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a b s t r a c t

In 1963, Corrádi and Hajnal settled a conjecture of Erdős by showing that every graph
on at least 3r vertices with minimum degree at least 2r contains a collection of r
disjoint cycles, and in 2008, Finkel proved that every graph with at least 4s vertices
and minimum degree at least 3s contains a collection of s disjoint chorded cycles. The
same year, a generalization of this theorem was conjectured by Bialostocki, Finkel, and
Gyárfás: every graph with at least 3r +4s vertices and minimum degree at least 2r +3s
contains a collection of r + s disjoint cycles, s of them chorded. This conjecture was
settled and further strengthened by Chiba et al. (2010). In this paper, we characterize
all graphs on at least 3r + 4s vertices with minimum degree at least 2r + 3s− 1 that do
not contain a collection of r+s disjoint cycles, s of them chorded. In addition, we provide
a conjecture regarding the minimum degree threshold for the existence of r + s disjoint
cycles, s of them chorded, and we prove an approximate version of this conjecture.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Most of our notation is standard. All graphs in this paper are simple, unless otherwise noted. If D is a graph that

contains a spanning cycle C and e(D) > e(C), then we say that D is a chorded cycle, and we call every e ∈ E(D) \ E(C) a

chord (of C). When we say that two graphs are disjoint, we mean that they have no vertices in common. For non-negative

integers r and s, we call the pair (C,D) an (r, s)-family if C and D are disjoint collections of subgraphs of G, such that C

contains a collection of r disjoint cycles and D contains a collection of s disjoint chorded cycles. For disjoint graphs G and

H , we use G ∨ H to denote the graph with vertex set V (G) ∪ V (H) and edge set E(G ∪ H) ∪ {xy : x ∈ G and y ∈ H}. We
write G for the complement of G, which is the graph with vertex set V (G) and edge set

(

V (G)

2

)

\ E(G). For a graph G, we use

δ(G) for its minimum degree, α(G) for its independence number, and α′(G) for its matching number.
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1.1. Background

In 1963, Corrádi and Hajnal settled a conjecture of Erdős by proving the following theorem.

Theorem 1 (The Corrádi–Hajnal Theorem [4]). Every graph G on at least 3r vertices with δ(G) ≥ 2r contains an (r, 0)-family
(that is, G contains r disjoint cycles).

A well-known corollary of Theorem 1 is that if |G| = 3r and δ(G) ≥ 2r , then G contains r disjoint copies of K3. This
corollary was generalized by Hajnal and Szemerédi in 1970.

Theorem 2 (The Hajnal–Szemerédi Theorem [8]). Every graph G on kr vertices with δ(G) ≥ (k− 1)r contains r disjoint copies
of Kk.

With the work in [10], a proof of the as yet unresolved Chen–Lih–Wu Conjecture [2] would provide a characterization
of the sharpness examples for the Hajnal–Szemerédi Theorem. The following theorem of Kierstead and Kostochka proves
the Chen–Lih–Wu Conjecture when k ∈ {3, 4}.

Theorem 3 (Kierstead and Kostochka [10,11]). Let r be a positive integer, k ∈ {3, 4}, m = (k − 1)r − 1, and let G be a graph
on n = kr vertices such that δ(G) ≥ m. Then G does not contain r disjoint copies of Kk if and only if either

• α(G) = n − m;

• k = 3, r is odd, and G ∼= Kr ∨ Kr,r ; or

• k = 4, r is odd, and G ∼= H ∨ Kr,r where H is an r-equitable graph on 2r vertices.3

When k = 2, a statement analogous to Theorem 3 holds and is a consequence of Tutte’s Theorem on matchings. We
state a slightly more general consequence of the Berge–Tutte Formula in Corollary 15.

In 1963, Dirac [5] characterized 3-connected multigraphs with no two disjoint cycles. In the same paper, he asked
for a characterization of (2r − 1)-connected multigraphs that do not contain an (r, 0)-family. Lovász [15] answered
Dirac’s question when r = 2 by describing all multigraphs that do not contain 2 disjoint cycles. Using Lovász’s result
and Theorem 3, Kierstead, Kostochka, and Yeager [13] gave the following characterization of the sharpness examples for
Theorem 1.

Theorem 4 (Kierstead, Kostochka, and Yeager, [13]). Given r ≥ 2, let m = 2r − 1, and let G be a graph on n ≥ 3r vertices
with δ(G) ≥ m. Then G does not contain an (r, 0)-family if and only if either

• α(G) = n − m;

• n = 3r, r is odd, and G ∼= Kr ∨ Kr,r ; or

• r = 2 and G ∼= K1 ∨ C where C is a cycle.4

With Theorem 4, Kierstead, Kostochka, and Yeager [12] were able to completely characterize all (2r − 1)-connected
multigraphs that do not contain r-disjoint cycles, fully answering Dirac’s question from 1963.

Theorem 1 has been expanded in other directions. Independently, Enomoto [6] and Wang [18] strengthened Theorem 1
by considering, instead of the minimum degree, the minimum Ore-degree, which is the minimum of dG(x)+ dG(y) over all
non-adjacent pairs of distinct vertices x and y. We use σ2(G) to denote the minimum Ore-degree of a graph G, which is
sometimes referred to as the minimum degree-sum. (When G is complete, we let σ2(G) = +∞.)

Theorem 5 (Enomoto [6], Wang [18]). Every graph G on at least 3r vertices with σ2(G) ≥ 4r − 1 contains an (r, 0)-family.

In 2008, Finkel proved a chorded-cycle analogue of Theorem 1.

Theorem 6 (Finkel [7]). Every graph G on at least 4s vertices with δ(G) ≥ 3s contains a (0, s)-family (that is, G contains s
disjoint chorded cycles).

The authors [16] recently characterized the sharpness examples of Theorem 6. In addition, they considered the
minimum degree-sum instead of the minimum degree.

Theorem 7 (Molla, Santana, and Yeager [16]). Given s ≥ 2, let m = 3s − 1 and let G be a graph on n ≥ 4s vertices with
σ2(G) ≥ 2m. Then G does not contain a (0, s)-family if and only if either

(i) n ≥ 2m = 6s − 2 and G ∼= Km,n−m; or

(ii) n = 2m − 1 = 6s − 3 and G ∼= K1,n−m,n−m.

3 An r-equitable graph H is an r-colorable graph on n vertices such that n is divisible by r and every color class of every r-coloring has order

exactly n/r . The r-equitable graphs with maximum degree r are characterized in [10]. For odd r , a graph H on 2r vertices with ∆(H) ≤ r is

r-equitable if and only if H ∼= Kr,r ; r = 3 and H is the graph F5 from [10]; or r = 5 and H is the graph F1 from [10].
4 When C is a cycle, K1 ∨ C is often referred to as a wheel.



T. Molla, M. Santana and E. Yeager / Discrete Mathematics 343 (2020) 111837 3

Fig. 1. Sample graphs from Theorem 9 when r = 2 and s = 1 (and so m = 6). In any one of these graphs, it is not possible to find three disjoint

cycles, one of which is chorded. Note that each graph has an independent set of n − m vertices circled.

Note that Theorem 7 implies the minimum degree condition in Theorem 6 is not sharp when 4s ≤ n ≤ 6s − 4 (see
Section 2 for further discussion of this case).

The following theorem of Chiba, Fujita, Gao and Li [3] is an extension of Theorems 1 and 6 and was initially conjectured
(in a weaker form) and partially proved by Bialostocki, Finkel, and Gyárfás [1]. It serves as the principal motivation for
our main result.

Theorem 8 (Chiba, Fujita, Gao, and Li, [3]). Given non-negative integers r and s with r + s ≥ 1, let G be a graph on at least
3r + 4s vertices with σ2(G) ≥ 4r + 6s − 1. Then G contains an (r, s)-family.

Let r and s be non-negative integers. We call a graph G on n vertices (r, s)-extremal if n ≥ 3r+4s and δ(G) ≥ 2r+3s−1,
but G does not contain an (r, s)-family. For r ≥ 2, Theorem 4 characterizes the (r, 0)-extremal graphs and, for s ≥ 2,
Theorem 7 characterizes the (0, s)-extremal graphs.

The main result of this paper is the following, which together with Theorem 4, characterizes the sharpness examples
to Theorem 8 when the minimum degree-sum condition is replaced with the appropriate minimum degree condition.
(See Fig. 1.)

Theorem 9. Given r ≥ 0 and s ≥ 1 such that r + s ≥ 2, let m = 2r + 3s − 1 and let G be a graph on n ≥ 3r + 4s vertices
with δ(G) ≥ m. Then G is an (r, s)-extremal graph if and only if either:

(i) n ≥ 2m = 4r + 6s − 2 and G ∼= Km,n−m;

(ii) n = 2m − 1 = 4r + 6s − 3 and G ∼= K1,n−m,n−m = K2m−n,n−m,n−m;

(iii) s = 1, 3r + 4s ≤ n ≤ 4r + 6s − 4, and

K2m−n,n−m,n−m ⊆ G ⊆
(

K2m−n ∨ Kn−m,n−m

)

; or

(iv) s = 1, r is even, n = 3r + 4s, and G ∼= Km/2,m/2 ∨ Kn−m = Kr+1,r+1 ∨ Kn−m.

Since Theorem 7 proves the case when r = 0, the remainder of this paper is dedicated to characterizing the
(r, s)-extremal graphs when both r and s are positive.

Observe that just as Theorem 7 shows the minimum degree condition in Theorem 6 is not sharp when 4s ≤ n ≤ 6s−4,
Theorem 9 demonstrates that 2r + 3s is not the correct minimum degree threshold for an (r, s)-family when 3r + 4s ≤
n ≤ 4r + 6s − 4 and s ≥ 2.

The remainder of this paper is structured as follows. In Section 2, we present a conjecture on the correct minimum
degree thresholds for an (r, s)-family, which if true would be a best possible result, and we prove an approximate version
of this conjecture. In Section 3, we present Theorem 14, which is equivalent to Theorem 9, and is the version that we will
prove in the remainder of the paper. We also introduce notation that will be used heavily in our proof of this theorem.
Section 4 contains all of the lemmas from which we will deduce Theorem 14.

2. The case when n < 4r + 6s

In this section we address the minimum degree threshold for an (r, s)-family in a graph on n vertices when n, r , and
s are non-negative integers such that 3r + 4s ≤ n < 4r + 6s. In this case, the problem of finding the minimum degree
threshold for an (r, s)-family in graphs on n vertices is closely related to the theory of Tiling Turán Numbers introduced
by Komlós in [14].

For every nonempty graph H , let σ (H) be the size of the smallest color class over all proper χ (H)-colorings of H , and
define the critical chromatic number of H to be

χcr (H) =
(χ (H) − 1)|H|

|H| − σ (H)
.

For example, χcr (K3) = 3, χcr (K1,1,2) = 8/3, and χcr (K2,2) = χcr (K3,3) = 2.
For 1 ≤ t ≤ n/3, define G(t, n) = Kt,⌊(n−t)/2⌋,⌈(n−t)/2⌉ and note that

χcr (G(t, n)) =
2n

n − t
and δ(G(t, n)) = ⌊(n + t)/2⌋ =

⌊(

1 −
1

χcr (G(t, n))

)

n

⌋

. (1)
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Let r3, r4, s4, and s6 be non-negative integers such that r = r3+r4 and s = s4+s6. Call an (r, s)-family an (r3, r4, s4, s6)-family

if it contains exactly r3 triangles, r4 copies of K2,2, s4 copies of K1,1,2, and s6 copies of K3,3. By induction on s′4, we have

that G(s′4, n
′) contains a (0, 0, s′4, 0)-family when n′ ≥ 4s′4. This implies that

G(r3 + s4, n) contains an (r3, r4, s4, s6)-family when n ≥ 3r3 + 4r4 + 4s4 + 6s6. (2)

Also note that every cycle in G(t, n) on fewer than 4 vertices (i.e. the triangle) has at least one vertex in the part of size

t . Similarly, every chorded cycle in G(t, n) on less than 6 vertices must have at least one vertex in the part of size t .

Therefore, G(t, n) does not contain an (r, s)-family

when t < s and n < 4r + 6s − 2t; or when t ≥ s and n < 4r + 6s − (2s + (t − s)) = 4r + 4s − (t − s). (3)

Define

r3 = r3(r, s, n) = max{0, 4r + 4s − n} and s4 = s4(r, s, n) = min {s, ⌈(4r + 6s − n)/2⌉} .

Because r3 ≤ r and 1 ≤ s4 ≤ s we have that r3 + s4 ≤ r + s ≤ n/3, and we can define H(r, s, n) = G(r3 + s4, n) and

H ′(r, s, n) = G(r3 + s4 − 1, n). If we let r4 = r − r3, and s6 = s − s4, we have that

3r3 + 4r4 + 4s4 + 6s6 = 4r + 6s − r3 − 2s4 ≤ n,

so (2) implies that H(r, s, n) contains an (r3, r4, s4, s6)-family, and, hence, an (r, s)-family. To show that H ′(r, s, n) does not

contain an (r, s)-family we consider two cases. First, when n ≥ 4r+4s, we have that r3 = 0 and s4−1 < (4r+6s−n)/2 ≤
s4 ≤ s, so r3 + s4 − 1 < s and

4r + 6s − 2(r3 + s4 − 1) = 4r + 6s − 2(s4 − 1) > n.

Second, when n < 4r + 4s we have that r3 = 4r + 4s − n ≥ 1 and s4 = s, so r3 + s4 − 1 ≥ s, and

4r + 4s − (r3 + s4 − 1 − s) = 4r + 4s − (r3 − 1) = n + 1 > n.

Therefore, in either case, (3) implies that the graph H ′(r, s, n) does not contain an (r, s)-family.

For every integer m, we have that
⌈

m
2

⌉

− 1 =
⌊

m−1
2

⌋

and

⌊

⌊

m−1
2

⌋

2

⌋

=
⌊

m−1
4

⌋

, so (with m = 4r + 6s + n)

⌊

n +
⌈

4r+6s−n
2

⌉

− 1

2

⌋

=

⌊

⌈

4r+6s+n
2

⌉

− 1

2

⌋

=

⌊

⌊

4r+6s+n−1
2

⌋

2

⌋

=

⌊

4r + 6s + n − 1

4

⌋

= r +

⌊

6s + n − 1

4

⌋

.

Using this with (1), we have

δ(H ′(r, s, n)) =

⌊

n + r3 + s4 − 1

2

⌋

=

⎧

⎨

⎩

⌊

n+s+(4r+4s−n)−1

2

⌋

= 2r +
⌊

5s−1
2

⌋

if n < 4r + 4s,
⌊

n+
⌈

4r+6s−n
2

⌉

−1

2

⌋

= r +
⌊

6s+n−1
4

⌋

if n ≥ 4r + 4s.

Therefore, we pose the following conjecture, which (if true) would be a tight result.

Conjecture 10. Suppose that r, s and n are non-negative integers and n ≥ 3r + 4s. If G is a graph on n vertices such that

δ(G) ≥

⎧

⎪

⎨

⎪

⎩

2r + 5s
2

if 3r + 4s ≤ n < 4r + 4s,

r + 3s
2

+ n
4

if 4r + 4s ≤ n ≤ 4r + 6s − 4,

2r + 3s if n ≥ 4r + 6s − 3,

(4)

then G contains an (r, s)-family.

Note that, when s = 0, Conjecture 10 is equivalent to the Corrádi–Hajnal Theorem. If either s = 1 or both s ≥ 2 and

n ≥ 4r + 6s − 3, then it is implied by Theorem 8. When n ≤ 4r + 6s − 4, Theorem 9 implies the conjecture if either

s = 2 or both s ≥ 3 and n ≥ 4r + 6s − 7. Additionally, when r = 0 and n = 4s, Conjecture 10 is implied by the following

theorem of Kawarabayashi [9].

Theorem 11 (Kawarabayashi [9]). Every graph G on 4s vertices with δ(G) ≥ 5
2
s contains s disjoint copies of K1,1,2.

Thus to prove Conjecture 10, it remains to consider the case when s ≥ 3, n ≤ 4r + 6s − 8, and either r ≥ 1 or n > 4s.

When n is large and at most 4r + 6s, an approximate version of Conjecture 10 is implied by the following theorem of

Shokoufandeh and Zhao [17] which was originally conjectured by Komlós [14]. (Komlós proved a weaker version of this

theorem in [14], which also implies a similar approximate version of Conjecture 10.)
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Theorem 12 (Shokoufandeh and Zhao 2003 [17]). For every graph H such that χ (G) ≥ 3 there exists n0 = n0(H) such that
for every n ≥ n0 the following holds. If G is an n vertex graph and

δ(H) ≥

(

1 −
1

χcr (H)

)

n,

then G contains a collection of disjoint copies of H that covers all but at most

5(χ (H) − 2)(|H| − σ (H))2

σ (H)(χ (H) − 1)

vertices.

To highlight the connection between Theorem 12 and Conjecture 10, we define the following function

f (x, y) =

{

2x + 5y

2
if x + y > 1

4
,

x + 3y

2
+ 1

4
if x + y ≤ 1

4
.

Note that f (r/n, s/n) · n is the right-hand-side of (4) whenever n ≤ 4r + 6s − 4. Also observe that f (x, y) is continuous
(since x + y = 1

4
implies that 2x + 5y

2
= x + 3y

2
+ 1

4
) and, with (1), we have that

1 −
1

χcr (H(r, s, n))
=

n + r3(r, s, n) + s4(r, s, n)

2n
=

{

n+4r+4s−n+s
2n

if n < 4r + 4s

n+0+⌈(4r+6s−n)/2⌉

2n
if n ≥ 4r + 4s

≥

{

2r
n

+ 5s
2n

if (r + s)/n > 1
4

r
n

+ 3s
2n

+ 1
4

if (r + s)/n ≤ 1
4

= f
( r

n
,
s

n

)

, (5)

with equality holding whenever n is even or n < 4r + 4s.

Corollary 13. For every ε > 0 there exists n0 such that for every n ≥ n0 the following holds. Let r and s be non-negative
integers such that 3r + 4s + εn ≤ n < 4r + 6s. If G is an n vertex graph such that

δ(G) ≥
(

f
( r

n
,
s

n

)

+ ε

)

n,

then G contains an (r, s)-family.

Proof. Let C = 28/ε + 3, and assume that n0 ≥ 5C3. Also assume that n0 is greater than the maximum of n0(H) from
Theorem 12 over every 3-chromatic graph H on at most C vertices.

Let

h = 2

⌊

C ·
n − 5C2

2n

⌋

, r ′ =
⌈

C ·
r

n

⌉

, and s′ =
⌈

C ·
s

n

⌉

. (6)

We claim that

3r ′ + 4s′ ≤ h < 4r ′ + 6s′. (7)

To see that the second inequality in (7) holds, note that, using (6), we have h ≤ C and 4r ′/h + 6s′/h ≥ 4r/n + 6s/n > 1.
To see that, 3r ′/h + 4s′/h ≤ 1 and the first inequality in (7) holds, first note that

h ≥ 2

(

C ·
n − 5C2

2n
− 1

)

= C −
5C3

n
− 2 ≥ C − 3 =

28

ε
.

Then, using the fact that r/n ≤ 1, we have that

r ′

h
≤ h−1 ·

(

Cr

n
+ 1

)

≤
1

C − 3

(

Cr

n
+ 1

)

=
r

n
+

3

C − 3
·
r

n
+

1

C − 3
≤

r

n
+

4

C − 3
=

r

n
+

ε

7
, (8)

and, similarly

s′

h
≤

s

n
+

ε

7
. (9)

So, with (8) and (9), we have that 3r ′/h + 4s′/h ≤ 3r/n + 4s/n + ε ≤ 1.
Now fix H to be the complete tripartite graph H(r ′, s′, h). Note that |H| = h is even, χ (H) = 3 (since we can assume

r + s ≥ 1), and h ≤ C , so, with (5),

f

(

r ′

h
,
s′

h

)

=

(

1 −
1

χcr (H)

)

and
5(χ (H) − 2)(|H| − σ (H))2

σ (H)(χ (H) − 1)
≤ 5C2. (10)
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Also note that (7) implies that

H contains an (r ′, s′)-family. (11)

Furthermore, with (8), (9), (10) and the definition of f (x, y), we have that

δ(G) ≥
(

f
( r

n
,
s

n

)

+ ε

)

n ≥ f
( r

n
+

ε

7
,
s

n
+

ε

7

)

n ≥ f

(

r ′

h
,
s′

h

)

n =

(

1 −
1

χcr (H)

)

n.

Therefore, by our choice of n, Theorem 12 with (10) implies that G contains a collection of at least (n − 5C2)/h disjoint

copies of H . Note that this implies that G contains an (r, s)-family, because, by (11), every copy of H contains an

(r ′, s′)-family and, using (6),

n − 5C2

h
· r ′ ≥ (n − 5C2) ·

n

C(n − 5C2)
·
Cr

n
= r,

and, similarly, (n − 5C2)/h · s′ ≥ s. □

This proves an approximate version of Conjecture 10.

3. Preliminaries

In this section we provide additional notation that will be used throughout the remainder of this paper. However, we

first begin with a restatement of Theorem 9, which is the version of our main theorem that we will prove in the rest of

this paper.

Theorem 14 (Restatement of Theorem 9). Given r ≥ 0 and s ≥ 1 such that r + s ≥ 2, let m = 2r + 3s − 1 and let G be a

graph on n vertices where n ≥ 3r + 4s and δ(G) ≥ m. Then G is an (r, s)-extremal graph if and only if there exists a partition

{A, B} of V (G) such that

(a) |A| = m, |B| = n − m and α′(G[A]) = δ(G[A]) = max{0,m − |B| = 2m − n};
(b) B is an independent set; and

(c) s = 1 when n ≤ 2m − 2 = 4r + 6s − 4.

To see that Theorem 14 is equivalent to Theorem 9, let r , s, n, m and G be as they are in the statements of Theorems 9

and 14. If n ≥ 2m − 1, the equivalence of the two Theorems is clear, so assume that n ≤ 2m − 2. Let n′ = m and

m′ = max{0, 2m− n} = 2m− n. If (iii) or (iv) hold, then s = 1, and there exists a partition {A, B} of V (G) such that B is an

independent set, |B| = n − m and δ(G[A]) = α′(G[A]) = m′. Therefore, (a), (b) and (c) of Theorem 14 hold. Now assume

that (a), (b) and (c) all hold with the partition {A, B}. So |A| = m = n′ and α′(G[A]) = δ(G[A]) = 2m− n = m′ = δ(G)−|B|.
This implies that every vertex in A is adjacent to every vertex in B. Since s = 1, we have that

m′ = 2m − n ≤ 4r + 6s − 2 − (3r + 4s) = r < r + 1 =
⌊

n′/2
⌋

.

Therefore, the following well-known corollary to the Berge–Tutte Formula on matchings implies that either (iii) or (iv) of

Theorem 9 hold. To see this, first note either (A) or (B) of Corollary 15 must hold for G[A]. If (A) holds for G[A], then (iii)

holds for G. If (B) holds for G[A], then we must have that |A| = 2m′ + 2 and that m′ is even., which further implies that

2m′ + 2 = n′ = m = 2r + 3s − 1 = 2r + 2, so it must be that m′ = r which implies that r is even. This further implies

that r = m′ = 2m − n = 4r + 6s − 2 − n = 4r + 4 − n, so n = 3r + 4 = 3r + 4s. Therefore, (iv) holds for G.

Although the following corollary is well-known, we provide the proof for completeness.

Corollary 15. Suppose that G is a graph on n′ vertices and let m′ = δ(G). Then α′(G) ≥ min{
⌊

n′/2
⌋

,m′}. Furthermore when

m′ <
⌊

n′/2
⌋

, we have α′(G) = m′ if and only if

(A) Km′,n′−m′ ⊆ G ⊆ Km′ ∨ Kn′−m′ ; or

(B) m′ is even and G is isomorphic to Km′+1,m′+1.

Proof. Note that if (A) or (B) hold in G, then α′(G) = δ(G) = m′.

On the other hand, let G be a graph on n′ vertices, δ = δ(G) and α′ = α′(G). The Berge–Tutte Formula implies that

there exists S ⊆ V (G) such that if O is the set of components of odd order in G − S, then

|O| − |S| = n′ − 2α′. (12)

Note that n′ − 2α′ ≤ 1 implies that α′ =
⌊

n′/2
⌋

and we are done. Therefore, assume that

|O| − |S| ≥ 2. (13)
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Let X be the component of smallest order in O. By the minimum degree condition,

|S| ≥ δ − (|X | − 1) (14)

Using (12) and (14) and the fact that n′ ≥ |S| +
∑

C∈O |C |, we have

2α′ + |O| = |S| + n′ ≥ 2|S| +
∑

C∈O

|C | ≥ 2(δ − (|X | − 1)) + |X ||O|, (15)

so

2(α′ − δ) ≥ (|O| − 2)(|X | − 1). (16)

Therefore, with (13), we have that α′ ≥ δ.
If α′ = δ, then, by (13) and (16), either |O| = 2 and |S| = 0, or |X | = 1. If |O| = 2 and |S| = 0, then G consists of two

odd components each with minimum degree δ. Since we can assume that δ ≥ 1, neither component has a matching of
size δ. So, if X and Y are the two components, we have that |X |, |Y | ≥ δ + 1 and ⌊|X |/2⌋ + ⌊|Y |/2⌋ ≤ α′ = δ. Therefore,
|X | = |Y | = δ + 1, δ is even and both X and Y are cliques on δ + 1 vertices. That is, G meets (B). If |X | = 1, then (15)
holds with equality, which implies that every component in O consists of a single vertex. Furthermore, (14) implies that
|S| ≥ δ, and (12) yields |O| − |S| = n′ − 2δ. Because |S| + |O| ≤ n′, this implies that |O| = n′ − δ and |S| = δ. Hence, the
union of the vertices in the components in O is an independent set of size n′ − δ, so, by the minimum degree condition,
G meets (A). □

3.1. Additional notation

Let G be a graph, v ∈ V (G), and A and B be two, not necessarily disjoint, subsets of V (G). We let NB(v) denote NG(v)∩B,
and let both ∥v, B∥ and dB(v) denote |NB(v)|. We also let ∥A, B∥ =

∑

v∈A ∥v, B∥. For every collection of subgraphs H

of G, we let V (H) =
⋃

H∈H V (H). If H is a subgraph of G, we often replace V (H) with H in the above notation (e.g.,
NH (v) = NV (H)(v), ∥v,H∥ = ∥v, V (H)∥, and ∥A,H∥ = ∥A, V (H)∥). Similarly, we often replace V (H) with H when H is a
collection of subsets of G (e.g., ∥A,H∥ = ∥A, V (H)∥).

If P = v1 . . . vm is a path, then for 1 ≤ i ≤ j ≤ m, we let viPvj denote the path vi · · · vj. An n-cycle (n-chorded-cycle) is
a cycle (chorded-cycle) with n vertices.

Let (C,D) be an (a, b)-family for some non-negative a and b, and let U = C ∪ D. We say that (C,D) covers the vertex
set V (U). We identify (C,D) with the quadruple (U, C,D, R) where R = G[V (G) \ V (U)] is the graph induced by vertices
not covered by (C,D).

A leaf is a vertex that has degree 1, and a star is a tree in which all of the vertices except at most one is a leaf. Note
that when T is a star and |T | ≥ 3 vertices, there exists a vertex with degree in T exactly |T | − 1. We call this vertex the
center of the star.

If G is a graph, H is a subgraph of G and A ⊆ V (G), we let H + A = G[V (H)∪ A] and H − A = G[V (H) \ A]. If |A| is small,
we often replace A with the vertices of A in the above notation (e.g., if A = {v}, we use H +v = H +A and H −v = H −A).
If F is a subgraph of G, we let H + F = H + V (F ) and H − F = H − V (F ).

4. Main lemmas

We divide the majority of the proof of Theorem 14 into the following two lemmas. We give the proof of Lemma 16
in Section 4.2 and the proof of Lemma 17 in Section 4.3. In Section 4.1, we prove several structural lemmas that will be
used in both Sections 4.2 and 4.3.

Lemma 16. Let r and s be positive integers, and let G be an (r, s)-extremal graph on n vertices. If G contains an (r, s−1)-family
that covers at most n−4 vertices, then either n = 4r +6s−2 and α(G) = n− (2r +3s−1); or G contains an (r −1, s)-family
that covers at most n − 3 vertices.

Lemma 17. Let r and s be positive integers, and let G be an (r, s)-extremal graph on n vertices. If G contains an (r−1, s)-family
that covers at most n − 3 vertices, then α(G) = n − (2r + 3s − 1). Furthermore, if n ≤ 4r + 6s − 4, then s = 1.

Proof of Theorem 14 from Lemmas 16 and 17. First note that by Theorem 7, we can assume throughout that r is
positive. Let m = 2r + 3s − 1, and let G be a graph on n ≥ 3r + 4s vertices such that δ(G) ≥ m.

To prove sufficiency, we assume that G contains (U, C,D, R) an (r, s)-family and also that both (a) and (b) hold,
and we then show that (c) does not hold, by proving that we must have n ≤ 4r + 6s − 4 and s ≥ 2. By (a) and
(b), there exists a partition {A, B} of V (G) such that |A| = m and B is an independent set. By (a), we can assume that
z = α′(G[A]) = max{0, 2m − n}. Note that when z > 0,

n = 2m − z = 4r + 6s − 2 − z. (17)
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Fig. 2. Configurations of Lemmas 19 and 20.

Since every C ∈ C has at least 2 vertices in A, there must exist D∗ ∈ D such that |V (D∗) ∩ A| ≤ 2, so there exists an
edge in G[A]; that is, z ≥ 1. Therefore, with (17), we have n ≤ 4r + 3s − 3. Note that, because B is independent, D∗

must have exactly 2 vertices in both A and B. Because n ≤ 4r + 6s − 3, we have |B| ≤ 2r + 3s − 2, so, in U − D∗, there
must exist either a chorded cycle with at most 2 vertices in B or a cycle with at most one vertex in B. This implies that
z = α′(G[A]) ≥ 2, so, with (17), n ≤ 4r + 6s − 4. If s = 1, then |A| = 2r + 2 and |B| = 2r + 2 − z. Therefore, every cycle
in C = U − D∗ has exactly 2 vertices in A, so there are at least z triangles in C with two vertices in A and one vertex in
B. This implies that α′(G[A]) ≥ z + 1, but z = α′(G[A]), a contradiction. Therefore, s ≥ 2, and this completes the proof of
sufficiency.

To prove necessity, we assume that G is (r, s)-extremal. We begin by showing that α(G) ≥ n − (2r + 3s − 1) and
that s = 1 when n ≤ 4r + 6s − 4. If necessary, add edges to G to form a graph G′ that is edge-maximal with respect
to being (r, s)-extremal. By the definition of an (r, s)-extremal graph, n ≥ 3r + 4s, so G′ is not a clique and there exist
vertices x and y that are not adjacent. Since G′ is edge-maximal with respect to being (r, s)-extremal, there exists an
(r, s)-family in G′ + xy. Therefore, in G′, there exists either (Case 1) an (r − 1, s)-family that covers at most n− 3 vertices,
or (Case 2) an (r, s − 1)-family that covers at most n − 4 vertices. If we are in Case 2, then Lemma 16 implies that
n = 4r + 6s − 2 and α(G′) = n − (2r + 3s − 1), or we are in Case 1. When we are in Case 1, we can use Lemma 17
to conclude that α(G′) = n − (2r + 3s − 1) and s = 1 when n ≤ 4r + 6s − 4. So in either case we may assume
α(G′) = n − (2r + 3s − 1), and either n = 4r + 6s − 2, or s = 1 when n ≤ 4r + 6s − 4. Because G is a spanning subgraph
of G′, we have α(G) = α(G′) = n − (2r + 3s − 1).

Therefore, there exists a partition {A, B} of V (G) such that |A| = 2r + 3s − 1 and B is an independent set. To complete
the proof, we will show that the matching number of G[A] is z = max{0,m − |B|}.

By the minimum degree condition, all possible edges exists between A and B. When n ≥ 4r+6s−2, we have z = 0 and
|B| ≥ 2r + 3s − 1. In this case, if A is not an independent set, then we can find an (r, s)-family consisting of one chorded
4-cycle with 2 vertices in both A and B, (s − 1) copies of K3,3 and r copies of K2,2. This implies that α′(G[A]) = 0 = z. If
n = 4r +6s−3, then |A| = 2r +3s−1, |B| = 2r +3s−2, and δ(G[A]) ≥ m−|B| = 1, so α′(G[A]) ≥ 1. If α′(G[A]) ≥ 2, then
we can construct an (r, s)-family with one chorded 4-cycle, one triangle, (r − 1) copies of K2,2 and (s − 1) copies of K3,3,
so α′(G[A]) = z = 1 when n = 4r + 6s − 3. Now assume 3r + 4s ≤ n ≤ 4r + 6s − 4 and recall that we have previously
shown that, in this case, s = 1. We also have that 2 ≤ z ≤ r + 2(s − 1) = r , |A| = 2r + 2, and |B| = 2r + 2 − z. Since
δ(G[A]) ≥ m− |B| = z and z ≤ r < |A|/2, we have that α′(G[A]) ≥ z. If α′(G[A]) ≥ z + 1, then we can find an (r, s)-family
consisting of one chorded 4-cycle with 2 vertices in A, z triangles with 2 vertices in A, and (r − z) copies of K2,2 each with
2 vertices in A. Therefore, α′(G[A]) = z, and this completes the proof of necessity. □

4.1. Optimal families

The following definition is critical to the proofs of Lemmas 16 and 17.

Definition 18. Let a and b be non-negative integers and let G be a graph. We say that an (a, b)-family (U, C,D, R) is an
optimal (a, b)-family if, over all (a, b)-families in G, the following conditions hold

(O1) the number of vertices in U is minimized,

(O2) subject to (O1), the total number of chords in the cycles of D is maximized, and

(O3) subject to (O1) and (O2), the length of the longest path in R is maximized.

(O4) subject to (O1), (O2) and (O3), the number of vertices in C is minimized.
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Lemma 19. Let G be a graph, let a and b be non-negative integers, and suppose that (U, C,D, R) is an optimal (a, b)-family.
Then, for every C ∈ C and v ∈ R, the following holds (see Fig. 2).

1. If ∥v, C∥ ≥ 3, then ∥v, C∥ = 3 and C ∼= K3.

2. If ∥v, C∥ = 2, then |C | ∈ {3, 4}. Moreover, if |C | = 4, then C + v ∼= K2,3.

Proof. Observe that, by (O1), we can assume that C is an induced cycle.
We first prove 19.1. Suppose ∥v, C∥ ≥ 3 with c1, c2, c3 ∈ NC (v) appearing in order on C . If there exists c ∈

V (C) \ {c1, c2, c3}, then without loss of generality, assume c appears on C after c2 and before c3. Let P̃ denote the path

on C between c1 and c2 that does not contain c. Then vc1P̃c2v is a cycle strictly smaller than C , contradicting (O1). Thus,
NC (v) = {c1, c2, c3} = V (C), which proves 19.1.

Suppose ∥v, C∥ = 2 with NC (v) = {c1, c2}. Let P1 and P2 be the two paths between c1 and c2 on C . Without loss of
generality assume there exist internal vertices c and c ′ on c1P1c2. Then vc1P2c2v is a cycle with fewer vertices than C ,
contradicting (O1). Thus, |C | ∈ {3, 4}, and furthermore, if |C | = 4, then G[C + v] ∼= K2,3. This proves 19.2. □

Lemma 20. Let G be a graph, let a and b be non-negative integers, and suppose that (U, C,D, R) is an optimal (a, b)-family.
Then, for every D ∈ D and v ∈ R, the following holds (see Fig. 2).

1. If ∥v,D∥ ≥ 4, then ∥v,D∥ = 4 and D ∼= K4.

2. If ∥v,D∥ = 3, then |D| ∈ {4, 5, 6}. Moreover:

(a) if |D| = 4 and D ∼= K1,1,2, then the chord is incident to the non-neighbor of v;

(b) if |D| = 5, then D has a single chord and no vertex in ND(v) is incident to this chord;

(c) if |D| = 6, then D ∼= K3,3 and D + v ∼= K3,4.

Proof. Observe that, by (O2), we can assume that D is an induced graph. Let C = d1d2 . . . dm be a spanning cycle in D.
The proof is implied by the following two properties:

(i) ∥v,D − d − d+∥ ≤ 2 if d and d+ are consecutive on C; and (ii) ∥d,D∥ ≥ ∥v,D − d∥ for all d ∈ D. (18)

To see (18)(i), note that otherwise we could replace D with a chorded cycle in D − d − d+ + v and contradict (O1). For
(18)(ii), note that ∥v,D − d∥ > ∥d,D∥ ≥ 2, implies that D − d + v contains either a chorded cycle with fewer vertices
that D or a chorded cycle with the same number of vertices as D, but more edges than D. Therefore, we either contradict
(O1) or (O2).

Note that (18)(i) and ∥v,D∥ ≥ 4 imply that ∥v,D∥ = |D| = 4, and then (18)(ii) gives us that ∥d,D∥ = 3 for every
d ∈ D. This proves 20.1.

Suppose that ∥v,D∥ = 3 and let A = N(v) and B = V (D) \ A. Then (18)(i) implies |B| ≤ ∥v,D∥ = 3, so |D| ∈ {4, 5, 6}. If
|D| = 4, then (18)(ii) implies that the vertex d ∈ B is incident to a chord, which proves 20.2(a). If |D| = 5, then, by (18)(i),
we can assume that B = {d1, d3}, and (18)(ii) implies that both d1 and d3 are incident to a chord. Since |D| = 5, it must
be that D has exactly one chord, otherwise we could replace D with a chorded cycle on 4 vertices, contradicting (O1), so
d1d3 is an edge and we have proved 20.2(b). If |D| = 6, then, by (18)(i), we can assume that B = {d1, d3, d5}. Because
of (O1), we can assume that D + v does not contain a chorded 4-cycle or a chorded 5-cycle and this implies that both A
and B are independent. By (18)(ii), every vertex in B must have 3 neighbors in D. These two observations together imply
20.2(c). □

Lemma 21. Let G be a graph, let a and b be non-negative integers, and suppose that (U, C,D, R) is an optimal (a, b)-family.
Let u, v ∈ R such that uv ∈ E(G). If C ∈ C, |C | = 4, ∥u, C∥ ≥ 2 and ∥v, C∥ ≥ 1, then NC (u) ∩ NC (v) = ∅. Similarly, if D ∈ D,
|D| = 6, ∥u,D∥ ≥ 3 and ∥v,D∥ ≥ 1, then ND(u) ∩ ND(v) = ∅.

Proof. By Lemma 19, C ∼= K2,2 and we can let A = {a1, a2} and B = {b1, b2} be the partite sets of C with NC (u) = A.
Suppose on the contrary that va1 ∈ E(G). Then we can replace C with the smaller cycle uva1u, contradicting (O1).

Similarly, by Lemma 20, we may assume D ∼= K3,3 with partite sets A′ = {a′
1, a

′
2, a

′
3} and B′ = {b′

1, b
′
2, b

′
3}, where

ND(u) = A′. If va′
1 ∈ E(G), then we can replace D with the smaller chorded cycle ua′

2b
′
1a

′
1vu, contradicting (O1). □

Lemma 22. Let G be a graph, let a and b be non-negative integers, and suppose that (U, C,D, R) is an optimal (a, b)-family.
If D ∈ D and ∥v1,D∥, ∥v2,D∥ ≥ 3 for distinct v1, v2 ∈ R, then D is isomorphic to either K1,1,2, K4, or K3,3.

Proof. Note that by 20, we only need to prove that |D| ̸= 5. For a contradiction, assume |D| = 5. Then Lemma 20 implies
that ND(v1) = ND(v2). Furthermore, there are two adjacent vertices d, d′ ∈ ND(v1) = ND(v2), and G[{d, d′, v1, v2}] contains
K1,1,2, contradicting (O1). □

Lemma 23. Let G be a graph, let a and b be non-negative integers, and suppose that (U, C,D, R) is an optimal (a, b)-family
and let P be a longest path in R. Suppose that |R| > |P| and let p be an endpoint of P, v ∈ R − P and F = {p, v}. Then
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∥F , C∥ ≤ 4 and ∥F ,D∥ ≤ 6 for all C ∈ C and D ∈ D. Furthermore,

(1) if ∥F , C∥ = 4, then either ∥p, C∥ = |C | = 3, or C is isomorphic to K3 or K2,2 and NC (p) = NC (v);

(2) if ∥F ,D∥ = 6, then either ∥p,D∥ = |D| = 4, or D is isomorphic to K4 or K3,3 and ND(p) = ND(v).

Proof. Suppose ∥F , C∥ ≥ 4. Assume |C | = 3. If we can label V (C) as {c1, c2, c3}, so that pc1, vc2, vc3 ∈ E(G), then we can
replace C with vc2c3v and P with P + c1, contradicting (O3). This implies that ∥F , C∥ = 4, and furthermore, if ∥p, C∥ ≤ 2,
then ∥p, C∥ = 2 = ∥v, C∥ with NC (p) = NC (v). This proves 23.(1) when C is a triangle.

Now assume |C | ≥ 4. By Lemma 19, we can assume that |C | = 4. Furthermore, if we let C = c1c2c3c4c1, we have that
NC (p),NC (v) ∈ {{c1, c3}, {c2, c4}}, so if we assume that NC (p) ̸= NC (v), then we can further assume that NC (p) = {c1, c3}
and NC (v) = {c2, c4}. Then we can replace C with vc2c3c4v and P with P + c1, contradicting (O3). This contradiction,
completes the proof of 23.(1).

Consider D ∈ D and suppose ∥F ,D∥ ≥ 6. Assume D ∼= K4. If we can label V (D) as {d1, d2, d3, d4} so that d1, d2, d3 ∈
NG(v) and d4 ∈ NG(p), then we can replace D and P with D − d4 + v and P + d4, respectively, which violates (O3). Thus,
if D ∼= K4, then ∥F ,D∥ = 6 and either ∥p,D∥ = |D| = 4 or ND(p) = ND(v).

So we may assume D ̸∼= K4. As a result, by Lemmas 20 and 22, ∥{v, p},D∥ = 6, ∥v,D∥ = ∥p,D∥ = 3, and D is either
K1,1,2 or K3,3. Suppose D ∼= K1,1,2. Let d ∈ ND(p) such that d is not incident to a chord in D. By Lemma 20, we can replace D
and P with D− d+ v and P + d, respectively, which violates (O3). Now suppose D ∼= K3,3. By Lemma 20, if v and p do not
have the same neighborhood, they are adjacent to disjoint sets of vertices, and D+ p and D+ v both contain K3,4. In this
case, we extend P using a d ∈ ND(p), and replace D with the chorded cycle D − d + v. This violates (O3), and completes
the proof. □

4.2. Proof of Lemma 16

In this section, we will prove Lemma 16. The following lemma contains most of the argument and is broken up into
several claims.

Lemma 24. Let r ≥ 1 and s ≥ 1 and suppose that G is an (r, s)-extremal graph on n vertices that contains an optimal
(r, s − 1)-family (U, C,D, R) that covers at most n − 4 vertices, but does not contain any (r − 1, s)-family that covers at most
n − 3 vertices. Then

• R ∼= K2,2;

• C ∼= K2,2 and R + C ∼= K4,4 for every C ∈ C; and

• D ∼= K3,3 and R + D ∼= K5,5 for every D ∈ D.

In particular, for every v ∈ R, dG(v) = 2r + 3s− 1, and, for every u ∈ R that is not adjacent to v, we have that NG(u) = NG(v).

Proof. In all the following we assume r ≥ 1 and s ≥ 1. In addition, G is an (r, s)-extremal graph on n vertices that
contains an optimal (r, s − 1)-family (U, C,D, R) that covers at most n − 4 vertices (so |R| ≥ 4), but does not contain any
(r − 1, s)-family that covers at most n − 3 vertices.

Claim 24.1. The graph R does not contain a chorded cycle, and for every v ∈ R and for every C ∈ C, the graph C + v does
not contain a chorded-cycle.

Proof. The graph R cannot contain a chorded cycle as G is (r, s)-extremal. Let v ∈ R. Because there are at least 4 vertices
in R, there are at least 3 vertices in R−v, so if there was a chorded cycle in C+v, then G would contain an (r−1, s)-family
on at most n − 3 vertices, a contradiction. □

Claim 24.2. Suppose that P ′ is a path of maximum length in R and that p is one of its endpoints. If v ∈ R − P ′, then
∥{p, v}, V (C) ∪ V (R)∥ ≥ 4r + 4.

Proof. Suppose ∥{p, v}, V (C) ∪ V (R)∥ < 4r + 4. Then

∥{p, v},D∥ ≥ 2(2r + 3s − 1)− ∥ {p, v}, V (C) ∪ V (R)|> 6(s − 1).

Yet this implies that there exists D ∈ D such that ∥{p, v},D∥ ≥ 7, which contradicts Lemma 23. □

Claim 24.3. Suppose that P ′ is a (not necessarily maximum length) path in R such that |R| − |P ′| ≥ 3. Then |P ′, C | ≤ 3 for
every C ∈ C, and, furthermore, if |P ′| ≤ 2, then ∥P ′, C∥ ≤ 2 for every C ∈ C.

Proof. Note that we can assume that the graph induced by V (P ′)∪V (C) does not contain a chorded cycle, since we could
then replace C with such a chorded cycle to produce an (r − 1, s)-family that covers at most n − (|R| − |P ′|) ≤ n − 3
vertices, a contradiction.
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Let P ′ = v1, . . . , vℓ and suppose that ∥P ′, C∥ ≥ 3 for some C ∈ C. Let 1 ≤ i ≤ k ≤ ℓ be such that k − i is maximized
subject to ∥vi, C∥ ≥ 1 and ∥vk, C∥ ≥ 1, i.e., vi and vk are, respectively, the first and last vertices on P ′ that have neighbors
in C . If vi and vk have distinct neighbors on C , then there are two cycles, say C1 and C2, in P ′ + C that both contain the
path viP

′vk and are such that V (C) ⊆ V (C1) ∪ V (C2), so since ∥P ′, C∥ = ∥viP
′vk, C∥ ≥ 3, at least one of the two cycles C1

and C2 span a chorded cycle. So assume that there exists a unique vertex c in V (C)∩ (N(vi) ∪ N(vk)). Because ∥P ′, C∥ > 1,
this implies that vi ̸= vk and ∥{vi, vk}, C∥ = 2. The fact that ∥P ′, C∥ ≥ 3 then implies that there exists a smallest j such
that i < j < k and ∥vj, C∥ ≥ 1, i.e., vi and vj are the first two vertices on P ′ that have a neighbor on C and vk is the
last vertex in P that has a neighbor in C . Note that this implies that |P ′| ≥ 3, so we have proved the second part of the
statement of the claim. To complete the proof of the first part of the claim, let c ′ be a neighbor of vj on C . Since viP

′vk +C
does not contain a chorded cycle, we have that c ′ ̸= c. This implies that there exist two distinct cycles, say C ′

1 and C ′
2,

that both contain the path vjP
′vk and such that V (C) ⊆ V (C ′

1)∪V (C ′
2). So, using the same logic as before, since P ′ +C does

not contain a chorded cycle, we have that ∥vjP
′vk, C∥ = 2. Therefore, vic , vjc

′ and vkc are the only edges between P ′ and
C so ∥P ′, C∥ = 3. □

Claim 24.4. For every v ∈ R and every C ∈ C, we have that ∥v, C∥ ≤ 2.

Proof. This follows from Claim 24.3 applied to the path consisting of the single vertex v. □

Claim 24.5. If R contains a triangle, then ∥v, C∥ ≤ 1 for every v ∈ R and C ∈ C.

Proof. Suppose there exists T a triangle in R. Because we could swap each cycle in C with this triangle to form a new
(r, s − 1)-family, the condition (O1) implies that every cycle in C is a triangle. Thus, if ∥v, C∥ ≥ 2 for some v ∈ R and
some C ∈ C, then C + v would form a chorded cycle, contradicting Claim 24.1. □

Claim 24.6. If P ′ is a path of maximum length in R, then |P ′| ≥ 4.

Proof. First suppose ∆(R) ≤ 1, which implies that |P ′| ≤ 2. Let p be one of the endpoints of P ′. Because |R| ≥ 4, there
exists v ∈ V (R − P ′). With Claim 24.4, we have that ∥{p, v}, V (C) ∪ V (R)∥ ≤ 4r + 2, a contradiction to Claim 24.2.

Therefore, we can assume that there exists a vertex in R with at least 2 neighbors in R. This further implies that if P ′

is a longest path in R, then |P ′| ≥ 3.
Suppose P ′ is a maximum length path in R and that |P ′| = 3. Since |R| ≥ 4, we have that |R − P ′| ≥ 1, and we can

let v be the endpoint of a longest path in R − P ′. Further suppose that the endpoints of P ′ are adjacent, so the vertices
of P ′ induce a triangle. Note that this implies that v does not have a neighbor on P ′, because P ′ is a longest path in R, so
Claim 24.1 implies that ∥v, R∥ ≤ 2. With Claim 24.5, we have that ∥{p, v}, V (C) ∪ V (R)∥ ≤ 2r + 4 < 4r + 4, contradicting
Claim 24.2. Now suppose that the vertices in P ′ do not induce a triangle and let p, q and p′ be the vertices on P ′ in order.
Note that, because P ′ is a longest path in R, if v has a neighbor on P ′, then it must be q. In this case, v has no neighbors in
R−P ′, because vqp′ is also a longest path in R. If v does not have a neighbor on P ′, then Claim 24.1 implies that ∥v, R∥ ≤ 2.
In either case, with Claim 24.4, we have that ∥{p, v}, V (C) ∪ V (R)∥ ≤ 4r + 3, contradicting Claim 24.2. □

Now fix P a maximum length path in R. Let p and p′ be the endpoints of P , and let q and q′ be the neighbors of p and
p′ on P , respectively, and let W = {p, q, q′, p′}. By Claim 24.6, we know that |P| ≥ 4, so |W | = 4.

Claim 24.7. We have that ∥W , C∥ ≤ 8 for every C ∈ C and ∥W ,D∥ ≤ 12 for every D ∈ D.

Proof. Let C ∈ C. By Claim 24.4, ∥w, C∥ ≤ 2 for every w ∈ W , so ∥W , C∥ ≤ 8.
Let D ∈ D and assume that ∥W ,D∥ > 12. Since one of the four vertices in W sends at least 4 edges to D, Lemma 20

implies that D ∼= K4. One of p or p′, say p, sends at least 3 edges to D, and since p sends at most 4 edges to D,
∥{q, q′, p′},D∥ ≥ 9. This further implies that one vertex in D, say d, is adjacent to each of the three vertices {q, q′, p′}. We
then have that D− d+ p is a chorded cycle and the graph induced by R− p+ d contains a chorded cycle, a contradiction
to the fact that G is (r, s)-extremal. □

Claim 24.8. R is isomorphic to K2,2.

Proof. Assume that |R| ≥ 5. Let P ′ be the 2-vertex path pq. Since |R|−|P ′| ≥ 3 and |P ′| ≤ 2, Claim 24.3 implies ∥P ′, C∥ ≤ 2
for every C ∈ C. Since the same holds for the 2-vertex path q′p′, we have that ∥W , C∥ ≤ 4r .

With Claim 24.7 and the fact that r ≥ 1, we have that

∥W , R∥ ≥ 4δ(G) − ∥W , C∥ − ∥W ,D∥ ≥ 4(2r + 3s − 1) − 4r − 12(s − 1) = 4r + 8 ≥ 12.

Since Claim 24.1 implies that ∥{p, p′}, R∥ ≤ 4, we can assume that

∥{q, q′}, R∥ ≥ 8, (19)



12 T. Molla, M. Santana and E. Yeager / Discrete Mathematics 343 (2020) 111837

so one of q or q′, say q has at least 4 neighbors in R. Since, by Claim 24.1, ∥q, P∥ ≤ 3, q has a neighbor v ∈ R−P . If |R| ≥ 6,
then we can apply Claim 24.3 to the 3-vertex path pqv and this gives us that ∥{p, q, v}, C∥ ≤ 3r . Because both p and v
are endpoints of longest path in R, we have that

∥{p, v}, V (C) ∪ V (R)∥ ≤ 3r + 4 < 4r + 4,

a contradiction to Claim 24.2. Therefore, we can assume that |R| = 5, and since v ∈ P − R and |P| ≥ 4, we have that
P = pqq′p′ and V (R − P) = {v}. By Claim 24.1, q and q′ cannot both have 4 neighbors in R, which contradicts (19).

Therefore, we can assume that |R| = |P| = 4, so that W = V (R) = V (P). Note that Claim 24.7 implies that

∥R, R∥ ≥ 4(2r + 3s − 1) − 8r − 12(s − 1) = 8. (20)

Suppose, one of q or q′, say q, is such that ∥q, R∥ ≥ 3. Then q, q′ and p′ induce a triangle. By Claim 24.1, we have exactly
4 edges in R. Also, by Claim 24.5, we have that ∥P, C∥ ≤ 4 for every C ∈ C, so, by Claim 24.7,

∥R, V (G)∥ = ∥R, C∥ + ∥R,D∥ + ∥R, R∥ ≤ 4r + 12(s − 1) + 8 < 4(2r + 3s − 1)

a contradiction. Therefore, ∥q, R∥ = ∥q′, R∥ = 2 and with Claim 24.1 and (20), we have that ∥p, R∥ = ∥p′, R∥ = 2 as well.
This implies that R is a cycle on 4 vertices. □

Claim 24.9. For every C ∈ C, C is a K2,2 and R + C is a K4,4; and, for every D ∈ D, D is a K3,3 and R + D is a K5,5.

Proof. First note that Claim 24.8 implies that R is a K2,2. This with Claim 24.7 implies that

4δ(G) ≤ ∥R, C∥ + ∥R,D∥ + ∥R, R∥ ≤ 8r + 12(s − 1) + 8 = 4(2r + 3s − 1) ≤ 4δ(G).

Therefore,

∥R, C∥ = 8 and ∥R,D∥ = 12 for every C ∈ C and D ∈ D. (21)

Let C ∈ C. By (21), there exists v ∈ R, such that ∥v, C∥ ≥ 2, so Claim 24.1 implies that C is not a triangle. This with
Lemma 19 gives us that C ∼= K2,2 and, with Lemma 21, we have that R + C ∼= K4,4.

Let D ∈ D. By (21), there exist at least two vertices in R that send at least 3 edges to D. This with, Lemmas 19 and
22 imply that D is either a K1,1,2, K4 or K3,3. If D is a K3,3, then R + C is isomorphic to K5,5 by Lemmas 20 and 21. When
D ∼= K1,1,2, Lemma 20 implies that ∥v,D∥ = 3 for every v ∈ R and every vertex in R is adjacent to the two vertices in C
that are incident to the chord. Therefore, for every edge xy ∈ E(R), D + x + y contains a K4, and we can replace D with
this K4 to create a new (r, s − 1)-family that violates (O2), a contradiction.

Now assume that D ∼= K4 and let d1, d2, d3 and d4 be the vertices in D labeled so that ∥d1, R∥ ≥ ∥d2, R∥ ≥
∥d3, R∥ ≥ ∥d4, R∥. Also, let r1, r2, r3 and r4 be the vertices in R labeled in the order they appear on the cycle and so
that ∥r1,D∥ ≥ ∥ri,D∥ for every i ∈ {2, 3, 4}. Note that ∥d1, R∥ ≥ 3 and ∥r1,D∥ ≥ 3. This implies that D − d1 + r1 is a
chorded cycle, so since G is (r, s)-extremal, we have that R − r1 + d1 does not contain a chorded cycle. This implies that
∥d1, R − r1∥ < 3, so ∥d1, R∥ = 3 and d1r1 is an edge. By (21), we therefore have ∥dj, R∥ = 3 for every j ∈ {1, 2, 3, 4}.
Suppose that there exists i ∈ {1, 2, 3, 4} such that ∥ri,D∥ ∈ {2, 3}, and let j ∈ {1, 2, 3, 4} so that ridj is not an edge. Then
D−dj+ri is a chorded cycle and, since ∥dj, R−ri∥ = ∥dj, R∥ = 3, we have that R−ri+dj is a chorded cycle, a contradiction.
Therefore, every vertex in R sends either 4, 1, or 0 edges to D, and this, with the fact that ∥R,D∥ = 12 implies that one of
the four vertices in R sends no edges to D while the remaining three vertices in R each send 4 edges to D. Without loss
of generality, we can assume that ∥r4,D∥ = 0. Then D′ = G[{d3, d4, r1, r3, r4}] has a spanning cycle r1d3d4r3r4r1 with two
chords: r1d4 and r3d3. And also d1d2r2 is a triangle T . Since r ≥ 1, there exist C ∈ C, and, by the first part of this claim,
we have that C is isomorphic to K2,2. If we replace C with T in C and D with D′ in D, then we have an (r, s − 1)-family
that violates (O4) a contradiction. □

We now finish the proof of Lemma 24. The first part of the lemma then follows from Claim 24.8 and 24.9. To see the
second part, let u and v be a pair of non-adjacent vertices in R. Because ∥v, R∥ = 2, ∥v, C∥ = 2 for every C ∈ C, and
∥v,D∥ = 3 for every D ∈ D, we have that dG(v) = 2r + 3(s − 1) + 2 = 2r + 3s − 1. We also have that NG(u) = NG(v)
because R + U is isomorphic to a complete bipartite graph for every U ∈ U and u and v are not adjacent. □

With Lemma 24, we can now prove Lemma 16.

Proof of Lemma 16. Let G be an (r, s)-extremal graph on n vertices that contains an (r, s− 1)-family that covers at most
n−4 vertices, but does not contain an (r −1, s)-family that covers at most n−3 vertices. By (O1), there exists (U, C,D, R)
an optimal (r, s − 1)-family with |R| ≥ 4. Note that Lemma 24 implies that n = 4r + 6(s − 1) + 4 = 4r + 6s − 2.

Let v ∈ R. From Lemma 24, we have that dG(v) = 2r + 3s− 1. We will show that, for every u that is not adjacent to v,
NG(u) = NG(v). This implies that V (G) \ NG(v) is an independent set of order n − (2r + 3s − 1), which proves the lemma.
To this end, let u ∈ V (G) \ NG(v). If u ∈ R, then Lemma 24 immediately implies that NG(u) = NG(v), so assume that u /∈ R.

Since u /∈ R, there exists some U ∈ U that contains u. By Lemma 24, we have that U is isomorphic to Kt,t and R+ U is
isomorphic to Kt+2,t+2 for some t ∈ {2, 3}. If we let v′ be the vertex in R that is not adjacent to v, then U ′ = U − u + v′

is isomorphic to Kt,t and R′ = R − v′ + u is isomorphic to K2,2. Therefore, if we replace U with U ′, then we have a new
optimal (r, s − 1)-family (U ′, C′,D′, R′). Since u and v are not adjacent and are both in R′, Lemma 24 applied to (C′,D′)
gives us that NG(u) = NG(v). This completes the proof of the lemma. □
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4.3. Proof of Lemma 17

In this section, we will prove Lemma 17. To do so, we prove a series of lemmas from which we easily deduce Lemma 17.
Note that in this section, we assume that G is an (r, s)-extremal graph containing an (r − 1, s)-family. Thus, in many of
the following arguments, we arrive at a contradiction when we can create an additional cycle.

Lemma 25. Given positive integers r and s, let G be an (r, s)-extremal graph and suppose there exists an optimal (r − 1, s)-
family (U, C,D, R). Further suppose that there exists F = {u1, v1, u2, v2} ⊆ V (R), a set of four vertices such that there exist
disjoint paths P1 and P2 in R from u1 to v1 and from u2 to v2, respectively. Then ∥F , C∥ ≤ 7 and ∥F ,D∥ ≤ 10 for all C ∈ C

and D ∈ D.

Proof. For i ∈ {1, 2}, let Fi = {ui, vi}. Fix C ∈ C and suppose ∥F , C∥ ≥ 8. By Lemma 19, |C | ∈ {3, 4}.
First we consider the case where |C | = 3. If a vertex c ∈ C is adjacent to both vertices of Fi for some i ∈ {1, 2}, then

cPic is a cycle, so G[(C + F3−i) − c] is cycle-free, which implies that ∥C − c, F3−i∥ ≤ 1. Label V (C) = {c1, c2, c3} so that
∥c1, F∥ ≥ ∥c2, F∥ ≥ ∥c3, F∥. Then ∥c1, F∥ ≥ 3, so (say) u1, v1 ∈ N(c1). Now ∥C − c1, F2∥ ≤ 1. If ∥c1, F∥ = 4 = |F |, then
also ∥C − c1, F1∥ ≤ 1, and ∥C, F∥ = ∥c1, F∥ + ∥C − c1, F∥ ≤ 4 + 2 < 8, a contradiction, so ∥c1, F∥ = 3, hence ∥c2, F∥ = 3
and ∥c3, F∥ ≥ 2. Since ∥C − c1, F2∥ ≤ 1, it follows that u1, v1 ∈ N(c3), which implies that ∥C − c3, F2∥ ≤ 1, a contradiction
to ∥c1, F∥ = ∥c2, F∥ = 3.

If |C | = 4, let C = c1c2c3c4c1. By Lemma 19, every vertex in F sends exactly two edges to C and every vertex in F sends
exactly one edge to every pair of adjacent vertices in C . Therefore, ∥{c1, c2}, F1∥ = ∥{c3, c4}, F2∥ = 2, and both P1 + c1 + c2
and P2 + c3 + c4 contain a cycle, a contradiction.

Consider D ∈ D and suppose ∥F ,D∥ ≥ 11. By Lemmas 20 and 22, |D| ∈ {4, 6}.
First, suppose there exists d ∈ D such that ∥d, F∥ = 4, then, because P1 + d and P2 + d both contain cycles, neither F1

nor F2 combined with D − d can contain a chorded cycle. Therefore,

∥D, F∥ ≤ ∥d, F∥ + ∥D − d, F1∥ + ∥D − d, F2∥ ≤ 4 + 3 + 3 < 11,

a contradiction.
Now, suppose there exists a vertex d ∈ D adjacent to either both vertices of F1 or both vertices of F2. Say d is adjacent to

both vertices of F1. By the preceding argument, we can assume that d is not adjacent to both vertices of F2, i.e. ∥d, F2∥ ≤ 1.
Since dP1d is a cycle, we have ∥D − d, F2∥ ≤ 3, and

∥F2,D∥ = ∥F2,D − d∥ + ∥F2, d∥ ≤ 3 + 1 = 4,

so ∥F1,D∥ ≥ 11 − 4 = 7. Without loss of generality, we can assume that ∥u1,D∥ ≥ 4, so by Lemma 20, D ∼= K4,
ND(u1) = V (D), and v1 is adjacent to at least three vertices in D. Then, for every pair of distinct vertices d′, d′′ ∈ D, we
have that P1 + d′ + d′′ contains a chorded cycle so G[V (D − d′ − d′′) ∪ V (P2)] is cycle-free. Therefore, ∥F2,D∥ ≤ 1. Now
∥F ,D∥ = ∥F1,D∥ + ∥F2,D∥ ≤ 8 + 1 < 11, a contradiction.

By the previous paragraph, there is no d ∈ D adjacent to both vertices of F1 or both vertices of F2. Then every vertex
in D has at most two neighbors in F , which implies ∥D, F∥ ≤ 2|D|, which further implies that |D| = 6. Therefore, by
Lemma 20, D is isomorphic to K3,3 and we let A and B be the two partite sets of D. By Lemma 20, each vertex in F sends
at most 3 edges to D, so we can assume without loss of generality that ∥v2,D∥ ≥ 2 and ∥v,D∥ = 3 for every v ∈ F − v2,
and also that ND(u2) = A. Then, because no vertex in D is adjacent to both vertices of F2, we have that ND(v2) ⊆ B, and
there exists a ∈ A and b ∈ ND(v2), such that P2 + a + b contains a cycle. Therefore D − a − b + P1 should not contain a
chorded cycle. However, by Lemma 20 and the fact that no vertex in D is adjacent to both vertices of F1, we have that one
of u1 or v1 has A as its neighborhood in D while the other’s neighborhood in D is B. This implies that D− a− b+ u1 + v1

contains K3,3, a contradiction. □

Lemma 26. Given positive integers r and s, let G be an (r, s)-extremal graph. Suppose that there exists (U, C,D, R) an optimal
(r − 1, s)-family and F = {u1, u2, w} a set of three vertices in R. Further suppose that, for i ∈ {1, 2}, there exists a path Pi
from ui to w in R that avoids u3−i. Then, for every C ∈ C and D ∈ D, we have that ∥F , C∥ ≤ 7, ∥F ,D∥ ≤ 9, and the following
statements hold.

(1) If ∥F , C∥ = 6 and C ∼= K2,2, then NC (u1) = NC (u2) = A where A is a partite set of C.

(2) If ∥F , C∥ = 7, then C ∼= K3, NC (w) = V (C), and NC (u1) = NC (u2).

(3) If ∥F , C∥ ≥ 6 and there is a path in R between u1 and u2 that avoids w, then ∥F , C∥ = 6 and there either exists v ∈ F
such that ∥v, F∥ = 0 and N(u) = V (C) for every u ∈ F − v; or NC (u1) = NC (u2) = NC (w).

(4) If ∥F ,D∥ = 9, then D ∼= K3,3 and ND(u1) = ND(u2) = A where A is a partite set of D.

Proof. First we will prove (1), so assume C ∼= K2,2 and let A and B be the two partite sets of C . Because ∥F , C∥ = 6,
Lemma 19 implies that for every x ∈ F , we have NC (x) ∈ {A, B}. If NC (u1) ̸= NC (u2), then we can assume without loss of
generality that NC (u1) = NC (w) = A and NC (u2) = B. But then, for a ∈ A, au1P1wa and C − a + u2 are both cycles. This
contradiction implies (1) and ∥F , C∥ ≤ 6 when C ∼= K2,2.
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To prove (2), and (3) we use the following claim.

Claim 26.1. Let {x, y, z} = F and suppose that there exists a path P in R from x to z that avoids y and a path Q from y to z
that avoids x. For every C ∈ C, if ∥F , C∥ ≥ 6 and ∥x, C∥ = 3, then ∥F , C∥ = 6, C ∼= K3, NC (y) ∪ NC (z) = V (C), and one of the
following two options hold: ∥y, C∥ = 1 and ∥z, C∥ = 2; or ∥y, C∥, ∥z, C∥ ∈ {0, 3}.

Proof. Lemma 19 implies that C is a triangle. If y and z have a common neighbor c ∈ C , then Q + c and C − c + x both
contain a cycle, a contradiction. Therefore, ∥F , C∥ = 6 and NC (y)∩NC (z) = ∅, so ∥{y, z}, C∥ = 3 and NC (y)∪NC (z) = V (C).
If NC (z) = {c}, then NC (y) = V (C − c), so xPzcx and C − c + y are both cycles, a contradiction. Therefore, either ∥z, C∥ = 2
and ∥y, C∥ = 1; or ∥y, C∥, ∥z, C∥ ∈ {0, 3}. □

If we assume that ∥F , C∥ ≥ 7, then, by Claim 26.1, neither u1 nor u2 can send 3 edges to C , so ∥F , C∥ = 7, ∥w, C∥ = 3,
∥u1, C∥ = ∥u2, C∥ = 2 and C ∼= K3. If there exists c ∈ NC (u2) \ NC (u1), then C − c + u1 and P2 + c both contain cycles, a
contradiction. Therefore, we have proved (2).

To see (3), assume that ∥F , C∥ ≥ 6 and there exists a path in R between every pair of vertices in F that avoids the
remaining vertex in F . Note that Lemma 19 implies that C is either a K2,2 or a triangle. If C is a K2,2, then (1) implies that
NC (u1) = NC (u2) = A where A is a partite set of C , but, since there is a path from u1 to u2 that avoids w, we can apply (1)
with w playing the role of u2 and conclude that NC (w) = A as well. Now assume that C is a triangle. Let {x, y, z} = F be
a labeling of F , so that ∥x, C∥ ≥ ∥y, C∥ ≥ ∥z, C∥. If ∥x, C∥ = 3, then Claim 26.1, implies that ∥y, C∥ = 3 and ∥z, F∥ = 0.
Otherwise, ∥x, C∥ = ∥y, C∥ = ∥z, C∥ = 2. If the neighborhoods of x, y are z on C are not all identical, then we can assume
that there exists c ∈ NC (x) ∩ NC (y) such that c /∈ NC (z). If P is the path from x to y in R that avoids z, then C − c + z is a
triangle and cxPyc is a cycle, a contradiction. Therefore, we have proved (3)

To prove (4), fix D ∈ D and suppose ∥F ,D∥ ≥ 9. If D is isomorphic to K4, then one of u1 or u2, say u1, is such that
∥u1,D∥ ≥ 3. Because ∥{u2, w},D∥ ≥ 5, there exists d ∈ D that is a neighbor of both u2 and w, which implies that P2 + d
contains a cycle. Since D − d + u1 contains a chorded cycle, we have a contradiction. Therefore, D is not isomorphic to
K4, and Lemma 20 implies that every vertex in F sends 3 edges to D, and Lemma 22 gives us that |D| ∈ {4, 6}. If |D| = 4,
let d1d2d3d4d1 be a cycle of D with chord d1d3. Note that, by Lemma 20, d2 and d4 are both in the neighborhood of every
vertex in F . We assume without loss of generality that ∥d1, F∥ ≥ ∥d3, F∥. If ∥d1, F∥ = 2, then ∥d3, F∥ = 1, and we can
label the vertices in F as x, y, and z so that xd1, yd1, and zd3 ∈ E(G). Then d1xd2yd1 is a cycle with chord d1d2 and zd3d4z
is a triangle, a contradiction. If ∥d1, F∥ = 3, then ∥d3, F∥ = 0, P1 +d4 is a cycle, and d1u2d2d3d1 is a cycle with chord d1d2,
which is also a contradiction.

Thus, |D| = 6 and by Lemma 20, D ∼= K3,3. If we label the partite sets of D as A = {a1, a2, a3} and B = {b1, b2, b3}, then
every vertex in F has either A or B as its neighborhood in D. If ND(u1) ̸= ND(u2), then without loss of generality, we can
assume that ND(u1) = ND(w) = A and ND(u2) = B. In this case, a1u1P1wa2b1 is a cycle with two chords, u1a2 and wa1,
and u2b2a3b3u2 is a cycle, a contradiction. Therefore, we can assume that ND(u1) = ND(u2) = A. □

Lemma 27. For positive integers r and s, let G be an (r, s)-extremal graph on n vertices. Suppose that G contains (U, C,D, R)
an optimal (r − 1, s)-family. If |R| ≥ 3, then R is isomorphic to a star.

Proof. We prove this lemma by proving a series of claims. In each, we assume |R| ≥ 3.

Claim 27.1. R is a forest.

Proof. A cycle in R yields an (r, s)-family, contradicting the fact that G is an (r, s)-extremal graph. □

Claim 27.2. δ(R) ≥ 1.

Proof. Let v ∈ R and suppose that dR(v) = 0. Let p be the endpoint of a longest path in R − v. By Claim 27.1, we have
that dR(p) ≤ 1. Let F = {v, p}. Using Lemma 23, we have that

∥F , V (G)∥ ≤ ∥F ,U∥ + ∥F , R∥ ≤ 4(r − 1) + 6s + 1 = 4r + 6s − 3 < 2δ(G)

a contradiction. □

Claim 27.3. If there are two maximal paths in R, then they cannot be vertex-disjoint.

Proof. Let P and Q be two maximal paths in R that are vertex-disjoint, and let F be the set of endpoints of P and Q . By
Claim 27.2, both P and Q contain at least 2 vertices, so |F | ≥ 4 and furthermore ∥F , R∥ = 4. With Lemma 25, we have
that

∥F , V (G)∥ ≤ ∥F ,U∥ + ∥F , R∥ ≤ 7(r − 1) + 10s + 4 ≤ 8r + 12s − 6 < 4δ(G),

a contradiction. □
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Claim 27.4. There is at most one vertex u ∈ R such that dR(u) ≥ 2.

Proof. By Claims 27.1 and 27.3, we have that R is a tree. Suppose there exists two vertices u, v ∈ R such that dR(u) is
maximum and dR(v) ≥ 2. Let P be the unique path from u to v in R, let H1 be the component containing u in R − E(P),
and let H2 be the component containing v in R − E(P). Since R is a tree, both H1 and H2 are trees.

Assume that dR(u) ≥ 3 so that H1 has two leaves, say x1 and y1, neither of which are u. Observe that x1 and y1 are
leaves in R as well. If H2 has two leaves, say x2 and y2, neither of which are v, then R contains two disjoint maximal paths
(one between x1 and y1 in H1, and one between x2 and y2 in H2) contradicting Claim 27.3. Therefore, dR(v) = 2 and H2

has exactly two leaves, v and another vertex, say z. Just as with x1 and y1, z is also a leaf in R.
Observe that the unique path in H1 between x1 and y1, and the unique path in H2 between v and z are disjoint. Let

F = {x1, y1, v, z}, and note that ∥F , R∥ = 5. With Lemma 25, we have

∥F , V (G)∥ ≤ ∥F ,U∥ + ∥F , R∥ ≤ 7(r − 1) + 10s + 5 ≤ 8r + 12s − 5 < 4δ(G),

a contradiction.
Therefore, we can assume that dR(u) = dR(v) = 2, which implies that R is a path. Let p and p′ be the endpoints of the

path R and let F = {p, u, v, p′}. Lemma 25 implies that

∥F , V (G)∥ = ∥F ,U∥ + ∥F , R∥ ≤ 7(r − 1) + 10s + 6 = 8r + 12s − 4 − (r + 2s − 3) ≤ 4δ(G) − (r + 2s − 3),

so, we have that r = s = 1. Therefore, C is empty and there is a single chorded cycle D ∈ D. The fact that δ(G) = 4 implies
that dD(p) = dD(p

′) = 3 and dD(u) = dD(v) = 2, so, by Lemma 22, we have |D| ∈ {4, 6}.
If |D| = 4, then since ∥p,D∥ = 3, Lemma 20 implies that there exists d ∈ D such that for every d′ ∈ D − d, we have

that D − d′ + p is a chorded cycle. But, because ∥F − p,D − d∥ ≥ 4, there exists d′ ∈ D − d, such that ∥d′, F − p∥ ≥ 2.
Therefore, R − p + d′ contains a cycle, a contradiction.

If |D| = 6, then Lemma 20 implies that D is a K3,3, and we can let A and B denote the two partite sets of D. Furthermore,
we can assume that ND(p) = A. If ND(p

′) = A, then neither u nor v can also have a neighbor a in A, otherwise R + a is
a chorded cycle while D − a contains a 4-cycle. So u and v must have a common neighbor b ∈ B. But then uPv + b is a
cycle, while D − b + p is a K3,3 a contradiction. Therefore, we can assume that ND(p

′) = B. Because ∥u,D∥ + ∥v,D∥ = 4,
either ND(u) ∪ ND(v) intersects both A and B; or ND(u) ∩ ND(v) ̸= ∅. Therefore, in either case, there exist a ∈ A and b ∈ B
such that uPv + a + b contains a cycle. But we then have a contradiction because D − a − b + p + p′ contains a chorded
cycle. □

We now prove Lemma 27. Note that Claims 27.1 and 27.3 imply that R is a tree. Pick u in R such that dR(u) is maximum.
Since |R| ≥ 3 and R is connected, we have that dR(u) ≥ 2. By Claim 27.4, u is the only vertex in the tree R with degree
greater than 1. This implies that R is a star. □

Lemma 28. For positive integers r and s, let G be an (r, s)-extremal graph on n vertices. Suppose that G contains (U, C,D, R)
an optimal (r − 1, s)-family. If |R| ≥ 4, then every D ∈ D is isomorphic to K3,3.

Proof. By Lemma 27, R is a star. Let q ∈ V (R) be the non-leaf vertex in R and let F be a 3-vertex subset of R − q. Note
that, for every vertex in v ∈ F , there exists a path in R that avoids v that has the two remaining vertices in F − v as its
endpoints. Therefore, Lemma 26 implies that ∥F , C∥ ≤ 6 for every C ∈ C and ∥F ,D∥ ≤ 9 for every D ∈ D. Hence, we have
that

3δ(G) ≤ ∥F , V (G)∥ ≤ 6(r − 1) + 9s + 3 = 6r + 9s − 3 ≤ 3δ(G),

so, for every D ∈ D, we have ∥F ,D∥ = 9, which, with Lemma 26, implies that D is isomorphic to K3,3. □

Lemma 29. For positive integers r and s, let G be an (r, s)-extremal graph on n vertices. Suppose that G contains an optimal
(r − 1, s)-family (U, C,D, R) that covers at most n− 3 vertices. Furthermore, suppose no D ∈ D is isomorphic to K4, and there
exists q ∈ R such that dR(q) ≥ 2. Then all of the following hold:

(i) If n ≤ 4r + 6s − 4, then s = 1.

(ii) For every p ∈ R − q, we have that dG(p) = 2r + 3s − 1.

(iii) For every p, p′ ∈ R − q and every U ∈ U , we have that NU (p
′) = NU (p).

(iv) For every p ∈ R− q, every U ∈ U , and for every u ∈ V (U) \NU (p), there exist two disjoint subgraphs U ′ and P ′ in U + R
such that U ′ is isomorphic to U, neither u nor p are contained in U ′, and P ′ is a path on 3 vertices.

Proof. In each of the following claims, assume G is an (r, s)-extremal graph on n vertices with an optimal (r−1, s)-family
(U, C,D, R) covering at most n − 3 vertices (i.e., |R| ≥ 3). Furthermore, suppose no D ∈ D is isomorphic to K4, and there
exists q ∈ R such that dR(q) ≥ 2. Recall that by Lemma 27, R is a star, and for every p ∈ R − q, we have dR(p) = 1.

Claim 29.1. For every v ∈ R, C ∈ C, and D ∈ D, we have ∥v, C∥ ≤ 2 and ∥v,D∥ ≤ 3. Furthermore, if v ∈ R−q, then equality
holds.
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Proof. Since s ≥ 1, there exists D̂ ∈ D. By assumption, D̂ is not isomorphic to K4. If |D̂| ≥ 5, then let Ĉ be a cycle

contained in D̂ such that |Ĉ | ≤ |D̂| − 2. Otherwise, D̂ is isomorphic to K1,1,2 and we let Ĉ be a triangle contained in D̂. Let
v be a vertex in R. If there exists D ∈ D such that ∥v,D∥ ≥ 4, then Lemma 20 implies that D ∼= K4, a contradiction to
our assumption that no element of D is isomorphic to a K4. If there exists C ∈ C such that ∥v, C∥ ≥ 3, then Lemma 19

implies that G[C + v] ∼= K4, so we can replace C with Ĉ in C and D̂ with C + v in D to obtain an (r − 1, s)-family that
violates either (O1) or (O2), a contradiction. Therefore,

∥v,D∥ ≤ 3 for all D ∈ D and ∥v, C∥ ≤ 2 for all C ∈ C, (22)

and, for every p ∈ R − q,

2r + 3s − 1 ≤ dG(p) = ∥p,U∥ + ∥p, R∥ ≤ (2(r − 1) + 3s) + 1 = 2r + 3s − 1.

Thus, for all p ∈ R − q, ∥p,D∥ = 3 and ∥p, C∥ = 2 for all D ∈ D and C ∈ C. □

Since dR(p) = 1 for all p ∈ R−q, Claim 29.1, implies dG(p) = 2(r −1)+3s+1 = 2r +3s−1. So (ii) holds. Furthermore,
Claim 29.1 along with Lemmas 19 and 22, imply that every C ∈ C is either a triangle or a K2,2 and every D ∈ D is either
a K1,1,2 or K3,3.

Claim 29.2. If there exists a triangle in C, then every D ∈ D is isomorphic to K1,1,2.

Proof. Assume that there exists a triangle T in C. For any v ∈ R− q, Claim 29.1 implies that T + v is isomorphic to K1,1,2.
If there exists D ∈ D that is isomorphic to K3,3, then we could replace D with T + v, and T with a K2,2 contained in D,
which violates (O1). Since every D ∈ D is either K1,1,2 or K3,3, it must be that every D ∈ D is isomorphic to K1,1,2. □

Claim 29.3. If |R| ≥ 4, then (i), (iii), and (iv) hold.

Proof. Suppose that |R| ≥ 4 and let {p, p′, p′′} = F be a 3-vertex set in R − q. Note that for any labeling {x, y, z} = F ,
the path xqy is a path in R that avoids z. Therefore, Claim 29.1 and Lemma 26 imply that for every U ∈ U , we have that
NU (p) = NU (p

′) and, for every u ∈ V (U)\NU (p), the graph U ′ = U−u+p′ is isomorphic to U . Since U ′ and the 3-vertex path
pqp′′ are disjoint subgraphs in U + R, both hold. To show that (i) also holds, note that, by Lemma 28, D ∼= K3,3 for every
D ∈ D, so since s ≥ 1, Claim 29.2 implies that C ∼= K2,2 for every C ∈ C. This gives us that n ≥ 4(r −1)+6s+|R| ≥ 4r +6s.
So n is never at most 4r + 6s − 4, and (i) holds. □

For the remainder of this proof we assume that |R| = 3 and let {p, p′} = V (R− q). By Lemma 27, we have that R is the
path P = pqp′ on 3 vertices, so

∥P, R∥ = 4. (23)

Claim 29.4. If U ∈ U is isomorphic to Kt,t for some t ∈ {2, 3}, then hold for this U.

Proof. Suppose U ∈ U is isomorphic to Kt,t for t ∈ {2, 3}. Note that Claim 29.1 implies that each of p and p′ send exactly
t edges to U , with Lemmas 19 and 20, we also know that both p and p′ are adjacent to one of the two partite sets of U .
Let A and B be the two partite sets of U labeled so that NU (p) = A. By Claim 29.1, ∥q,U∥ ≤ 2(r − 1) + 3s. So if t = 2
(i.e., U ∈ C), we have;

2r + 3s − 1 ≤ ∥q,U∥ + ∥q,U − U∥ + ∥q, R∥ ≤ ∥q,U∥ + (2(r − 2) + 3s) + 2 = (2r + 3s − 1) + (∥q,U∥ − 1).

Therefore, ∥q,U∥ ≥ 1. Similarly, if t = 3 (i.e., U ∈ C), we deduce ∥q,U∥ ≥ 2. So always ∥q,U∥ ≥ t −1. Lemma 21 implies
that NU (q) ⊆ B, so Lemma 21 again implies that NU (p

′) = A which proves (iii).
To prove (iv) in this case, fix u ∈ V (U) \ NU (p). If u ∈ N(q), then we let P ′ = pqu and U ′ = U − u + p. If u /∈ N(q), then

we fix a ∈ A and let P ′ = uap and U ′ = U − a − u + q + p′. In both cases U ′ is isomorphic to U and P ′ is a 3-vertex path.
Therefore, (iv) holds in this case. □

If every chorded cycle in D is isomorphic to K3,3, then Claim 29.2 implies that every cycle in C is isomorphic to K2,2,
so by Claim 29.4, hold for every U ∈ U . Since we also have that n = 4(r − 1) + 6s + |R| = 4r + 6s − 1, (i) also holds and
we have proved the lemma. Therefore, we can assume that there exists D∗ ∈ D that is isomorphic to K1,1,2.

Because D∗ is not isomorphic to K3,3, Lemma 26 implies that ∥P,D∗∥ ≤ 8. Therefore, with Claim 29.1 and (23), we
have that

3δ(G) ≤ ∥P, V (U)∥ + ∥P, R∥ ≤ 6(r − 1) + 8 + 9(s − 1) + 4 = 3(2r + 3s − 1),

so, by the minimum degree condition,

∥P,D∗∥ = 8, and ∥P, C∥ = 6 for every C ∈ C. (24)
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We also have that for every D ∈ D−D∗, ∥P,D∥ = 9, so Lemma 26 implies that D is isomorphic to K3,3. If n ≤ 4r + 6s− 4,

then

|V (C)| ≤ n − |D∗| − |V (D − D∗)| − |R| ≤ (4r + 6s − 4) − 4 − 6(s − 1) − 3 < 4(r − 1),

so there exists a triangle in C. With Claim 29.2, this implies that s = 1, so we have proved (i).

Claim 29.5. If U ∈ U is isomorphic to K1,1,2, then hold for this U.

Proof. Let d1d2d3d4d1 be the spanning cycle of U , labeled so that d1 and d3 are adjacent. Note that, by Claim 29.1,

∥p,U∥ = ∥p′,U∥ = 3, so (24) implies that ∥q,U∥ = 2. Lemma 20, implies that both p and p′ are adjacent to d2 and d4
and exactly one of d1 or d3. Without loss of generality we can assume that pd1 is an edge. If NU (p

′) = {d2, d3, d4}, when

we have the two disjoint triangles pd1d2 and p′d3d4. Because q has two neighbors in U and is adjacent to both p and p′,

q must have at least two neighbors in one of these two triangles, so U + P contains a (1, 1)-family, contradicting the fact

that G is (r, s)-extremal. Therefore, NU (p) = NU (p
′) = {d1, d2, d4} and we have proved (iii) when U ∼= K1,1,2. Note that

since ∥q,U∥ = 2, there exist d ∈ {d2, d3, d4} such that qd is an edge. Since pqd is a path on 3 vertices and D − d + p′ is

isomorphic to K1,1,2, we have that (iv) holds. □

Claim 29.6. If U ∈ U is isomorphic to a triangle, then hold for this U.

Proof. Suppose U is isomorphic to a triangle. Note that Claim 29.1 and (24) imply that ∥p,U∥ = ∥p′,U∥ = ∥q,U∥ = 2. If

p and p′ do not have the same neighborhood in U , then there exists a vertex u ∈ NU (q) such that ∥u, {p, p′}∥ = 1. Assume

without loss of generality ∥u, p∥ = 1 and ∥u, p′∥ = 0. Since uqp and D−u+p′ are both triangles, we have contradicted the

fact that G is (r, s)-extremal. Therefore, p and p′ have the same neighborhood on U and we have proved (iii). Let u ∈ V (U)

that is not adjacent to either p or p′. If q is adjacent to u, then pqu is a path on 3 vertices and U − u+ p′ is a triangle, and

we have (iv). Otherwise, NU (p) = NU (p
′) = NU (q) = U − u. If we let {u′, u′′} = V (U − u), then we have the path pu′u and

the triangle qp′u′′, so we have proved (iv). □

This completes the proof of Lemma 29. □

Lemma 30. For positive integers r and s, let G be an (r, s)-extremal graph on n vertices. Suppose that G contains an

optimal (r − 1, s)-family that covers at most n − 3 vertices, and that does not contain a chorded cycle isomorphic to K4.

Then α(G) = n − (2r + 3s − 1). Furthermore, if n ≤ 4r + 6s − 4, then s = 1.

Proof. By assumption, there exists (U, C,D, R) an optimal (r − 1, s)-family such that |R| ≥ 3 and there does not exists a

copy of K4 in D. By Lemma 27, R is a star. Let q be the center of this star. We have that dR(q) = |R| − 1 ≥ 2. Let p ∈ R− q,

and let I = V (G) \ NG(p). By Lemma 29(i), we have that s = 1 when n ≤ 4r + 6s − 4, and by Lemma 29(ii), we have that

|I| = n − (2r + 3s − 1).

To complete the proof of the lemma, we will show that I is an independent set by proving that NG(u) = NG(p) for

every vertex u ∈ I . To this end, let u ∈ I . If u ∈ R, then Lemma 29(iii) implies that NG(u) = NG(p). If u /∈ R, then there

exist U ∈ U such that u ∈ U . Lemma 29(iv) implies that there are disjoint subgraphs U ′ and P ′ in U + R such that U ′ is

isomorphic to U , neither p nor u is contained in U ′, and P ′ is a path on 3 vertices. If U ∈ C, let C′ = C−U +U ′ and D
′ = D,

and if U ∈ D, let D′ = D−U +U ′ and C
′ = C. In either case, we have that (C′,D′) is an optimal (r − 1, s)-family, and that

D
′ does not contain a copy of K4. Let U

′ = C
′ ∪ D

′ and let R′ be the graph induced by V (G) \ V (U ′). By Lemma 27, R′ is a

star. Let q′ ∈ R′ be the center of this star and note that dR′ (q′) ≥ 2. Since u and p are both in R′ and they are not adjacent,

neither u nor p is q′. Applying Lemma 29(iii) and the above argument with (U ′, C′,D′, R′), q′, u, and p playing the roles of

(U, C,D, R), q, p′ and p, respectively, implies that NG(u) = NG(p). This completes the proof of the lemma. □

Lemma 31. Let G be a graph and let X and Y be two disjoint cycles in G such that |X | ≥ |Y | and |X | ≥ 4. If ∥X, Y∥ > 2|X |,

then there exist two cycles X ′ and Y ′ in G[V (X) ∪ V (Y )] such that |X ′| + |Y ′| < |X | + |Y |.

Proof. Fix some orientation for X and, for every x ∈ X , let x− and x+ be the vertices that proceed and succeed x,

respectively. Make the analogous definitions for the cycle Y .

Assume that

∥X, Y∥ > 2|X | ≥ |X | + 4, (25)

and, for every pair of disjoint cycles X ′ and Y ′ in the graph induced by V (X) ∪ V (Y ),

|X ′| + |Y ′| ≥ |X | + |Y |. (26)
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Claim 31.1. For every x ∈ X and y ∈ Y , if either

• ∥x, Y∥ ≥ 3 and ∥y, X − x∥ ≥ 2, or

• ∥y, X∥ ≥ 3 and ∥x, Y − y∥ ≥ 2,

then NY (x) = {y−, y, y+} and NX (y) = {x−, x, x+}.

Proof. If ∥x, Y∥ ≥ 3 and ∥y, X − x∥ ≥ 2, then X − x + y and Y − y + x both contain cycles. Therefore, (26) implies that
N(x) ∩ V (Y − y) = {y−, y+} and N(y) ∩ V (X − x) = {x−, x+}. Because ∥x, Y∥ ≥ 3, we have that NY (x) = {y−, y, y+} which
implies that NX (y) = {x−, x, x+}. The same argument works when ∥y, X∥ ≥ 3 and ∥x, Y − y∥ ≤ 2. □

By (25) and the fact that |X | ≥ |Y |, we have that there exists x0 ∈ X such that ∥x0, Y∥ ≥ 3 and there exists y0 ∈ Y such
that ∥y0, X∥ ≥ 3. By Claim 31.1, we then have that NX (y0) = {x−

0 , x0, x
+
0 } and NY (x0) = {y−

0 , y0, y
+
0 }. Also, by Claim 31.1,

we have that ∥x, Y∥ ≤ 1 for every x ∈ X \ NX (y0) and ∥y, X∥ ≤ 1 for every y ∈ Y \ NY (x0). Therefore, by (25),

|X | + 5 ≤ ∥X, Y∥ = ∥x0, Y∥ + ∥{x−
0 , x+

0 }, Y∥ + ∥X \ NX (y0), Y∥ ≤ 3 + ∥{x−
0 , x+

0 }, Y∥ + (|X | − 3),

so ∥{x−
0 , x+

0 }, Y∥ ≥ 5. Similarly, ∥{y−
0 , y+

0 }, X∥ ≥ 5. We can assume without loss of generality that ∥x+
0 , Y∥ ≥ 3 and

∥y+
0 , X∥ ≥ 3. Applying Claim 31.1, first with y+

0 and x0 playing the roles of y and x, respectively, and then with y+
0 and x+

0

playing the roles of y and x, respectively, we have that

NX (y
+
0 ) = {x−

0 , x0, x
+
0 } = {x0, x

+
0 , (x+

0 )
+},

so (x+
0 )

+ = x−
0 , a contradiction to |X | ≥ 4. □

Lemma 32. For positive integers r and s, let G be an (r, s)-extremal graph on n vertices. Suppose that G contains (U, C,D, R)
an optimal (r −1, s)-family, |R| ≥ 3, and there exists D ∈ D such that D is isomorphic to K4. Then s = 1, n = 3r +4s = 3r +4,
and α(G) = n − (2r + 3s − 1) = r + 2.

Proof. By Lemma 28 and the fact that G is (r, s)-extremal, we can assume that |R| = 3. By Lemma 27, R is a path P on
three vertices. Note that ∥P, R∥ = 4.

Claim 32.1. There exists C∗ ∈ C such that ∥P, C∗∥ ≥ 7.

Proof. By assumption there exists D∗ ∈ D such that D∗ is isomorphic to K4. By Lemma 26, ∥P,D∥ ≤ 9 for every D ∈ D.
Therefore, because ∥P, R∥ = 4, we have that

∥P, C∥ ≥ 3δ(G) − ∥P,D∥ − ∥P, R∥ ≥ 3(2r + 3s − 1) − 9(s − 1) − ∥P,D∗∥ − 4 = 6(r − 1) + 8 − ∥P,D∗∥, (27)

so if ∥P,D∗∥ ≤ 7, there must exist C∗ ∈ C such that ∥P, C∗∥ ≥ 7.
Assume that ∥P,D∗∥ ≥ 8 and ∥P, C∥ < 7 for every C ∈ C. In this case, (27) implies that, we must have ∥P,D∥ = 9 for

every D ∈ D − D∗ and ∥P, C∥ = 6 for every C ∈ C. Lemma 26, then implies that every vertex in P sends exactly 3 edges
to every D ∈ D − D∗.

If there exists a vertex v ∈ P such that ∥v,D∗∥ ≤ 1, then ∥P − v,D∗∥ ≥ 7, so, because the graph H = D∗ + (P − v) has
at least

(

4

2

)

+ 7 =
(

6

2

)

− 2 edges, there are two disjoint triangles in H . Then

∥v, C∥ ≥ δ(G) − ∥v,D − D∗∥ − ∥v,D∗∥ − ∥v, R∥ ≥ 2r + 3s − 1 − 3(s − 1) − 1 − 2 = 2(r − 1) + 1,

so that v sends at least 3 edges to some C ∈ C. This, with Lemma 19, implies that C + v is isomorphic to K4. Because we
can replace D∗ and C with the two disjoint triangles in H and the chorded cycle C + v, we have contradicted the fact that
G is (r, s)-extremal. Therefore, we can assume that every vertex in P sends at least 2 edges to D∗.

Let P = pqp′. Note that, because G is (r, s)-extremal, the graph P+D∗ does not contain a (1, 1)-family. Since ∥q,D∗∥ ≥ 2,
one of the two endpoints of P , say p, is such that p and q have a common neighbor in D∗. For every d ∈ ND∗ (p) ∩ ND∗ (q),
we have that D∗ − d + p′ is not a chorded cycle, so, because ∥p′,D∗∥ ≥ 2, we have that d ∈ ND∗ (p′) and ∥p′,D∗∥ = 2.
Furthermore, because p′qd is a triangle, we also have that ∥p,D∗∥ = 2, so ∥q,D∗∥ = 4. Now ND∗ (p) ∩ ND∗ (q) = ND∗ (p),
which implies that ND∗ (p′) = ND∗ (p). Therefore, G[{p, p′} ∪ ND∗ (p)] is a chorded cycle, and G[(V (D∗) \ ND∗ (p)) ∪ {q}] is a
triangle, a contradiction. □

Claim 32.2. Every D ∈ D is isomorphic to K4.

Proof. By Claim 32.1 and Lemma 19, there exists a triangle C∗ ∈ C such that ∥P, C∗∥ ≥ 7. By Lemma 26, we have that
H = G[P + C∗] ∼= K3 ∨ K3. Note that H contains a copy of K4, which we will denote D∗. Let D ∈ D. If D has length t ≥ 5,
then the shortest cycle C in D has length at most t − 2, so we can replace C∗ with C and D with D∗ to obtain a new
(r − 1, s)-family that contradicts (O1). Therefore, we can assume that |D| = t = 4. If D ̸∼= K4, then we can replace C∗ with
a triangle from D and replace D with D∗ to obtain a new (r − 1, s)-family that contradicts (O2). □
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Claim 32.3. Every C ∈ C is a triangle.

Proof. Let C1 be a longest cycle in C and assume that C1 is not a triangle. By (O1), C1 is an induced cycle so ∥C1, C1∥ = 2|C1|.
By Lemma 31, the assumption that C1 is the longest cycle, and (O1), we have that ∥C1, C∥ ≤ 2|C1| for all C ∈ C − C1.
Therefore, ∥C1, V (C)∥ ≤ 2(r − 1)|C1|

Let D ∈ D. By Claim 32.2, D is isomorphic to K4. If there exists d ∈ D that has 3 neighbors on C1, then, because C1 is
not a triangle, we can find a chorded cycle D′ in C1 + d on at most |C1| vertices. Therefore, we could replace D with D′

and C1 with the triangle D − d, violating (O1). This implies that ∥C1,D∥ ≤ 2|D| ≤ 2|C1|. Therefore, ∥C1,D∥ ≤ 2s|C1|, and,
because s ≥ 1 and |C1| ≥ 4,

∥C1, R∥ ≥ |C1|(2r + 3s − 1) − 2s|C1| − 2(r − 1)|C1| = |C1|(s + 1) ≥ 8,

so, because |R| = 3, there exists v ∈ R such that ∥v, C1∥ ≥ 3. This, with Lemma 19, contradicts the assumption that
|C1| ≥ 4. □

By Claims 32.2 and 32.3 and the fact that |R| = 3, we have that n = 3r + 4s. Let G′ = G ∨ Kr . Note that |G′| = 4(r + s)
and

δ(G′) = min{δ(G) + r, n} ≥ 3(r + s) − 1. (28)

If G′ contains r + s disjoint copies of K4, then G contains an (r, s)-family; the r vertices in V (G′ − G) would each be in a
unique copy of K4. Therefore, G

′ does not contain r + s disjoint copies of K4 and, by (28) and Theorem 3, we have that
either α(G′) = r + s + 1, or r + s is odd and G′ contains an induced copy of Kr+s,r+s

Assume first that α(G′) = r + s + 1, and let B be an independent set of G′ of order r + s + 1. Due to the construction
of G′, the independence of B, and the fact that |B| > |G′ − G|, we have B ⊆ V (G). Let A = V (G) \ B, so |A| = 2r + 3s − 1
and, by the minimum degree condition in G and the fact that B is independent, all possible edges exist between A and B
in G. Since we have met the conditions of the lemma if s = 1, assume that s ≥ 2. Then

δ(G[A]) ≥ 2r + 3s − 1 − |B| = r + 2s − 2 = (2r + 3s − 2)/2 + (s − 2)/2 ≥ (|A| − 1)/2,

so there exists a Hamiltonian path in G[A]. Since |A| = 2r + 3s − 1, we can partition this Hamiltonian path into a vertex
disjoint collection of r +1 edges and s−1 copies of K1,2. We can use this collection to find an (r, s)-family in G consisting
of r triangles each with one vertex in B and two vertices in A; one chorded 4-cycle with two vertices in B and two vertices
in A; and s − 1 chorded 4-cycles each with 1 vertex in B and 3 vertices in A, a contradiction.

Now assume that r + s is odd and G′ contains an induced copy of Kr+s,r+s. Let A1 and A2 be two disjoint cliques each
of size r + s such that ∥A1, A2∥ = 0. Let v ∈ A1 ∪ A2. We have that

dG′ (v) ≤ (r + s − 1) + (|G′| − |A1 ∪ A2|) = (r + s − 1) + (2r + 2s) = 3r + 3s − 1, (29)

which implies that v ∈ V (G), because we are assuming s ≥ 1, and because every vertex in V (G′) \ V (G) has exactly
|G| = 3r +4s neighbors in G′. Therefore, if we let B = V (G)\ (A1 ∪A2), then we have that |B| = 3r +4s−2(r + s) = r +2s.
Note that, for i ∈ {1, 2},

(|Ai| − 1) + |B| = (r + s − 1) + r + 2s = 2r + 3s − 1,

so every vertex in A1 ∪ A2 is adjacent to every vertex in B. If G[B] contains an edge, then we can use this edge to create D
a K1,1,2 with two vertices in B and one vertex in each of A1 and A2. Since r + s is odd, there exists a perfect matching M
of size r + s− 1 in G[(A1 ∪ A2) \ V (D)]. Since |B \ V (D)| = r + 2(s− 1), we can find an (r, s− 1) family in G−D by pairing
r edges in M with r of the remaining vertices in B to form r triangles, and by pairing s − 1 of the edges of M with s − 1
pairs of vertices B, a contradiction. Therefore, B is an independent set. By the minimum degree condition, we have that

r + 2s = |B| ≤ |G| − (2r + 3s − 1) = r + s + 1,

so s = 1 and α(G) = |B| = r + 2 = n − (2r + 3s − 1). This completes the proof of the Lemma. □

We are now ready to prove Lemma 17.

Proof of Lemma 17. Let G be an (r, s)-extremal graph on n vertices. If there exists an (r, s−1)-family that covers at most
n − 3 vertices, then there exists (U, C,D, R) an optimal (r, s − 1)-family with |R| ≥ 3. If there exists a chorded cycle in D

isomorphic to K4, then Lemma 32 implies that s = 1, n = 3r + 4s and α(G) = n − (2r + 3s − 1). Otherwise, Lemma 30
implies that α(G) = n − (2r + 3s − 1), and also that s = 1 if n ≤ 4r + 6s − 4. □
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