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Abstract

Both Cuckler and Yuster independently conjectured that when n is an odd pos-
itive multiple of 3 every regular tournament on n vertices contains a collection of
n/3 vertex-disjoint copies of the cyclic triangle. Soon after, Keevash & Sudakov
proved that if G is an orientation of a graph on n vertices in which every vertex has
both indegree and outdegree at least (1/2− o(1))n, then there exists a collection of
vertex-disjoint cyclic triangles that covers all but at most 3 vertices. In this paper,
we resolve the conjecture of Cuckler and Yuster for sufficiently large n.

Mathematics Subject Classifications: 05C70, 05C20, 05C38

1 Introduction

Let H and G be graphs or directed graphs. An H-tiling of G is a collection of vertex-
disjoint copies of H in G. An H-tiling C covers the set V (C) =

⋃

C∈C V (C), and is called
perfect or an H-factor if it covers V (G).

The celebrated Hajnal-Szemerédi Theorem [7] states that for every positive integer r,
if n is a positive multiple of r and G is a graph on n vertices such that δ(G) > (1−1/r)n,
then G contains a Kr-factor. The case when r = 3 is a corollary of an earlier result of
Corrádi & Hajnal [3].

In this paper, we consider a similar problem in the context of oriented graphs, which
are orientations of simple graphs, i.e., oriented graphs are directed graphs in which there
is at most one directed edge between every pair of vertices and no loops. A tournament
is an orientation of a complete graph. For an oriented graph G and v ∈ V (G), we denote
the out-neighborhood of v and in-neighborhood of v by N+(v) and N−(v), respectively.
We let N(v) = N+(v) ∪ N−(v) be the neighborhood of v, and we let d+(v) = |N+(v)|

∗Research was partially supported by NSF Grant DMS-1500121 and DMS-1800761.
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and d−(v) = |N−(v)| be the outdegree and indegree of v, respectively. The minimum
semidegree of G is

δ0(G) = min
v∈V (G)

{min{d+(v), d−(v)}}.

An oriented graph G on n vertices is a regular tournament if d+(v) = d−(v) = n−1
2

for
every v ∈ G.

A tournament is transitive if it contains no directed cycles, and the unique transitive
tournament on r vertices is denoted TTr. Up to isomorphism, there are two different
tournaments on three vertices: TT3 and the three vertex cycle in which the edges are
consistently oriented, which we denote by C3. We call C3 and TT3 the cyclic and transitive
triangles, respectively.

There has been some prior work on minimum degree conditions that force an H-factor
in directed graphs. See [22] and [6] for work on directed graphs, and [1] and [23] for
oriented graphs. Also, [21] contains many additional interesting embedding problems for
oriented graphs. This paper focuses on the following conjecture that Cuckler and Yuster
made independently.

Conjecture 1 (Cuckler 2008 [5], Yuster 2007 [24]). If n is an odd positive multiple of 3,
then every regular tournament on n vertices has a cyclic triangle factor.

Keevash & Sudakov then proved the following approximate version of this conjecture.

Theorem 2 (Keevash & Sudakov 2009 [13]). There exists c > 0 and n0 such that for every
n > n0 the following holds. If G is an oriented graph on n vertices and δ0(G) > (1/2−c)n,
then there exists a cyclic triangle tiling that covers all but at most 3 vertices.

A corollary of our main result resolves Conjecture 1 for large tournaments. To see
that the resolution of Conjecture 1 is a sharp result, consider the following construction
from [13]. For a positive integer m, let G be a tournament on 3m vertices in which the
edges are oriented so that there exists a partition {V1, V2, V3} of V (G) such that

• |V1| = m− 1, |V2| = m, and |V3| = m+ 1;

• for i ∈ [3], the oriented graph induced by Vi has minimum semidegree ⌊(|Vi| − 1)/2⌋;
and

• no edges are directed from V2 to V1, from V3 to V2, and from V1 to V3.

We have that,

δ0(G) =

{

(|V2| − 2)/2 + |V1| = n−4
2

if m is even

(|V2| − 1)/2 + |V1| = n−3
2

if m is odd.

To see why G has no cyclic triangle factor, let C be a cyclic triangle tiling of G and note
that, for every C ∈ C, either C has one vertex in each of V1, V2 and V3, or V (C) ⊆ Vi for
some i ∈ [3]. Therefore,

|V (C) ∩ V1| ≡ |V (C) ∩ V2| ≡ |V (C) ∩ V3| (mod 3).
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Because |V1|, |V2| and |V3| are distinct modulo 3, we have that V (C) 6= V (G). Motivated
by this example we make the following definitions.

Definition 3 (Divisibility barrier and γ-extremal). Let G be an oriented graph. Call a
partition P of V (G) a divisibility barrier if either P is the trivial partition {V (G)} and
|V (G)| is not divisible by 3, or if P has exactly three parts, V1, V2, and V3, such that there
are no edges directed from V2 to V1, from V3 to V2, and from V1 to V3; and |V1|, |V2|, and
|V3| are not all equivalent modulo 3.

For γ > 0, call a partition {V1, V2, V3} of V (G) a γ-extremal partition of G if, for every
i ∈ [3],

(1/3− γ)n 6 |V1|, |V2|, |V3| 6 (1/3 + γ)n,

and the number of edges directed from V2 to V1, from V3 to V2, and from V1 to V3 are each
at most γn2. An oriented graph is called γ-extremal if it contains a γ-extremal partition.

The following is the main result of this paper.

Theorem 4. There exists c > 0 and n0 such that for every n > n0 and for every oriented
graph G on n vertices with δ0(G) > (1/2− c)n the following holds. G has a cyclic triangle
factor if and only if G does not have a divisibility barrier.

The following corollary resolves Cuckler and Yuster’s conjecture for sufficiently large
regular tournaments.

Corollary 5. There exists n0 such that when n is a multiple of 3 and n > n0 the following
holds. If G is an oriented graph on n vertices and δ0(G) > n/2− 1, then G has a cyclic
triangle factor.

Proof. Assuming that Theorem 4 holds, we only need to show that G does not contain a
divisibility barrier. For a contradiction, assume that {V1, V2, V3} is a divisibility barrier.
Since n is divisible by 3 and |V1|, |V2|, and |V3| are not all equivalent modulo 3, we
have that |V1|, |V2| and |V3| are distinct modulo 3. Therefore, there exists a labeling
{i, j, k} = [3] such that |Vj| 6 |Vk| − 2. Suppose that i + 1 ≡ j (mod 3). There exists
v ∈ Vi such that |N+(v) ∩ Vi| < |Vi|/2, so

d+(v) =
3
∑

ℓ=1

|N+(v) ∩ Vℓ| <
|Vi|
2

+ |Vj| 6
|Vi|+ |Vj|+ |Vk| − 2

2
=
n

2
− 1,

a contradiction. A similar argument holds when i− 1 ≡ j (mod 3).

We are not sure how large the constant c can be in Theorem 4, and we do not compute
the value of c that our proof implies. An example of Keevash & Sudakov [13], which we
will present below, implies that the constant c cannot be larger than 1/18. This suggests
the following problem.

Problem 6. What is the smallest φ > 0 such that there exists n0 such that for every
n > n0 every oriented graph G on n vertices with δ0(G) > (4/9 + φ)n contains either a
divisibility barrier or a cyclic triangle factor?
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Form > 1, let G be an oriented graph on n = 9(m+1) vertices and let P = {V1, V2, V3}
be a partition of V (G) such that |V1| = 3m+1 and |V2| = |V3| = 3m+4. Suppose that for
every pair i, j ∈ [3] such that j ≡ i+1 (mod 3), there is a directed edge from every vertex
in Vi to every vertex in Vj. Further suppose that, for every i ∈ [3], the vertices of Vi can
be cyclically ordered so that, for every v ∈ Vi, the intersection of the out-neighborhood
of v and Vi is exactly the (|Vi| − 1)/3 vertices that succeed v in this ordering. Note that
every cyclic triangle has at least one vertex in V1, so |C| 6 |V1| = n/3− 2 for every cyclic
triangle tiling C, and

δ0(G) =
|V2| − 1

3
+ |V1| =

4n

9
− 2.

Note that P is not a divisibility barrier, because the three parts of P all have the
same size modulo 3. Additionally, G cannot have a divisibility barrier, because for every
partition P ′ 6= P , such that |P ′| 6 3, there exists a part U ∈ P ′ such that there exist
x, y ∈ U such that x and y are in different parts, say Vi and Vj, of P . But then either
P ′ is not a divisibility barrier or U contains all of the vertices of the third part, say Vk,
of P . Then, by similar logic, one can argue that either P ′ is not a divisibility barrier or
U = V (G). Since 3 divides |V (G)|, P ′ is not a divisibility barrier.

If, for some ψ > 1/3 and all sufficiently large n, there exists a C3-free oriented graph
on n vertices with minimum semidegree ψn, then a similar example would imply that φ
must be strictly greater than 0 in Problem 6. Note that such a C3-free oriented graph
would imply that the famous Caccetta-Häggkvist Conjecture [2] is false.1

1.1 Additional Definitions and Notation

Let G be an oriented graph, u, v ∈ V (G), and A,B ⊆ V (G). We let N+(u) be the
out-neighborhood of u, N+(u,B) = N+(u) ∩ B, d+(u,B) = |N+(u,B)|, and e+(A,B) =
∑

u∈A d
+(u,B). We define N−(u), N−(u,B), d−(u,B) and e−(A,B) similarly. If uv ∈

E(G), we let d+,−(uv,A) = |N+(u) ∩ N−(v) ∩ A| and d−,+(uv,A), d+,+(uv,A), and
d−,−(uv,A) are all defined similarly. We also let dσ,τ (uv) = dσ,τ (uv, V (G)), for σ, τ ∈
{−,+}. We let E(A) be the set of edges in the oriented graph induced by A, and let
e(A) = |E(A)|. We let A = V (G) \ A.

We define E+(A,B) = {uv ∈ E(G) : u ∈ A and v ∈ B} and E−(A,B) = E+(B,A).
We will often write cyclic and transitive triangles C as abc when V (C) = {a, b, c}. For
V1, V2, V3 ⊆ V (G), cyc(V1, V2, V3) and trn(V1, V2, V3) count, respectively, the number of
cyclic and transitive triangles with vertex set {va, vb, vc} such that {a, b, c} = [3] and
vi ∈ Vi for i ∈ [3]. We abbreviate cyc(A,A,A) and trn(A,A,A) as cyc(A) and trn(A),
respectively. We will often replace {v} with v in this notation.

We define the strong β-out-neighborhood of A to be the set of vertices x ∈ A such
that d−(x,A) > |A| − βn and we denote this set by SN+

β (A). We define the strong

β-in-neighborhood SN−
β (A) of A similarly.

1If true, the Cacceta-Häggkvist Conjecture would imply that every oriented graph on n vertices with
minimum outdegree at least n/3 contains a cyclic triangle.
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Throughout the paper, we write 0 < α ≪ β ≪ γ to mean that we can choose the
constants α, β, γ from right to left. More precisely, there are increasing functions f and
g such that, given γ, whenever we choose β 6 f(γ) and α 6 g(β), all calculations needed
in our proof are valid. Hierarchies of other lengths are defined in the obvious way. For
real numbers x and y, we write x = y ± c to mean that y − c 6 x 6 y + c.

In our proof, we use a very small part of the theory and notation developed in [11],
[10],[8],[15], and [17]. It is based on the absorbing method of Rödl, Ruciński and Szemerédi
[20]. This theory was developed for hypergraphs, so we define, for every oriented graph
G, the hypergraph H(G) to be the 3-uniform hypergraph in which xyz is in an edge if
and only if xyz is a cyclic triangle in G. Clearly a cyclic triangle factor in G is equivalent
to a perfect matching in H(G).

Let V be a set of order n and let P = {V1, . . . , Vd} be a partition of V . We say that P
is trivial if |P| = 1, and, for η > 0, we call P an η-partition if |Vi| > ηn for every i ∈ [d].
Let H be a k-uniform hypergraph with vertex set V . We let

δ1(H) = min
v∈V

{|{e ∈ E(H) : v ∈ e}|}.

For every subset U of V the index vector with respect to P , denoted iP(U), is the vector
defined by

iP(U) = (|U ∩ V1|, |U ∩ V2|, . . . , |U ∩ Vd|) .
Let IP(H) = {iP(e) : e ∈ E(H)} be the set of edge-vectors and, for µ > 0, let

IµP(H) = {v ∈ IP(H) : there are at least µnk edges e in H such that v = iP(e)},

be the set of µ-robust edge-vectors.
We call an additive subgroup of Zd a lattice, and we let LP(H) and Lµ

P(H) be the
lattices generated by IP(H) and IµP(H), respectively. Clearly ifM is a collection of vertex-
disjoint edges in H, then iP(V (M)) ∈ LP(H). Therefore, H does not have a perfect
matching if iP(V (H)) /∈ LP(H). For example, suppose that G is an oriented graph with
a divisibility barrier. If |V (G)| is not divisible by 3, then iP(V (G)) /∈ LP(H(G)) when
P = {V (G)}. Otherwise, there exists a partition P = {V1, V2, V3} of V (G) such that the
entries of iP(V (G)) are each different modulo 3, and, for every e ∈ E(H(G)), the entries
of iP(e) are each the same modulo 3, so iP(V (G)) /∈ LP(H(G)). We let ui ∈ Z

d be the
ith unit vector, i.e., ui is the vector in which the ith component is 1 and every other
component is 0. A transferral is a vector v in Z

d such that v = ui−uj for distinct i and j
in [d]. A 2-transferral v ∈ Lµ

P(H) is a transferral such that v = v1−v2 for v1,v2 ∈ IµP(H).
We say that Lµ

P(H) is 2-transferral-free if Lµ
P(H) does not contain a 2-transferral.

Let x and y be vertices in V and let β > 0. A set S ⊆ V is called an (H, x, y)-linking
(kℓ− 1)-set if both H[S ∪ {x}] and H[S ∪ {y}] have perfect matchings and |S| = kℓ− 1.
The vertices x and y are (H, β, ℓ)-reachable if there are at least βnℓk−1 (H, x, y)-linking
(kℓ−1)-sets. A set U ⊆ V is (H, β, ℓ)-closed if every pair of distinct vertices x and y in U is
(H, β, ℓ)-reachable. Call a partition P = {V1, . . . , Vd} of V (H) a (H, β, ℓ)-closed partition
if, for every i ∈ [d], Vi is (H, β, ℓ)-closed. For every vertex x ∈ V (H), let ÑH(β, ℓ, x) be
the set of vertices y such that x and y are (H, β, ℓ)-reachable.
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2 Proof of Theorem 4

2.1 Overview

Our proof follows the stability method, i.e., we divide the proof into two cases depending
on whether G is γ-extremal. The case when G is γ-extremal is handled in the following
lemma, the proof of which we defer until Section 2.5.

Lemma 7 (Extremal case). Suppose that 1/n ≪ c, γ ≪ 1, n is divisible by 3, and G is
an oriented graph on n vertices. If δ0(G) > (1/2 − c)n and G is γ-extremal, then G has
a cyclic triangle factor if and only if G does not have a divisibility barrier.

The proof in the case when G is not γ-extremal follows the absorbing method, and
the following lemma of Lo & Markström [17] serves as our absorbing lemma.

Lemma 8 (Absorbing Lemma - Lemma 1.1 in [17]). Given

1/n≪ α ≪ η ≪ β ≪ 1/ℓ, 1/k

the following holds. If H is a k-uniform hypergraph on n vertices and V (H) is (H, β, ℓ)-
closed, then there exists a subset U of V (H) where |U | is at most ηn and divisible by k
such that for every W ⊆ V (H) \ U with |W | at most αn and divisible by k there exists a
perfect matching of H[U ∪W ].

Lemma 8 and Theorem 2 imply the following lemma.

Lemma 9. Suppose that 1/n ≪ c ≪ β ≪ 1/ℓ, n is divisible by 3, and that G is an
oriented graph on n vertices. If δ0(G) > (1/2− c)n and V (G) is (H(G), β, ℓ)-closed, then
G has a cyclic triangle factor.

Proof. Introduce constants η and α so that

1/n≪ α ≪ η ≪ c≪ β ≪ 1/ℓ.

Let U ⊆ V (G) be the set guaranteed by Lemma 8 and let G′ = G− U . Note that

δ0(G′) > δ0(G)− |U | > (1/2− c− η)n > (1/2− 2c)|G′|.

Therefore, by Theorem 2, with 2c and G′ playing the roles of c and G, respectively, there
exists a cyclic triangle tiling C of G′ such that if W = V (G′) \ V (C), then |W | ∈ {0, 3}.
Since |W | 6 αn and |W | is divisible by 3, there exists a triangle factor C ′ of G[U ∪W ].
Hence, C ∪ C ′ is a triangle factor of G.

Note that, with Lemmas 7 and 9, the following lemma implies Theorem 4.

Lemma 10. Suppose that 1/n ≪ c ≪ β ≪ γ < 1 and that G is an oriented graph on
n vertices. If δ0(G) > (1/2 − c)n, and, for every positive integer ℓ 6 1000, we have that
V (G) is not (H(G), β, ℓ)-closed, then G is γ-extremal.
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The proof of Lemma 10 relies on the following four lemmas.

Lemma 11. Suppose that 1/n ≪ β ≪ β′, µ ≪ 1/d, 1/ℓ, G is an oriented graph on n
vertices, and that P = {V1, . . . , Vd} is a partition of V (G). If P is (H(G), β′, ℓ)-closed
and there exists a 2-transferral ui−uj ∈ Lµ

P(H(G)), then the partition formed by merging
Vi and Vj is (H(G), β, 4ℓ+ 1)-closed.

Lemma 12. Suppose that 1/n≪ c≪ β ≪ 1 and that G is an oriented graph on n vertices
such that δ0(G) > (1/2 − c)n. Then there exists P = {V1, . . . , Vd} a (H(G), β, 8)-closed
partition of V (G) such that d 6 4 and |Vi| > n/9 for every i ∈ [d].

Lemma 13. Suppose that 1/n ≪ c ≪ µ ≪ α ≪ η < 1 and G is an oriented graph on
n vertices such that δ0(G) > (1/2 − c)n. If P is a non-trivial η-partition of V (G) and
Lµ
P(H(G)) is 2-transferral-free, then there exists A ∈ P such that cyc(A,A,A) 6 αn3.

Lemma 14. Suppose that 1/n ≪ c ≪ µ, α ≪ γ, η < 1 and G is an oriented graph
on n vertices such that δ0(G) > (1/2 − c)n. If P is a non-trivial η-partition of V (G),
Lµ
P(H(G)) is 2-transferral-free, and there exists A ∈ P such that cyc(A,A,A) 6 αn3,

then G is γ-extremal.

We prove Lemmas 11 and 12 in Section 2.2, Lemma 13 in Section 2.3, and Lemma 14
in Section 2.4.

Proof of Lemma 10. Introduce additional constants, β′, µ and α so that

1/n≪ c≪ β ≪ β′ ≪ µ≪ α ≪ γ < 1.

By Lemma 12, with β′ playing the role of β, for some d′ 6 4, there exists P ′ = {V ′
1 , . . . , V

′
d′}

a (H(G), β′, 8)-closed 0.1-partition of V (G). If Lµ
P ′(H(G)) contains a 2-transferral ui−uj

for distinct i and j in [d′], then merge the parts that correspond to the 2-transferral,
i.e., consider the new partition P ′ − V ′

i − V ′
j + (V ′

i ∪ V ′
j ). Continue to merge the parts

that correspond to 2-transferrals until we have a partition P such that Lµ
P(H(G)) is

2-transferral-free. By Lemma 11, we can assume that P is an (H(G), β, ℓ)-closed 0.1-
partition of V (G) for some ℓ 6 53 · 8 = 1000. If |P| = 1, then V (G) is (H(G), β, ℓ)-closed
which contradicts our assumptions, so we can assume that P is non-trivial. By Lemma 13,
there exists A ∈ P such that cyc(A,A,A) 6 αn3 and by Lemma 14 we have that G is
γ-extremal.

2.2 Proofs of Lemmas 11 and 12

We start this section with a proof of Lemma 11.

Proof of Lemma 11. Let ξ be such that β ≪ ξ ≪ β′ ≪ 1/ℓ. Note that distinct vertices u0
and v0 are (H(G), β, 4ℓ+1)-reachable if there exist at least ξn12ℓ+2 ordered (12ℓ+2)-tuples
T that each can be permuted to form (12ℓ+2)-tuples (u1, . . . , u12ℓ+2) and (v1, . . . , v12ℓ+2)
such that u3ju3j+1u3j+2 and v3jv3j+1v3j+2 are both cyclic triangles for every 0 6 j 6 4ℓ.
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This is because β < ξ2/2; and there are only at most (12ℓ+ 2)! < 1/ξ possible orderings
for every such tuple; and only at most

2(12ℓ+ 2)n12ℓ+1 + n · (12ℓ+ 2)2 · n12ℓ < ξn12ℓ+2/2

such (12ℓ+ 2)-tuples that contain u0 or v0 or that have repeated vertices.
We will first show that if u, v ∈ V (G) are (H(G), β′, ℓ)-reachable, then u and v

are also (H(G), β, 4ℓ + 1)-reachable. In particular, this will imply that, because P is
(H(G), β′, ℓ)-closed, P is also (H(G), β, 4ℓ + 1)-closed. Let T be the set of (12ℓ + 2)-
tuples (x1, x2, . . . , x12ℓ+2) such that

• {x1, x2, . . . , x3ℓ−1} is a (H(G), u, v)-linking (3ℓ− 1)-set, and
• G[{x3j, x3j+1, x3j+2}] is a cyclic triangle for ℓ 6 j 6 4ℓ.

Since u and v are (H(G), β′, ℓ)-reachable, there are at least β′n3ℓ−1 ways to select the first
3ℓ−1 entries of a tuple in T . For every such selection, there are exactly (6 cyc(V (G)))3ℓ+1

ways to select the remaining 9ℓ + 3 entries of a tuple in T . To see that 6 cyc(V (G)) >
2(β′)2n3, let Vq be the part in P of largest cardinality. We have that |Vq| > n/d > β′n.
Because Vq is (H(G), β′, ℓ)-closed, for every v ∈ Vq, the set ÑH(G)(β

′, ℓ, v) is not empty,
which implies that v is in at least β′n2 cyclic triangles. Therefore, because 6 cyc(V (G)) is
the number of ordered triples (x, y, z) such that G[{x, y, z}] is a cyclic triangle in G, we
have that 6 cyc(V (G)) > 2(β′)2n3. Hence,

|T | > β′n3ℓ−1 ·
(

2(β′)2n3
)3ℓ+1

> ξn12ℓ+2,

so u and v are (H(G), β, 4ℓ+ 1)-reachable.
Now we will complete the proof by showing that if u0 ∈ Vi and v3 ∈ Vj, then u0

and v3 are (H(G), β, 4ℓ + 1)-reachable. By assumption, there are A,B ∈ P such that
cyc(Vi, A,B) and cyc(A,B, Vj) are both at least µn3. Let T be the set of (12ℓ+2)-tuples

(v0, v1, v2, u1, u2, u3, w1, . . . , w12ℓ−4)

that satisfy the following:

• v0, v1, v2 is a cyclic triangle with v0 ∈ Vi, v1 ∈ A and v2 ∈ B;
• u1, u2, u3 is a cyclic triangle with u1 ∈ A and u2 ∈ B, and u3 ∈ Vj; and
• {wi(3ℓ−1)+1, . . . , w(i+1)(3ℓ−1)} is a (H(G), ui, vi)-linking (3ℓ−1)-set for i ∈ {0, 1, 2, 3}.

Since cyc(Vi, A,B) and cyc(A,B, Vj) are both at least µn3 and Vi, Vj, A, B are all
(H(G), β′, ℓ)-closed, we have that

|T | > (µn3) · (µn3) · (β′n3ℓ−1)4 > ξn12ℓ+2,

so u0 and v3 are (H(G), β, 4ℓ+ 1)-reachable.

To prove Lemma 12, we use the following lemma of Han [8].
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Lemma 15 (Lemma 3.8 in [8]). Given 1/n ≪ β ≪ α ≪ δ, δ′, 1/k the following holds.

Let H be a k-uniform hypergraph on n vertices. Assume that
∣

∣

∣
ÑH(α, 1, v)

∣

∣

∣
> δ′n for

every v ∈ V (H) and δ1(H) > δ
(

n−1
k−1

)

. Then for d 6 min{⌊1/δ⌋ , ⌊1/δ′⌋} there exists

an (H, β, 2⌊1/δ⌋−1)-closed partition P = {V1, . . . , Vd} of V (H) such that for every i ∈
{1, . . . , d} we have that |Vi| > (δ′ − α)n.

To apply Lemma 15 in our context, we need lower bounds on δ1(H(G)) and on
∣

∣

∣
ÑH(G)(α, 1, v)

∣

∣

∣
for every vertex v ∈ V (G) when G is an oriented graph with sufficiently

high minimum semidegree. The following series of lemmas provide these lower bounds.
Note that Lemmas 16, 17, and 18 are also used in other sections.

Lemma 16. Suppose that c > 0 and G = (V,E) is an oriented graph on n vertices such
that δ0(G) > (1/2− c)n. Then, for every A ⊆ V ,

e+(A,A), e−(A,A) =
|A| · |A|

2
± c|A|n.

Proof. We first get a lower bound for e+(A,A) as follows,

e+(A,A) =
∑

x∈A

d+(x)− d+(x,A) >

(

∑

x∈A

d+(x)

)

−
(|A|

2

)

> |A|
(

1

2
− c

)

n− |A|2
2

=
|A| · |A|

2
− c|A|n.

By a similar computation, we have that e−(A,A) > |A||A|/2− c|A|n. The fact that

e+(A,A) + e−(A,A) 6 |A| · |A|,
then implies the upper bounds.

The following lemma appears in [13]. We provide a proof for completeness.

Lemma 17. Suppose that c > 0 and G = (V,E) is an oriented graph on n vertices such
that δ0(G) > (1/2− c)n. Then, δ1(H(G)) = n2/8± 2cn2.

Proof. Let u ∈ V . We will show that cyc(u, V, V ) = n2/8 ± 2cn2. Let m = d+(u)
and assume d+(u) 6 d−(u), so m 6 (n − 1)/2. By the minimum semidegree condition,
|N(u)| 6 2cn, so

e+(N+(u), N(u)) 6 m · 2cn.
Since we can assume c < 1/2,

n2/4− cn2 < n2/4− c2n2
6 m(n−m) 6 n2/4.

With Lemma 16 and the fact that m 6 n/2, we can compute that cyc(u, V, V ) =
e+(N+(u), N−(u)) is equal to

e+(N+(u), N+(u))− e+(N+(u), N(u)) =
m(n−m)

2
± 3cnm = n2/8± 2cn2.

Applying a similar argument when d−(u) 6 d+(u) proves the lemma.
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Lemma 18. Suppose that c > 0 and G = (V,E) is an oriented graph on n vertices such
that δ0(G) > (1/2− c)n. Then, for every edge uv ∈ E,

d−,+(uv)− d+,−(uv) = 0± 4cn.

This further implies that, for every pair of disjoint subsets A and B of V ,

∑

uv∈E+(A,B)

cyc(u, v, V ) >
e+(A,B)2

2|A| − cn3.

Proof. To prove the first part of the lemma, note that

d+,−(xy) = d+(x)− d+,+(xy)− |N+(x) \N(y)|,

and similarly d−,+(xy) = d+(y)− d+,+(xy)− |N+(y) \N(x)|. Therefore,

d−,+(xy)−d+,−(xy) = (d+(x)−d+(y))+(|N+(y)\N(x)|−|N+(x)\N(y)|) = 0±4cn, (1)

by the minimum semidegree condition.
To prove the second part of the lemma, note that if u ∈ A and v ∈ N+(u,B), then

d+,−(uv) > d−(v,N+(u,B)).

This implies that

∑

v∈N+(u,B)

d+,−(uv) >
∑

v∈N+(u,B)

d−(v,N+(u,B)) =

e(N+(u,B)) > d+(u,B)

(

d+(u,B)− 2cn

2

)

,

where the last inequality follows from the fact that n− 2δ0(G) 6 2cn. This observation,
with the first part of the lemma gives us that

∑

v∈N+(u,B)

cyc(u, v, V ) =
∑

v∈N+(u,B)

d−,+(uv) >

∑

v∈N+(u,B)

(

d+,−(uv)− 4cn
)

> d+(u,B)

(

d+(u,B)

2
− 5cn

)

.

Letting m = e+(A,B) and |A| = a, we have that, by the convexity of f(x) = x2,

∑

uv∈E+(A,B)

cyc(u, v, V ) >
∑

u∈A

d+(u,B)

(

d+(u,B)

2
− 5cn

)

>
a

2

(m

a

)2

−m·5cn >
m2

2a
−cn3,

where the last inequality follows because, by Lemma 16, m 6 n2/5.
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Lemma 19. Suppose 1/n ≪ c ≪ α ≪ 1 and that G = (V,E) is an oriented graph on n
vertices such that δ0(G) > (1/2− c)n. Then, for every v ∈ V ,

∣

∣

∣
ÑH(G)(α, 1, v)

∣

∣

∣
>

(

1

8
− 10α

)

n.

Proof. Fix v ∈ V and let N = ÑH(G)(α, 1, v) and N = V \N . For every U ⊆ V , let T (U)
be the set of ordered triples (x, y, u) such that u ∈ U , xy ∈ E and both vxy and xyu are
cyclic triangles. By definition, u ∈ N if and only if |T ({u})| < αn2, so

|T (N)| = |T (V )| − |T (N)| > |T (V )| − αn3.

For every u ∈ V , Lemma 17 implies that |T ({u})| 6 (1/8 + 2c)n2, so

(1/8 + 2c)n2 · |N | > |T (N)| > |T (V )| − αn3

Therefore, to show that |N | > (1/8 − 10α)n and complete the proof, it suffices to prove
that |T (V )| > (1/64− 2c)n3.

Let m = e+(N+(v), N−(v)). By Lemma 18, we have that

|T (V )| =
∑

xy∈E+(N+(v),N−(v))

cyc(x, y, V ) >
m2

2d+(v)
− cn3. (2)

Because Lemma 17 implies that m > (1/8− 2c)n2, we have that

m2

2d+(v)
>
mn

2
· 1/8− 2c

1/2 + c
> (1/16− c)n3 · (1/4− 5c) > (1/64− c)n3,

which, with (2), completes the proof of the lemma.

Proof of Lemma 12. Let δ = 2/9, δ′ = 1/8 − 1/100 and let β ≪ α ≪ 1. By Lemmas 17

and 19, we have that δ1(H(G)) > (1/8 − 2c)n2 > δ
(

n−1
2

)

and that
∣

∣

∣
ÑH(G)(α, 1, v)

∣

∣

∣
>

(1/8− 10α)n > δ′n for every v ∈ V (G). Since min{⌊1/δ⌋ , ⌊1/δ′⌋} = 4, Lemma 15 implies
that, for some d 6 4, there exists P = {V1, . . . , Vd} a (H(G), β, 8)-closed partition of
V (G) such that and |Vi| > (δ′ − α)n > n/9 for every i ∈ [d].

2.3 Proof of Lemma 13

In this section, we prove Lemma 13. In an effort to explain the structure of the proof
at a high level, we first informally discuss how to derive a contradiction in the following
situation. Suppose that G is a regular tournament on n vertices that has an η-partition
P of V (G) with three distinct parts A,B,D ∈ P such that

(S1) A is the largest part in P ,
(S2) G[A], G[B] are transitive tournaments,
(S3) every cyclic triangle with at least two vertices in A has one vertex in B, and
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(S4) every cyclic triangle with at least two vertices in B has one vertex in D.

These conditions are an idealized version of the conditions we will use to produce a
contradiction to prove Lemma 13. (Note that (S3) and (S4) together imply (S2).)

Let C = A ∪B. Since G[A] is a transitive tournament, there exist x+, x− ∈ A such
that d+(x+, A) = d−(x−, A) = |A| − 1. This implies that if we let C− = N−(x+, C), then
we have that |C−| is at least

δ0(G)−|B| = (n−1)/2− (|A|+ |B|)/2+(|A|− |B|)/2 = |C|/2+(|A|− |B|)/2−1/2. (3)

The same lower bound holds for |C+| when we let C+ = N+(x−, C). Let v ∈ C−. Note
that, because no cyclic triangle contains both v and x+ and has its third vertex in A,
we have that N+(v, A) = A. Similarly N−(v, A) = A for every v ∈ C+. Therefore, C+

and C− are disjoint, so, with (3) and the fact that |A| > |B|, we have that |C+|, |C−| =
|C|/2± 1/2 and |B| > |A| − 1.

Since |B| > |A| − 1 and A is the largest part in P , we have that |D| 6 |A| 6 |B|+ 1.
Therefore, using the same logic with B and D playing the roles of A and C, respectively,
we can find y+, y− ∈ B such that d+(y+, B) = d−(y−, B) = |B|− 1 and the disjoint union
of N−(y+, B ∪D) and N+(y−, B ∪D) covers all but at most two vertices of B ∪D. In
particular, because A ⊆ B ∪D, if we let A− = N−(y+, A) and A+ = N+(y−, A) we have
that A− and A+ are disjoint sets and |A− ∪ A+| > |A| − 2. Assume that |A−| > |A+|, so
|A−| > |A|/2− 1. (Similar logic gives a contradiction when |A+| > |A−|). Because G[A−]
is a transitive tournament, there exists x ∈ A− such that d+(x,A−) = |A−| − 1.

To get a contradiction, we now argue that the out-degree of x is greater than (n−1)/2.
Recall that N−(v, A) = A for every v ∈ C+. This means that N+(x) contains C+.
Moreover, since xy+ is an edge and there are no triangles with one vertex in A and two
vertices in B, we have that N+(x) contains B. Therefore, d+(x) > |A− \ x|+ |B|+ |C+|.
Recall that |A−| > |A|/2− 1 and |C+| > |C|/2− 1/2. Therefore, the fact that {A,B,C}
partitions V (G) implies that d+(x) > n/2 + |B|/2 − 5/2. Because P is an η-partition,
we have that |B| > ηn, so this contradicts the fact that G is a regular tournament. (See
Figure 1.)

Lemma 20. Suppose that 1/n ≪ α, c ≪ ξ, β ≪ 1 and that G is an oriented graph on n
vertices such that δ0(G) > (1/2− c)n. If A,B ⊆ V (G) are disjoint and e+(A,B) 6 αn2,
then | SN−

β (A) ∩ B| > |B| − ξn and | SN+
β (B) ∩ A| > |A| − ξn

Proof. Note that for every v ∈ B \SN−
β (A), we have that d

−(v, A) > βn− (n−2δ0(G)) >

βn/2, and also, for every v ∈ A\SN+
β (B), we have that d+(v,B) > βn/2. Therefore, if we

letm be the maximum of |B\SN−
β (A)| and |A\SN+

β (B)|, thenm·βn/2 6 e+(A,B) 6 αn2,
which implies that m 6 ξn.

Lemma 21. Suppose that 1/n ≪ c, α ≪ β < 1, and that G = (V,E) is an n-vertex
oriented graph such that δ0(G) > (1/2 − c)n. If A ⊆ V and cyc(A) 6 αn3, then, for
σ ∈ {+,−}, there exists xσ ∈ A such that dσ(xσ, A) > |A| − βn.
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A BC

A+

A− \ {x}

C+

C−

x

B \ {y+}

y+

Figure 1: The situation at the end of the sketch of the proof of Lemma 13. The out-
neighborhood of the vertex x contains A− \ {x} ∪ C+ ∪ B which has cardinality larger
than (n− 1)/2, a contradiction to the assumption that G is a regular tournament.

Proof. Pick ξ so that
1/n≪ c, α ≪ ξ ≪ β ≪ 1.

Let X be the set of vertices x in A such that cyc(x,A,A) 6 α1/2n2. Since

(|A| − |X|) · α1/2n2
6 3 cyc(A) 6 3αn3

we have that
|X| > |A| − 3α1/2n. (4)

Pick x+ ∈ X so as to maximize d+(x+, X), and let X+ = N+(x+, X) and X− =
N−(x+, X). Note that, because of the minimum semidegree condition, |X−| > |X| −
|X+| − 2cn, and that α1/2n2 > cyc(x+, A,A) > e+(X+, X−). Therefore, with Lemma 20,
we have that

| SN−
ξ (X

+) ∩X−| > |X−| − ξn > |X| − |X+| − 2cn− ξn,

and, with the minimum semidegree condition, there exists y ∈ SN−
ξ (X

+) ∩X− such that

d+(y,X−) > (| SN−
ξ (X

+) ∩X−| − 2cn)/2 > (|X| − |X+| − 2ξn)/2

Because y ∈ SN−
ξ (X

+), we have that

d+(y,X+) > |X+| − ξn.

Therefore, by the selection of x+ we have that,

|X+| > d+(y,X+)+d+(y,X−) > (|X+|−ξn)+(|X|−|X+|−2ξn)/2 = (|X|+|X+|−4ξn)/2

which, with (4), implies d+(x+, A) > |X+| > |X|−4ξn > |A|−βn. By a similar argument,
we can find x− ∈ A, such that d−(x−, A) > |A| − βn.
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Lemma 22. Let 1/n≪ α, c≪ ξ ≪ η < 1. Let G = (V,E) be an n-vertex oriented graph
such that δ0(G) > (1/2− c)n. For every partition {A,B,C} of V such that |A| > ηn and
cyc(A), cyc(A,A,C) 6 αn3 there exist disjoint subsets C+ and C− of C such that, for
σ ∈ {+,−},

e−σ(A,Cσ) 6 ξn2 and |Cσ| > |C|/2 + (|A| − |B|)/2− ξn.

Proof. We will prove the lemma by showing that, with ξ/2 playing the role of ξ, there
exist subsets C+ and C− of C that meet the conditions of the lemma except that C+∩C−

might not be empty. This will prove the lemma, because then, by the minimum semidegree
condition,

(|A| − 2cn)|C+ ∩ C−| 6 e+(A,C+ ∩ C−) + e−(A,C+ ∩ C−) 6 ξn2,

and this, with the fact that |A| > ηn, implies that |C+ ∩ C−| 6 ξn/2, which means that
the sets C+ \ C− and C− \ C+ are disjoint sets that meet the conditions of the lemma.
Furthermore, we will only prove that such a C+ exists, because the existence of the desired
set C− follows by a similar argument.

Let X be the set of vertices x in A such that cyc(x,A,C) 6 α1/2n2. Because

(|A| − |X|) · α1/2n2
6 3 cyc(A,A,C) 6 3αn3

we have that |X| > |A| − 3α1/2n. Since cyc(X,X,X) 6 cyc(A,A,A) 6 αn3, Lemma 21
implies that there exists x ∈ X such that

d−(x,A) > d−(x,X) > |X| − ξn/4 > |A| − ξn/3.

Let C+ = N+(x, C). Because every edge directed from C+ to N−(x,A) corresponds to a
triangle in cyc(x,A,C), we have that

e−(A,C+) 6 cyc(x,A,C) + e−(A \N−(x,A), C+) 6 ξn2/2.

We also have that

|C+| > δ0(G)− d+(x,A)− |B| > n/2− |B| − cn− ξn/3 > |C|/2 + (|A| − |B|)/2− ξn/2.

This completes the proof of the lemma.

Proof of Lemma 13. Pick β, α′ and ξ so that

1/n≪ c≪ µ≪ α′ ≪ α, ξ ≪ β ≪ η < 1.

For a contradiction, assume that

cyc(Vi, Vi, Vi) > αn3 for all Vi ∈ P = {V1, . . . , Vd}. (5)

Because P is an η-partition we have that 1/d > η which implies that

∀J ⊆ [d], ∀i ∈ [d], ∃j′ ∈ J such that cyc(Vi, Vi, Vj′) > η · c(Vi, Vi,
⋃

j∈J

Vj). (6)
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Let A = Vx be the largest part in P . By (5) and (6) with J = [d] − x, there exists
Vy = B ∈ P − A such that cyc(A,A,B) > α′n3. Let C = V \ (A ∪ B). By (5) and
(6) with J = [d] − y, we also have Vz = D ∈ P − B such that c(B,B,D) > α′n3. Let
F = V \ (B ∪D).

Note that v1 = 2ux +uy ∈ IµP(H(G)) and v2 = 2uy +uz ∈ IµP(H(G)). If A = D, then
v1 − v2 is a 2-transferral in Lµ

P(H(G)). Furthermore, if cyc(A) > α′n3, then v3 = 3ux ∈
IµP(H(G)), so v1−v3 is a 2-transferral in L

µ
P(H(G)). Also, if cyc(A,A,C) > α′n3, then, by

(6) with J = [d]−x−y, there exists w ∈ [d]−x−y such that v4 = 2ux+uw ∈ IµP(H(G)),
so v1 − v4 is a 2-transferral in Lµ

P(H(G)). With additional similar arguments, the fact
that there are no 2-transferrals in Lµ

P(H(G)) implies that A 6= D and

cyc(A), cyc(A,A,C), cyc(B), cyc(B,B, F ) < α′n3. (7)

By Lemma 22, there exist disjoint subsets C+, C− of C such that, for σ ∈ {−,+},

e−σ(A,Cσ) 6 ξn2, (8)

and
|Cσ| > |C|/2 + (|A| − |B|)/2− ξn. (9)

By the selection of A we have that |A| > |B|, so (9) implies that

|Cσ| > |C|/2− ξn. (10)

Because C+ and C− are disjoint subsets of C, we have that min{|C+|, |C−|} 6 |C|/2, so,
with (9),

|B| > |A| − 2ξn. (11)

By Lemma 22, with B and F playing the roles of A and C, respectively, there are
disjoint subsets F+ and F− of F such that, for σ ∈ {−,+},

e−σ(B,F σ) 6 ξn2. (12)

and
|F σ| > |F |/2 + (|B| − |D|)/2− ξn.

By the selection of A and (11), we have that

|B|+ 2ξn > |A| > |D|,

so |F σ| > |F |/2− 2ξn, and
|F+|+ |F−| > |F | − 4ξn. (13)

Note that A ⊆ F and fix σ∗ ∈ {−,+} so that |F−σ∗ ∩ A| > |F σ∗ ∩ A|. By (13) and
the selection of σ∗, we have that

|F−σ∗ ∩ A| > (|F+ ∩ A|+ |F− ∩ A|)/2 > (|A| − 4ξn)/2 = |A|/2− 2ξn. (14)
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Note that Lemma 20, with (8), implies that

|A \ SNσ∗

β (Cσ∗

)| 6 βn/2,

and Lemma 20, with (12) and (14), implies that

| SNσ∗

β (B) ∩ F−σ∗ ∩ A| > |A|/2− βn/2.

Therefore, if we set A′ = SNσ∗

β (B) ∩ SNσ∗

β (Cσ∗

) ∩ A, then

|A′| > | SNσ∗

β (B) ∩ F−σ∗ ∩ A| − |A \ SNσ∗

β (Cσ∗

)| > |A|/2− βn.

Since cyc(A′) 6 cyc(A) 6 αn3, Lemma 21 implies that there exists x ∈ A′ such that

dσ
∗

(x,A′) > |A′| − βn > |A|/2− 2βn.

Recall that x ∈ SNσ∗

β (B)∩ SNσ∗

β (Cσ∗

). This implies that dσ
∗

(x,B) > |B| − βn, and, with
(10), we have that

dσ
∗

(x, Cσ∗

) > |Cσ∗ | − βn > |C|/2− 2βn.

Therefore, with the fact that |B| > ηn, we have

dσ
∗

(x) > (|A|/2− 2βn) + (|B| − βn) + (|C|/2− 2βn) = n/2 + |B|/2− 5βn > (1/2 + c)n,

so d−σ∗

(x) < (1/2− c)n, a contradiction to the minimum semidegree condition.

2.4 Proof of Lemma 14

We need the following lemma for the proof of Lemma 14. Informally, it says that, in an
oriented graph G with sufficiently high minimum semidegree, if A is a reasonably large
subset of V (G) for which cyc(A,A,A) is o(n3), then essentially half of the vertices in A
have almost all of A as out-neighbors and half of the vertices in A have almost all of A
as in-neighbors. From this, we then argue that |A| cannot be much larger than n/3.

At a high-level, we use Lemma 23 to prove Lemma 14 in the following way (the actual
proof of Lemma 14 appears after the proof of Lemma 23). We start with a non-trivial
η-partition of G such that Lµ

P(H(G)) is 2-transferral-free and such that there exists A ∈ P
such that cyc(A,A,A) is o(n3). We then use Lemma 23 to get a partition {S+, S−} of A
such that S+ and S− have roughly the same size and such that e+(A, S−) and e+(S+, A)
are both o(n2). We can then finish the proof by showing that A, S+ and S− each have
roughly the same size (which is implied if |S+| is not much more than n/3) and that
e+(S−, S+) is o(n2). To this end, we use the fact that Lµ

P(H(G)) is 2-transferral-free to
show that cyc(S+, S+, S+) is o(n3), and then apply Lemma 23 again with S+ now playing
the role of A.

Lemma 23. Suppose that

1/n≪ c≪ α ≪ β ≪ ξ ≪ η < 1,

and G = (V,E) is an oriented graph such that δ0(G) > (1/2− c)n. For every A ⊆ V such
that |A| > ηn and cyc(A,A,A) 6 αn3, we have that

the electronic journal of combinatorics 26(4) (2019), #P4.24 16



• | SN+
β (A)|, | SN−

β (A)| = |A|/2± ξn, and

• |A| 6 (1/3 + ξ)n.

Proof. Let S+ = SN+
β (A), S

− = SN−
β (A) and S = V \ (S+ ∪ S− ∪ A), so {S, S+, S−, A}

is a partition of V . We will first prove that

|S| 6 βn. (15)

To this end, let x ∈ S ⊆ A and then dσ(x,A) 6 |A| − βn for any σ ∈ {+,−}. Since
δ0(G) > (1/2− c)n, then x must have

dσ(x,A) > |A| − d−σ(x,A)− 2cn > βn− 2cn > βn/2.

Therefore,

|S|(βn)2/4 6
∑

x∈S

d+(x,A) · d−(x,A) 6
∑

x∈A

d+(x,A) · d−(x,A)

=
∑

xy∈E(A)

d−,+(xy,A) + d+,−(xy,A) = cyc(A,A,A) +
∑

xy∈E(A)

d+,−(xy,A).

(16)

By Lemma 18, we have that
∑

xy∈E(A)

d+,−(xy,A) =
∑

xy∈E(A)

(

d+,−(xy)− d+,−(xy,A)
)

6
∑

xy∈E(A)

(

d−,+(xy)− d+,−(xy,A) + 4cn
)

=
∑

xy∈E(A)

(

d−,+(xy,A) + d−,+(xy,A)− d+,−(xy,A) + 4cn
)

= cyc(A,A,A) + 3 cyc(A)− trn(A) + 4cn · e(A).

(17)

Because e(A)/|A| =
∑

v∈A
d+(v,A)

|A|
=

∑
v∈A

d(v,A)

2|A|
>

|A|−2cn
2

and f(x) =
(

x
2

)

is convex, we have
that

trn(A) =
∑

v∈A

(

d+(v, A)

2

)

> |A|
(

e(A)/|A|
2

)

>
|A|(|A| − 2cn− 1)2

8
>

|A|3
8

− cn3

Therefore, since cyc(A) + trn(A) 6
(

|A|
3

)

,

3 cyc(A)− trn(A) 6 3

(|A|
3

)

− 4 trn(A) 6 4cn3 (18)

Combining (16), (17) and (18), we have that

|S|(βn)2/4 6 2 cyc(A,A,A) + 8cn3
6 3αn3,
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and (15) holds.
For σ ∈ {+,−}, we have that eσ(A,A) > (|A| − βn) · |Sσ| and, by (15) and the

definition of S−σ,

eσ(A,A) 6 |A| · |Sσ|+ (|A| − βn) · |S|+ βn · |S−σ| 6 |A| · |Sσ|+ 2βn2,

so |A| · |Sσ| = eσ(A,A)± 2βn2. With Lemma 16, we have that

|A| · |S+| = e+(A,A)± 2βn2 = e−(A,A)± 4βn2 = |A| · |S−| ± 6βn2.

Therefore, because |A| > ηn, we have that |S+| = |S−| ± ξn. This with (15) implies that

|A| = n− |A| = |S+|+ |S−|+ |S| = 2|Sσ| ± 2ξn,

which proves the first part of the lemma.
We will prove the second part of the lemma by contradiction, so assume that |A| >

(1/3 + ξ)n. There exists x ∈ S+ such that d+(x, S+) < |S+|/2. Using the fact that
|A| < (2/3− ξ)n, and, by the first part of the lemma, |S+| > |A|/2− ξn, we have that

d+(x,A) < |S|+ |S−|+ |S+|/2 = |A| − |S+|/2 6 |A| − |A|/4 + ξn/2 < n/2− ξn/4.

Because x ∈ S+, we have that d+(x,A) 6 βn, so

d+(x) = d+(x,A) + d+(x,A) < (1/2− c)n,

a contradiction to the minimum semidegree condition.

Proof of Lemma 14. Define ξ, β and ω so that

1/n≪ c≪ µ, α ≪ ξ ≪ β ≪ ω ≪ γ, η < 1.

By assumption, there exists P a non-trivial η-partition of V (G) such that Lµ
P(H(G)) is

2-transferral-free and A ∈ P such that cyc(A,A,A) 6 αn3. Since P is an η-partition, we
have that

|A| > ηn. (19)

For (possibly overlapping) subsets U1, U2, U3, U4 of V , let L(U1, U2, U3, U4) be the col-
lection of 4-sets {u1, u2, u3, u4} such that ui ∈ Ui for i ∈ [4] and both u1u2u3 and u2u3u4
are cyclic triangles. We can assume that

|L(A, V, V, A)| 6 ξn4, (20)

because otherwise, since |P| 6 1/η, there would exist B,C ∈ P and D ∈ P −A such that
|L(A,B,C,D)| > η3 · ξn4 > 3µn4, which would in turn imply that both c(A,B,C) > µn3

and c(B,C,D) > µn3, which contradicts the fact that Lµ
P(H(G)) is 2-transferral-free.

Define Sσ = SNσ
β(A) for σ ∈ {+,−}, and let S = V \ (S+ ∪ S− ∪ A). Lemma 23

implies that
|S| 6 2ξn, (21)
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and that
|A| 6 (1/3 + ξ)n. (22)

For σ ∈ {+,−}, suppose that there exists xyz a triangle with xy ∈ E(Sσ) and z ∈ S−σ,
i.e., xyz is one of the triangles that is counted in cyc(Sσ, Sσ, S−σ). If σ = +, then for
every w ∈ N−,+(yz, A), we have {w, y, z, x} ∈ L(A, S+, S−, S+), and if σ = −, then
for every w ∈ N−,+(zx,A), we have {w, x, z, y} ∈ L(A, S−, S+, S−). Therefore, because
d−σ(x,A), d−σ(y, A), dσ(z, A) > |A| − βn, (20) implies that

(|A| − 2βn) · c(Sσ, Sσ, S−σ) 6 |L(A, Sσ, S−σ, Sσ)| 6 ξn4.

Therefore, with (19), we have

cyc(Sσ, Sσ, S−σ) 6 βn3.

Furthermore,

cyc(Sσ, Sσ, A) 6 2βn ·
(|Sσ|

2

)

6 βn3,

and, because (21) implies that

cyc(Sσ, Sσ, S) 6 2βn3,

we can deduce that

cyc(Sσ, Sσ, Sσ) = cyc(Sσ, Sσ, S−σ) + cyc(Sσ, Sσ, A) + cyc(Sσ, Sσ, S) 6 4βn3.

Applying Lemma 23 with Sσ, 4β and ω playing the roles of A, α and ξ, respectively,
implies that

|S+|, |S−| 6 (1/3 + ω)n. (23)

Let A′ = A ∪ S and note that {A′, S+, S−} is a partition of V (G), and, since (21),
(22) and (23) imply that |A′|, |S+|, |S−| 6 n/3 + ωn, we have

|A′|, |S+|, |S−| = n/3± 2ωn. (24)

By (21), we have that

d−σ(v, A′) > |A| − βn > |A′| − ωn for every v ∈ Sσ,

which implies that
eσ(Sσ, A′) 6 |Sσ| · ωn 6 ωn2, (25)

and, also, with Lemma 16, that

e+(S+, S+) > e+(S+, S+)− cn2
> e+(A′, S+)− cn2

> (|A′| − ωn)|S+| − cn2.

Combining this with (24) and (25) gives us that

e+(S+, S−) = e+(S+, S+)− e+(S+, A′) > (|A′| − ωn)|S+| − 2ωn2
> |S−||S+| − γn2,

so e+(S−, S+) 6 γn2, which, with (24) and (25), implies that G is γ-extremal.
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2.5 Proof of Theorem 7 - The Extremal Case

We use the following tripartite Corrádi-Hajnal theorem from [9], although we do not
require its full strength. In fact, we only use it for the corollary which follows that could
easily be proved directly. The multipartite Hajnal-Szemerédi theorem has been heavily
studied by many researchers, for example, see [4, 12, 14, 18, 19].

Theorem 24 (Johansson 2000 [9]). Let G = (V,E) be a graph. If there exists {V1, V2, V3}
a partition of V such that |V1| = |V2| = |V3| = m and, for every i ∈ [3] and v ∈ Vi,
|N(v) ∩ Vi+1|, |N(v) ∩ Vi−1| > 2

3
m+

√
m then G has a triangle factor.

Corollary 25. Suppose that 0 < 1/n ≪ c, ξ ≪ 1, n is a multiple of 3, and G = (V,E)
is an oriented graph on n vertices such that δ0(G) >

(

1
2
− c
)

n. If there exists a partition
{V1, V2, V3} of V such that |V1| ≡ |V2| ≡ |V3| (mod 3) and, for every i ∈ [3] and v ∈ Vi,
we have d+(v, Vi+1), d

−(v, Vi−1) >
(

1
3
− ξ
)

n, then G has a cyclic triangle factor.

Proof. Assume without loss of generality that |V1| 6 |V2| 6 |V3|. For every i ∈ [3], the
degree condition implies that |Vi| = (1/3± 2ξ)n, so

δ0(G[Vi]) > (1/2− c)n− 3ξn− (1/3 + 2ξ)n > (1/2− 3c− 18ξ)|Vi|.

Therefore, by Lemma 17, we can greedily find a collection C2 of (|V2| − |V1|)/3 6 2ξn
vertex-disjoint cyclic-triangles in G[V2], and a collection C3 of (|V3|−|V1|)/3 6 2ξn vertex-
disjoint cyclic-triangles in G[V3]. Let H be the oriented graph induced by V \ V (C2 ∪ C3).
Theorem 24 implies that there exists a triangle factor of the spanning subgraph of the
simple graph underlying H that contains the edges that correspond to the edges of H
that are directed either from V1 to V2, from V2 to V3, or from V3 to V1. This triangle
factor corresponds to a cyclic triangle factor C of H. Then C ∪ C2 ∪ C3 is a triangle factor
of G.

Proof of Lemma 7. If G has a divisibility barrier, then, by the argument presented before
Definition 3, G does not contain a cyclic triangle factor. For the other direction, assume
that G does not have a divisibility barrier. Since G is γ-extremal, there exists a partition
{V1, V2, V3} of V such that for every i ∈ [3], |Vi| = (1/3 ± γ)n and e−(Vi, Vi+1) 6 γn2.
Introduce new constants α and β, so that

0 < c, γ ≪ α ≪ β ≪ 1.

Let
Ui = SN−

β (Vi+1) ∩ SN+
β (Vi−1) for i ∈ [3],

and let U0 = V \ (U1 ∪ U2 ∪ U3). Note that {U0, U1, U2, U3} is a partition of V . For
every i ∈ [3] and every v ∈ Vi \ Ui, at least one of d−(v, Vi+1) or d+(v, Vi−1) is at least
βn− 2cn > βn/2, so

1

2

3
∑

i=1

|Vi \ Ui| · βn 6 2e−(V1, V2) + 2e−(V2, V3) + 2e−(V3, V1) 6 6γn2,
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and we have that

|U0| 6
3
∑

i=1

|Vi \ Ui| 6 αn. (26)

Suppose that |U0| > 1. By (26) and Lemma 17, we can greedily find a (possibly
empty) collection C of vertex-disjoint cyclic-triangles such that

|V (C)| 6 3(|U0| − 1) 6 3αn (27)

and |U0 ∩ V (C)| = |U0| − 1. Let u be the vertex in U0 that is not covered by C, i.e.,
{u} = U0 \ V (C). Let G′ = G− V (C), and, for i ∈ [3], let Wi = Ui \ V (C). Note that, by
(26) and (27),

|Vi \Wi| 6 4αn for i ∈ [3]. (28)

Because |G′| = |V \V (C)| is divisible by 3, we have that |W1|+ |W2|+ |W3| ≡ 2 (mod 3),
and we can assume without loss of generality that |W2| ≡ |W3| (mod 3). Fix x ∈ {0, 1, 2}
so that

|W1| ≡ x+ 2 and |W2| ≡ |W3| ≡ x (mod 3).

If there exists a triangle T in G′ such that u ∈ V (T ) and either |V (T ) ∩ W1| = 2 or
|V (T )∩W2| = |V (T )∩W3| = 1, then we can complete a cyclic triangle factor of G using
Corollary 25, so assume the contrary.

Let W+
1 = N+(u,W1), W

−
1 = N−(u,W1) and W 0

1 = W1 \ N(u). We have that
e+(W+

1 ,W
−
1 ) = 0 by assumption, and, by the minimum semidegree condition,

|W 0
1 | 6 2cn. (29)

Assume that |W−
1 | 6 |W+

1 |. If W−
1 6= ∅, then there exists x ∈ W−

1 such that

d−(x,W−
1 ) < |W−

1 |/2 6 |W1|/4,

so, by (28) and (29),

d−(x,W+
1 ) > δ0(G)−

(

d−(x,W−
1 ∩ V1) + |W 0

1 ∩ V1|+ |V1 \W1|+ d−(x, V2) + |V3|
)

> 0,

a contradiction. Therefore, we have W−
1 = ∅. This, with (28) and (29), implies that

d+(u, V1) > |W1 ∩ V1| − |W 0
1 | = |V1| − |V1 \W1| − |W 0

1 | > |V1| − βn, (30)

and
d−(u,W3 ∩ V3) > δ0(G)−

(

d−(u, V1) + |V2|+ |V3 \W3|
)

> (1/6− 2β)n.

By the definition of W2, this implies that every vertex in W2 has an out-neighbor in
N−(u,W3 ∩ V3). Therefore, because e+(N+(u,W2), N

−(u,W3)) = 0 by assumption, we
have that N+(u,W2) = ∅, and, by a computation similar to (30)

d−(u, V2) > |W2 ∩ V2| − |W2 \N(u)| = |V2| − |V2 \W2| − |W2 \N(u)| > |V2| − βn,
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and this with (30) implies that u ∈ U3, a contradiction to the fact that u ∈ U0. By
a similar argument, if |W−

1 | > |W+
1 |, one can show that W+

1 = ∅ and then u ∈ U2, a
contradiction.

Now suppose that |U0| = 0. By Corollary 25, we are done if |U1| ≡ |U2| ≡ |U3|
(mod 3), so assume the contrary. If G has no divisibility barriers, then |V | is divisible by
3, and, without loss of generality we can assume that there exists an edge ab such that
a ∈ U2 and b ∈ U1. Because |V | is divisible by 3, we can fix x ∈ {0, 1, 2} and y ∈ {1, 2}
so that

|U1| ≡ x, |U2| ≡ x+ y, and |U3| = x− y (mod 3)

Note that, by (26),

d+(b, U1) > δ0(G)− (|V1 \ U1|+ |V2|+ d+(b, V3)) > (1/6− 2β)n,

and a similar bound holds for d−(a, U2), so there exists a vertex c ∈ U2 ∩N+(b)∩N−(a),
and a vertex d ∈ U1 ∩N+(b) ∩N−(a). Hence T1 = abc and T2 = abd are cyclic triangles
and, for j ∈ {1, 2},

|V (Tj) ∩ U1| ≡ j and |V (Tj) ∩ U2| ≡ 2j (mod 3).

Therefore, Corollary 25 implies that there exists a cyclic triangle factor C of G− Ty, and
C ∪ {Ty} is a cyclic triangle factor of G.
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