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Abstract

Six baleen whale species are found in the temperate western North Atlantic Ocean,
with limited information existing on the distribution and movement patterns for most.
There is mounting evidence of distributional shifts in many species, including marine
mammals, likely because of climate-driven changes in ocean temperature and circu-
lation. Previous acoustic studies examined the occurrence of minke (Balaenoptera
acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study
assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. bore-
alis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily
detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom-
mounted recorders, totaling 35,033 days, were processed using automated detec-
tion software and screened for each species' presence. A published study on NARW
acoustics revealed significant changes in occurrence patterns between the periods
of 2004-2010 and 2011-2014; therefore, these same time periods were examined
here. All four species were present from the Southeast United States to Greenland;
humpback whales were also present in the Caribbean. All species occurred through-
out all regions in the winter, suggesting that baleen whales are widely distributed
during these months. Each of the species showed significant changes in acoustic oc-
currence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence
in mid-Atlantic regions after 2010. Fin, blue, and sei whales were more frequently
detected in the northern latitudes of the study area after 2010. Despite this gen-
eral northward shift, all four species were detected less on the Scotian Shelf area
after 2010, matching documented shifts in prey availability in this region. A decade
of acoustic observations have shown important distributional changes over the range
of baleen whales, mirroring known climatic shifts and identifying new habitats that
will require further protection from anthropogenic threats like fixed fishing gear, ship-

ping, and noise pollution.

KEYWORDS
baleen whales, changes in distribution, conservation, North Atlantic Ocean, passive acoustic

monitoring, seasonal occurrence

Panigada, 2016). Non-migratory populations that remain in tropical

and subtropical waters year-round (Mikhalev, 1997; Sirovi¢, Bassett,

Seasonal migratory patterns are the foundation of long-distance
movements and dramatic changes in animal distribution for many
taxa in the animal kingdom (Dingle, 2014). Many cetaceans undergo
long migrations with the purpose of moving from high-latitude feed-
ing grounds in warmer months, to low-latitude breeding grounds in
colder months (Kellogg, 1929). Baleen whales are among the longest
traveled mammals, some covering up to 10,000 km annually (Stevick
et al., 2011). Movements are thought to be driven by foraging or so-
cial behaviors (e.g., Clapham et al., 1993; Tyack & Whitehead, 1982;
Visser, Hartman, Pierce, Valavanis, & Huisman, 2011); however,
Corkeron and Connor (1999) also suggested that migration could be
influenced by predator avoidance, and highlight that not all whale

populations migrate annually (Geijer, Notarbartolo di Sciara, &

Johnson, Wiggins, & Hildebrand, 2014) may be supported by year-
round productive foraging grounds (Geijer et al., 2016), as well as
reduced energetic expenditure afforded by foregoing long migra-
tory movements (Brown, Corkeron, Hale, Schultz, & Bryden, 1995;
Kennedy et al., 2014). Even within migratory populations, some
individuals remain on feeding grounds over winter (e.g., Brown
et al., 1995; Thomisch et al., 2016; Van Opzeeland, Van Parijs,
Kindermann, Burkhardt, & Boebel, 2013). Such intraspecies varia-
tion in individual movements are still not well understood, and may
be further influenced by differences in gender, age, and reproduc-
tive state (Geijer et al., 2016). However, it is clear that baleen whale
movement patterns are considerably more complex than previously
thought.
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Over the last few decades, climate change has led to dramatic
increases in ocean temperatures, causing shifts in the distribution
of prey species, with foraging animals following suit (Chen, Hill,
Ohlemiiller, Roy, & Thomas, 2011). The Gulf of Maine, an important
feeding ground for many baleen whale species, is one of the fast-
est warming bodies of water in the world (Pershing et al., 2015),
which may influence seasonal shifts in baleen whale presence (Ramp,
Delarue, Palsbgll, Sears, & Hammond, 2015) in response to range
shifts in prey and fish stocks throughout the western North Atlantic
(Nye, Link, Hare, & Overholtz, 2009; Staudinger et al., 2019). North
Atlantic right whales (NARWS; Eubalaena glacialis), an intensely stud-
ied species, are a striking example of these shifts in distributions
over the last decade. From 2010 onward, NARWSs spent less time in
the Gulf of Maine and Bay of Fundy, and more time in mid-Atlantic
waters along the US east coast and the Gulf of St. Lawrence (Davis
etal., 2017; Davies et al., 2019). Record et al. (2019) showed that these
observed changes in NARW seasonal movements reflect tempera-
ture-driven changes in the distribution of their primary food source,
Calanus finmarchicus. Additional studies reveal bottom-up effects of
temperature changes, such as shifts in kelp distribution (Merzouk
& Johnson, 2011) and collapses of fisheries (Pershing et al., 2015),
eventually leading to changes in communities within the entire ma-
rine ecosystems (Beaugrand et al., 2019). It is unclear whether other
North Atlantic baleen whale species have undergone similar shifts in
their movement patterns to NARWSs in response to ocean warming
and food source redistribution. While the seasonal distribution of
humpback whales (Megaptera novaeangliae) is relatively well-known,
the movements and distributions of other large baleen whale species
(sei, Balaenoptera borealis; fin, B. physalus; and blue whales, B. muscu-
lus) throughout the North Atlantic Ocean remain poorly described.

Within the North Atlantic, the humpback whale range extends
from breeding grounds in the Caribbean and Cape Verde Islands to
feeding grounds off the eastern United States and Canadian sea-
board, Iceland, Greenland, and Norway (Hayes, Josephson, Maze-
Foley, & Rosel, 2019; Kennedy et al., 2014). During the spring,
summer, and fall, humpback whales in the western North Atlantic
are found feeding in the Gulf of Maine, Gulf of St. Lawrence, and
in waters off Nova Scotia, Newfoundland, and western Greenland
(Katona & Beard, 1990). In winter months, a portion of the North
Atlantic humpback whale population visits breeding grounds in
the Caribbean and the Cape Verde Islands, and some individuals
have even been identified in both breeding grounds (Heenehan
et al,, 2019; Stevick et al., 2016; Stevick, @len, & Mattila, 1998;
Wenzel et al., 2009). Passive acoustic data from the western North
Atlantic have revealed that humpback whales are present year-round
in the Gulf of Maine (Murray, Rice, & Clark, 2014; Vu et al., 2012),
and in winter months off the Scotian Shelf (Kowarski, Evers, Moors-
Murphy, Martin, & Denes, 2018). Tagging studies provided insight
on migration between these known coastal feeding and breeding
grounds (Kennedy et al., 2014); however, long-term humpback whale
movements among these areas are not well known.

Sei whales are one of the least studied baleen whales, with

most information on their distribution derived from historic whaling
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records, stranding records, and visual surveys (COSEWIC, 2003;
Hayes et al., 2019; Mead, 1977). In the western North Atlantic, their
range extends from mid- to low- latitudes to as far north as Labrador
(Kapel, 1985; Kellogg, 1929; Olsen et al., 2009; Prieto, Silva, Waring,
& Goncalves, 2014) and the Davis Strait (Mitchell, 1974). The south-
ern limit of their range remains unknown; however, stranding re-
ports document sei whales as far south as Florida (Miller, 1924) and
Mexico (Miller, 1928). Migratory movements of sei whales in the
western North Atlantic are not yet well understood, but they are
believed to move northward in June and July from southern New
England to eastern Canada (Mitchell, 1975), and move southward in
September and October (CETAP, 1982). During the spring and sum-
mer, sei whales are sighted in northern portions of the US Atlantic
Exclusive Economic Zone (EEZ), including Georges Bank, the Gulf
of Maine, and south of New England (Halpin et al., 2009). Often
found in the deeper waters off the continental shelf edge, includ-
ing the Scotian Shelf edge during the spring feeding season (Hain,
Hyman, Kenney, & Winn, 1985), sei whales are also seen in shallower
waters of the continental shelf in the Great South Channel and
Massachusetts Bay (Halpin et al., 2009; Payne et al., 1990). Recently,
satellite tag studies revealed westward movements of tagged indi-
viduals from the Azores to the Labrador Sea in the summer (Olsen
et al.,, 2009; Prieto et al., 2014). Few studies have documented North
Atlantic sei whale vocalizations, until recent work recorded and de-
scribed sei whale vocalizations off New England and the Azores
(Baumgartner et al., 2008; Romagosa, Boisseau, Cucknell, Moscrop,
& McLanaghan, 2015; Tremblay, Van Parijs, & Cholewiak, 2019).

Fin whales are frequently observed in the western North
Atlantic, from Cape Hatteras, North Carolina to Greenland (Edwards,
Hall, Moore, Sheredy, & Redfern, 2015). A global review of fin whale
sightings and acoustic data showed year-round presence through-
out most of the US EEZ, commonly occurring in the Gulf of Maine
and in Canadian waters off Nova Scotia (Edwards et al., 2015; Hain,
Ratnaswamy, Kenney, & Winn, 1992). Acoustic records revealed
the year-round presence of fin whales in Massachusetts Bay and
the New York Bight (Morano et al., 2012; Muirhead et al., 2018),
as well as occurrence from September through June in offshore
waters surrounding Bermuda and the Mid-Atlantic Ridge (Clark &
Gagnon, 2004; Nieukirk et al., 2012; Nieukirk, Stafford, Mellinger,
Dziak, & Fox, 2004; Watkins, Tyack, Moore, & Bird, 1987). While
New England waters provide important feeding grounds, mating
and calving grounds remain unknown. Hain et al. (1992) suggest US
mid-Atlantic latitudes for calving grounds based on neonatal strand-
ing analyses, but this has not been confirmed by at-sea surveys.
While fin whales do undergo seasonal movements (Silva et al., 2011),
their broad-scale distribution year-round suggests the possibility
that they do not undergo the same large-scale migrations in the
North Atlantic as other baleen whales, similar to fin whales in the
North Pacific (Oleson, Sirovic, Bayless, & Hildebrand, 2014).

In the western North Atlantic, blue whales are mainly sighted
off eastern Canada, with occasional sightings in the Gulf of Maine
(Wenzel, Mattila, & Clapham, 1988) and other waters within the US
EEZ (CETAP, 1982). The northern part of their range includes waters
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off Nova Scotia, Newfoundland, and Labrador, and extends as far
north as the Davis Strait (Jonsgard, 1955; Moors-Murphy et al., 2019).
From spring through summer, blue whales occur predominantly in the
Gulf of St. Lawrence, where the population is well-studied (Sears
et al., 1990). In winter months, blue whales are found from southern
Newfoundland to the Davis Strait (Mansfield, 1985), while acoustic
detections also indicate their presence as far south as the New York
Bight and near the Mid-Atlantic Ridge (Muirhead et al., 2018; Nieukirk
et al., 2004). They are seen and heard year-round outside the Gulf of
St. Lawrence in waters off Nova Scotia (Moors-Murphy et al., 2019).
While their southern range limit is unknown, acoustic detections of
blue whales have occurred in deep water north of the West Indies and
east of the USEEZ (Clark, 1995; Nieukirk et al., 2004). There have been
a few historical strandings in the Caribbean (Harmer, 1923) and the
Gulf of Mexico (Baughman, 1946), supporting suggestions that their
range extends at least that far south (Yochem & Leatherwood, 1985).
Their tendency to use deeper, rather than coastal waters makes their
seasonal movements difficult to study. However, satellite tag stud-
ies show movements of blue whales from the Gulf of St. Lawrence
to North Carolina, including both on- and off-shelf waters, extend-
ing to deeper waters around the New England Seamounts (Lesage,
Gavrilchuk, Andrews, & Sears, 2017).

Passive acoustic monitoring (PAM) provides robust data to ex-
plore multiple species' simultaneous occurrence across seasons.
Decadal studies using PAM have monitored seasonal distributions of
fin whales (Nieukirk et al., 2012); tracked migratory movements of
humpback whales (Abileah, Martin, Lewis, & Gisiner, 1996) and blue
whales (Stafford, Nieukirk, & Fox, 1999); and provided new infor-
mation on movements for minke whales (Balaenoptera acutorostrata;
Risch et al., 2014) and NARWs (Davis et al., 2017). Within the North
Atlantic, well-known songs or call types are unequivocally attributed
to each of the species discussed in this paper and are widely used
to assess their presence. Here we use patterned song notes and
other sounds produced by humpback whales (Payne & McVay, 1971;
Stimpert, Au, Parks, Hurst, & Wiley, 2011), downsweeps produced
by sei whales (Baumgartner et al., 2008), 20 Hz pulses produced by
fin whales (Watkins et al., 1987), and song notes produced by blue
whales (Mellinger & Clark, 2003) to examine large-scale species dis-
tribution. Most of these signals are sex-specific (humpback whale
song: Winn & Winn, 1978; fin whale 20 Hz pulses: Croll et al., 2002),
and often seasonal (blue whale song: Moore, Stafford, Mellinger, &
Hildebrand, 2006; Stafford, Mellinger, Moore, & Fox, 2007). Although
we will miss species' presence when they use other call types or are
silent, we can still capture large-scale distribution patterns through-
out the periods that they use these known vocalizations.

Previously, we conducted a broad-scale PAM study across the
western North Atlantic to analyze NARW seasonal distribution
(Davis et al., 2017). Based on identified changes in occurrence pat-
terns starting in 2010, we found NARW acoustic detections sig-
nificantly decreased in the Gulf of Maine region, and increased in
mid-Atlantic regions of the US eastern seaboard. Here, we use sim-
ilar acoustic datasets and protocols to understand the seasonal dis-

tribution of humpback, sei, fin, and blue whales within the western

North Atlantic Ocean, and to determine whether any of these spe-
cies exhibited similar shifts in distribution patterns across time.

2 | MATERIALS AND METHODS
2.1 | Data collection

All available passive acoustic recordings from over 100 research pro-
jects throughout the western North Atlantic Ocean were combined to
create a decade-long dataset. A total of 35,033 recording days of data
were collected from 2004 to 2014 from 281 passive acoustic record-
ers deployed between Saba in the Caribbean and the Davis Strait off
western Greenland (Figure 1). Most recording sites were located on
the continental shelf or along the shelf edge with only six sites in off-
shelf (off eastern Greenland [region 2] and a New England Seamount
[Bear Seamount, region 6]) waters; therefore, this analysis was largely
restricted to the continental shelf and shelf break region. The dataset
was broken up into 11 geographic regions, based on acoustic data avail-
ability and biologically relevant areas (Figure 1; Davis et al., 2017). The
Gulf of St. Lawrence was designated as a separate subregion (region
3A) to reflect its biological importance (Meyer-Gutbrod, Greene, &
Davies, 2018); however, only 2 months of recordings were made avail-
able for our study in this region, so the Gulf of St. Lawrence (region 3A)
was combined with the Scotian Shelf (region 3) and incorporated in the
results as one region (region 3) for all analyses.

Recordings were collected using five different types of bot-
tom-mounted passive acoustic recorders (Table 1) as follows: the
High-frequency Acoustic Recording Package (HARP; Wiggins &
Hildebrand, 2007), the Marine Autonomous Recording Unit (MARU;
Clark, Brown, & Corkeron, 2010), the Autonomous Multichannel
Acoustic Recorder (AMAR; Moloney, Hillis, Mouy, Urazghildiiev,
& Dakin, 2014), the Autonomous Underwater Hydrophone (AUH;
Fox, Matsumoto, & Lau, 2001), and the Guardbuoy (Akoostix Inc/
Geospectrum Technologies; http://geospectrum.ca). Data were col-
lected from 281 recorders, ranging from a minimum of 25 days to a
maximum of 2 years (Table 1). Of these recorders, 56 used a duty cy-
cled recording schedule, recording 12%-95% of the time, and 225 re-
corded continuously. The majority of recordings (206 out of 281) were
sampled at 2 kHz, with some ranging up to 250 kHz. All recordings
were low-pass filtered and decimated to 2 kHz to ensure comparability
and analytical consistency across datasets. Recordings were further
resampled to 120 Hz for adequate analyses of lower-frequency sig-
nals, in this case, vocalizations of fin and blue whales.

Acoustic detection ranges can vary significantly depending on
the recording equipment, location, whale or recorder depth, ba-
thymetry and environmental conditions, as well as by signal type
and behavioral context (Cholewiak et al., 2018; Sirovi¢, Hildebrand,
& Wiggins, 2007; Stafford et al., 2007). Previous acoustic studies
examined detection ranges over which the species-specific vocaliza-
tions used in this study can be heard in varying oceanographic con-
ditions (Baumgartner et al., 2008; Cholewiak et al., 2018; Kowarski
et al., 2018; Sirovic et al., 2007; Stafford et al., 2007), in some cases
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for the same datasets used in this study. We used results from these
studies here as guidelines for the distance over which each species
may be detected within this study's geographic range (see Table 2).
Taking this information into account and to be conservative, only a
single recorder was selected for analysis when recorders were con-
gregated in groups or arrays with units spaced at 20 km or less; this
approach minimized duplicate detections across receivers as best as
possible. Acoustic analyses were focused on data collected between
January 2006 and December 2014, with the exception of additional
data collected in 2004 and 2005 in the Bay of Fundy, Emerald Basin,
and Roseway Basin, Canada, as these were the only long-term re-
cordings available for these areas.

2.2 | Detection and classification of calls

All acoustic data were processed using the Low Frequency
Detection and Classification System (LFDCS; Baumgartner &
Mussoline, 2011), which creates conditioned spectrograms using a
short-time Fourier transform with a data frame of 512 samples and
75% overlap (80% overlap for the 120 Hz decimated data), result-
ing in a time step of 44 ms and frequency resolution of 3.9 Hz (for
120 Hz data: 853 ms time step and 0.23 Hz frequency resolution).
After tracing contour lines, or “pitch tracks,” through tonal sounds,
the program uses multivariate discriminant function analysis to
classify the pitch tracks into species-specific call types based on
a call library. Each detection is assigned a Mahalanobis distance
(MD), which measures the deviation of a sound's pitch track from
the assigned call type (see Baumgartner & Mussoline, 2011 for a
more complete description). A lower MD indicates a closer match to
the assigned call type. For a well-developed call type in the LFDCS
(i.e., the seven attributes used in the disciminant function analysis

S v

are multivariate normal), 75% of pitch-tracks for the call type will
have an MD of 3.0 or less (Baumgartner et al., 2013). Setting an MD
threshold is necessary to minimize the false detection rates, but in
doing 50 causes some true detections to be missed in the analysis.
The MD threshold of 3.0 was chosen for all call types detected and
classified in the humphack, sei, and fin whale call library. However,
for blue whales, false detection rates were lower than any of the
other species, thus an MD of 5.0 was chosen to decrease the prob-
ability of missing true detections.

All vocalizations were classified based on a user-developed call
library (expanded from Davis et al., 2017; Table 51); our library
for the 2 kHz sampled data included two of our target species—
humpback and sei whales. Given the low frequency characteristics
of fin and blue whale vocalizations, an additional call library was
created for these two species that matched the decimated 120 Hz
sampled data.

All LFDCS detections were manually reviewed by a number of
trained acoustic analysts to determine daily presence of each of
the four baleen whale species. A true detection was defined as a
pitch track that correctly classified a call or song unit to the species
that produced it (Bonnell et al., 2016). Given the variability of each
species’ vocalizations, the specific methodology to determine daily
acoustic presence was different for each species. That process is de-
scribed in more detail below.

2.3 | Baleenwhale call types used for detection and
classification

Humpback whale males produce complex song that changes annually
(Payne & Mdvay, 1971; Payne & Payne, 1985; Winn & Winn, 1978),
and has been recorded throughout their entire range and across

TABLE 2 Detection ranges found from previous studies for each species, in varying water depths. Letters next to species names indicate
water depth category (D, deep [=1,000 m]; M, medium [100-1,000 m]; 5. shallow [<100 m]). For each species, the frequency band, water
depth in meters, study location, detection ranges and source level are listed

Frequency Detection range Source level
Species band (Hz) Water depth Study location (km) (dB re 1 pPa) Reference
Humpback (5} 346-355 Shallow Massachusetts Bay, 5-30 1467 Cholewiak
{20-100 m) MNorth Atlantic et al. (2018)
Humpback (D) 20-1,800 Deep (1,500 m) Scotian Shelf, Morth 1-53, up to 100 162 Kowarski et al. (2018)
Atlantic
Sei (M) 34-82 Medium Great South Channel, 10-15, up to 20 156 Baumgartner
{100-192 m) MNorth Atlantic et al. (2008)
Fim (5) 18-22 Shallow Massachusetts Bay, 30 180 Cholewiak
(20-100 m) Morth Atlantic et al. (2018)
Fim (M) 25 Medium Gulf of Alaska, Morth 10-100 171 Stafford et al. (2007)
(340-450 m) Pacific
Fim (D) 15-28 Deep (3,000 m) Southern Ocean 56 189 Sirovi¢, Hildebrand,
and Wiggins (2007)
Blue (M) 16-20 Medium Gulf of Alaska, Morth 10-105, up to 195 180 Stafford et al. (2007)
(340-450 m) Pacific
Blue (D) 25-29 Deep (3,000 m) Southern Ocean 25-200 189 Sirovi¢ et al. (2007)
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seasons (Figure 2a; Clark & Clapham, 2004; Kowarski et al., 2018;
Mattila, Guinee, & Mayo, 1987; Vu et al., 2012). Non-song vocaliza-
tions, or social sounds, vary with some calls being similar to those
found in song while others are completely different. These non-song
vocalizations are produced by both sexes and across ages (Dunlop,
Cato, & Noad, 2008; Fournet, Jacobsen, Gabriele, Mellinger, &
Klinck, 2018; Stimpert, 2010; Stimpert et al., 2011). Given that hump-
back whale song can be highly variable between years, the call library
described in Baumgartner and Mussoline (2011) was expanded and
improved for this analysis to include a wider variety of examples of
humpback whale vocalizations, across all years, to increase detection
probability (Table S1). While the call library expansion focused on cap-
turing song notes, the detector's versatility also reliably detected some
social sounds, due to their similarity to some song notes. Therefore, all
humpback whale detections (song and social sounds) with an MD of
3.0 or less were screened for daily presence. Any detection that was
correctly identified to species was considered a true detection. A day
was then marked as present for humpback whales if one true detec-
tion was found within at least three humpback whale vocalizations,
occurring over a 10 min window. The 10 min window was deemed
sufficient to clearly distinguish putative humpback whale vocalizations
from those of other species.

Sei whales in the North Atlantic produce low-frequency
downsweeps (Figure 2b), from 82 to 34 Hz, as single, doublet, trip-
let, or more series of vocalizations (Baumgartner et al., 2008). These
downsweeps can also be found associated with other newly reported
call types thought to represent song (Tremblay et al., 2019). It is cur-
rently unknown whether these vocalizations are sex-biased, or how
they may vary regionally and seasonally. The LFDCS call library de-
scribed in Baumgartner and Mussoline (2011) contains the 82-34 Hz
sei whale downsweep, which was the call type we focused on in
this study. All sei whale downsweep detections with an MD of 3.0
or less were manually screened for the daily presence of a doublet
or triplet (following the same methods as described by Baumgartner
et al. (2008); doublets and triplets were defined as two or three re-
peated downsweeps, respectively, with roughly 3.5 s elapsed between
the start of successive calls). Sei whales were considered present if a
true detection (at least one downsweep detected within a doublet or
triplet) was found for that day. As single sei whale downsweeps can re-
semble some vocalizations produced by fin and blue whales (Berchok,
Bradley, & Gabrielson, 2006; Sirovi¢, Hildebrand, & Thiele, 2006), only
the occurrence of the downsweeps as doublets or triplets were se-
lected to ensure confidence in species identification.

Fin whales produce 20 Hz pulses, occurring in 7-19 s intervals, with
bouts lasting up to 32.5 hr (Figure 2c; Julien Delarue, personal commu-
nication; Morano et al., 2012; Watkins et al., 1987). These vocalizations
are thought to be produced solely by males as a breeding display (Croll
et al., 2002). They have been documented throughout the year in their
western North Atlantic range, and thus are excellent indicators of male
fin whale presence. A call library for fin whale 20 Hz pulses was built
for the data sampled at 120 Hz. To validate this call library, a full year of
data from nine sites (18 recorders total) were selected across the data-

set range (marked with “a” in Table 1). These data were examined every

third hour of each day on the first, 11th, and 21st day of the month to
look for fin whale presence. These hours were manually verified for true
detections with an MD of 3.0 or less. Using the methods described in
Baumgartner and Mussoline (2011), a logistic regression was applied
to these results to facilitate reducing the size of the dataset that ulti-
mately needed to be manually verified for confident species detection.
This analysis revealed that a minimum number of 29 detections per hour
need to be detected to ensure that a fin whale was truly detected in that
hour with a confidence of 90%. To confirm true fin whale presence in
the full dataset of 281 recorders, all hours with at least 29 detections (as
determined by the logistic regression above) were then manually veri-
fied for daily presence of fin whale 20 Hz pulses. From those hours with
29 or more detections, fin whales were considered present for that day
if a true detection was found within a regular interpulse interval pattern
of at least three other 20 Hz pulses. Furthermore, to ensure accurate
representation of fin whale presence in duty cycled data, all detections
for all hours of recorders that had a recording duty cycle of 30% of the
time or less were manually reviewed for accurate daily presence. This
accounted for 21 recorders, or 7% of the data where all hours were man-
ually verified (see Table 1 for a summary of these decisions).

The most common vocalizations documented from blue whales
in the North Atlantic are their low frequency song, which is made up
of repeated phrases, comprised of song notes, with 1-2 min intervals
(Mellinger & Clark, 2003), thought to be produced by males (Oleson
et al., 2007). A call library for blue whales was built for the data sam-
pled at 120 Hz, and created for A, B, and AB phrases (as described
by Mellinger & Clark, 2003; Figure 2d, Table S1). All detections with
an MD of 5.0 or less were manually screened. Daily presence for blue
whales was confirmed if there were three song phrases visible, includ-
ing at least one true detection. The low frequency band in which blue
whale song occurs is often overlapped with boat or background noise
and in noisy situations it can be difficult to identify song units with
confidence. Only accepting detections when three or more phrases oc-

curred ensured our confidence in the presence of the blue whale song.

2.4 | Validation of LFDCS performance

The manual verification of each detection ensured a 0% false detec-
tion rate in daily presence. To evaluate the missed detection rate of
the LFDCS for each of the four species, three regions (Southern New
England, Cape Hatteras, and Southeast United States; regions 7, 9,
and 10; see Figure 1) were chosen for manual analysis of the recorded
audio. Owing to the large size of the dataset, all regions and record-
ers could not be included. These regions were selected to incorporate
variability across the datasets' geographic, water depth, and temporal
range, using one recorder type (MARU) for a comparable assessment.
When available, a full year of data from one recording site was taken
from the two time periods compared in this analysis (before and after
2010) for regions 7 and 10, and data from the only available time pe-
riod (after 2010) in region 9 were taken (marked with “b” in Table 1).
Every fifth day was manually screened by a trained acoustic ana-

lyst for the daily presence of each call type described above for each of
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FIGURE 2 Spectrogram examples of (a) humpback whale song, (b) sei whale doublet downsweeps, (c) fin whale 20 Hz pulses, and (d) blue
whale A, B, and AB song notes
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the speces. Long-term spectral averages (LTSAs) were viewed using
the MATLAB- (Mathworks) based custom sound analysis software pro-
gram Trton (Wiggins & Hildebrand, 2007). When further inspection was
needed, the sound analysis software Raven Pro 1.5 (Bioacoustics Research
Program, 2014) was used to examine the spectrogram in more detail; thus
allowing a more accurate assessment of the presence or absence of cer-
tain vocalization types. When the vocalizations of a given species were ob-
served, that day was marked as positive for presence of that species. The
number of days of each species’ presence found by the manual screening of
acoustic datawas compared to the days marked as present using confirmed
detections from LFDCS. Missed detection rates were caloulated using the
confusion matrix method as described in Baumgartner et al (2019).

2.5 | Review and analysis of call detections

Duaily presence of all call types for each of the four species was summa-
nzed into weekly bins and plotted across the spatial extent of the passive
acoustic recorders (regions 1-11) over (a) the entire time seres (2004-
2014); and (b) the time senes split between 2004 to 2010 and 2011 to
2014, This split was the same as used for the analysis of MARW acoustic
presence in Davis et al. (2017), which was based on the timing of the
marked climatological shifts in the Gulf of Maine (Record et al., 2019)
and multiple species' distnbution changes in the western Morth Atlantic
Ocean [Pershing, Mills, Dayton, Franklin, & Kennedy, 2018). Only regions
with acoustic occurrence in both time penods were compared.

We ran a generalized linear model (GLM) in R 3.4.1 (R Core Team,
2017). using the libranies MASS (Venables & Ripley, 2002), car (Fox
& Weisburg, 2011), and phia (De Rosanio-Martinez, 2015) to test
whether the annual occurrence of each species across regions dif-
fered over the two time periods. In this analysis, we defined the num-
ber of days per year (summed across all recorders for each region)
with detected species-specific vocalizations as the dependent vari-
able, and defined time penods (2004-2010; 2011-2014) and regions
as independent vanables, with their interaction effects included in the
maodel. A GLM with a Poisson distribution with log-link was run given
that the detection data were counts, accounting for zero-inflated, dis-
crete data. Within each year and region, the number of recording days
was multiplied by the duty-cycle to correct for non-continuous data.
As recording effort (the number of days during which recorders were
present) varied across time and region, we included the log of the
number of days during which recorders were present plus 1 (because
for some time*region cells, there were no recorders present) as an
offset in the model. This procedure resulted in the following model
structure:

nDayswWithWhales ~ timePeriod = Region, family = "‘poisson’,
Offset = log (nDaysRecording + 1).
Lastly, results from these analyses were compared to the

MARW's daily presence data from Davis et al. (2017) to compare the
seasonal presence of five baleen whale species.

3 | RESULTS

A total of 840,792 hr of recordings were processed across all avail-
able data. Acoustic detection results are presented as weekly pres-
ence for each of the comresponding vocalizations for all four species
(Figure 3a-d). Each species' acoustic presence was then summarized
into seasons, following the seasonality defined in Roberts et al. (2016)
as: Winter (Movember-February); Spring (March-Apnl}; Summer
(May-July); and Fall (August-October; Figures 4-7). Lastly, data from
Davis et al. (2017) on nght whale seasonal presence was plotted to-
gether with the four species in this study to allow direct comparisons
to be made between the presence of all five species (Figure 51).

3.1 | Regional and seasonal call presence

3.1.1 | Humpback whales

Humpback whale songs and calls were detected on at least 1 day in
all recording regions (Figures 3a and 4). They were detected year-
round in the Gulf of Maine (regions 4 and 5), southemn Scotian Shelf
(region 3), and off eastern Greenland (region 2). They were detected
sporadically, but throughout the year, in mid-Atlantic waters off
Wirginia (region 8), with the majonty of humpback whale presence
occurring between January and May. Humpback whales were pre-
sent for a minimum of 5 days in the Davis Strait (region 1) during July
and Movember to January. They were likely present for longer here;
however, distinguishing humpback whale song from bowhead whale
song in this region remains challenging.

During winter and spring months, they were detected through-
out the entire sampled range, from their known Caribbean breeding
grounds (region 11) through eastern Greenland (region 2; Figure 4a b).
They were detected consistently in these seasons in the northern
Carnbbean (January-May; region 11), but were present only for a few
days in inshore waters in the Southeast United States (region 10), with
only one additional day of presence in the summer, suggesting that
they rarely come onto the continental shelf in this area. Winter and
spring had high detection rates of humpback whales in southern New
England waters (within the Mew York Bight to Mantucket Shoals, re-
gion 7) and in the mid-Atlantic off Virginia (region 8).

Humpback whales were detected off Cape Hatteras (region 9) pri-
marily between October and January, dunng their southward migration,
with only a few detection days in spring and fall. In most summer and fall
months, humpback whale detections decreased noticeably in southern
Mew England waters (region 7), as well as eastermn Greenland (region 2), re-
flecting concentrated humpback whale presence on feeding grounds from
the Gulf of Maine to southern Scotian Shelf (regions 3-5; Figure 4c.d). The
offshore recorder on the New England Seamounts (near Georges Bank;
region &) had only a few days of song and call occurmence in winter and
summer (with no recording effort available in the spring). In this region (5).
vocalizations were found more often on recorders along the shelf break
around Georges Bank from March through Juby, suggesting humphback
whales likely remain on the shelf, or dlose to it, in the northemn regions.
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FIGURE 3 Weekly presence summary: Boxplots representing the average number of days per calendar week per recording site with
confirmed acoustic presence for (a) humpback whales; (b) sei whales; (c) fin whales, and (d) blue whales, across all recorders in each region
described in Figure 1 and for all years of the study (2004-2014). Horizontal lines within the boxes indicate the median, box boundaries
indicate the 25th (lower boundary) and 75th (upper boundary) percentiles, vertical lines indicate the largest (upper whisker) and smallest
(lower whisker) values no further than 1.5 times the interquartile range, and black dots represent outliers. Grey blocks indicate weeks where
no data were available for that region
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FIGURE 3 (Continued)
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FIGURE 4 Humpback whale seasonal occurrence maps: The number of days per season with confirmed Morth Atlantic humpback whale
acoustic detections, summarized for all available recording locations (2004-2014). Filled pink circles indicate humpback whale acoustic
presence, and circle size indicates the number of days with humpback whale acoustic detections during a season. Black dots indicate
recorder locations with no humpback whale acoustic presence for any year during that season (defined as: (a) Winter [Movember-February];
(b) Spring [March-Apnl]; (c) Summer [May-July]: and (d) Fall [August-October])
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FIGURE 5 5eiwhale seasonal occurrence maps: The number of days per season with confirmed Morth Atlantic sei whale acoustic
detections, summarized for all available recording locations (2004-2014). Filled red circles indicate sei whale acoustic presence, and circle
size indicates the number of days with sei whale acoustic detections during a season. Black dots indicate recorder locations with no sei
whale acoustic presence for any year during that season (defined as: (a) Winter [Movember-February]; (b) Spring [March-April]; {c) Summer

[May-July]; and (d) Fall [August-October])
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FIGURE & Fin whale seasonal occurrence maps: The number of days per season with confirmed North Atlantic fin whale acoustic
detections, summarized for all available recording locations (2004-2014). Filled green circles indicate fin whale acoustic presence, and circle
size indicates the number of days with fin whale acoustic detections duning a season. Black dots indicate recorder locations with no fin
whale acoustic presence for any year during that season (defined as: (a) Winter [Movember-February]; (b) Spring [March-Apnil]; (c) Summer
[May-July]: and (d) Fall [August-October])
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FIGURE 7 Blue whale seasonal occurrence maps: The number of days per season with confirmed Morth Atlantic blue whale acoustic
detections, summarized for all available recording locations (2004-2014). Filled blue circles indicate blue whale acoustic presence, and circle
size indicates the number of days with blue whale acoustic detections during a season. Black dots indicate recorder locations with no blue
whale acoustic presence for any year during that season (defined as: (a) Winter [Movember-February]; (b) Spring [March-April]; {c) Summer

[May-July]; and (d) Fall [August-October])
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3.1.2 | Seiwhales

Sei whales were detected from south of Cape Hatteras to the Davis
Strait (regions 1-10) and exhibited a distinct seasonal pattern in acoustic
presence across the different geographic regions (Figures 3b and 5). In
the Southeast United States, sei whales were detected only on record-
ers deployed on the western edge of Blake's Plateau (region 10), with no
occurrence found on recorders closer to shore on the shelf. Sei whale
calls were absent from recording areas in the Caribbean (region 11).

Sei whale calls occurred nearly year-round in waters south
of New England (region 7), with higher detection rates occurring
from March through July. In the winter, sei whale acoustic detec-
tions occurred along the entire coastline, from Florida (Southeast
United States; region 10) to eastern Greenland (region 2), but were
sparse on recorders closest to shore, and only detected off eastern
Greenland (region 2) in the beginning of November (Figure 5a).

Sei whales were detected more frequently in northern regions
starting in the spring, with detections occurring primarily in waters
south of New England (regions 6 and 7) and in the Gulf of Maine (regions
4 and 5; Figure 5b). The northernmost regions (Davis Strait and eastern
Greenland, regions 1 and 2) had sei whale calls present starting as early
as April (region 2) and June (region 1), with a majority of sei whale detec-
tions in these regions occurring from June through October. Georges
Bank (region 6) had high sei whale detections from March through July,
and October through December, suggestive of movements between
northern and southern regions during these times.

In summer months, detections remained relatively absent south

of the New York Bight (regions 8-10), with the exception of presence

oo, RUMEMIES

of 2 days off Virginia (mid-Atlantic; region 8) and 1 day off the
Southeast United States (region 10) in August and July, respectively
(Figure 5c¢). Detections continued in these upper latitudes through-
out the fall (Figure 5d), with occasional presence of sei whale calls
south of New England (region 7) through Cape Hatteras (region 9), as
the distribution of call occurrence expanded further south in winter
months. Southbound migration was evident with detections ending
in October in the Davis Strait (region 1), with a clear drop in detec-

tions over the month of October off eastern Greenland (region 2).

3.1.3 | Fin whales

Fin whale calls were present across the entire dataset from just
south of Cape Hatteras to the Davis Strait (regions 1-10; Figures 3c
and 6). Fin whale calls were present on a few Southeast US record-
ers (region 10); however, all detection days here were on recorders
located off the continental shelf, suggesting that fin whales occurred
further offshore in the south. There were no fin whale detections on
any of the Caribbean (region 11) recorders, or inshore Southeast US
(region 10) recorders.

Throughout the entire year, fin whales were detected near-con-
tinuously from Virginia (mid-Atlantic; region 8) through eastern
Greenland (region 2). Of these regions (2-8), the highest number
of days with detections occurred from August through April, with a
noticeable decrease in days with detections from May through July.

Fin whales were detected on Georges Bank (region 6) from March

to December, with sporadic presence from May to August, and
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TABLE 3 Results of the Poisson generalized linear model
(GLM) testing whether the annual occurrence of each species
across regions differed over two time periods (A: 2004-2010; B:
2011-2014). The number of days per year in which whale calls
were detected is the dependent variable, and the time periods and
regions are independent variables, with their interaction effects
included in the model. Eastern Greenland, Georges Bank, Cape
Hatteras, and the Caribbean (regions 2, 6, 9, and 11) are excluded
from the model due to insufficient data in some time*region cells,
and the Caribbean (region 11) is included for humpback whales
only. For all other regions, both factors and their interactions were
significant. Tables show results from the Poisson GLM testing
between the two time periods (A-B) for each region separately,
using the False Discovery Rate to correct for alpha-value inflation
for (a) humpback whales, (b) sei whales, (c) fin whales, and (d) blue
whales. Pairwise comparisons of time periods across individual
regions were run using the R Package phia

Region Value df Chi-square p-value

(a) Humpback whales
A-B: 1 0.000 1 0.001 973
A-B: 3 2.346 1 22.346 <.001
A-B: 4 1.068 1 0.348 741
A-B: 5 1.023 1 0.143 .806
A-B:7 0.665 1 57.429 <.001
A-B: 8 0.430 1 24.863 <.001
A-B: 10 0.675 1 1.081 478
A-B: 11 0.374 1 41.693 <.001
Residuals: 72

(b) Sei whales
A-B: 1 0.530 1 13.123 <.001
A-B: 3 1.022 1 0.072 .788
A-B: 4 0.495 1 17.775 <.001
A-B: 5 0.524 1 47.099 <.001
A-B:7 0.430 1 118.505 <.001
A-B: 8 0.028 1 12.645 <.001
A-B: 10 1.151 1 0.340 .653
Residuals: 63

(c) Fin whales
A-B: 1 0.145 1 665.017 <.001
A-B:3 3.360 1 717.504 <.001
A-B: 4 0.480 1 65.986 <.001
A-B:5 0.960 1 0.603 437
A-B:7 2.102 1 443.271 <.001
A-B: 8 0.659 1 34.207 <.001
A-B: 10 2.051 1 10.614 .001
Residuals: 63

(d) Blue whales
A-B: 1 0.328 1 33.835 <.001
A-B: 3 2.808 1 303.157 <.001
A-B: 4 0.330 1 0.819 427
A-B: 5 0.354 1 7766 .007

(Continues)

DAVIS ET AL.
TABLE 3 (Continued)

Region Value df Chi-square p-value
A-B:7 2.646 1 48.470 <.001
A-B: 8 0.000 1 0.002 963
A-B: 10 3.489 1 53.628 <.001
Residuals: 63

no detections in January or February. Acoustic activity decreased
slightly in spring months, however, fin whale detections remained
present within the range (Figure 6b). From March through April, fin
whales were primarily detected from the Scotian Shelf through the
mid-Atlantic (regions 3-8), with some detections in the Davis Strait
(region 1), eastern Greenland (region 2), and Cape Hatteras (region
9). In summer months, acoustic activity decreased noticeably, where
they were absent in the Davis Strait (region 1) from April through
June and in waters south of the mid-Atlantic (regions 9 and 10) from

April (region 10) or May (region 9) through August (Figure 6c).

3.1.4 | Blue whales

Blue whales had the lowest number of days with detections throughout
the dataset (Figure 3d). Overall, they were detected from North Carolina
(Southeast United States; region 10) through the Davis Strait (region
1; Figure 7). Blue whale song did not occur on any recorders south of
North Carolina (Southeast United States; region 10), suggesting that
the southern edge of their range lies at the start of Blake's Plateau, or
that they remain in deep waters when south of Cape Hatteras (region
9). Blue whales were not detected in the Caribbean (region 11).

Blue whale calls were present nearly year-round off eastern
Greenland (region 2). However, blue whale song was most pre-
dominant in fall and winter months, with the most detections oc-
curring in winter (Figure 7a,d). Throughout these seasons, they
occurred primarily on recorders on or near the shelf break, from
North Carolina (Southeast United States; region 10) to the Davis
Strait (region 1). There were some regions with detections on re-
corders in inshore waters; blue whales were detected sporadically
in the Gulf of Maine and Massachusetts Bay (regions 4 and 5),
and they were detected on nearly all recorders on the continental
shelf in southern New England (region 7) in the winter (Figure 7a).
Detections on Georges Bank (region 6) occurred primarily from
August through December, potentially moving southward to
southern New England and the New York Bight (region 7) from
December through March.

Spring and summer had only occasional detections of blue
whales, spanning the New York Bight (region 7) to eastern Greenland
(region 2) in the spring (Figure 7b), and the Scotian Shelf (region 3)
to the Davis Strait (region 1) in the summer (Figure 7c). There were a
handful of days where blue whales were detected off Cape Hatteras
(region 9) and the northern edge of Blake's Plateau (Southeast
United States; region 10) in the summer, but these occurrences were

infrequent.
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TABLE 4 Summary from missed detection rate analysis, showing number of days with true positives (whales were found present both by
detector validation and manual screening), false negatives (whales were found present in manual screening but not from detector validation),
true negatives (whales were not found present by either detector validation or manual screening), and resulting missed detection rates for

each species

True False
Species positives negatives
Humpback 217 11
Sei 31 5
Fin 480 53
Blue 9 1

3.2 | Comparison of acoustic detections before and
after 2010

The annual acoustic presence before and after 2010 was evaluated
for all four species, with NARWs included for comparative purposes
(Figure 8). In addition, changes in weekly presence before and after
2010 are illustrated in Figure S2a-e. Of all five baleen whale species,
humpback whales showed the least change before and after 2010,
with only a marked decrease in acoustic presence on the Scotian
Shelf area (region 3) after 2010 (Figure 8; Figure S2a; Table 3a). Sei
whales had an increased acoustic presence after 2010 in all regions
except the Scotian Shelf and Southeast United States (regions 3 and
10; Figure S2b; Table 3b). This increase in presence in the mid-Atlan-
tic regions (regions 7 and 8) is similar to that observed in NARWs .
In contrast to sei whales, NARWSs were not detected in the Davis
Strait (region 1; Davis et al., 2017), and NARW acoustic presence
decreased in the Gulf of Maine (region 4) after 2010 (Figure S2e).
After 2010, sei, fin, and blue whale acoustic occurrence significantly
increased in the northern waters of Davis Strait (region 1), with an
increase for sei and fin whales in the Gulf of Maine (region 4; Figure
S2b-d, Tables 3b-d). Like the other species, the presence of fin and
blue whales decreased on the Scotian Shelf area (region 3) after 2010.
In addition, fin and blue whale presence decreased after 2010 in
southern New England waters (region 7), while blue whale presence
also decreased in the Southeast United States (region 10). NARW de-
tections showed significant decrease in northern regions (regions 3
and 4) and significant increase in southern regions (regions 7, 8, and

10) after 2010, which was not exhibited by any of the other species.

3.3 | Detector evaluation of missed detection rates
for all call types

The LFDCS, with an MD threshold of 3.0, missed an estimated 5%
of days for humpback whales, 14% of days for sei whales, and 10%
of days for fin whales. With an MD of 5.0, the LFDCS missed an
estimated 10% of days for blue whales (Table 4). The number of
days analyzed to evaluate the missed detection rate for each spe-
cies varied, ranging from 247 to 250 days for blue and sei whales,

respectively, and from 678 to 1,215 days for humpback and fin

Missed
True detection Total days
negatives rate (%) analyzed
450 5 678
214 14 250
682 10 1,215
237 10 247

whales, respectively. The ability to manually screen for the repeti-
tive calls of humpback and fin whales was greatly facilitated by
using LTSAs compared to the less frequent vocalizations of sei and
blue whales; therefore, more days were efficiently incorporated in
the analysis for humpback and fin whales to provide a more robust
validation. It is likely that the missed detection rate for sei whales
would decrease if single downsweeps were allowed to indicate sei
whales' daily presence. Additionally, the strict protocols used to de-
fine the daily presence for each species further reduced acoustic
presence rates, but were necessary to increase our confidence in
true presence. For all four species, these rates support the LFDCS
as a good detector for determining acoustic presence. This is espe-
cially evident when the scale of this study is taken into considera-
tion, as the missed detection rate was composed over data from
different regions, depths, noise environments, and throughout full
years when available. Therefore, the call detections in this study
represent the minimum number of vocalizations present across the
region but are likely to be a good representation of true seasonal
patterns in each recording region.

4 | DISCUSSION

All four focal baleen whale species were present throughout, from
the Southeast United States (region 10) to the Davis Strait and east-
ern Greenland (regions 1 and 2); humpback whales ranged further
south into the Caribbean (region 11). During winter, all four species
were acoustically present from the Southeast United States (region
10) up to the Davis Strait and eastern Greenland (regions 1 and 2),
suggesting that they occur widely throughout the western North
Atlantic Ocean during this season. In interpreting our observations, it
is important to recognize the limitations within the dataset, including
regional gaps in acoustic coverage, varying detection ranges across
species and habitats, as well as acoustic behavior limiting portions
of the populations being detected. Recording locations provided
widespread, but varying, temporal and spatial coverage, with some
regions that had (a) extensive temporal and spatial coverage (e.g.,
Massachusetts Bay and southern New England; regions 5 and7);
(b) partial temporal and spatial coverage (e.g., Gulf of St. Lawrence,

Scotian Shelf, Gulf of Maine, and Georges Bank; regions 3A, 3, 4,
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and 6); or (c) little to no coverage (shelf-edge and off-shelf waters).
Furthermore, despite differences in vocal behavior across species,
where some vocalizations change seasonally (e.g., fin whale 20 Hz
pulses, song) or are thought to be produced by males only (e.g.,
song), or where acoustic behavior remains unknown (sei whales), we
broadly detected vocalizations used by each species across the entire
dataset. These data give a comprehensive overview of the minimum
spatial and temporal distribution of each species, adding broad-scale,
long-term information to our current understanding of these species,
filling in significant gaps, and highlighting potential changes in acous-

tic occurrence over time.

4.1 | Regional and seasonal acoustic presence
4.1.1 | Humpback whales

We detected humpback whale song and social sounds throughout all
regions in the dataset during winter. Our observations confirm both
that humpback whales vocalize throughout their entire range (Mattila
etal., 1987; Vu et al., 2012), and that not all humpback whales migrate
to southern breeding grounds in the winter (Brown et al., 1995), with
at least some individuals remaining on northern feeding grounds such
as the Gulf of Maine (regions 4 and 5) and the Scotian Shelf (region 3)
throughout this period (Kowarski et al., 2018). This winter distribution
is not surprising, as various studies have observed humpback whales in
northern latitudes throughout the year (Clapham et al., 1993; Murray
et al., 2014). However, the length of time over which they were pre-
sent across all areas during winter months in this study was extensive.
In addition to the expected detections in the Caribbean (Heenehan
et al., 2019; Whitehead & Moore, 1982), humpback whales were
present from Cape Hatteras (region 9) to eastern Greenland (re-
gion 2) throughout the winter. Detections also remained high across
these regions through spring and summer. Additionally, detections
showed that the regions south of New England (region 7) and east of
Greenland (region 2) were also important areas for humpback whales,
similar to NARWs (Davis et al., 2017; Mellinger et al., 2011; Muirhead
etal, 2018).

The noticeable decrease in acoustic activity across all available
recorders in the fall (Figure 4), as well as recorders on the shelf in
the Southeast United States (region 10) in winter through summer
months, supports previous studies that suggested migration to and
from Caribbean breeding grounds occurs further offshore, beyond
the detection range of the recorders used in our study (Clapham
& Mattila, 1990; Kennedy et al., 2014; Reeves, Smith, Josephson,
Clapham, & Woolmer, 2004). The few detections (33 days) in the
Southeast United States (region 10) in late winter and spring suggest
that some individuals may travel through or linger in coastal waters,
but this is likely an exception rather than the norm. However, de-
creases in humpback whale detections could also be attributed to
changes in vocal behavior, where more sporadic calling could lead
to missed or insufficient calls within our defined presence analysis

window.

4.1.2 | Seiwhales

Sei whales exhibited distinct seasonal movements, with peak occurrence
in northern latitudes (regions 1 and 2) during late summer and fall months.
Like the other species, sei whales were detected along almost the entire
coast in winter months, from Florida (Southeast United States.; region 10)
to eastern Greenland (region 2). In the Southeast United States (region
10), sei whales were not detected on recorders closer to shore than the
western edge of Blake's Plateau, indicating a more offshore distribution
in this southern area. Sei whales moved into more northern regions, the
Davis Strait and eastern Greenland (regions 1 and 2), in summer months,
while still occurring south to the New York Bight (region 7). Very little in-
formation existed on sei whale distribution prior to this study, with most
knowledge coming from whaling records off northern Labrador and the
eastern North Atlantic (Jonsgard, 1966; Mead, 1977; Prieto, Janiger, Silva,
Waring, & Gongalves, 2012). This could be due to their use of offshore, pe-
lagic habitats (Hain et al., 1985), or the fact that sei whales can be difficult
to distinguish from Bryde's or fin whales in visual surveys. Their summer
occurrence near Greenland (regions 1 and 2) matches the movements of
satellite tagged sei whales traveling towards the Labrador Sea in May and
June (Olsen et al., 2009; Prieto et al., 2014). Acoustic occurrence of sei
whales corresponded with the timing reported in previous acoustic stud-
ies, with sei whales present in the Great South Channel (Georges Bank; re-
gion 6) throughout May (Baumgartner & Fratantoni, 2008; Baumgartner,
Lysiak, Schuman, Urban-Rich, & Wenzel, 2011; Baumgartner et al., 2008),
and in Massachusetts Bay (region 5) from September to November
(Tremblay et al., 2019). Their occurrence along the shelf edge, particularly
in Canadian and Northeast US waters (Scotian Shelf and Georges Bank;
regions 3 and 6) corresponds with previous reports, however, detections
occurring on the shelf in the Gulf of Maine and southern New England
(regions 4, 5, and 7) highlight greater use of on-shelf areas here than previ-
ously described (COSEWIC, 2003).

This study provides the first comprehensive analysis of sei whale
distribution throughout the western North Atlantic Ocean, highlight-
ing movements and important habitat for this species. Their move-
ment northward in summer months suggests that their summer
feeding grounds range from the Gulf Maine through the Scotian Shelf
(regions 3-5). Similarly, sei whales are also detected in the summer
and fall from eastern Greenland to the Davis Strait (regions 1 and 2),
although it is unclear if this is one continuous population from the Gulf
of Maine to the Davis Strait (regions 1-5; Prieto et al., 2014). Southern
New England and the New York Bight (region 7) are highlighted as an
important area for sei whales, as this is the one region where they
were detected persistently year-round. This area is an important re-
gion for baleen whale species in general, and in particular for NARWSs
who target the same prey as sei whales, specifically C. finmarchicus

(Baumgartner & Fratantoni, 2008; Baumgartner et al., 2011).

4.1.3 | Finwhales

Fin whales were present nearly year-round from Virginia (mid-

Atlantic; region 8) to eastern Greenland (region 2). These findings
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correspond with regional studies where fin whales were detected
on 99%-100% of recording days in Massachusetts Bay (region 5)
and the New York Bight (region 7; Morano et al., 2012; Muirhead
et al., 2018). Moreover, these data reflect previous findings of
year-round fin whale presence, and support suggestions that,
as in other baleen whales, not all fin whales migrate. Edwards
et al. (2015) indicate that fin whales are present in high and low
latitudes throughout all seasons, and our observations corroborate
this observation.

The lack of fin whale detections in the Davis Strait, Cape
Hatteras, and the Southeast United States (regions 1, 9, and 10)
in late spring and early summer could signify movements of indi-
viduals out of these regions. In the northernmost regions (1 and
2), the increase in noise from seismic and vessel activity as sea ice
retreats from its maximum extent in March may play a role in the
decrease in detections during this time by masking their low-fre-
quency vocalizations (Klinck et al., 2012). Other possibilities for
the decreased detection rates include altered acoustic behavior
by singing males during this time of the year (Watkins, 1981) or
possible movement of fin whales farther offshore into deeper
waters, beyond the detection range of these recorders. However,
the latter seems unlikely since recorders deployed near the Mid-
Atlantic Ridge observed similar seasonal occurrence of fin whales
as this study, with detections occurring largely from September
to April (Nieukirk et al., 2004, 2012), illustrating the large range
that fin whales occupy for most of the year. Visual survey data
reflect similar distributions of fin whales to those observed in our
study during all seasons on the shelf from Cape Hatteras (region
9) through the Gulf of Maine (region 4), and then occurring from
Cape Hatteras (region 9) to the Davis Strait and eastern Greenland
(regions 1 and 2) in all seasons except March-May (Edwards
et al., 2015). Overall, these data confirm much of the evidence
that fin whales occupy a large portion of the shelf for most of the
year (Hain et al., 1992).

4.1.4 | Blue whales

For a typically oceanic and rare species, blue whales were detected
in the dataset on the continental shelf far more than expected.
Although blue whale's song travels large distances (see Table 2), it
is unlikely that all detections in our data were from individuals far
offshore, as sound attenuates rapidly for the recorders in shallow
shelf areas, and the presence of blue whales has been corrobo-
rated with visual sightings in many of the areas where they were
acoustically detected (National Marine Fisheries Service, 2018;
Wenzel et al., 1988). Blue whales were detected on the shelf north
of the New York Bight (region 7), while all other detections, as
far south as North Carolina (Southeast United States; region 10),
were only along the shelf break. Their presence nearly year-round
from the Scotian Shelf (region 3) to eastern Greenland (region
2) supports previous acoustic and visual surveys that identified

these areas as important blue whale habitats (Hooker, Whitehead,

oo, RUMEIES

& Gowans, 1999; Marotte, 2014; Moors-Murphy et al.,, 2019;
Whitehead, 2013). Our results also confirm previous studies in-
dicating the shelf break and canyons as important areas for blue
whales (Moors-Murphy, 2014).

Blue whale acoustic presence is sparse across the entire data-
set from April to August. While this species' distribution likely
extends beyond the recorders' range during this time, it is also
likely blue whales have different acoustic behavior during these
months, as shown by Moors-Murphy et al. (2019) in Canadian
waters. This study uses blue whale song to determine the pres-
ence, as it is the most common blue whale vocalization through-
out the year compared to other blue whale vocalizations (Berchok
et al., 2006; Marotte, 2014; Mellinger & Clark, 2003). Like other
baleen whales, blue whale song is thought to be produced by
males, as a reproductive display (Oleson et al., 2007). Therefore,
this study represents a minimum presence of blue whales, as we
are capturing only a portion of the population (reproductively
active males) as they pass through these areas. Incorporating
other known call types, such as D/arch feeding calls, would pro-
vide a broader understanding of blue whale's acoustic presence
throughout the year, especially in areas where these calls are sea-
sonally prevalent, such as eastern Greenland (region 2; Boisseau,
Gillespie, Leaper, & Moscrop, 2008). As in the case with fin
whales, increased anthropogenic noise, which overlaps with blue
whales' vocalization range, could further hinder our detectability
for blue whales during summer months, especially in northern re-

gions as polar ice retreats (Klinck et al., 2012).

4.1.5 | Baleen whale occurrence before and
after 2010

All baleen whale species showed significant changes in their acoustic
occurrence between the two time periods considered in this study:
before and after 2010. In particular, sei whales showed an increased
presence in southern New England and mid-Atlantic regions (regions
7 and 8), similar to that reported for NARWs (Davis et al., 2017). As
both species are copepod feeders, sei and NARWSs can often be found
feeding together in some habitats (Baumgartner et al., 2011). Shifts in
prey distribution in this part of the North Atlantic are already being re-
ported, and are projected to increase with warming sea temperatures
(Chust et al., 2014; McHenry, Welch, Lester, & Saba, 2019; Morley
et al., 2018; Perry, Low, Ellis, & Reynolds, 2005), influencing baleen
whale distribution. The Gulf of Maine (region 4) is one of the fast-
est warming ocean areas (Pershing et al., 2015). These climatological
changes may help to explain the observed shift in NARW distribution
after 2010 (Record et al., 2019). However, despite similar changes in
occurrence in southern New England and mid-Atlantic regions (regions
7 and 8), this study shows a marked difference in the way in which sei
and NARWs' distributions changed after 2010 in the other regions.
Except on the Scotian Shelf and in the Southeast United States
(regions 3 and 10), sei whale call occurrence increased after 2010 in

most areas (Figure 8; Figure S2b). This contrasts with the dramatic
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changes in the presence of NARWSs observed through visual and
acoustic surveys, particularly in the Gulf of Maine (region 4). While
some of the reduction in the presence of NARWs is due to the
species' decline in recent years (Pace, Corkeron, & Kraus, 2017),
their large-scale distributional changes cannot be explained by the
decline alone (Davies et al., 2019). These differences between sei
and NARWSs could be due to the differences in feeding strategies.
NARWSs are ram feeders, targeting extremely dense patches of C.
finmarchicus with open mouths (Kenney, Hyman, Owen, Scott, &
Winn, 1986; Kenney, Mayo, & Winn, 2001), and sei whales can gulp
feed, targeting additional prey such as euphausiids or fish by skim-
ming as they swim (Baumgartner & Fratantoni, 2008; Flinn, Trites,
Gregr, & Perry, 2002; Laidre et al., 2010). Additionally, warming and
melting of arctic sea ice have shown increases in shelf-associated
copepods in the North Atlantic, including early copepodid stages of
C. finmarchicus, but decreases in abundance of later stages of this
species, primarily targeted by NARWSs (Greene, Pershing, Cronin, &
Ceci, 2008; Grieve, Hare, & Saba, 2017). Thus, as NARWSs' distribu-
tion shifts to follow the distribution of their primary prey, sei whales
may remain in these areas and alter their focal prey. Alternate feed-
ing strategies witnessed in other species, such as humpback whales'
ability to prey switch (Fleming, Clark, Calambokidis, & Barlow, 2016),
offers plausible explanation as to why results varied between spe-
cies and across regions.

We observed that fin, blue, and sei whales increased the time
that they spent in northern latitudes after 2010. Many studies
have shown poleward shifts of species with climate change,
particularly in northern latitudes (McHenry et al., 2019; Perry
et al., 2005; Wynn, Josey, Martin, Johns, & Yésou, 2007) and are
predicted to continue shifting, especially on the North American
continental shelf (Morley et al., 2018). Thus, it is possible that
fin, blue, and sei whales are following prey to more northern
latitudes.

Lastly, on a more regional scale, a significant shift in habitat
use after 2010 can be seen in the decreased acoustic occurrence
of humpback, fin, blue, and NARWSs on the Scotian Shelf (region 3).
What might be driving this shift remains unclear; it is possible the
shift reflects changes in prey availability similar to that observed
in the Gulf of Maine (Sorochan et al., 2019), but there is little data
to elucidate this process. Nevertheless, the data suggest that the
Scotian Shelf (region 3) has become a less preferred habitat for most

baleen whales since 2010.

5 | CONCLUSIONS

This is the first study to show spatial and temporal occurrence of
humpback, fin, blue, and sei whales across the western North
Atlantic Ocean over long time spans and large spatial scales and to
demonstrate how these species' distributions have changed over
time. These species are all protected under the US Marine Mammal
Protection Act, with fin, blue, and sei whales also listed as endan-

gered under the US Endangered Species Act. In Canada, blue and sei

whales are listed as endangered under the Canadian Species at Risk
Act and by the Committee on the Status of Endangered Wildlife in
Canada, respectively. Anthropogenic activity, including ship strike,
entanglement, and ocean noise, are the leading threats to these
species (e.g., Avila, Kaschner, & Dormann, 2018; Thomas, Reeves,
& Brownell, 2016). Knowing when and how each of these species
frequent areas that overlap with anthropogenic activity is crucial for
their conservation, which is even more challenging given their wide-
spread winter distributions. With increasing industrial use of the
western North Atlantic seaboard (Gilman et al., 2016; Government of
Canada, 2017), and increased concerns around climate change (Pecl
et al., 2017), there is a need for cost-effective monitoring of whale
distributions and any changes therein. Many years of traditional
visual surveys from vessels and aircraft have been conducted in US
and Canadian waters (Lawson & Gosselin, 2009; Palka et al., 2017).
Although these surveys can derive estimates of abundance, these es-
timates are not precise enough to detect the changes in distribution
identified in this paper. PAM is effective for monitoring large areas
over years, especially in seasons when visual surveys are limited, and
is particularly valuable for detecting temporal trends and changes.
Current technology also includes PAM in real-time (Baumgartner
et al.,, 2013, 2019), which can improve our management response
times and inform mitigation efforts. This study highlights the wealth
of information available from retroactively analyzing datasets from
a wide range of study designs and goals. Continuing these types of
cross-institutional collaborations and designing surveys with clear
goals in mind can allow for a better understanding of species oc-
currence, and can be used to recognize large-scale changes as they

transpire.
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