomachinelearning.github.io/.

B. Experiment Design

On each data set, we randomly chose 75% instances for
training and used the rest for testing. We performed each
experimented method over 50 random trials and reported the
average performance.

We compared the proposed ensemble model with two popular
ensemble models, namely, bagging (discussed in Nina et al)
and AdaBoost. Logistic regression is used as the base model.

We also compared with two single models: standard logistic
regression and the existing fair logistic regression [21]. For fair
logistic regression, we used the same set of hyper-parameters
as used in the original paper.

We used three evaluation metrics: classifier error, statistical
disparity (SD) and equalized odds (EO) [13]. EO is a variant
of SD that further conditions SD on instances with the same
true label. Following the context in Section II.C., EO(f) is the
difference between the following two probabilities

Pr{ f (x) = promoted | x is male, actually promoted}

Pr{ f (x) = promoted | x is female, actually promoted}.

C. Results and Discussions

Experimental results on all examined methods on two data
sets are shown in Table I and Table II respectively.

In Table I, we see our proposed method achieves significantly
lower statistical disparity and equalized odds than other
methods, suggesting its strength in learning fair models. But
we also observe this method achieves higher prediction error,
suggesting a trade-off between fairness and accuracy. (Other
methods cannot achieve the same fairness as our method, even
when we re-balanced their accuracy-fairness trade-off.)

Surprisingly, we see both standard ensemble strategies do
not naturally improve fairness (as argued in previous study)
– they perform similarly to standard logistic regression and
worse than fair logistic regression. Comparatively, our properly
designed ensemble strategy outperforms both standard and fair
single models. These results suggest that ensemble learning
can improve fairness only through proper ensemble strategies.

To double-check if the standard ensemble strategy could
improve fairness in certain random trials, we plot the error
bars of bagging and our method in Figure 2. We see that
bagging, even in its best case, still has very high statistical
disparity (0.11). Comparatively, our method, even in its worst
case, still achieves much lower disparity (0.04). This suggest
our proposed ensemble strategy is more effective and robust
for learning fair models.

Finally, our proposed ensemble of logistic regression signifi-
cantly outperforms the existing fair logistic regression method.

Method SD EO Error
LR .1000 ± .0000 .4695 ± .0000 .1883 ± .0000
FairLR [21] .0898 ± .0971 .0620 ± .0882 .1166 ± .0189
Bagging [1] .2267 ± .2025 .2855 ± .1867 .1187 ± .0987
AdaBoost .0746 ± .0124 .3712 ± .0889 .1013 ± .0117
Our Method .0239 ± .0247 .0593 ± .0367 .1604 ± .0445

TABLE I
CLASSIFICATION PERFORMANCE ON THE COMMUNITY CRIME DATA SET.

LR STANDARDS FOR LOGISTIC REGRESSION.

Method SD EO Error
LR .1531 ± .0000 .1161 ± .0000 .3438 ± .0000
FairLR .0779 ± .0571 .1256 ± .0112 .2412 ± .0469
Bagging .1915 ± .1766 .1267 ± .1024 .3066 ± .0277
AdaBoost .1697 ± .0335 .1104 ± .0625 .2877 ± .0238
Our Method .0213 ± .0171 .0019 ± .0000 .4486 ± .0589

TABLE II
CLASSIFICATION PERFORMANCE ON THE CREDIT CARD DATA SET

Fig. 2. Statistical Disparity of 50 Random Trials on Community Crime

This suggests that ensemble learning is indeed a promising
approach for fair learning (with the right ensemble strategy).

Similar observations are found in Table II.

D. Sensitivity Analysis

In this section, we performed sensitivity analysis of the
proposed ensemble fair learning method.

In Figure 3 and 4, we show statistical disparity and prediction
error versus the number of base models on two data sets
respectively. First, we see that fairness is improved as more
base models are added, and the improvement starts to converge
when the number passes 50 (on both data sets). Second, we see
prediction error increases as more base models are added. This
may be explained by the fact that our method is not designed
to boost accuracy – it pays more attention to unfairly predicted
instances and fair models. Combing both observations, we
see a trade-off between accuracy and fairness in the proposed
method. How to reduce this trade-off remains an open question.

In Figure 5, we show statistical disparity versus the neigh-
borhood size (k in Algorithm 1). We see that neither small k
or large k gives the highest fairness – the optimal values are
achieved at 11 and 15 on two data sets respectively. This makes
sense, because too small of k may not include enough examples
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Fig. 3. Performance on Community Crime

Fig. 4. Performance on Credit Card

Fig. 5. Statistical Disparity versus k

for accurate estimation of disparity in the neighborhood, while
too large of k may include neighbors that are generated from a
different distribution and thus not representative of the disparity
in the neighborhood. How to identify the optimal k remains
an open question.

Finally, in Figure 6 we show fairness versus the threshold r .
The performance is similar to that in Figure 5. This also makes
sense – too small of r will identify every instance as unfairly
predicted (thus increasing weights of all instances), and too
large r will identify no instance as unfairly predicted (thus
increasing no weight). How to identify the optimal r remains
an open question.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new ensemble strategy to learn
fair models. It adopts the AdaBoost framework, and upweights
unfairly predicted instances when learning base models. We
show our method achieves higher fairness than the prior work
as well as several baseline methods. In particular, our results
suggest that standard ensemble strategies do not naturally
improve fairness, and one should carefully design ensemble
strategies for learning fair models.

Fig. 6. Statistical Disparity versus Threshold r
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