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Abstract—In the era of cloud computing and big data analysis,
how to efficiently share and utilize medical information scattered
across various care providers has become a critical problem. This
paper proposes a new framework for sharing medical data in a
secure and privacy-preserving way. This framework holistically
integrates multi-authority attribute based encryption, blockchain
and smart contract, as well as software defined networking to
define and enforce sharing policies. Specifically in our framework,
patients’ medical records are encrypted and stored in hospital
databases, where strict access controls are enforced with attribute
based encryption coupled with privacy level classification. Our
framework leverages blockchain technology to connect scattered
private databases from participating hospitals for efficient and
secure data provision, smart contracts to enable the business
logic of clinical data usage, and software defined networking
to revoke sharing privileges. The performance evaluation of our
prototype demonstrates that the associated computation costs are
reasonable in practice.

Index Terms—medical data, attribute-based encryption,
blockchain, smart contract, software defined networking

I. INTRODUCTION

The era of cloud computing and big data analysis requires
data to be shared among authorized users often from various
organizations. However, in healthcare applications, electronic
medical records (EMR) are usually stored in isolated hospital
databases that reside in private networks due to compliance
to regulations such as Health Insurance Portability and Ac-
countability Act (HIPAA) and Health Information Technology
for Economic and Clinical Health (HITECH). This data isola-
tion introduces a significant challenge to clinical information
integration and sharing.

Simply moving medical data to the cloud for storage,
management, and analytics is not a panacea to the challenges.
Because cloud service providers face constant internal and
external security threats [1], [2], outsourcing sensitive health
data to cloud without further enforcement of security and
privacy protection will undoubtedly add its leakage risks.

Some cloud service providers (CSP) such as Amazon,
Google, and Microsoft, proposed HIPAA compliant cloud ser-
vice for medical information management. However, security
and privacy issues can become increasingly complicated. Take
Amazon HIPAA cloud [3] for example, they provide key man-
agement service for customers with encryption requirements
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for protected health information (PHI), which implies that
cloud administrators have the chance to ”touch” the key and
to decrypt data. An option is to let hospitals encrypt data
before uploading and maintain keys themselves. However, this
approach leaves the challenging task of key management to
hospitals, which limits its scalability on data sharing across a
large scale of healthcare providers and medical institutes.

HIPAA compliance for a cloud service mainly means that
the service has been audited and certified by an independent
institute against HIPAA rules. It does not mean that internal
technical architecture and data management mechanisms of
different HIPAA cloud services will be compatible with each
other. Hence, the interoperability problem that deters clinical
data integration still exists, which turns various hospitals into
isolated information islands [4]. For instance, when a patient
gets treatment in a hospital, how can the current attending
doctor get his past medical records stored in other hospitals,
especially when the hospitals are on different medical record
systems?

Generally, existing cyber-infrastructures for healthcare, in-
cluding traditional single domain-based medical systems and
emerging cloud-based solutions, mainly face the following
obstacles.

Data interoperability. The shift from traditional enclosed
healthcare to a more holistic and shared healthcare demands
that various stakeholders work within a collaborative platform
where data can be securely exchanged and shared. Existing
healthcare infrastructure built in an enclosed domain is facing
the difficulty of managing rapidly increasing silos of health
information. Therefore, how to efficiently integrate these insu-
lar medical databases from various hospitals without violating
privacy regulations becomes a difficult problem [5].

Security. Security should protect medical data in transit and
at rest, so that data confidentiality, integrity, and availability
can be maintained. For data in transit, currently, Transport
Layer Security (TLS) protocol can be used to guarantee
the communication security. For data at rest, cryptography
primitives such as data encryption, digital signature, and access
control mechanisms can ensure secure data access in a single
domain. However, due to the HIPAA compliance requirements,
how to provide privacy-preserving access control and secure
sharing in a statewide or nationwide scale by integrating all
hospitals still remains a challenging task.



Privacy. Privacy is a closely-related concept to security but
has its own concentrations, i.e., it assures that personal in-
formation are collected, used, protected and destroyed legally
and fairly. For medical data, the restrictions enforced by ePHI-
related regulations (e.g., HIPAA), raise new concerns for stake-
holders. The regulations require all ePHI-related activities,
across the entirety of data storage, transfer, and provision, to
consistently abide by security and privacy rules.

1) Motivation and Contributions: To address aforemen-
tioned challenges, we need new computing paradigms to
facilitate medical data sharing and collaborative usage in a
privacy preserving fashion. Recently, blockchain has gained
much attention for its appealing advantages such as decen-
tralization, tamper-resistance, transparency, enhanced security,
and traceability, which make it possible to shed new lights on
secure sharing of medical information.

We proposed a new approach seamlessly based on syner-
getic components including attribute-based encryption, privacy
classification, blockchain technology, and software-defined
networking (SDN) to achieve secure and privacy-preserving
sharing of clinical information among various care-providers.
The goal of this research is to effectively connect geo-scattered
hospitals and clinical research centers on a large scale to
provide secure and privacy-preserving medical data sharing.
Specifically, our contribution mainly lies in following aspects.

• We adopt Multi-Authority Attribute-Based Encryption
(MA-ABE) scheme to enforce fine-grained access con-
trol, where rich and expressive access policy can be
specified with attributes assigned to an authorized user.
In addition, we devise a data privacy classification policy
to differentiate multiple portions of a patient’s medical
records to enforce privacy protection.

• We use Ethereum blockchain to connect geo-scattered
hospitals and HIPAA clouds and design smart contracts to
accomplish the business logic of secure and interoperable
clinical data sharing.

• To address the revocation inefficiency of MA-ABE, we
deploy a software SDN layer under the blockchain to
determine the final connectivity of a user to a medical
database, which is based on a white list (authorized users)
stored on the blockchain.

The rest of the paper is organized as follows. Section II
introduces the background of this research. Section III elab-
orates the design of the proposed framework. We analyze its
fulfillment of security and privacy requirements in Section IV.
The performance evaluation results are presented in Section V.
Finally, the paper is concluded in Section VI.

II. BACKGROUND AND PRELIMINARIES

A. Blockchain and Smart Contract

Blockchain is a decentralized, public and immutable ledger
where transactions are stored in chained blocks without the
existence of a trusted central authority. As a new computing
paradigm, blockchain possesses several intriguing character-
istics. Firstly, the chain of blocks are immutable due to the

behind consensus mechanism. An attacker has to control more
than 51% computing resources to enforce a successful double-
spending attack, which is hard to achieve in a completely de-
centralized setting. Secondly, embedded cryptographic mech-
anisms such as Merkle hash tree, chained hash, and digital
signatures also ensure the integrity of on-chain data. Thirdly,
blockchain itself serves as a shared ledger distributed to all
participating nodes in the peer-to-peer network, which greatly
reduces the risk of single-point-of-failures.

Bitcoin, as a famous blockchain-based cryptocurrency, ap-
plies Proof of Work (PoW) to achieve network consensus
[6], while Ethereum uses a combination of Proof of Work
and Proof of Stake [7]. Both strategies require participating
nodes to add blocks at a certain cost, either at the expense of
computation or capital.

However, the script language embedded in Bitcoin is not
Turing-complete, hence it is difficult to extend Bitcoin to sup-
port various applications. It was not until 2015 when Ethereum
pioneered to instantiate the “Smart Contract” concept that it
becomes a reality to build various decentralized applications
upon blockchain. Smart contracts are computer programs
running atop blockchain that automatically execute whenever
certain conditions are met, which leverage user programmed
algorithms to fully customize conditions that determine when
to execute or trigger other conditions. This technique broadens
the scope of blockchain beyond cryptocurrency to other fields
including healthcare data management.

B. Attribute-Based Encryption

In many applications, there is the need to share data
according to a specific policy without prior knowledge of who
will be the data receiver. Suppose a patient wants to share
his medical records only with a user who has the attribute
of ”PHYSICIAN” issued by a medical organization and the
attribute ”RESEARCHER” issued by a clinical research insti-
tute. With attribute-based encryption [8], the patient can define
an access policy (”PHYSICIAN” and ”RESEARCHER”) and
encrypt his medical records with this policy, so that only users
with attributes matching this access policy can decrypt the
records.

Attribute-based encryption is a promising cryptographic
technique for access control of encrypted data. Generally, it
can be divided into two kinds, key-policy attribute-based en-
cryption (KP-ABE) [9] where keys are associated with access
policies and ciphertext is associated with an attributes set;
and ciphertext-policy attribute-based encryption (CP-ABE) [9]
where keys are associated with an attributes set and ciphertext
is associated with access policies. In both schemes, a central
authority is required to issue and validate private keys, hence
they are not suitable for distributed environment where data
sharing are across different administrative domains.

To address the single authority problem in existing ABE
schemes, Multi-Authority Attribute-Based Encryption(MA-
ABE) [10]–[12]schemes were proposed, where no central
authority is needed and collusion resistance is guaranteed.
In our design, we adopt decentralized MA-ABE scheme by



Lewko el. al [12] into our framework to accomplish the task
of fine-grained access control and secure key storage.

C. Software Defined Networking

Health-care systems are usually built on a hospital’s pri-
vate network, where virtual private netwok (VPN) technology
are used to provide access to medical databases. However,
current MA-ABE schemes have inborn limitations in user
revocation [10], [12], [13]. To address this problem, we design
a workaround by introducing software defined networking
(SDN) into our architecture.

By separating the control and data planes with an SDN
controller, provisioning devices is automated including ser-
vices, protocols, and security policies. With SDN, a centralized
software program (SDN controller) can work as the “brain” to
control behavior of the entire network. Hence SDN controllers
can be programmed to determine the path of network packets
across a network of switches, and further to provide efficient
rule-based network control.

Nowadays, the rapid increase in the number and diversity of
smart end devices has raised the issues of flexibility, efficiency,
availability, security, and scalability within the network. Some
research [14] proposed to combine blockchain technology with
SDN to design a secure, scalable, and efficient network archi-
tecture, where blockchain can be used to securely verify the
version of a flow rule table and validate its correctness. This
also inspires us to use SDN controller to manage underlying
network paths for medical data access.

D. Prior Art

Recently, some blockchain based approaches [15]–[20] are
proposed to address the problem of secure medical data
sharing.

Zyskind et al. [15] proposed to use blockchain to provide
secure and privacy-preserving data share among mobile users
and service providers. MedRec [17] firstly proposed to use
Ethereum blockchain and smart contract to securely manage
and share medical information. However, these schemes store
plain-text medical information in private databases. An internal
technical member can easily touch the data, which makes the
confidentiality of information at rest difficult to guarantee.
Similar to [17], MedBlock [20] proposed to store encrypted
summary data and data hashes on blockchain to enforce access
control and preserve data privacy.

Q. Xia el al. proposed BBDS [21], a high-level blockchain-
based framework that permits data users and owners to access
medical records from a shared repository. However, their
secure sharing of sensitive medical information is limited to in-
vited and verified users. The authors also proposed MedShare
[18], a similar blockchain-based framework for medical data
sharing that provides data provenance, auditing, and control
in cloud repositories among healthcare providers.

K. Peterson el. al [16] proposed a blockchain-based ap-
proach for cross-institutional health information sharing. They
designed new transaction and block structures to enable secure
access of fast healthcare interoperability resources (FHIR) that

Fig. 1. Architecture

were stored off-chain. A proof-of-interoperability concept was
proposed in their consensus mechanism to ensure transaction
data be in conformance with FHIR structural and semantic
constraints. However, the paper did not mention how the
medical data are organized, stored, and accessed.

In addition, some studies propose to combine blockchain
with more advanced and complicated cryptographic primitives
to provide fine-grained access control and privacy protection.
Liu et al. [22] proposed using ciphertext-policy attrubute-
based signcryption to provide fine-grained access control and
secure sharing of Personal Health Records (PHRs). Guo el al.
[23] proposed to combine blockchain with a multi-authority
attribute-based signature scheme to secure the storage and
access of electronic health records. However, their scheme
encapsulates and stores health records in on-chain blocks,
which makes its scalability a troublesome problem.

Our work focuses on connecting scattered hospitals through
blockchain, and using attribute-based encryption scheme and
privacy control policy to provide secure data sharing. In our
work, we store critical metadata with limited size on the
chain, while medical information are encrypted and stored in
hospitals’ private databases.

III. FRAMEWORK DESIGN

A. System, Trust and Threat Model

The system involves different parties as participants, as
illustrated in Figure 1.

1) Patient is the medical data owner and relies on care-
providers to store and manage his data.

2) Care-provider stores and manages patient’s encrypted
medical information. In this sense, a care-provider can
be viewed as a delegator of its patients.

3) HIPAA cloud provides HIPAA compliant storage ser-
vice to some care-providers.

4) Third-party institute is a medical research institution
that needs to analyze a large amount of clinical data to



conduct their research. It should gain patients’ approval
before obtaining their personal medical records.

Patients are owners of their medical records, however, they
have to rely on hospitals to manage and store their information.
In this setting, patients have almost fully trust toward hospitals.
On the other hand, hospitals suffer from the trivial and trou-
blesome task of medical data management, therefore some of
them may decide to outsource their data to HIPAA clouds for
storage and management. Hence, for a considerable period of
time, there exist different design choices: some hospitals still
use their own private data centers to store medical data while
other hospitals will outsource their data to HIPAA compliant
clouds.

For hospitals having moved to HIPAA clouds, it is worth
noting that hospitals and HIPAA cloud base their cooperation
on commercial contracts and law regulations (e.g. HIPAA and
HITECH). We assume the cloud is semi-trusted even it is
HIPAA compliant. This is due to following reasons:

1) A cloud service provider in essence is a third-party
company authorized by hospitals to store and manage
their clinical data. Even it is HIPAA compliant, the
cloud can not guarantee that its technical staff will
never misuse or leak medical information, let alone the
external security attacks.

2) From the perspective of patients, they can place full trust
on hospitals but not clouds. In this sense, we assume that
HIPAA cloud behaves appropriately most of the time,
but it is possible to be engaged in behaviors violating
security and privacy rules due to administrative errors
or attacks.

Finally, third party institutes and users may try to access
more information beyond their privileges, e.g., a pharmacy
cooperation may want to get prescriptions of patients for
marketing reasons. Therefore, strict access control should be
enforced to guarantee a user always get what he is authorized
to access.

B. Framework Overview

Our aim is to effectively connect all scattered health-care
providers to provide medical data sharing without violating
HIPAA compliance. To guarantee data confidentiality, we en-
crypt medical information with symmetric encryption schemes
and secure the key storage with attribute-based encryption
scheme. Furthermore, by combining ABE with our privacy
control policy, flexible access policy can be pre-defined by
patients to allow who can access what part of their medical
information.

As depicted in Figure 1, hospitals are delegators of pa-
tients to securely manage their clinical data. Any third-party
medical researcher gains their authorization from patients and
then access data through hospitals or HIPAA clouds. HIPAA
clouds may adopt their own security mechanisms, which are
independent to ours. In our framework, we view HIPAA clouds
as black boxes for storage.

Considering the fact that hospitals and HIPAA clouds are
not immune to attacks and intrusions, encrypting medical

Fig. 2. Decentralized attribute-based encryption of content keys

information is a good choice to guarantee data security at rest.
However, simple encryption to millions of patients’ clinical
data will leave key management a difficult task, which also
provides limited granularity of access control. To guarantee
confidentiality and fine-grained access control simultaneously,
we decide to introduce the multi-authority attribute based
encryption scheme [12] into our design to secure the storage of
the content key, which is used to encrypt(decrypt) a patient’s
medical data. Thus, we can provide rich and fine control to
users’ access privileges. Furthermore, encrypting a patient’s
medical records with a single content key makes it easy to
classify medical information into multiple parts with different
privacy levels, as will be elaborated in the following section.

According to Figure 1, we adopt Ethereum blockchain to
integrate all hospitals and HIPAA clouds to share clinical
information. Each hospital or HIPAA cloud can be viewed
as an independent administrative domain, data sharing across
multiple domains would rely on the executions and interactions
of corresponding smart contracts. By designing smart contracts
to implement the business logic of clinical information man-
agement across various provider domains, data access behavior
can be recorded in a tamper-evident and traceable way.

Finally, SDN is deployed in each health-care provider’s
domain, which controls the final connectivity for all data
access behavior. Each hospital will be equipped with a SDN
smart controller that is a software component residing in
a server, who is responsible for constructing an effective
network path for data access according to policies defined by
smart contracts. Hence, the SDN layer provides a second-level
protection of medical data to ensure that only authorized users
can connect to databases.

C. Access Control

To guarantee data confidentiality and privacy, one feasible
way is to encrypt data and keep keys in a safe place. However,



TABLE I
PRIVACY LEVEL DEFINITIONS

Institute Category Privacy Level Description

Pharmacy Company PL: low
Insurance Company PL: medium
Medical School PL: high
Hospital A PL: complete
Hospital B PL: complete

scalability of such measures is limited. In a blockchain net-
work with millions of nodes involved, key management and
distribution will be a tedious and difficult task to accomplish.
Thus we need more advanced cryptographic primitive to
address this problem.

We adopt a two-level encryption structure for data protec-
tion. Firstly, a decentralized multi-authority CP-ABE scheme
[12] with rich access policy customization ability is adopted to
encrypt and securely manage content keys. Secondly, content
keys are used to encrypt patients’ medical information. Figure
2 depicts such a two-level encryption process in our design.

In our setting, each hospital or HIPAA cloud is an indepen-
dent administrative domain, which corresponds to an authority
in MA-ABE scheme. Each authority is responsible for issuing
and validating attribute secret keys in his domain. According to
the definitions of ABE, encryption takes in an access policy as
one of its input parameters, which is defined and assigned by
patients. Then a hospital enforces attribute-based encryption
to produce the ciphertext, namely, the encryption results of a
content key. On the other hand, by defining his own access
policy, every patient can enforce and implement customized
access control according to his privacy requirements. If a
patient is unwilling to define his own access policy, a default
policy Adef will be provided by the system, which is defined
according to past experience and HIPAA regulations.

1) Privacy Level Classification: Generally, a patient’s med-
ical information contain multiple parts with different privacy
requirements. For example, information which can be used to
distinguish or trace an individual’s identity, such as name and
social security number, may be highly sensitive so that the
patient is unlikely to reveal. While for general information
with low sensitivity such as diagnosis records and treatment
methods, the patient might allow it to be shared with oth-
ers. Hence, a multi-level privacy classification mechanism is
needed to enforce privacy control on medical information.

We format a patient’s medical information as records
containing multiple data fields. Let Ri = (d1, d2, ..., dn)
denote a medical record. According to different sensitivities
of data fields, a patient can assign different privacy levels
(low, medium, high, complete) to data fields contained in
his medical records. Obviously, higher privacy level requires
higher privilege. In storage, every data field will be attached
with a tag field whose value is a small positive integer
indicating the privacy level of the data field.

Such a structure can provide multi-level privacy control
for medical information without incurring much additional

TABLE II
NOTATIONS AND KEYS

Notation Description

Adef default access policy
KE encryption key for medical information
E(M,KE) encrypt data M with content key KE

EABE(m,A) attribute-based encryption of message m

addr Ethereum address
Ki,addr secret attribute key of attribute i

overhead. Assume a byte is allocated for each tag field, then
the additional storage overhead of tag values for each patient
is several bytes, which is negligible. Let’s assume the medical
records are divided into multiple parts with different privacy
levels {L1, L2, ..., Lk}, and a user’s privacy level being Lu.
Then only data fields labelled with a tag Li(1 ≤ i ≤ k)
satisfying Li ≤ Lu can be accessed by the user. For each third
party institute, whose privacy level value is defined by patients
in hospital-patient smart contracts stored on the blockchain.
Such a mechanism can let an authorized user with a specific
privacy level only access those record fields he is allowed to.
Talbe I depicts an example of a patient’s privacy control policy,
where hospitals from which the patient receives treatment
(e.g., hopital A and B) can access all his medical records.
Other institutes such as insurance or pharmacy companies can
only access a part of information the patient allows them to
read.

2) MA-ABE Encryption: Each authority in our architecture
has its own set of secret-public key pair (SKi, PKi) for
each attribute i in its domain. For each authorized user with
a specified attribute set a1, a2, ..., ak, the authority needs to
generate a corresponding attribute private key Kai,GID for
each attribute ai in the set, as illustrated in Figure 2. It is worth
noting that GID is a globally unique identifier, it is used as
a ”linchpin” for tying a user’s attribute private keys together,
so that collusion problem can be avoided in multi-authority
setting. This idea is first proposed by Chase [10] and then used
in Lewko’s MA-ABE scheme [12]. One possible candidate for
GID is a user’s social security number, as suggested by Chase
[10]. In our framework, we use a user’s Ethereum address as a
candidate for GID, thus we can leave the task of id acquiring
and validation to Ethereum. Table II depicts notations and their
descriptions in our framwork.

Each authority, i.e., a hospital, a care provider, or a HIPAA
cloud service provider in our architecture, should run an
AuthoritySetup() algorithm to create a public-private key
pair for each attribute it manages according to the following
algorithms.
AuthoritySetup(GP ) → PK,SK For each attribute

i, the authority (hospital or care-provider) chooses two
random exponents αi, yi ∈ ZN and computes PK =
{e(g1, g1)αi , gyi1 ∀i}. It keeps SK = {αi, yi∀i} as its secret
keys.

Then, an authority should run algorithm KeyGen() to



create attribute private keys for authorized users.
KeyGen(addr,GP, i, SK)→ Ki,addr. To create a key for

addr for attribute i, an authority computes:

Ki,addr = gαi
1 H(addr)yi (1)

where g1 is a public parameter which refers to a group
generator, and addr refers to the Ethereum address of a user,
we use it to replace the global id GID in original MA-ABE
scheme.

On decryption, only when the set of attribute private keys
that a user holds satisfy the access policy contained in the
ciphertext can the user successfully decrypt the ciphertext to
recover the original message. We omit the details of encryption
and decryption algorithms here, we recommend readers to find
more details in Lewko’s MA-ABE scheme [12].

D. Smart Contract Design

Ethereum was designed as a fee system where any amount
of consumption on computation, bandwidth and storage needs
to pay proportional gas fee (Ethereum currency), which is
to prevent hostile infinite loops in DoS (denial of service)
attacks. Storing data on blockchain is expensive. According
to the Ethereum yellow paper [24], storing a kilobyte cost
640 thousand gas, which amounts to $3.4 even at a relatively
low gas price of 20Gwei (Ethereum currency, 1 Ether = 109

Gwei) and with Ether at $272 recently. Hence, it is impractical
and expensive to store detailed clinical information of millions
of patients on blockchain, instead, only a very tiny subset of
critical metadata can be stored on chain.

We assume the existence of a global certificate authority
(CA), who is responsible for issuing credentials to hospitals
and third-party medical institutes. With these credentials,
hospitals and medical institutes can be authenticated and
participate in the blockchain network at the initial setup phase.
Afterwards, each hospital is regarded as an authority in an
independent domain and responsible for managing medical in-
formation in its local database or through a third-party HIPAA
compliant cloud. With blockchain and smart contracts, geo-
scattered hospitals and private HIPAA clouds are connected,
medical information are shared in a secure and controlled way.

To implement the business logic of clinical data manage-
ment, we designed four smart contracts.

(1) Address Mapping Smart Contract (AMSC), registers
the participants in the blockchain network and holds a network
whitelist table. AMSC contract establishes three mappings
(hash tables) to store Ethereum addresses of the involved
participants: 1) A global CA maintains the hospital mapping
where each hospital or will be authenticated and registered
before participating in the blockchain. 2) Each hospital register
their patients and authorized institutes in the remaining two
mappings in AMSC.

The whitelist mapping maintained by the hospitals, contains
network path information for an authorized institute to access
a hospital’s private database. The SDN layer leverages this
whitelist to control the final connectivity to data access.

Fig. 3. Hospital patient smart contract

The AMSC contract performs authentication by checking the
Ethereum address to ensure each hospital can only change data
content belongs to it. Thus, we can just store a global whitelist
in the contract instead of storing one list for each hospital.

(2) Hospital-Patient Smart Contract (HPSC), defines
the relationship between a patient and a hospital, where the
hospital stores and maintains patients’ clinical information. As
illustrated in Figure 3, we store the ABE cipher-text of the
encrypted content key and the access policy in the contract.
This contract is generated by the cooperation of both parties
when the patient visits the hospital to get treatment for the first
time. On generating the contract, the patient has to provide an
access policy that defines his personal privacy requirements,
or use a default one provided by the hospital. Meanwhile, the
patient gives a privacy level tag for each third-party institute.
A simple way to do this is to classify the institutes by different
categories (e.g., insurance companies has a medium level).

(3) Hospital-Institute Smart Contract (HISC), describes
relationships between a hospital and a patient or a medical
institute. A patient’s medical records are encrypted with a con-
tent key, which is encrypted using attribute-based encryption.
Then a user has to decrypt the ABE cipher-text EABE(m,A)
to recover the content key KE . During this process, the
hospital has to compute and send required attribute private
keys Ki,addr = gαi

1 H(addr)yi to the user. With these attribute
keys, the user is able to recover the content key if his possessed
attribute key sets satisfy the access policy pre-defined by the
data owner.

(4) Access Request Smart Contract (ARSC), allows insti-
tutes to submit requests for patients’ medical records. ARSC
is also used to authenticate a third party institute when it firstly
contacts a hospital to request for medical information. As we
have mentioned, all hospitals and institutes have a credential or
certificate issued by a global CA. Hence during the execution
of ACSC, the hospital needs to verify the credential of the
institute to authenticate its identity. If succeed, the hospital



will create a HISC contract to define their relationship.
Discussion. The existence of a CA is necessary for the

setup phase when all hospitals and institutes participate in the
blockchain, since each entity should be authenticated during
this initial step. This assumption is much weaker than the
assumption of the existence of a central authority in single
domain based ABE schemes [9] or MA-ABE [10], where the
central authority need to integrate secret keys from different
attribute authorities. This is also the reason of our adoption
of Lewko’s MA-ABE scheme [12], where such an central
authority is not necessary.

E. SDN layer
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Fig. 4. SDN workflow

The whitelist stored in the AMSC contract is used by
the SDN layer to determine a user’s final connectivity to
a hospital’s database. Since the adopted MA-ABE scheme
does not support user revocation, we rely the SDN controller
to deny a revoked user’s connectivity to a medical database
according to the whitelist.

Figure 4 depicts the workflow of the SDN layer. When a
care provider approves a user’s access request, it needs to
generate an access string that consists of an url indicating
data location and a SQL query string, which will be stored
in HISC. Meanwhile, the provider will create a virtual private
network (VPN) credential associated with a static VPN IP for
the user, so that he can connect to the provider’s network from
external network. Then, the provider will add an entry in the
whitelist where the user’s static IP and Ethereum address will
be binded and stored. Step 1 and 2 describe this process.

Step 3 to step 6 describe the process of how the SDN
controller provides connectivity for an approved user. When
an approved user connects to the provider’s network using
VPN and queries the data, the user node firstly fetches the
aforementioned access string from corresponding HISC and
notifies the provider node. Then the provider node requires
the SDN controller to apply OpenFlow [25] rule to the
underlying network device (i.e., the openflow switche in Figure

4), which is to provide final connectivity for the approved user.
Afterwards, the approved user can send access string to the
destination database to get required data.

Step 7 to step 12 describe the process of user revocation.
When a provider revokes a user, the provider node simply
deletes the user’s entry from the whitelist and notifies it to the
SDN controller. Then the controller removes this path from the
network. Afterwards, there is no matching rule in the whitelist
for the revoked user. Hence even the user still has the access
string and can connect to the provider’s network, he cannot
connect to the destination database.

Whitelist. The whitelist is used by a SDN controller to
determine whether to provide network connectivity for a
specific user. As illustrated in Figure 4, each entry in the
whitelist contains Ethereum addresses of a care-provider and
an approved user, a static VPN IP for the user to connect to
the care provider’s network, and the destination IP and port
number of the provider’s database. An approved user has an
entry in the whitelist while a revoked user’s entry will be
deleted from the list.

The whitelist is stored on-chain in the AMSC contract. The
update function embedded in AMSC guarantees that a provider
can only update entries containing the provider’s Ethereum
address, namely, users belong to the provider’s domain. That
means a provider cannot modify another provider’s content in
the whitelist. Another option is to store a local whitelist in each
provider’s domain, however, it may make the node storing the
whitelist a single point of failure. By storing a global whitelist
on chain, we can guarantee its integrity via the tamper-evident
characteristic of blockchain. In implementation, assume a
1000-user scale and each user has a 20-byte Ethereum address,
the storage overhead is about 40KB, which is acceptable
since it is the only global metadata for SDN-based access
authentication and authorization.

The adopted Multi-Authority Attribute-Based Encryption
scheme does not provide user revocation functionality. To
revoke a user, we have to generate a new content key to re-
encrypt medical information and re-compute the ABE cipher-
text of the new key, which brings heavy computation cost.
Hence we devise our own revocation mechanism based on
SDN controller. Such a straightforward policy is easy to imple-
ment and avoids re-encryption. With SDN controller managing
network accesses, even a hacker can get the access string,
his network access to data will be blocked by the OpenFlow
network device. In this sense, the SDN technology deployed
within each hospital provides a second-level protection.

Finally, with the increasing amount of medical data, a
hospital will create more databases to store data. These new
databases can simply be connected to the SDN network and
let SDN controller take charge of the network access to them.
Otherwise, new access configuration have to be added to the
network device manually. Hence, the SDN layer provides a
scalable network architecture.



IV. SECURITY ANALYSIS

In this section, we briefly analyze the fulfillment of our
design goals on security and privacy.

Confidentiality. We adopt a two-level encryption policy
to guarantee the confidentiality of medical data. To recover
encrypted medical information, an attacker has to decrypt
the ABE cipher to get the content key. One way is to
get enough attribute private keys reflected by an legitimate
access policy from an authorized user, which contradicts to
the security assumption in ABE. The other way is to break
the ABE scheme, whose security has been proved under the
random oracle model. Hence, the confidentiality guarantee is
dependent on the security of the adopted MA-ABE scheme.

Integrity. Each medical record is attached with a signature
signed with the patient’s private key. Any other party can
verify its integrity with the public key. Due to the security of
digital signatures, an unauthorized user cannot forge a valid
signature of a medical record without the signing key.

The whitelist is stored on chain and maintained by all
involved care-providers. The integrity of the whitelist is guar-
anteed by the blockchain and the consensus protocol behind,
since it is stored in the AMSC contract and further included
in a mined block.

Privacy. Our privacy classification policy for record fields
enables fine-grained sensitivity differentiation. Combined with
user-customized privacy policy, it allows a patient to decide
which part of his medical information can be accessed by
what kind of users. In implementation, data required by an
authorized user will be filtered according to the user’s privacy
level before being sent to him. As we have mentioned in
Section III-A, we assume hospitals are trustworthy, hence a
patient’s privacy control depends on the proper execution of
his privacy policy by the hospital. However, in a real world
setting, it is possible for two parties collude to cheat another
party (e.g., a hospital may send more data than the user is
allowed to access, thus violate the privacy policy defined by
the patient). How to detect or prevent such collusions is beyond
the scope of this paper, we will address it in our future work.

V. PERFORMANCE EVALUATION

A. Software Components

Fig. 5. Node Components

We have implemented a prototype for our framework. Our
system architecture mainly consists of five components: Web
GUI, Ethereum Client, Core Manager, ABE Encryptor and
Decryptor, access policy manager, as illustrated in Figure 5.

Web GUI is a browser based interface provided to all
users, by which a hospital can set up electronic healthcare
file for a patient and enforce attribute-based encryption, a
patient can define his access and privacy control policy, and
a third-party user can request to access patients’ medical
information according to his permission. An Ethereum client
is responsible for connecting to the peer-to-peer blockchain
network, generating and encoding new transactions, and ex-
ecuting smart contracts. Every provider node will maintain a
encrypted database where patients’ medical records are stored.
A core manager component is responsible for coordinating and
transfer messages among other components, e.g., translation
of GUI operations into arguments to ABE encryption and
decryption, generation of access strings to encrypted database,
and interaction with Ethereum clients.

B. Smart Contract Execution Time

We use Ethereum Solidity to implement our smart con-
tracts(AMSC, HPSC, HISC, and ARSC). Among them, AMSC
is to keep an Ethereum address mapping between hospitals,
patients and institutes. It also stores the whitelist used by the
SDN layer in our architecture. HPSC indicates the relationship
creation between a hospital and a patient. To create this
contract, the patient needs to define his own ABE attribute
set and classify privacy levels of his information, or adopts a
default policy.

We divide the smart contract test into two steps. Firstly, we
run an Ethereum client node in a server to mine blocks without
including any transactions. Its mining time can be viewed as
a benchmark. As illustrated in Figure6(a), we can see that the
number of miners deployed in a node has no obvious effect
on the mining time, three columns in the figure are very close
to each other, with their values fluctuating around 12 seconds.

Secondly, to further test our business logic with smart
contract creation and execution, we deployed five servers in
our local area network. Among them, one server is deployed
with four Ethereum Geth clients to denote a provider, a patient,
a institute, and a CA; the other two servers are equipped with
mining clients with their number varying from 1 to 4. It is
worth noting that the contract creation or execution means
the time period from creating or executing a smart contract
to the point when it is included in a successfully mined
block. We found it is mainly decided by the block mining
operation, which is further decided by the PoW consensus in
current Ethereum platform. As Figure 6(b) depicts, the left
four columns show the time of contract creation when one
server is used to mine blocks (number of miners varies from
1 to 4); the right three columns denotes the time when two
servers are used to mine (number of miners on two servers
vary from 1:1 to 2:2).

The execution of smart contracts takes between 10 and 20
seconds, which accord with the average mining overhead of an
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Fig. 6. Time cost of smart contract creation and execution (block mining)

Ethereum block. The two exceptions are creation time of the
”1+2(1:1)” column in Figure 6(b) and the execution time of
the ”1+2(2:2)” column in Figure 6(c). This is possible, because
our test environment is a lab LAN, where the propagation time
for a transaction to be broadcast to the majority of peers can
almost be omitted. The average block mining time of our test is
10.6 seconds, which is 3.7 seconds less than current Ethereum
block mining time.

Finally, our test result includes 220 trials of smart contract
execution and block mining. Among these tests, about 13.2%
spends more than 20 seconds and 86.8% spends less than 20
seconds. This is reasonable. Because the 10-20 seconds mining
range refers to the average mining time, there are blocks whose
mining time exceeded this range(e.g., mining time between
late September to mid October in 2017 is near 30 seconds
[26]).

C. ABE overhead

TABLE III
TEST ENVIRONMENT

Item Specifications

Host CPU 2 x Intel E5-2643 v3 @3.40 GHz
CPU cores 6 core

Host Memory 32 GB ECC Memory
Disk 1024 GB at 7200 RPM

Host OS Ubuntu 16.04.4
Charm crypto lib 0.43

To evaluate the overhead brought by MA-ABE, we use
Python 3 to implement a prototype based on the Charm-
crypto library (version 0.43). We choose the ”SS512” option
in Charm to initialize a group in the elliptic curve setting,
which represents a symmetric curve with a 512-bit base field.
The test environment is depicted in Table III.

We have tested the overhead of AuthoritySetup, Encrypt
and Decrypt. Figure 7(a) shows the setup overhead for a
single authority (a care provider), which is almost linear to
the number of attributes managed by the authority. This is
because the main task of setup is to generate a public-private
key pair for each attribute (e.g., it takes 75 milliseconds to
generate key pairs for 30 attributes).

While for ABE encryption and decryption, consider-
ing the fact that their overhead are mainly decided by

the complexity of the involved access policy, we test
the overhead by providing different access policies. The
boolean formulas defined in a policy is in the form of
(C1 or C2) and (C3 or C4) ... (C2i+1 or C2(i+1)),
each (C2i+1 or C2(i+1)) is regarded as a subformula. Figure
7(b) and 7(c) denote the overhead of ABE encryption and
decryption when the number of subformulas varies from 2 to
8. We can see that their overhead are almost linear to the
number of subformulas contained in the access policy. But
decryption spends less overhead than encryption, e.g., when
the number of subformulas is set to 6, decryption needs 23
milliseconds while encryption needs 113 milliseconds.

D. Discussion

The current prototype implementation is based on Ethereum
due to its maturity on smart contract design and execution.
However, it does not mean Ethereum is the only choice. On
the contrary, the gas consumption in Ethereum for contract ex-
ecution is expensive, which hinders its application in medical
data sharing for its potential enormous expenditure on clinical
data management. Our experiment is to test the feasibility
of managing medical data sharing and integration through
blockchain, which is proved acceptable in the evaluation. In
the future, we may turn to permissioned blockchain such
as hyperledger [27], which provides higher throughput than
permissonless blockchains (e.g., Bitcoin and Ethereum) to
address daily medical events. Moreover, its multi-authority
nature makes it more suitable for national-scale medical data
sharing by integrating scattered hospitals.

VI. CONCLUSION

This paper is an attempt to provide secure medical data
sharing among various care-providers, patients and medi-
cal researchers without privacy violation. We adopt multi-
authority attribute-based encryption scheme to secure the data
encryption key storage with fine-grained control and rich
policy customization. By combining it with a privacy level
classifier, we can also enforce strict privacy control for medical
information.

To connect scattered hospitals and care providers residing
private networks and enable clinical data integration and
sharing, we design smart contracts under Ethereum platform
to integrate underlying components. Moreover, to provide
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Fig. 7. Cryptographic cost of ABE

efficient user revocation and scalable network management,
we design a SDN layer in our architecture to provide net-
work paths for authorized users when they request data from
medical databases and to efficiently revoke access if needed.
Performance evaluation demonstrates that our design is fea-
sible: computation overhead brought by ABE encryption is
acceptable; execution overhead of our four smart contracts and
block mining time are within a reasonable range.
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