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Abstract

Traditional anomaly detectors examine a single
view of instances and cannot discover multi-view
anomalies, i.e., instances that exhibit inconsis-
tent behaviors across different views. To tackle
the problem, several multi-view anomaly detectors
have been developed recently, but they are all trans-
ductive and unsupervised thus may suffer some
challenges. In this paper, we propose a novel induc-
tive semi-supervised Bayesian multi-view anomaly
detector. Specifically, we first present a genera-
tive model for normal data. Then, we build a hi-
erarchical Bayesian model, by first assigning pri-
ors to all parameters and latent variables, and then
assigning priors over the priors. Finally, we em-
ploy variational inference to approximate the poste-
rior of the model and evaluate anomalous scores of
multi-view instances. In the experiment, we show
the proposed Bayesian detector consistently out-
performs state-of-the-art counterparts across sev-
eral public data sets and three well-known types of
multi-view anomalies. In theory, we prove the in-
ferred Bayesian estimator is consistent and derive
a proximate sample complexity for the proposed
anomaly detector.

1 Introduction

Anomaly Detection (AD) is a fundamental task with broad
applications, such as in clinical diagnosis, fraud transaction
detection and cybersecurity [Chandola er al., 2009]. Tradi-
tional detectors only examine a single view! of instances and
cannot discover multi-view anomalies, i.e., instances that ex-
hibit inconsistent behaviors across different views. One ex-
ample is in web image analysis, an image can be described its
category such as car or animal (view 1) and its web page such
as cars.com or animals.com (view 2). If an image is assigned
to the animal group in view 1 but car group in view 2, then it is
natural to consider this image anomalous [Marcos Alvarez et
al., 2013]. Other examples can be found in digit recognition

' A view is a set of features that often have similar semantics, e. g.,
a webpage can be described by one view of its content and another
view of its hyperlinks [Xu et al., 2013].
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[Li et al., 2018b] and movie recommendation on MovieLens
dataset [Gao et al., 2011]. How to effectively leverage mul-
tiple views to detect anomaly is an interesting and significant
topic, often referred to as multi-view anomaly detection.

In the literature, a number of multi-view anomaly detectors
have been developed. Some of them try to find samples that
have inconsistent cross-view cluster membership. HOrizon-
tal Anomaly Detection (HOAD) [Gao er al., 2011] pioneers
this branch of methods. In HOAD, the author first constructs
a combined similarity graph based on the similarity matrices,
and computes the key eigenvectors of the graph Laplacian
of the combined matrix. Then anomalies are identified by
computing cosine distance between the components of these
eigenvectors. This idea is further studied by [Marcos Alvarez
et al., 2013] and [Liu and Lam, 2012] for different applica-
tion tasks. Another successful group of methods is developed
from a perspective of data representation [Li et al., 2015;
Zhao and Fu, 2015; Li et al., 2018al. The intuition in these
works is that a normal sample usually serves as a good con-
tributor in representing the other normal samples while the
outliers do not. Low-rank matrix recovery is the technique
which can exploit the intrinsic structure of data and explore
the representation relationship of samples. Therefore, by cal-
culating the representation coefficients in low-rank matrix re-
covery, the multi-view outliers can be identified. In addition,
[Iwata and Yamada, 2016] utilizes a sophisticated statistical
machine learning algorithm to detect anomalies. They design
a probabilistic latent variable model to infer the consistent or
inconsistent characteristics of multiple views for each object.

We note that above detection methods are unsupervised
and transductive. In some applications, however, one can of-
ten get plenty of labeled normal data (e.g., one can collect
or simulate normal network traffic data for a certain period
of time). In these cases, it is natural to hypothesize these
data will enable the detector to better capture normal behav-
ior than unlabeled data. In addition, when an unseen testing
instance arrives, above methods have to add it to the existing
training set and rerun the detection algorithm (e.g., clustering
or matrix factorization), which often causes inefficiency.

To lift above limitations, in this paper we propose a novel
Bayesian model for semi-supervised multi-view anomaly de-
tection. To be specific, we first present a generative model
for normal data, assuming that different views of a normal
instance are generated from a single latent factor through



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

View 2 (user)

romance adufts

Aftribute outlier A Class outlier [ Class-attribute outlier
Figure 1: Illustration of three types of outliers in multi-view setting.

different projection matrices; and the views are indepen-
dent conditioned on the factor [Blum and Mitchell, 1998;
Dasgupta et al., 2002]. Then we build a hierarchical Bayesian
model, by first assigning priors on model parameters and then
assigning priors over the priors. In particular, we assign the
automatic relevance determination (ARD) prior [Neal, 2012]
on the projection matrices to sparsify their columns for au-
tomatically determining the dimension of latent factor; we
also place Student’s ¢ distributions on the latent factor prior
and the likelihood to improve robustness of the estimator [Ar-
chambeau er al., 2006; Gai et al., 2008]. Finally, we employ
variational inference to derive an analytical approximation to
the posterior probability (of unobserved variables and param-
eters) of model. To detect multi-view anomalies, we propose
to measure the outlier score by calculating the value of log
marginal distribution of multiple observed views.

The contributions of this paper are summarized as: 1) To
the best of our knowledge, this paper is the first attempt to de-
tect multi-view outliers under semi-supervised scenario via a
Bayesian model of inductive learning. 2) In theory, we proves

the proposed estimator approaches the true model at a rate

of O(Z” d"mo 1(])5(2” va)), and under mild conditions we

derive a first sample complexity of (’)(621"/2 (V2InV+In}))
for a multi-view anomaly detector to achieve detection rate €.
3) we experimentally evaluates the proposed method on both
synthetic and real-life multi-view data. The competing results
demonstrate the effectiveness of our model.

The rest of this paper is organized as follows. In Section
II, we introduce basic notations; in Section III, we present the
proposed Bayesian multi-view anomaly detection model; in
Section IV, we theoretically analyze the model; in Section V,
we show experimental results and discussions; in Section VI,
we conclude the study.

2 Preliminaries and Problem Setup

Before going further, we explain some preliminary knowl-
edge and notational conventions used throughout the paper.
To clarify, in anomaly detection applications, the term
semi-supervised detection has been widely used to describe
the scenario in which AD methods only incorporate the use of
labeled normal samples to learn a model that compactly char-
acterizes the “normal” class [Chalapathy and Chawla, 2019;
Akcay et al., 2018; Chandola et al., 2009; Blanchard et al.,
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2010; Mufioz-Mari et al., 2010; Song et al., 2017]. However,
there are a few works [Das er al., 2016; Siddiqui et al., 2018;
Gornitz et al., 2013] having investigated the general semi-
supervised setting where one also utilizes unlabelled data. In
this work, we stick to the first AD setting.

Following the definition used in [Li et al., 2018a], there
are three kinds of outliers in multi-view setting. As shown
in Figure 1, Class-outlier is an outlier that exhibits inconsis-
tent characteristics (e.g. cluster membership) across different
views. Attribute-outlier is an outlier that exhibits consistent
abnormal behaviours in each view. Class-Attribute-outlier is
an outlier that exhibits class outlier characteristics in some
views while shows attribute outlier properties in the other
views. Suppose we are given a data set D which consists
of N instances, denoted by n = 1,2, ..., N, described by V'
views with each view v = 1,2, ..., V. The feature represen-
tation of instance n under view v is x¥ € R%", where d’ is
the dimensionality of view v. XV =[x}, x5}, ...,x}%/] € RE*N
is sample set observed in view v. In this way, the whole data
set is denoted as D = {X!, X2, ..., X"}. Then, the multi-
view anomaly detector computes an anomaly score for each
instance and compares it to a threshold 7 for finding the out-
lier in multi-view setting.

3 Bayesian Muli-View Anomaly Detector

In this section, we illustrate the proposed probabilistic model
together with its estimation and the outlier score calculation.

3.1 Generative Process

To link the multiple views x', x2, ..., and x" together, we in-

troduce a common latent variable z. The intuition here is that:
generally, an normal instance can be sufficiently described by
a single view for learning tasks. Therefore, it is reasonable to
suppose that these different views share some common fea-
tures or latent structure, then the problem is how to build a
framework to learn these common structure or the correspon-
dence between observed views and the unobserved space.
To explore it, we proposed a probabilistic model which de-
scribes the generative process of multi-view instances whose
views are linked via a single, reduced-dimensionality latent
variable space. Specifically, We assume x',x2, ..., and x"
are generated from z by first choosing a value for the latent
variable z and then sampling observed variables conditioned
on this latent value. The d', d2, ..., d" -dimensional observed
vectors x1,x2 . ..., xY are defined by a linear transformation
governed by the matrix W, € RY" ™ of the latent vector
z € R™ plus a projection noise €, € R?", so that

xp =Wz, + pt, +€, v=12_..V (1)
where @, € R’ is the data offset.

3.2 Model Specification

In the following, we introduce the probabilistic formulation,
assign prior distribution on latent variables and parameters
in Eq. (1), and assign priors on the priors. Specifically, we
define Student’s-¢ prior distribution over the latent variable z

+
2~ 8] 0,1,,1) = / plalwpwds (@)
0
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Figure 2: The proposed hierarchical Bayesian model for a data set
of N observations (For the concision of graph, here we omit the
dependence of x;, on W, ¥, 11,)).

In Eq. (2), we adopt Student’s-t distribution’s equivalent form
according to [Liu and Rubin, 1995; Archambeau ef al., 2006].
u > 0 is a latent scale variable. Its Gamma prior p(u) and the
associated Gaussian condition p(z|u) are defined as:

z|lu~N(z|0,u'L,) @3

ung(u] L),

Similarly, noise €,, is a d” dimensional zero-mean Student’s-¢
variable with precision ¥, and degree of freedom v

€y ~ S(ev ‘ Oa \I’vy V) (4)

By the property of affine transformation of random variable,
combining (1), (2), (3) and (4) gives the conditional distribu-
tions of observed variables x"

x|z~ 8(x" | Wyz + by, Uy, v) 5

x" | z,u ~ N(XU | W,z + (ulIlv)'l) (6)
Next, we place priors on parameters W,,, u,, and ¥,. Let
w,; € R™ be the i, row of W,,, we first employ ARD prior
on W, to automatically sparsify its columns

W, | ey ~ [Ty N (Wi | 0, (diaglen)”) ()

Then we parameterize the distributions over w, and ¥, by
defining

IJ"U NN(H’U | Oaﬂ;;lld“)a I/U) (8)

where W(¥,| K, v,) oc [T, exp(-3Tr(K,¥,))
denotes Wishart dlstrlbutlon Finally, we complete the spec-
ification of priors (v,ax,,) over prior distributions of variables
u and w,,; respectively

v, ~ W, | K],

(vd)

v~ g(V ‘ au7bu)7

Oy ~ HT:l g(avj | aonboz) (9)

where o, controls the magnitude of W,,. If certain «,; is
large, the jth column of W, will tend to take value zero and
become little importance.

The graphical representation of Bayesian model over a
data set of N instances is illustrated by Figure 2 in which
arrows represent conditional dependencies between random
variables. Since we have no further knowledge about the
hyperparameters of priors, we choose broad ones by setting
Ao = by = Py =103, K, = 103140, v, =d" + 1,0, = 2
andb, = 0.1, m = min{d” — L;v=1,...,V}.
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3.3 Model Inference

The goal of model inference is to learn posterior distribu-
tions of latent variables and parameters. Based on Figure
2, the joint probability of data set D, latent components

= {z1,...,2n}, U = {u1,...,un}, and parameters
O = {{W,,a,, tty, ¥, }V_;, v} can be written as

p(XY,...,XY,Z,U,0) = p(r)x
1V . p(Wo e, )p(ee,)p(a, ) p(®,) x (10)

Hg:1 HX:1P(XZ |Z1 Ui Wo s o ) P(2Zin [t ) p (U V)
It is analytically intractable to derive the posterior distribution

p(Z,U,®|D) from Eq. (10) directly. Therefore, we adopt

variational inference for approxiamting the posterior by a fac-
terized distribution

4(Z,U,©) = I a(zn) [T ya(un)x
q(v) T (2(®) () T2y alon) T, a(wer))

The distribution ¢ is found by maximizing the lower bound

L(¢(Z,U,®)|]p(2,U,8|D))

Lyz,v,0)=logp(D)—K
o UD2UO) 1 irae 1P

= J[Jumv e e

Since logp(D) is constant, maximizing the low bound
is equivalent to minimizing the KL divergence between
q(Z,U,®) and p(Z,U,0©|D). By substituting factor distribu-
tions in Eq. (11) into (12) and dissecting out the dependence
on one of the factors ¢;(£2;), we have following result

log qi() = Eqy, (,),k21log p(D,Z, U, ®)] 4 const (13)

where 2 = {{Zna Un}iy:p {an {avj }?1:17 Mo, ‘Ijv}};/:la V}
refers all latent components and parameters of model, E.[-]
represents an expectation w.r.z. distribution g () for all
k # 1. Combining (13), (10) with the distributions defined in
section 3.2, we obtain the following factor distributions

q(2zn) = N(2znltts,, 2z,) (14)

(1)

q(v) = G(v|ay, Eu)a

Q(un) = g(un|aun>6un)7 Q(\IIU) = W(‘Il’ulK:U17ﬁ’U) (15)

q(py) = N(Nv“"uuv Euu)v ‘I(O‘vj) = g(avg|am a) (16)

Q(in) :N(in|ﬂwm72wm) Z = 17"'adv (17)

wheren=1,..., Nyv=1,...,V,5=1,...,m,

4, = al,—i-g, b, = b,— % <N+ Yon (<logun>—<un>)) (18)
= B, | S, (W) (00 (x5 — (1) |
S, = (T (WIu, B W,) + (u,)L) (19)

12
<||WU,5]| > (20)

Aa: a ) Ba:ba
a Ao + 5 + 9
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w+ >, (x5 )% — 25T (W, ) (pa,)

—2x2 (W, W, Xz) +2(22 ) (WX W, X )
+ (1l Wy py) + Tr[(Woznz, W, ) (B,)])

Bun -

1 "

K, =K, + 3, (x0x0 7+ (ond) = ()" = x5 (u?)
— (W) (2a)xs" = x5 (2]) (W) + (W) (2) (1]
+ diag ([T (Bw,, (Zn2l)), .. T (Zw, 0 <z,,LzT>)])
() (20 (W) + (W) (2020 )W) ()
Uy=vy+ N (22)
b = S o 1) (90) (x5, = (W, (20

By, = (2, (un)(¥
= (diag({cww)) + 32, (2znzy, ) (u

BESCH P (23)

Z:wm’ ‘Ilv>ii)-1

= 3w, Zn (<Zn><un‘1'v>,:iT(Xz - <Nv>)
(22D )0 s (U )i (W)

where M .; is the iy, column of matrix M, (-) denotes the
expectation, and we use Stirling’s approximation I'(z) ~
V27 exp(—z)z®~ 2 for log (I'(v/2)) when deriving the fac-
tor ¢(v). The equations (14-24) represent a set of consistency
conditions for the maximum of the lower bound subject to the
factorization constraint. We can find an optimal solution by
first initializing all g (€2 ) properly and then cycling through
the factors and re-estimating each distribution in turn using
the updated moments of other factors. We monitor the con-
vergence of optimization by evaluating the lower bound.

Hovews (24)

3.4 Outlier Score Measurement

The distribution p(x*,...,x") of V-view observed variable
(x!,...,x"") is expressed, from the sum and product rules of

probability, in the form

v
p(xh, .., xV) = //Ul:[lp(x”|z,u)p(z|u)p(u)dzdu 25)

= S(xt, ..., xV MW AW )

by integrating out z and wu, it gives a Student’s-t distribution
for p(x!,...,x"), where

MW = [py; pios .5 ] (26)
and AW-¥) isa 3~ d-by->", dV precision matrix

@7

AW _ [W, WL+ @l ifo=0
WT,WT ifv £

From Eq. (12), we know that the log marginal likelihood
can be approximated by the evidence lower bound (ELBO).
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Through maximizing the ELBO, we find an optimum esti-
mate of the data distribution. According to theorem 1 in sec-
tion 4.1, this estimated distribution is close to the real model
distribution with theoretical guarantee. Since all parameters
of estimated data distribution are learned on the normal sam-
ple, thus it reasonably concludes that normal instance will
have bigger value in Eq. (25). By this insight, we formulate
the outlier score s(x;) of an instance x; = [x};x%;...;x/]
as the negative unscaled Student’s-¢ density

_MENT AWD) (5 V(1)) -
S(Xz) = |:1—|— (Xl ) (Xl ) :
v

(28)
Conceptually, a negative outlier score measures the probabil-
ity that the sample is generated from the multi-view distri-
bution defined by normal data, therefore bigger value in Eq.
(28) means this sample is less likely to be the normal class.

4 Theoretical Analysis

In this section, we show theoretical analysis for the proposed
model (Due to space limitation, detailed proofs are omitted).

4.1 Consistency of the Bayesian Estimator

Let X{Y := {{x4}/_;})_, be a sample of i.i.d multi-view
random variables collected from distribution py. We consider
statistical models M,,, = {pg,,|0m € O,,} with the count-
able collection {M,,[1 < m < min{d";v = 1,...,V}},
where @, is the parameter set associated with m latent com-
ponents model. Let 71 (©,,) be the set of all possible dis-
tributions over ®,,,. Now we assume that there exists a true
model M,,,, that contains the true data distribution e, G.e.,

there exists mg and 8, € ©,,, satisfying py = pe: )

mQ

Assumption 1. There exists g(N) for which there is a distri-
bution ppy Nv € FT(Oy,) such that

/ K L(pe;, +P6,.,)Pmo,NvOm, < g(N), (29

KL(PmO,N,Va Tmg (gmo)) <N- Q(N) (30)
where Ty, (+) on 0, € Oy, is a prior over model M.

Theorem 1. Given assumption 1, for any o € (0,1), if
there exists a true model ./\/l,n0 such that py = pw» and

mg
the coefficients of W7, = | W3 i s Wil €
R 4"X10 gre bounded, then

IE[/D (rw,..pw;, ) -
Yooy d°molog(30,; d°N)
- O( N

where 7™ (W, | XY is the approximate posterior distri-
bution derived by variational inference.

lmg’

Fl v (Wi [ XE) AW,
(3D

From Eq. 31, we see that, in expectation w.r.t the ran-
dom variables Xg under distribution PW;, 5 the average a-
Renyi loss (D,) [Van Erven and Harremos, 2014; Chérief-
Abdellatif, 2018] between a distribution in the selected model
and the true distribution over "\ - (W, |X4Y) goes to zero
asn — +oo. This shows the Bayesian estimator of our model
is consistent.
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Algorithm 1 Compute Optimal Threshold

Input: Data {X, X'}, Swapping Rate 7, Detection Rate ¢
Output: Detection Threshold 7 7¢
1: Generate mixture set X7 via swapping views randomly.
2: Compute anomaly scores for all points in X and X7 via
Eq. (28), and denote them as S and S respectively.
Calculate empirical CDF E,.
4: Optimize threshold by

) € {8, 87} Fu(s(x))

»

<1-¢}

TC max {

4.2 Sample Complexity of Multi-View Detector

Let {X, X’} be two “clean” nominal sets (both containing &
i.i.d. multi-view draws from py). We take X as training in-
put. For X/, given a swapping rate -y, we use it to generate
a ‘mixture’ dataset X7. In this case, the mixture data X7
can be approximately treated as k points drawn from a mix-
ture distribution p.,, which generates a multi-view outlier and
nominal point with probability 2y and 12y respectively. Our
multi-view semi-supervised anomaly detector is trained on X
and assigns anomaly scores to all data points in X and X7.
Intuitively, an ideal detector would rate all alien data points
higher than all nominals (higher score means more anoma-
lous). The key challenge in practice is to select a threshold
for anomaly score that gives the guarantee on achieving the
desired outlier detection rate. Motivated by [Liu et al., 2018],
our approach to obtaining a theoretical guarantee is based on
considering the cumulative distribution function (CDF) over
anomaly scores.

Let F' and fly be the empirical CDFs of anomaly scores
of samples from pg and p, respectively. The empirical
CDF for an abnormal sample can be derived as F, (s(x)) =
(Fy (s(x))—(1— 27)F(5(x)))/2’y. With sufficient data and
knowledge of ~, empirical CDFs F , ﬁ',y and F, will conver-
gence to the ground truth F, F, and F,,. After deriving ', a
detector can achieve an outlier detection rate of ¢ by selecting
an anomaly score threshold 7¢ that is the 1 — { quantile of F,
and raises an alarm on the testing point whose anomaly score
is greater than 7. Alg. 1 summarizes the steps for finding a
reasonable threshold achieving the desired outlier detection.
Theorem 2. Let X and X' be the nominal data sets contain-
ing k i.i.d V-view instances drawn from distribution py. Given
a swapping rate vy, let X7 be the mixture set generated from

X' over the randomness of view selecting and view swapping.
Forany e € (0,¢) and § € (0,1), if

(=72 2
2€272 1-— —g(8,V)

k> (32)

where ﬁ 5 ZV 2717 V V) L , || is the floor func-
tion, and e is Euler’s Number then with probability at least
1 — 6, Algorithm 1 will output a threshold 7 that achieves
an multi-view outlier detection rate of at least 1 — 1, where
n=1-(+e

Theorem 2 provides a value for the sample size k that guar-
antees at least ( — ¢ fraction of outliers in the test points
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Figure 3: The variation curves of AUC W.R.T outlier ratio.

will be detected (an additional error term ¢ is introduced
here because of the finite sample size). By using Stirling’s
formula for approximating factorials (e.g. V!, (V — V),
above guarantee is approximately polynomial since k& grows
as O( = = (V2InV +1n §)). We believe theorem 2 is the first

PAC- style guarantee for multi-view anomaly detection.

S Experimental Evaluations

We now show the effectiveness of proposed method on pub-
lic Outlier Detection Datasets (ODDS)?, WebKB dataset’® and
MovieLens dataset*. We compared the proposed model with
representative and cutting edge multi-view anomaly detec-
tors: HOrizontal Anomaly Detection (HOAD) [Gao et al.,
2011], Affinity Propagation (AP) [Marcos Alvarez et al.,
20131, Probabilistic Latent Variable Model (PLVM) [Iwata
and Yamada, 2016] and Latent Discriminant Subspace Rep-
resentation (LDSR) [Li ef al., 2018a]. For AD problems, the
most widely used performance evaluation metrics are ROC
curve and AUC score.

5.1 Evaluation on Synthetic Multi-View Settings

We employ 9 data sets, namely thyroid, annthyroid, forest-
cover, vowels, pima, vertebral, lympho, wine and glass, which
are obtained from the ODDS library [Rayana, 2016]. We gen-
erate multiple views by randomly splitting the features, where
each feature can belong to only one view. To generate three
types of multi-view outliers, we follow the strategy in previ-
ous works (e.g. [Li ef al., 2018al) for fair comparison. After
the outlier generation stage, we equivalently split all normal
instances into two parts, and use one of them as the training
set to train the proposed model. Then we verify the outlier
detection performance on the test set which consists of the
remaining normal data and generated outliers.

Zhttp://odds.cs.stonybrook.edu
3http://lig-membres.imag.fr/grimal/data.htm]
*https://grouplens.org/datasets/movielens/latest
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‘Model‘ Thyroid Annthyroid ForestCover ~ Vowels Pima Vertebral Lympho Wine Glass
HOAD|.5202+£.0864 .5078+£.0724 .68014-.0866 .8540£.0691 .5921+.0768 .8338+.0972 .5714+£.1648 .65034.1574 .7083£.1410
%’ 5| AP [.6737£.1164 .5747+.0669 .6774+.0739 .70624.1125 .9376+£.0293 .8586+.0604 .5369+.1539 .6947+.1078 .7497+.1117
= ‘7; PLVM |.8989£.0091 .8904+£.0363 .4870+.0126 .54814.0067 .9086+£.0083 .75644.0061 .5413£.0251 .4058+.0481 .40874.0246
§ O |LDSR |.97514.0074 .98764.0022 .9983+.0005 .9181+.0153 .98584-.0057 .9793+.0200 .93624-.0053 .9932+.0009 .9940-+.0040
Our |.9877£.0056 .9979+.0011 .9995+.0027 .98754.0071 .9877+.0044 .9958+-.0074 .9225+.0177 .9417+£.0450 .95304-.0292
& |HOAD|.53934.0303 .5849+.0348 .6872+.0337 .3818+.0384 .5557+.0310 .5209+.0812 .6058=+.0715 .7124=+.0638 .4277+.0932
= AP |.58474.0227 .5265+.0350 .7906£.0332 .7520+.0513 .56594.0365 .5272+.0449 .74024.0498 .5629+.0933 .5576+.0518
O |PLVM|.5676+.0093 .40874.0176 .6035£.0044 .5479+.0282 .54254.0138 .4444+.0416 .52544-.0061 .4860+.0040 .5433+.0104
2 LDSR |.86314.0217 .71284.0418 .7551£.0293 .9245+.0173 .59244.0543 .6070+£.0568 .8228+4-.0762 .5889+.0916 .7098+.0498
@) Our |.8744+.0205 .7383£.0450 .8672+.0197 .9360+.0158 .6354.0400 .8891+.1171 .8825+.0410 .8373+.0424 .76134+-.0570
«“5’ HOAD|.49344-.0270 .4976+£.0311 .4342+.0468 .5994+.1342 .4181+£.0260 .73864.0700 .70854.0609 .57984.0615 .55984-.0652
= 5 AP |.63801.0723 .5647+.0819 .8054+.0373 .8511+£.0713 .79164.0555 .7277£.0524 .54814.0918 .5481£.1173 .7308+£.0676
§ = |PLVM |.7122+.0191 .8933+.0134 .81844-.0087 .63904.0223 .82494-.0063 .69134-.0261 .61204-.0195 .70944.0145 .9555+.0092
Iy 8 LDSR |.93444-.0179 .91224-.0220 .9845+£.0049 .9642+.0064 .93154.0146 .9185+£.0371 .9765+.0135 1+0 .9900=£.0026
ri@\ Our [.9863 £.0075 .9842+.0076 .98574.0095 .9757+.0082 .9510+.0169 .9836+.0198 .95714.0536 .92014-.0470 .9984+.0023
Table 1: AUC values (mean = std) on nine UCI datasets with outlier ratio 5%.
On each dataset, we repeat the random outlier generation Movie Title Score ‘ Movie Title Score
procedure 20 times and at each time, we perturb 2.5% of the .
data in that procedure. We average their performance and Sp1.r ltgi Away 8322 ghe ltl'ebound 8}2(2)
report AUC results (mean =+ standard deviation) in Table 1. gzrllzc . o(f)vl;eality 0‘9 e V\fﬁl (;llsvsv Boy 0' 092
From table 1, we can observe that the proposed method con- . : X )
prop The Dark Knight  0.956 | Sacrifice 0.084

sistently outperforms all competing counterparts on almost
nine data sets for all kinds of multi-view outliers. The su-
periority of proposed method is expected, because it uses
the semi-supervised anomaly detection technique, which can
maximally capture the nature and property of normal in-
stances. This, in turn, can help the learned model to better
distinguish whether the test instance is normal or not, thus
improving the detection performance.

To investigate how the number of outliers affects the per-
formance of different models, we experiment on data cor-
rupted by progressively higher percentages of outliers. The
Figure 3 shows the variation of AUCs on data set pima with
outlier ratio of 2%, 5%, 10%, 15%, 20%, 25% and 30% for
three types of outliers. We see that, in general, as the anomaly
rate increases, the performance decreases. And the proposed
method is comparatively robust and outperforms other com-
pared ones with all outlier ratio settings.

5.2 Evaluation on Real World Multi-View Data

Further, we compare them on the WebKB dataset [Blum and
Mitchell, 1998] which has been widely used for evaluating
multi-view learning algorithms [Guo, 2013; Li ef al., 2014].
We use its Cornell subset in our experiment. It contains 195
webpages over 5 labels. Each webpage is described by four
views: content, inbound link, outbound link and cites. Figure
4 shows the ROC curves of all compared methods on the We-
bKB dataset with outlier ratio of 5% (left) and 10% (right).
We can observe that clearly, our approach achieves higher
AUC than its competitors, which demonstrates the strength
of our Bayesian detector.

To present the qualitative analysis of Bayesian model in
detecting inconsistency between users’ rating behavior and
movie genre, we apply the proposed model to MovieLens
small dataset which contains 100,836 ratings over 9,742

Table 2: High and low anomalous score movies

Receiver Operating Characteristic Curve Receiver Operating Characteristic Curve
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Figure 4: ROC curves of compared methods on WebKB dataset.
(PLVM method misses here, because it fails to execute on high di-
mensional dataset due to exponent overflow of Eq. 10 in their paper.)

movies by 610 users. We sample 1000 movies, and per-
form our model to calculate anomalous scores for them. Ta-
ble 2 lists some movies high and low anomalous scores.
Movie ’spirited away’ is categorized into animation and fan-
tasy genre, but it receives most of ratings from users that
watch and tag action-thriller movies. In other words, it ex-
hibits inconsistent behavior between genre view and rating
view, and thus has a high anomalous score. Contrarily, low
anomalous score movies, e.g. sacrifice, do not show view in-
consistency.

6 Conclusion

In this paper, we offer a novel hierarchical Bayesian model
to find multi-view outliers under a semi-supervised detection
scenario via inductive learning. We prove our Bayesian es-
timator is consistent and derive a sample complexity for the
detector. In experiment, we show the proposed model con-
sistently outperforms state-of-the-art multi-view anomaly de-
tectors across both synthetic and real-world multi-view data.
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