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Abstract

A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and
IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events
pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis,
combined with the throughgoing track-like events used in the seven-year IceCube point-source search. The
advantageous field of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity
in the Southern Sky by a factor of∼2 compared to both individual analyses. In this work, the Southern Sky is
scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are
investigated. In addition, special focus is given to the region around the Galactic Center, whereby a dedicated
search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No
significant evidence for cosmic neutrino sources is found, and upper limits on the flux from the various searches
are presented.

Unified Astronomy Thesaurus concepts: Neutrino astronomy (1100)

1. Introduction

Neutrinos are stable, neutral, and weakly interacting particles
and, in contrast to cosmic rays, they are not deflected by
magnetic fields. Differently from high-energy photons, neutrinos
are effectively not absorbed while traveling through cosmolo-
gical distances and can escape from dense astrophysical

environments. These qualities make them ideal cosmic messen-
gers as they point back to their production sites. Several classes
of astrophysical objects, such as supernova remnants, pulsar
wind nebulae, and active galactic nuclei (AGNs) have been
indicated as promising high-energy neutrino source candidates
(Gaisser et al. 1995; Halzen & Hooper 2002; Becker 2008;
Kelner & Aharonian 2008; Murase 2015). Neutrinos are
expected to be produced through the decay of charged mesons,
a result of hadronic interactions of accelerated protons with
matter or radiation in the surroundings of the acceleration sites.
Neutrino astronomy has recently entered an exciting period

with the discovery of an isotropic high-energy cosmic neutrino

102 Also at Università di Padova, I-35131 Padova, Italy.
103 Also at National Research Nuclear University, Moscow Engineering
Physics Institute (MEPhI), Moscow 115409, Russia.
104 Also at Earthquake Research Institute, University of Tokyo, Bunkyo,
Tokyo 113-0032, Japan.
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flux reported in two groups of analyses by the IceCube
Collaboration (Aartsen et al. 2014; Kopper et al. 2016;
Kopper 2017, and Aartsen et al. 2016; Haack & Wiebusch
2017), followed by the first evidence of neutrino emission from
an astrophysical source, the blazar TXS 0506+056 (Aartsen
et al. 2018a, 2018b). These observations represent a major
breakthrough in the field, and thus further investigations are
strongly motivated. Indeed, the origin of most of the observed
neutrino flux remains unknown. The neutrino flux of TXS 0506
+056 can only account for less than 1% of the total observed
astrophysical flux (Aartsen et al. 2018a). Moreover, recent
searches for neutrino emission from the directions of blazars in
the second Fermi-LAT AGN catalog performed by the IceCube
Collaboration indicated that blazars contribute less than about
40%–80% (30%) to the total observed neutrino flux, assuming
an unbroken power-law spectrum F µn n

g-E E( ) with g = 2.0
(Aartsen et al. 2018a) (g = 2.5 (Aartsen et al. 2017a)). The
region around TXS 0506+056 was studied also by the
ANTARES Collaboration using data collected from 2007 to
2017 (Albert et al. 2018). The standard time-integrated method
fits 1.03 signal events, which corresponds to a p-value of 3.4%
(not considering trial corrections). These results encourage
additional studies of potential neutrino sources, not only based
on searches for a cumulative neutrino signal integrated over
many years (such as the one presented here), but also relying
on a time-dependent and/or multimessenger approach. Indeed,
using the information of the neutrino arrival times is expected
to significantly increase the discovery potential, as it improves
the signal-to-background discrimination (Aartsen et al. 2015;
Albert et al. 2019). Moreover, exploiting multimessenger
observations helps to refine the selection of the target neutrino
source candidates, allowing to reduce the number of tested
locations and therefore the trial factor (Franckowiak 2017).
However, if the hypothesis used to guide such searches is
incorrect, sensitivity to neutrino sources will be reduced. Here,
we present an untargeted search, to allow for the greatest range
of possibilities.

In this work, the point-source data samples of the ANTARES
(Ageron et al. 2011) and IceCube (Achterberg et al. 2006; Aartsen
et al. 2017b) neutrino telescopes collected during nine (Adrian-
Martinez et al. 2014) and seven years (Aartsen et al. 2017c),
respectively, are combined to perform various searches for point-
like and extended sources of neutrinos in the Southern Sky. This
work supersedes a previous combined analysis using a smaller
data sample of five and three years of ANTARES and IceCube
data, respectively (Adrian-Martinez et al. 2016).

The two telescopes complement each other thanks to their
different characteristics, in particular the larger instrumented
volume of IceCube and the privileged view of the Southern
Sky, with a reduced muon background for neutrino energies
below 100 TeV of ANTARES. Exploiting these different
characteristics allows for a significant gain in sensitivity for
searches in the Southern Sky.

The paper is organized as follows. A brief description of the
ANTARES and IceCube neutrino telescopes is given in
Section 2. In Section 3, the samples employed in the searches
are described. The analysis method and the expected
performances are discussed in Section 4, while the performed
searches and corresponding results are presented in Section 5.
In Section 6, conclusions are drawn.

2. ANTARES and IceCube Neutrino Telescopes

The ANTARES and IceCube neutrino telescopes rely on the
same principle for detecting cosmic neutrinos. A three-dimen-
sional array of photomultiplier tubes (PMTs) inside a transparent
medium—water or ice, respectively—collects the Cerenkov
photons induced by the passage of relativistic charged particles.
The charged particles are produced in neutrino interactions with
the target medium, inside or near the instrumented volume. The
information provided by the number of detected Cerenkov
photons and their arrival times is used to infer the neutrino
interaction topology, direction and energy.
The ANTARES telescope (Ageron et al. 2011) is located in

the Mediterranean Sea, 40 km south of Toulon (France), at a
depth of about 2400 m. It was completed in 2008, with the first
lines operating since 2006. The detector comprises a three-
dimensional array of 885 optical modules (OMs), each one
housing a 10″ PMT, facing 45° downward in order to optimize
the detection of Cerenkov photons from upgoing charged
particles. The PMTs are distributed over 12 vertical lines with a
length of 350 m, and with an interline separation between 60
and 75 m, instrumenting a total volume of∼0.01 km3.
The IceCube telescope (Achterberg et al. 2006; Aartsen et al.

2017b) is a cubic-kilometer-sized detector located at the South
Pole, between 1450 and 2450 m below the surface of the
Antarctic ice. A total of 5160 digital optical modules (DOMs),
each consisting of a pressure-resistant sphere that houses
electronics, calibration LEDs, and a 10″ PMT facing down-
ward, are attached to 86 vertical strings, with a mean distance
between strings of∼125 m. The construction of the IceCube
detector began in 2005 and was finished six years later. During
the construction, data were collected with partial configurations
of the detector, commonly indicated by ICXY, with XY
denoting the number of active strings.
Two main event topologies can be identified in the

ANTARES and IceCube telescopes: tracks and showers.
Charged current (CC) interactions of muon neutrinos and
antineutrinos produce a relativistic muon that can travel large
distances through the medium, leaving a track-like signature
in the detector. Shower-like events are induced by neutral
current (NC) interactions, as well as by CC interactions of
electron and tau neutrinos and antineutrinos, and are
characterized by an almost spherically symmetric light
emission around the shower maximum. The longer lever
arm of the track topology allows for a better reconstruction of
the particle direction and therefore for a better median angular
resolution, while a better reconstruction of the particle energy
is achieved for showers, as the topology allows for a
calorimetric measurement.
Common backgrounds in both detectors are atmospheric

muons and neutrinos originating from cosmic-ray interactions
in Earthʼs atmosphere. Events from the Southern Sky
correspond to downgoing events for IceCube. In this case,
atmospheric muons represent the bulk of the detected events
before selection, outnumbering the atmospheric neutrinos by a
factor from 104 up to 106 depending on the direction. In
contrast, ANTARES’ detected events are predominantly
atmospheric neutrinos because the Earth acts as a shield for
atmospheric muons.
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3. Data Samples

All track-like and shower-like events from the Southern Sky
that were employed in the nine-year ANTARES point-source
analysis (Adrian-Martinez et al. 2014), combined with the
throughgoing track-like events—i.e., tracks induced by muons
traversing the detector—included in the seven-year IceCube point-
source search (Aartsen et al. 2017c) are used in this analysis. The
ANTARES data were collected between early 2007 and the end
of 2015. The IceCube data were taken from 2008 to 2015, with
the detector operating either in partial (samples IC40, IC59, IC79)
or in full (samples IC86-2011, IC86-2012-2015) configuration.

Both the ANTARES and the IceCube event selection criteria
were optimized to minimize the neutrino flux needed for a 5σ
discovery of a point-like source emitting with a n

-E 2.0 spectrum.
The ANTARES events were selected by applying cuts on the

zenith angle, the angular error estimate, and parameters
describing the quality of the reconstruction. In the case of the
shower events, a cut was also applied on the interaction vertex,
required to be located within a fiducial volume slightly larger
than the instrumented volume. A detailed description of these
cuts can be found in Adrian-Martinez et al. (2014). A median
angular resolution better than 0°.4 is achieved for the selected
tracks for energies above 100TeV, and ∼3° for the selected
showers for energies between 1 TeV and 0.5 PeV.

The IceCube selection of throughgoing tracks in the
Southern Sky was based on multivariate selection techniques
(boosted decision tree; BDT), which made use of parameters
connected to the event quality, track topology, energy
deposited along the track, and light-arrival time of photons at
the DOMs (Aartsen et al. 2017c). This procedure selects only
very high-energy events (Eν100 TeV) with a median
angular resolution better than 0°.4 for energies above 1 PeV.
A summary of the data sets in terms of livetime and number

of selected events in each sample and for each detector is given
in Table 1.
As a consequence of the different layouts, locations of the

telescopes and selection techniques in the Southern Sky, each
sample has a different efficiency for detecting events from
potential sources. The relative contribution Cj(δ, Φ) for each
sample j, defined as the ratio of the expected mean number of
signal events for the given sample to that for all samples,

= å =C N Nj j
i

i
1

7 , depends on the expected flux from the
source Φ and decl. δ. For each ANTARES sample j ä [1, 2]
given in Table 1, the expected mean number of signal events,
Nj, is obtained as (Aartsen et al. 2017c):
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where the contribution of each neutrino flavor f to the track and
shower channels is considered. Here, Tj is the livetime of the
sample j reported in Table 1, Ω is the solid angle, Eν is the
neutrino energy, n n+A j

eff
, f f¯ is the detector effective area, and Fn n+f f¯

is the expected flux from the source. The expected mean number
of signal events for each IceCube sample j ä [3, 7] given in
Table 1 is calculated using Equation (1), including only the
contribution of the muon flavor. Unless otherwise stated, an
unbroken power-law neutrino flux is used in the analysis:

F = Fn n
n

g

+

-E

1 GeV
, 20f f

⎜ ⎟⎛
⎝

⎞
⎠ ( )¯

with Φ0 being the one-flavor neutrino flux normalization.
Equipartition at Earth of the three neutrino flavors is assumed.
Figure 1 shows the relative contribution of each sample as a

function of the source decl. for the unbroken n
g-E spectrum for

two values of the spectral index, γ=2.0 and γ=2.5. The two

Table 1
ANTARES and IceCube Samples Used in This Analysis

ANTARES Sample Index j Livetime T Number of Events
(days)

Tracks 1 2415 5807
Showers 2 2415 102

IceCube Sample Index j Livetime T Number of Events
(days)

IC40 3 376 22779
IC59 4 348 64257
IC79 5 316 44771
IC86-2011 6 333 74931
IC86-2012-2015 7 1058 119231

Note. Overview of the seven data samples of ANTARES and IceCube
employed in the analysis. Only Southern Sky events (numbers of events
reported in the last column) have been selected for the present analysis.

Figure 1. Relative contribution of each sample as a function of the source decl. for an unbroken n
g-E spectrum, with g = 2.0 (left) and γ=2.5 (right). The

contribution of the ANTARES (IceCube) samples is represented by different shades of red (blue). The vertical dashed line marks the decl. of the Galactic Center.
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spectral indices account for the value predicted by the Fermi
acceleration mechanism (γ= 2.0) and for the softer best-fit
spectral indices of the isotropic flux of high-energy cosmic
neutrinos measured by the IceCube Collaboration; the chosen
value for the soft spectral index lies between the γ= 2.92
obtained in Kopper (2017) and the γ=2.28 obtained in
Stettner (2019). For an n

-E 2.0 spectrum, all samples contribute
significantly to most of the Southern Sky. For the softer
spectrum n

-E 2.5, the contribution of high-energy neutrinos is
lower, and therefore the relative contribution of the ANTARES
sample increases.

4. Search Method

An unbinned likelihood maximization is used to identify
clusters of cosmic neutrinos from point-like and extended
sources over the randomly distributed atmospheric background.
The likelihood describes the data in terms of signal and
background probability density functions (PDFs) and is defined
as:

g a d g a d=  

+ -

= =L n
n

N
S

n

N
B

, , , , ,

1 , 3

j i
N

j

j i
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s 1
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⎛
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⎦
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( ) ( )

( )

where ns and γ are respectively the unknown total number of
signal events and signal spectral index, α and δ are the
unknown equatorial coordinates of the source, and S j

i and B
j
i are

the values of the signal and background PDFs for the event i in
the sample j. Nj is the total number of data events in sample j,
while n j

s is the unknown number of signal events in sample j,
related to ns through the relative contribution of the given
sample, d= Fn n C ,j j

s s · ( ).
The signal and background PDFs are given by the product of a

directional and an energy-dependent term. The same definition of
the ANTARES and IceCube PDFs used in the respective
individual point-source analyses (Adrian-Martinez et al. 2014;
Aartsen et al. 2017c) is employed in this search. For the IceCube
samples, the spatial PDF is given by a two-dimensional Gaussian,

s ps= -DYP exp 2 2i i ispace
IC 2 2 2( ) ( ), with ΔΨi being the angular

distance of the event from the source and σi being the angular
error estimate of the event. When searching for spatially extended
sources, the value of σi is replaced withs s s= +i ieff,

2
s
2 , where

ss is the extension of the source assuming a Gaussian profile. For
the ANTARES samples, a spline parameterization of the point-
spread function (PSF) is used as the spatial signal PDF. The PSF
is derived fromMonte Carlo simulations as the probability density
of the angular distance between the simulated and the
reconstructed neutrino direction, α, per unit solid angle Ω:

a = = a
W W

PSF dP

d

d

d
( ) =

a p a a
dP

d

dP

d

1

2 sin
. For each ANTARES event

i, DYPSF i( ) provides the PDF of reconstructing the event at an
angular distance ΔΨi from the source. For extended sources, the
PSF is built assuming that the original direction of the events is
distributed according to a Gaussian profile around the center of the
source location with standard deviation given by the assumed
source extension σs.

During the likelihood maximization, the number of signal
events ns and the signal spectral index γ are free parameters.
Moreover, the position of the source is either kept fixed or fitted

within specific limits, depending on the type of search (see
Section 5).
The test statistic, Q, is defined as:

g a d= - =Q L n L n2 log , , , log 0 , 4s s( ( ˆ ˆ ˆ ˆ) ( )) ( )

where nsˆ , ĝ , â, and d̂ are the best-fit values that maximize the
likelihood. In order to estimate the significance of any
observation, the Q-value observed at the location of a fitted
cluster is compared to the test statistic distribution obtained
with background-only pseudoexperiments (PEs)—pseudodata
sets of data randomized in time to eliminate any local clustering
due to potential sources—at the corresponding decl. The
fraction of background-like pseudoexperiments with a value of
Q larger than the observed Q-value gives the significance (p-
value) of the observation. In case many directions in the sky are
observed, a trial correction must be taken into account when
estimating the significance of the observation. To this purpose,
the pretrial p-value is compared to the distribution of the
smallest p-values found when performing the same analysis on
many background-only PEs. The fraction of background-like
PEs with a p-value smaller than the observed pretrial p-value
gives the trial-corrected significance (posttrial p-value) of the
observation.
The free parameters can vary over a certain parameter space.

The spectral index γ can range between 1.0 and 4.0, as these
are the limits of reasonable spectral assumptions for astro-
physical particle acceleration mechanisms. The lower limit of
ns is set to 0.001 in order to have a proper estimation of the
median sensitivity, i.e., the median expected 90% C.L. upper
limit on the flux normalization in case of pure background.
Indeed, if the lower boundary, ns

min , is set to =n 0s
min , a test

statistic Q=0 is obtained in more than 50% of the PEs,
leading to an overestimation of the median 90% upper limit. By
setting ns

min slightly above 0, the test statistic Q gets negative
values for underfluctuation of the signal. This makes it possible
to properly calculate the median of the background Q-
distribution.
To estimate the potential of the combined search to discover

a neutrino source, the 5σ discovery flux, i.e., the neutrino flux
needed for a 5σ discovery in 50% of the trials, is calculated for
an n

g-E neutrino spectrum, with γ equal to 2.0 and 2.5, as a
function of the decl. The results are shown in Figure 2 in
comparison to the discovery potentials from the individual
IceCube and ANTARES analyses (sensitivities are shown in
Figure 6). The discovery flux improves by a factor of ∼2 in
different regions of the Southern Sky, depending on the energy
spectrum of the source, compared to the individual IceCube
and ANTARES analyses. This result is consistent with the
findings of the previous combined analysis (Adrian-Martinez
et al. 2016). For an n

-E 2.0 spectrum, the largest improvement is
achieved in a region of the sky that is centered approximately at
the decl. of the Galactic Center (sin d ~ -0.5).

5. Searches and Results

Five types of searches for point-like and extended sources
are performed in this analysis. In the first two searches, a scan
of the full Southern Sky and of a restricted region around the
Galactic Center (GC) are carried out. In the third one, the
directions of a predefined list of known sources that are
potential neutrino emitters are investigated. Finally, we perform
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two dedicated searches at the locations of two promising
neutrino source candidates: the supermassive black hole
(SMBH) Sagittarius A*, and the shell-type supernova remnant
(SNR) RXJ 1713.7-3946.

5.1. Southern Sky Search and Galactic Center Region Search

The most significant clustering with respect to the expected
background is searched for at any position in a predefined
region of the sky. To find the largest deviation from
background expectation, the scanned region is divided into a
grid with boxes of 1°×1° in R.A. and decl. In each box, the
unbinned likelihood maximization is performed, with the
source position being an additional parameter that is free to
vary inside the 1°×1° boundaries. For each box, the best-fit
values of the number of signal events, nsˆ , spectral index, ĝ ,
source equatorial coordinates, d̂ and â, and the test statistic, Q,
are obtained. The direction with the smallest p-value identifies
the most significant cluster of each search.

In the first search, the scanned region is defined by the whole
Southern Sky. Given the large number of probed directions, the
significance of weak sources is reduced due to a high trial
correction. Motivated by the high concentration of candidate
sources and gas around the GC and the recent observation of a
possible Pevatron presence close to the GC by the HESS
Collaboration (Abramowski et al. 2016), the second search is
concentrated around the GC. The examined region (depicted in

Figure 3) is defined by an ellipse centered in the origin of the
galactic coordinate system (α, δ)=(266°.40,−28°.94).
The results are presented in Tables 2 and 3. In both cases,

searches for emission regions assumed as point-like (σs= 0°.0) or
extended (σs= 0°.5, 1°.0, 2°.0) are performed. For each search and
source-extension hypothesis, the best-fit values of the parameters
and the p-value of the most significant cluster are reported. The
largest excess above background in the whole Southern Sky is
found at equatorial coordinates (a d =  - , 213 .2, 40 .8ˆ ˆ ) ( ), for a
point-like source hypothesis, with best-fit =n 5.7sˆ and g = 2.5ˆ .
A pretrial p-value of 1.3×10−5 is obtained for this cluster. The
corresponding posttrial significance is 18% (0.9σ in the one-sided
sigma convention). Figure 4 depicts the pretrial p-values for all the

Figure 2. Point-source 5σ discovery fluxes for an unbroken n
g-E neutrino spectrum, with γ=2.0 (left) and γ=2.5 (right). The green line indicates the results for the

combined search. Blue and red curves show the results for the individual IceCube and ANTARES analyses, respectively.

Figure 3. Sky map in galactic coordinates of the pretrial p-values obtained in
the Galactic Center search for the extended source hypothesis with s = 2 .0s .
The dashed line depicts the boundary of the search area.

Table 2
Results of the Southern Sky Search

ss nsˆ ĝ d̂ â Pretrial p-value Posttrial p-value
(°) (°) (°)

0.0 5.7 2.5 −40.8 213.2 ´ -1.3 10 5 0.18
0.5 10.5 3.9 −22.5 18.5 ´ -3.4 10 5 0.31
1.0 11.6 3.8 −21.9 18.4 ´ -8.9 10 5 0.44
2.0 20.3 3.0 −40.1 274.1 ´ -2.2 10 4 0.47

Note. List of the most significant clusters found when performing the Southern
Sky search for different source-extension hypotheses. Reported are the source
extension ss, the best-fit parameters (number of signal events, nsˆ , spectral

index, ĝ , decl., d̂ , R.A., â), and the pretrial and posttrial p-values.

Table 3
Results of the Search in the Galactic Center Region

ss nsˆ ĝ d̂ â Pretrial p-value Posttrial p-value
(°) (°) (°)

0.0 6.8 2.8 −42.3 273.0 ´ -7.3 10 4 0.40
0.5 8.4 2.8 −42.0 273.1 ´ -5.2 10 4 0.19
1.0 12.1 2.9 −41.8 274.1 6.9×10−4 0.15
2.0 20.3 3.0 −40.1 274.1 2.2×10−4 0.03

Note. List of the most significant clusters found when performing the search in
the Galactic Center region for different source-extension hypotheses. Reported
are the source extension σs, the best-fit parameters (number of signal events, nsˆ ,

spectral index, ĝ , decl., d̂ , R.A., â), and the pretrial and posttrial p-values.

7

The Astrophysical Journal, 892:92 (12pp), 2020 April 1 Albert et al.



investigated directions for a point-like source hypothesis. The
position of the most significant cluster is also indicated.

The most significant result of the search restricted to the Galactic
Center region is observed for an extended source hypothesis
(s = 2 .0s ) at equatorial coordinates (a d =  - , 274 .1, 40 .1ˆ ˆ ) ( ),
and galactic coordinates ( = -  - l b, 6 .7, 11 .0ˆ ˆ) ( ). The values of
the best-fit nsˆ and ĝ are 20.3 and 3.0, respectively. The posttrial
significance is 3% (1.9σ in the one-sided sigma convention).
Figure 3 shows the pretrial p-values for the investigated directions
in the Galactic Center region for an extended source hypothesis
with s = 2 .0s . The decl.-dependent 90% C.L. upper limits on the
one-flavor neutrino flux normalization of this search are shown in
Figure 5 for different source extensions. In this analysis, the
Neyman method (Neyman 1937) is used to derive sensitivities and
limits.

5.2. Candidate List Search

In this study, the location of 57 astrophysical objects is
investigated to look for point-like emission of high-energy
neutrinos. The candidates are sources of high-energy γ-rays and
belong to different object classes. The analyzed candidates

correspond to all the sources in the Southern Sky considered in
the candidate list search performed by the ANTARES (Adrian-
Martinez et al. 2014) and the IceCube (Aartsen et al. 2017c)
Collaborations. Here, only the number of signal events and the
spectral index are left as free parameters in the likelihood
maximization, as the direction of the selected sources is known.
The list of the astronomical candidates is shown in Table 4,
together with their equatorial coordinates, fitted number of signal
events, fitted spectral index, pretrial p-value, and 90% C.L. upper
limits on the one-flavor neutrino flux normalization for an n

-E 2.0

and an n
-E 2.5 spectrum. Figure 6 shows the 90% C.L. upper limits

as a function of the source decl. together with the median
sensitivity.
The most significant source of the list is HESSJ1023-575, a

TeV γ-ray source coincident with the young stellar cluster
Westerlund 2 (Aharonian 2007), with a pretrial p-value of
0.79%. A total of 6.4 signal events and a spectral index of 3.5
are fitted for the cluster at the position of HESSJ1023-575. The
trial-corrected significance of the cluster is 42%, corresponding
to 0.2σ in the one-sided convention. The second- and third-
most significant sources are PKS1440-389 and HESSJ1458-
608, with respective p-values of 0.85% and 3.6%.

5.3. Sagittarius A*

Sagittarius A*, the SMBH located at the center of our Galaxy,
(α, δ)=(266°.42,− 29°.01), is a candidate source of particular
interest. Indeed, the surroundings of this kind of black hole are
highly plausible acceleration sites of very-high-energy cosmic
rays, and therefore are possible sources of cosmic neutrinos (Bai
et al. 2014; Fang & Murase 2018). The high density of candidate
objects and the presence of molecular clouds around the Galactic
Center makes the detection of an extended source more likely than
the detection of a point-like source. For these reasons, a search for
astrophysical neutrinos from Sagittarius A* and nearby objects is
carried out by testing the point-like (σs= 0°.0) and extended
source (σs= 0°.5, 1°.0, 2°.0) hypotheses. The values of the best-fit
parameters at the investigated location for the various tested
source extensions are presented in Table 5, together with the
observed p-value. The largest excess above the background is
found for a point-like source hypothesis, with best-fit =n 2.9sˆ
and g = 2.1ˆ , and a significance of 6% (1.6σ in the one-sided
sigma convention). The 90% C.L. upper limits on the one-flavor

Figure 4. Sky map in equatorial coordinates of the pretrial p-values obtained in the Southern Sky search for the point-like source hypothesis. The red contour indicates
the location of the most significant cluster.

Figure 5. The 90% C.L. upper limits on the one-flavor neutrino flux
normalization of the Galactic Center region search, assuming an n

-E 2.0

spectrum for different source extensions σs.
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Table 4
Results of the Candidate List Search

Name δ sinδ α nsˆ ĝ p-value F g=0, 2.0
90% C.L. F g=0, 2.5

90% C.L.

(°) (°) ζa χb

LHA120-N-157B −69.16 −0.93 84.43 L L L 3.6 0.9

HESSJ1356-645 −64.50 −0.90 209.00 1.2 3.1 0.18 6.2 1.4
PSRB1259-63 −63.83 −0.90 195.70 1.3 4.0 0.19 6.2 1.5

HESSJ1303-631 −63.20 −0.89 195.74 L L L 3.7 0.9

RCW86 −62.48 −0.89 220.68 1.0 1.6 0.20 6.3 1.5

HESSJ1507-622 −62.34 −0.89 226.72 L L L 3.7 1.0
HESSJ1458-608 −60.88 −0.87 224.54 3.7 3.6 0.036 9.3 2.0

ESO139-G12 −59.94 −0.87 264.41 L L L 3.7 1.0

MSH15-52 −59.16 −0.86 228.53 L L L 3.7 1.0
HESSJ1503-582 −58.74 −0.85 226.46 L L L 3.7 1.0

HESSJ1023-575 −57.76 −0.85 155.83 6.4 3.5 0.0079 11.2 2.5

CirX-1 −57.17 −0.84 230.17 L L L 3.8 1.0

SNRG327.1-01.1 −55.08 −0.82 238.65 L L L 3.8 1.0
HESSJ1614-518 −51.82 −0.79 243.58 1.6 4.0 0.21 6.1 1.6

HESSJ1616-508 −50.97 −0.78 243.97 2.0 2.0 0.18 6.5 1.6

PKS2005-489 −48.82 −0.75 302.37 0.4 2.9 0.18 6.4 1.6

GX339-4 −48.79 −0.75 255.70 L L L 3.7 1.1
HESSJ1632-478 −47.82 −0.74 248.04 L L L 3.7 1.1

RXJ0852.0-4622 −46.37 −0.72 133.00 L L L 3.7 1.1

HESSJ1641-463 −46.30 −0.72 250.26 L L L 3.7 1.1

VelaX −45.60 −0.71 128.75 L L L 3.6 1.1
PKS0537-441 −44.08 −0.70 84.71 1.6 2.2 0.098 7.2 1.9

CentaurusA −43.02 −0.68 201.36 L L L 3.6 1.1

PKS1424-418 −42.10 −0.67 216.98 0.6 2.3 0.24 5.5 1.6
RXJ1713.7-3946 −39.75 −0.64 258.25 L L L 3.5 1.2

PKS1440-389 −39.14 −0.63 220.99 3.0 2.4 0.0085 10.8 3.0

PKS0426-380 −37.93 −0.61 67.17 L L L 3.5 1.2

PKS1454-354 −35.67 −0.58 224.36 3.9 2.1 0.089 7.3 2.1
PKS0625-35 −35.49 −0.58 96.78 L L L 3.4 1.2

TXS1714-336 −33.70 −0.55 259.40 1.2 2.3 0.17 5.9 1.9

SwiftJ1656.3-3302 −33.04 −0.55 254.07 2.8 2.1 0.15 6.1 1.9

PKS0548-322 −32.27 −0.53 87.67 L L L 3.2 1.2
H2356-309 −30.63 −0.51 359.78 L L L 3.0 1.2

PKS2155-304 −30.22 −0.50 329.72 L L L 3.0 1.2

HESSJ1741-302 −30.20 −0.50 265.25 1.0 2.9 0.12 6.0 2.0
PKS1622-297 −29.90 −0.50 246.50 4.4 1.9 0.048 7.4 2.4

Sagittarius A* −29.01 −0.48 266.42 2.9 2.1 0.06 7.2 2.4

Terzan5 −24.90 −0.42 266.95 L L L 2.5 1.2

1ES1101-232 −23.49 −0.40 165.91 L L L 2.4 1.2

PKS0454-234 −23.43 −0.40 74.27 L L L 2.4 1.2
W28 −23.34 −0.40 270.43 1.7 2.5 0.094 4.9 2.0

PKS1830-211 −21.07 −0.36 278.42 L L L 2.2 1.2

NRG015.4+00.1 −15.47 −0.27 274.52 L L L 1.6 1.0
LS5039 −14.83 −0.26 276.56 L L L 1.5 1.0

QSO1730-130 −13.10 −0.23 263.30 L L L 1.3 0.9

HESSJ1826-130 −13.01 −0.23 276.51 L L L 1.3 0.8

HESSJ1813-126 −12.68 −0.22 273.34 L L L 1.3 0.8
1ES0347-121 −11.99 −0.21 57.35 L L L 1.2 0.8

PKS0727-11 −11.70 −0.20 112.58 2.5 2.7 0.13 2.1 1.2

HESSJ1828-099 −9.99 −0.17 277.24 2.4 2.9 0.079 2.0 1.2

HESSJ1831-098 −9.90 −0.17 277.85 L L L 0.9 0.6
HESSJ1834-087 −8.76 −0.15 278.69 L L L 0.8 0.5

PKS1406-076 −7.90 −0.14 212.20 6.8 2.7 0.11 1.5 0.7

QSO2022-077 −7.60 −0.13 306.40 L L L 0.7 0.4

HESSJ1837-069 −6.95 −0.12 279.41 2.5 3.4 0.24 1.0 0.5
2HWCJ1309-054 −5.49 −0.10 197.31 9.1 3.2 0.051 0.9 0.3

3C279 −5.79 −0.10 194.05 2.5 2.2 0.28 0.6 0.3

Notes. List of astrophysical objects analyzed in the candidate list search. Reported are the source’s name, equatorial coordinates, best-fit values of the free parameters, pretrial p-value and 90% C.

L. upper limits on the one-flavor neutrino flux normalization for an n
-E 2.0 spectrum, F g=0, 2.0

90% C.L. (in units of - - - -10 GeV cm s9 1 2 1), and for an n
-E 2.5 spectrum, F g=0, 2.5

90% C.L. (in units of
- - - -10 GeV cm s6 1 2 1). Dots (...) in the fitted number of source events, spectral index and pretrial p-value indicate sources with null observations ( =n 0.001sˆ ).

a z = - - - -10 GeV cm s9 1 2 1.
b c = - - - -10 GeV cm s6 1 2 1.
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neutrino flux normalization as a function of the source extension
are shown in Figure 7, together with the median sensitivity and
the discovery flux.

5.4. RXJ 1713.7-3946

SNRs are the prime candidates for the acceleration of
Galactic cosmic rays, and hence are potential sources of
astrophysical neutrinos. In the past years, a large number of
Galactic SNRs have been identified by γ-ray telescopes.105

Some of the observed γ-ray spectra extend up to tens of TeV,
suggesting that these objects are accelerators of high-energy
particles. The observation of neutrinos from these sources
would be an unambiguous indication of hadronic acceleration.
The shell-type SNR RXJ 1713.7-3946, at equatorial coordi-
nates (α, δ)=(258°.25,−39°.75), is the brightest object of this
kind in the TeV γ-ray sky and represents a particularly
interesting target to the search for cosmic neutrinos

(Vissani 2006; Kappes et al. 2007; Morlino et al. 2009). In
this analysis, two different models are considered for the
neutrino emission: that proposed by Kappes et al. (2007), in the
following indicated as RXJ 1713.7-3946 (1), and the one
recently introduced for KM3NeT neutrino source search
estimations (Aiello et al. 2019) and based on the methods
described by Vissani et al. (Vissani 2006; Villante &
Vissani 2008; Vissani & Villante 2008), hereafter referred to
as RXJ 1713.7-3946 (2). Both models describe a neutrino
spectrum of the form of:

F = F -n n
n

n
b

+

-GE
E E

1 TeV
exp , 50 cutf f

⎜ ⎟⎛
⎝

⎞
⎠ [ ( ) ] ( )¯

Figure 6. Top: upper limits at 90% C.L. on the one-flavor neutrino flux normalization from the analyzed candidates (green dots) reported in Table 4 as a function of
the source decl. An unbroken n

g-E neutrino spectrum is assumed, with g = 2.0 (left) and γ=2.5 (right). The green line indicates the sensitivity of the combined
analysis. The dashed curves indicate the sensitivities for the IceCube (blue) and ANTARES (red) individual analyses. Bottom: ratio between the best individual
sensitivity and the combined sensitivity as a function of the source decl. for the spectral indices γ=2.0 (left) and γ=2.5 (right).

Table 5
Results of the Search at the Location of Sagittarius A*

ss nsˆ ĝ p-value
(°)

0.0 2.9 2.1 0.06
0.5 0.6 2.0 0.26
1.0 L L L
2.0 0.3 3.8 0.40

Note. Values of the best-fit parameters (number of signal events, nsˆ , and
spectral index, ĝ ) and p-value for the search at the location of Sagittarius A* for
different hypotheses of source extension σs. Dots (...) in the fitted number of
source events, spectral index, and p-value indicate cases of null observa-
tions ( =n 0.001sˆ ).

Figure 7. Discovery flux (red dots), median sensitivity (blue dots) and 90% C.
L. upper limits (green squares) for the search at the location of Sagittarius A*,
assuming an n

-E 2.0 spectrum, as a function of the angular extension σs.

105 http://tevcat.uchicago.edu
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where Eν is the neutrino energy and the values of the neutrino
spectrum parameters Φ0, Γ, Ecut, and β are listed in Table 6. A
Gaussian extension with σs=0°.6 is assumed for the source as
reported by the γ-ray analysis performed by the H.E.S.S.
Collaboration (Abdalla et al. 2018).

No significant evidence of astrophysical neutrinos from the
direction of the SNR is observed for either of the considered
spectra. The fitted number of signal events and the p-value
observed at the source position are presented in Table 6 for
each spectrum hypothesis, together with the 90% C.L.
sensitivity and upper limit, both expressed as a ratio with the
theoretical source flux.

6. Conclusions

A combined search for neutrino sources in the Southern Sky
using data from the ANTARES and IceCube telescopes was
presented. Neither significant point-like nor extended neutrino
emission over the background expectation was found.

The largest excess over the whole Southern Sky, with a
posttrial significance of 18%, was found at equatorial
coordinates (a d =  - , 213 .2, 40 .8ˆ ˆ ) ( ), for a point-like source
hypothesis. When limiting the search to the GC region, the
most significant cluster was found at equatorial coordinates
(a d =  - , 274 .1, 40 .1ˆ ˆ ) ( ), with a posttrial significance of 3%,
for a source extension of 2°.0. Upper limits on the neutrino flux
from 57 astrophysical candidate sources were presented. The
most significant source candidate is HESSJ1023-575, with a
posttrial significance of 42%. The upper limits on the flux from
HESSJ1023-575 were set to 1.1×10−8(2.5× 10−6) in units
of - - -GeV cm s1 2 1 for an unbroken power-law spectrum with
spectral index γ=2.0 (γ= 2.5). Sagittarius A* was tested as a
point-like source and as an extended source. The largest excess
over the background was observed at an angular extension of
0°.0 with a significance of 6%. Finally, the location of the SNR
RXJ 1713.7-3946 was investigated assuming two proposed
neutrino emission models and a source extension of 0°.6. As no
significant evidence of cosmic neutrinos was observed, upper
limits were derived.

This analysis shows the strong potential to search for
neutrino sources in the Southern Sky using the joint data sets of
the ANTARES and IceCube telescopes. The combination of
the two detectors, which differ in size and location, allows for
an improvement of up to a factor of∼2 in the sensitivity in
different regions of the Southern Sky, depending on the energy
spectrum of the source. For a soft spectral index, the
contribution of high-energy neutrinos is suppressed and
ANTARES dominates in most of the Southern Sky. The
complementarity of the two detectors is mostly effective for a

harder spectral index, as all the samples provide a significant
contribution. For an n

-E 2.0 spectrum, a considerable gain in the
sensitivity to point-like sources is achieved in all the Southern
Sky and in a larger scale in the region close to the Galactic
Center.
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