Using the SOLO Taxonomy to Understand Subgoal Labels
Effect in CS1

Adrienne Decker
Engineering Education
University at Buffalo
Buffalo, NY USA
adrienne@buffalo.edu

ABSTRACT

This work extends previous research on subgoal labeled
instructions by examining their effect across a semester-long,
Java-based CS1 course. Across four quizzes, students were asked
to explain in plain English the process that they would use to solve
a programming problem. In this mixed methods study, we used
the SOLO taxonomy to categorize student responses about
problem-solving processes and compare students who learned
with subgoal labels to those who did not. The use of the SOLO
taxonomy classification allows us to look deeper than the mere
correctness of answers to focus on the quality of the answers
produced in terms of completeness of relevant concepts and
explanation of relationships among concepts. Students who
learned with subgoals produced higher-rated answers in terms of
complexity and quality on three of four quizzes. Also, they were
three times more likely to discuss issues of data type on a question
about assignments and expressions than students who did not
learn with subgoal labeling. This suggests that the use of subgoal
labeling enabled students to gain a deeper and more complex
understanding of the material presented in the course.

CCS CONCEPTS

« Social and professional topics — Computing education —
Computer science education — CS1

KEYWORDS

CS1, subgoal
programming

labeling, SOLO taxonomy, introductory

ACM Reference format:

Adrienne Decker, Lauren E. Margulieux, Briana B. Morrison. 2019. Using
the SOLO Taxonomy to Understand Subgoal Labels Effect in CS1. In
Proceedings of the Fifteenth Annual Conference on International Computing
Education Research. ACM, New York, NY, USA, 9 pages.
http://dx.doi.org/10.1145/3291279.3339405

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

ICER ’19, August 12-14, 2019, Toronto, Ontario, Canada.

© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6185-9/19/08.

DOI: http://dx.doi.org/10.1145/3291279.3339405

Lauren E. Margulieux
Learning Sciences
Georgia State University
Atlanta, GA USA
Imargulieux@gsu.edu

Briana B. Morrison
Computer Science
University of Nebraska Omaha
Omaha, NE USA
bbmorrison@unomaha.edu

1 Introduction

Subgoal-labeled worked examples (SLWE) have shown promise in
tackling the persistent problems of low retention and success in
introductory programming courses at the college level [13-15].
However, these previous studies have exposed students to
subgoals for only one to two hours of instructional time. The
current project extends this work by exploring the use of subgoal-
labeled worked examples throughout an entire introductory Java
programming course [12]. The materials were pilot tested from
August to December 2018 to examine their effect on student
performance. This paper discusses the analysis of the data
collected on quiz questions that instructed students to explain in
plain English the process that they would use to solve a
programming problem. Student answers were scored using the
SOLO taxonomy, which represents answer complexity and
completeness. The guiding research question for this work was: If
students learn procedures using SLWE, do they create more complex
and complete answers to explain in plain English questions than
students who learn using non-subgoal-oriented materials?

2 Background

2.1 Subgoal Learning

Subgoal learning explicitly teaches students the subgoals, or
functional pieces, of a problem-solving procedure. For example, to
solve a problem with a while loop, students must determine a
stopping case for the loop, so defining a termination condition is
a subgoal of solving a problem with a while loop. The specific
steps taken to achieve this subgoal varies from problem to
problem, but the function remains the same. Novices solve
programming problems better when they explicitly learn the
subgoals of a procedure because they often do not recognize these
functional pieces on their own [3, 4, 8, 13-15].

Students typically learn subgoal through subgoal labeled
worked examples. Worked examples are commonly used to teach
well-structured problem-solving procedures because they
demonstrate how to apply an abstract procedure to a concrete
problem before the learner can solve problems independently [1,
19, 23]. The drawback of worked examples, however, is that they
must include details specific to a problem. For example, to
demonstrate how to solve a problem using a for loop, the
worked example also includes a context, such as “write a loop that

calculates the average age of the first 100 people to take a survey.”
Learners tend to organize information about the procedure using
these easy-to-grasp details, like age, rather than around the hard-
to-conceptualize abstract procedure that they are learning,
leading to difficulty transferring knowledge to new problems [1,
18]. Subgoal learning addresses this problem by pointing out
shared functional features in worked examples, helping learners
to organize information so that it can transfer more easily [4, 13].

2.2 SOLO Taxonomy

The Structure of the Observed Learning Outcome (SOLO)
taxonomy was introduced by Biggs and Collis [2] to provide a
framework for more consistent, qualitative evaluation of student
responses to open-ended questions. The taxonomy was designed
based on student responses to open-ended questions in multiple
disciplines. The taxonomy has three dimensions:

1. Capacity: the pieces of information used to produce the
response, ranging from low (i.e., only the information in the
question and one relevant piece of information) to high (i.e.,
the question, multiple pieces of relevant information,
interrelations among information, and abstract principles)

2. Relating operations: the relationship between the question
and response, ranging from illogical (e.g., tautologies), to
question-specific information only (i.e., answers the question
without relating to principles or concepts), to information
that generalizes beyond the specific question (ie., relating
response to abstract principles and concepts)

3. Consistency and closure: the consistency between
information provided and the conclusion that the student
comes to, ranging from not answering the question,
providing inconsistent evidence or jumping to conclusions,
to consistent evidence and multiple conclusions based on
relevant possible alternatives

Using the three dimensions, Biggs and Collis defined five levels of

structural complexity, which can be used to determine how well

students learned an objective. Students demonstrate their
knowledge of the subject at one of the five levels of complexity:

e Prestructural: little to no understanding of the topic

e Unistructural: understanding of a single aspect of the topic

e Multistructural: understanding of several aspects of the task
but each aspect is represented independently

e Relational: understanding of several aspects of the task and
how they are related

e Extended Abstract: understanding of the aspects can be
generalized beyond the context of the question

Based on their analysis of student responses, complexity is

typically at the same level across the three dimensions. For

example, a prestructural response will typically match the

prestructural criteria in 1) capacity, 2) relating operations, and 3)

consistency and closure. Occasionally, a transitional answer will

exist between two levels of dimensions.

2.3.1 SOLO in Computing Education Research. The SOLO
taxonomy has been used extensively in computing education
research. A 2004 ITiCSE Working Group (the Leeds Group) [10]
provided the first attempt at mapping the SOLO taxonomy to

computing. Table 1 summarizes this initial mapping, which is
most used by other studies, including ours.

Category Definition

Prestructural Significant misconception or preconception
irrelevant to programming

Unistructural Correct grasp of some but not all aspects of the
problem (i.e., educated guess)

Multistructural Understands all parts of the problem but does
not exhibit an awareness of the relationships
between the parts; the answer may be correct or
not

Relational Parts of the problem are integrated into a
structure; the answer may be correct or not

Extended The response goes beyond the immediate
problem and links to a broader context

Table 1. Mapping of SOLO taxonomy to computing [10].

The SOLO taxonomy, along with the explain in plain English
(EiPE) questions, have been used many times within computing
education research, especially for CS1. The BRACElet project
studied the relationship between novice programmers' code
writing ability and their explanations of code [11, 24]. In 2011,
Corney et al. [5] explored student EiPE responses for swapping
variables, code that represents the simplest case in which a
programming student can manifest a SOLO relational response.
Sheard et al. [21] studied exams for CS1 students. They found that
reading tasks correlated positively with performance on writing
tasks and that undergraduate students had a lower SOLO score
than postgraduate students.

Others have modified the SOLO taxonomy to better map to
the concepts they were measuring. In Sudol-DeLyser [22], a
modification was done to the SOLO classification scheme to
capture the number and types of abstraction statements made by
students during a think-aloud protocol. Results indicate that
students with greater proficiency at writing code were more likely
to use multiple levels of abstraction when describing the code they
were writing and moved between levels of abstraction with higher
frequency. Izu et al. [7] used an adjusted SOLO taxonomy to
classify programming questions' by using a "building block" as the
granular structure in the taxonomy to overcome the variability in
problem difficulty. A building block was defined as a code pattern
or template that students had seen, allowing for differentiation
between recall and synthesis in problem difficulty. Murphy et al.
[16, 17] replicated the Leeds Working Group results while using
Table 1's categories but without the Extended classification. Their
results support a relationship between explaining and writing
code. Beyond CS1, Corney et al. [6] used SOLO for CS2 Data
Structures questions (again with no Extended Abstract category).
The results found a strong correlation between students' ability to
explain code at an abstract level and performance on code writing
and code reading test problems at this level.

3 Present Study

We tested the SLWE in introductory programming courses at a
medium-sized Midwestern university in the United States. The
university offered five sections of a Java-based CS1 course from

August to December 2018. Students were free to enroll in any
lecture or lab section. The lecture sections were taught by three
full-time faculty, and all had more than 15 years of experience
teaching introductory programming. Two sections were taught by
one of the authors and incorporated SLWEs in place of the
conventional worked examples used in the other three sections.
All sections were coordinated and used the same textbook, slides,
peer instruction questions, pace of topics, quizzes, tests, labs, and
Learning Management System (LMS) instance. The only
difference between the sections was the examples used for in-class
practice and the introduction of the subgoals. The subgoals used
in class are given in [12]. The intervention sections used the
developed SLWE and practice problems while the other sections
used instructor developed examples.

The present study compares student responses to four EiPE
questions between the sections that used SLWE (i.e., subgoal
group) and those that used the conventional examples (i.e., control
group). One of the three control sections was taught online and
initially treated as a separate group in case students who chose to
enroll in the online course were different than the other students
in some way. After analyzing the data, however, the online section
was indistinguishable from the other control sections. Thus, the
three sections are treated as one control group in the analysis.

3.1 Previous Results

In a previous paper [12], we presented the analysis that compares
quiz and exam grades by group, which we summarize here to
contextualize the EiPE responses that are the focus of the present
paper. We had 120 students in the subgoal group and 145 students
in the control group. Several learner and demographic
characteristics of the students were collected, but none of them
correlated with group or grades. We examined student grades on
the five quizzes given after SLWE were used (out of 15 weekly
quizzes) and all four exams, each of which included multiple
choice and short answer questions that were automatically
graded. The exams also included long answer questions, which
were graded by the same person across all sections.

The quiz and exam grades were analyzed in a few ways to
gain a complete understanding of the data. First, an average score
was calculated for each student. This score represents the average
grade on quizzes or exams that the student submitted. Any
missing grade was not included in the average score. Second, a
total score was calculated for each student. This score included all
available points for quizzes or exams, and if a student did not turn
in a quiz or exam, it was treated as a zero. The total score was
paired with the number of quizzes and exams completed to help
us to consider the role of the SLWE on the dropout rate.

On the five quizzes, students in the subgoal group performed
better than students in the control group with a medium effect
size, d = 0.42 for the average score and d = 0.44 for the total score.
In addition, students in the subgoal group completed more quizzes
that students in the control group. An interesting result from the
analysis was that the subgoal group has a significantly lower
variance in scores than the control group. Given that the subgoal
group also performed better than the control group, it could be
the case that the subgoals particularly improved the grades of

students who would have performed poorly on the quizzes. In
[12], we argued that this pattern of results suggests that at-risk
students were less likely to drop out of the subgoal sections than
control sections of the course.

On the four exams, students in the subgoal group performed
better than students in the control group only on the total score
(ie., including zeros for missing exams). On the average exam
score, the groups performed equivalently, but the subgoal group
again had a lower variance in scores than the control group. Based
on the number of exams taken in each group, the difference
between groups in the total score is likely due to the zeros from
missing exams. In [12], we argued this pattern of results again
suggests that students in the subgoal section were less likely to
drop out of the course. For students who persisted through the
course, SLWE did not improve the average score on exams,
though it did reduce variance, which again may point to helping
at-risk students.

SLWE improving quiz scores, but not exam scores, aligns
with the subgoal learning framework, which is designed to help
novices understand the structure of problem-solving procedures
before they are able to recognize it for themselves. By the time a
student has studied for an exam, they are likely to be able to
recognize problem-solving structures. Therefore, it is expected the
SLWE have a stronger effect on the quiz grades, which represent
initial knowledge, than exam grades, which represent well-
developed knowledge. For the present study, we explore how
SLWE affect students’ initial conceptions of problem-solving
procedures through EiPE questions given on the quizzes.

4 Methods

The total number of students across all sections was 307 based on
enrollment at the beginning of the semester. Students were
excluded from analysis if they did not complete at least one exam
or one quiz, effectively withdrawing from the course. The final
sample size was N = 265, 145 in the control group and 120 in the
subgoal group--the same sample as used in the analysis for [12].

4.1 Data Collection Sources

Student performance on four quizzes was collected. Below are the
characteristics of the student performance items:

e The quiz questions were short answer, specifically questions
that instructed students to explain in plain English about
code. See Figure 1 for two example questions.

e Each quiz question analyzed here was worth only one point
on a 5- to 15-point quiz and, even cumulatively, had almost
no effect on students’ course grades.

e Questions of this type were included on 4 of 15 weekly
quizzes. (Administered during weeks 4, 8, 10, and 12 of the
term.) Explanations of the topical coverage of the questions
are presented by quiz in Section 5.

e Neither the subgoal group nor the control group practiced
this type of question during class.

® Quizzes were assigned from Friday morning until midnight
Monday at midnight with a 20-minute time limit and

completed online through the LMS.
e The EiPE quiz questions were graded so that any reasonable
answer was given full credit.
e Students were not given feedback on their responses to the
quiz questions analyzed here.
Quiz 1 example question:

For the problem below, explain the general steps that you would take to
solve the problem. You do not need to solve the problem. Instead, imagine
that you are describing the general steps that you would take to evaluate
code like this to yourself before you learned this unit/topic/etc.

intalpha=20

inteta=5

double beta =4.5

double gamma =55

double delta =0.5

double result = ([{beta + gamma) — (++alpha * delta)) * (eta++ % alpha);

Quiz 4 example question:
Explain the steps that you would follow to write a method header for a
class that meets these specifications:

‘Write a public method header that does not return anything but accepts as
parameters a String and a double and an integer in that order and
calculates the speed of a yellow-tailed swallow.

MNote that you do not have to write the method header, just the steps that
would go through to decide what to write.

Figure 1. Sample EiPE questions from quizzes.

4.2 Classifying Responses Using SOLO

For each quiz, anonymized student responses were coded based
on the SOLO taxonomy categories: prestructural, unistructural,
multistructural, relational, or extended abstract. The anonymous
student responses were graded as one set, with no indication of
whether they were in the subgoal or control group. The process
for coding the responses involved three coders working
concurrently on the coding process. To start the process, the first
several responses (about 10) for each question were coded
cooperatively by all three coders discussing where each response
fell into the taxonomy and why each believed that categorization
to be correct. Discrepancies were discussed until agreement was
reached on the code and a general understanding of what was
expected in each response for each category was reached.

Each of the quiz questions had specific concepts,
relationships, and principles that we used to distinguish between
levels of the SOLO taxonomy. The coding rubrics were related to
the information included in the responses rather than to subgoal
labels. For example, for the first quiz, whether students discussed
matching data types between the right and left sides of an
expression statement could be the distinction between a three or
a four rating. The question-specific distinctions are included in the
results section to help contextualize the findings.

After the initial 10 responses, the three coders worked
independently on an additional set of 10 responses and compared
answers after they had scored the set and resolved differences.
This process continued until 20% of the responses were coded by
all three raters. If an acceptable level of interrater reliability was
reached, the coders divided up the remaining responses and coded

independently. If interrater reliability was not acceptable, they
coded an additional 20% of responses until reliability was above
the threshold.

To evaluate interrater reliability, we used the intraclass
correlation coefficient of absolute agreement, ICC(A). We chose
this test of reliability because it determines whether multiple
raters give the same score to different student responses. Other
more popular tests of reliability determine whether raters are
consistent in ranking across responses. For example, if one rater
gave consistently low scores to responses and another gave
consistently high scores to responses, they could still achieve high
interrater reliability with Cohen’s kappa or intraclass correlation
coefficient of consistency. However, for the SOLO taxonomy, we
need to determine how often raters give the same score because
each score has a qualitatively unique meaning. An ICC(A) value
of 0.75 or higher is considered good interrater reliability [9].

5 Results

The SOLO taxonomy categorizes students’ responses based on
qualitative differences. Therefore, even though we have assigned
numeric values to student responses, it is not necessarily
appropriate to use those values mathematically. The SOLO
categories yield ordinal data, which means that the categories are
rank ordered (e.g., a five is better than a four) but the difference
between values is not mathematically equal (e.g. the difference
between a five and a four is not necessarily the same as the
difference between a four and a three). Because we used ordinal
data, the results of any parametric test (i.e., ANOVA) should be
interpreted with extreme caution. Technically, using ordinal data
violates the assumptions of a parametric test. We decided to
present the results of these tests because the tests for homogeneity
of variance, which helps determine the appropriateness of the
data for parametric tests, were non-significant. The non-
significant results for Mauchley’s (for repeated measures) and
Levene’s (for t-test) tests suggest that the variance of data was
normally distributed and equivalent between groups, which are
the major concerns for analyzing ordinal data parametricly. We
used the parametric tests to provide only a high-level view of the
data before providing more nuanced, reliable descriptive statistics.

To explore the quality of students’ responses across quizzes,
we used a repeated measures analysis that links students’ scores
on each quiz question. Repeated measures analysis requires a data
point for each measurement, and due to missing data on some
quizzes, the sample size with complete data was limited, subgoal
n = 53 (44% of the total sample) and control n = 44 (30% of the
sample). Even with a limited sample size, the analysis found that
the quiz question was a strong predictor of students’ scores, F =
29.9 (sphericity was not violated, p = .215, so no correction was
used), p < .01, partial 5% = .24. This result suggests that the effect
of quiz questions would have overshadowed any effect of learner
differences (i.e., within-subjects variance), such as whether a
student was more likely to give five or four rated responses. To
further support this finding, we visually inspected all scores of
students who received a five (i.e., extended abstract) on one of the
quizzes. Their scores on the other responses follow a normal

distribution with the most common score on other quizzes being
a 3. This pattern of results suggests that students’ scores, even for
students who received a five, were more affected by the question
being asked than by personal characteristics.

Because the quiz score was a large predictor of performance,
the subgoal and control groups were compared for each quiz
independently. For each quiz, we used a t-test to compare groups,
but as stated earlier these results are of limited usefulness. To
explore the data, we examine the mode and frequencies of each
score. We use these statistics instead of the typical mean and
standard deviation because it more accurately describes ordinal
data. For example, the standard deviation in our data was always
around 1.0 because most students scored a three or four, and the
numerical difference between those values is 1.0. Thus, this value
is an artifact of the data analysis method rather than a meaningful
representation of the variance in groups.

5.1 Quiz 1 - Expression Statements

In the first quiz analyzed (quiz 4 for the term), we had responses
from 84 students in the subgoal group and 75 students in the
control group. The raters reached a high level of interrater
reliability, ICC(A) = 0.85, for the first 20% of responses. Because
this quiz was early in the semester, the amount of knowledge that
students could demonstrate was limited. This question asked
students to explain the steps needed to evaluate a complex
arithmetic expression that included both parenthesized sub-
expressions and pre- and post- increment/decrement operators
(see Figure 1). Table 3 provides the question-specific content,
relationship, and principle information required for each score, i.e.
the rubric.

Overall, the subgoal group had higher SOLO ratings than the
control group on the first quiz, #158) = 19.14, p < .01, n? = .11. To
examine the differences between groups, we considered the mode

and frequencies of each score in the groups (see Table 2). Based
on frequencies, 68% of the students in the subgoal group were able
to write answers to this question at either a four or a five rating,
indicating that the students explained how to solve the arithmetic
expression and how to deal with pre/post increment operations
and, in many cases, data type compatibility.

In the control group, students achieved these rankings at
roughly half of this rate (37%). Only 11% of the students in the
subgoal group did not articulate the steps needed to solve the basic
parts of the arithmetic expression (i.e., scores of one or two), while
the control group had over twice that rate (27%). Overall, the
subgoals seemed to enable students to articulate more information
about the process of evaluating arithmetic expressions.

Note that the criteria to receive a four or five explicitly
involves the mention of data types or type compatibility. This
issue is explicit in the subgoals for this part of the course.
Specifically, one of the subgoals states, “Determine whether the
data type of expression is compatible with the data type of
variable”. As such, we undertook another analysis to see how
often students in the two groups mentioned the issue of data types
in their responses. The rate is almost double for the subgoal group
(29%) than the control group (12%) for students mentioned
compatibility in their answers. We expect that this is due to the
explicit subgoal that was used in the course dealing with type
compatibility drawing students' attention to the importance of
data types.

1 2 3 4 5
Subgoal | 1 8 18 43 14
Mode =4 | (1%) (10%) (21%) (51%) (17%)
Control 6 14 27 25 3
Mode =3 | (8%) (19%) (36%) (33%) (4%)

Table 2. Quiz 1 score frequencies between subgoal and
control groups.

SOLO Description Example
1- Nonsensical answer or answer that had no “Solve each equation.”
prestructural more information than the question provided
2- Described how to solve part of the problem, “First I would do the things within each set of parentheses. Second, I would do the
unistructural but the description was incomplete multiplication. Finally I would subtract.”
3- Described how to solve the complete problem | “You need to follow the order of precedence for Java, so first you would do what is
multistructural | but provided no explanation beyond the in the parentheses. In the parentheses you would do the ++ first from right to left,
question at hand followed by modulus, then multiplication and division from left to right.”
4- Described how to solve the problem and “First I would take the values within the parentheses and try to solve for those
relational explained in abstract terms either how to first. Starting with the one that has multiplication first, then modulus, and last,
evaluate pre- and post-increments or how to addition. ++Alpha would need 1 added to its value since it is a pre added value.
evaluate the appropriateness of data type Eta++ would add 1 to its value after solving for the result then take the modulus of
between the variables eta++ % alpha.”
5- Described how to solve the problem and “First thing I like to establish is what is an int, what is a double, and then what
extended explained how to evaluate data type and kind of answer do they want. We know they are looking for a decimal because it is
abstract increments for expression statements in a double. Next, go to the equation and treat it like math class using the orders of
general operation; PEMDAS. Starting from the beginning of that rule we have parenthesis,
so we'll start by doing everything within their respected parenthesis. beta +
gamma is pretty general, just add the two together. ++alpha * delta you want to
add one to the variable alpha and then multiply that with delta. eta++ %alpha you
will start by doing eta modular alpha and then add 1 because the ++ comes after
the effected variable. Now follow order of operations.”

Table 3. SOLO Categories for Quiz 1, Expression Statements.

5.2 Quiz 2 - Loops

In the second quiz analyzed (quiz 8 for the term), we had responses
from 98 students in the subgoal group and 97 students in the
control group. The raters reached a moderate level of interrater
reliability, ICC(A) = 0.72, for the first 20% of responses. Thus, the
raters discussed the criteria and rated an additional 20% of
responses together to reach a high level of reliability, ICC(A) =
0.82. The remaining responses were scored by one rater. This
question asked students to explain the steps needed to write code
for a process that involved a single loop that processed input from
the user and accumulated a sum. Table 5 provides the question-
specific information required for each score.

Overall, the subgroup group scored higher than the control
group on the second quiz , #194) = 11.62, p < .01, n? = .06. We
examined the differences between groups with the mode and
frequencies of each score in the groups (see Table 4). This question
asked about the code that would need to be written to solve the
presented problem. We see a high occurrence of threes in this data
(50% for subgoals, 46% for control). The students most often
explained what needed to be done to solve the problem but
showed no evidence of abstract thinking. For students who
crossed into the relational category the rate was higher for the
subgoal group (29% vs. 17%) and the subgoal group had the only
five for this question. Also, there is a higher proportion of
proportion of students who were not able to give a complete
explanation of an answer in the control group versus the subgoal
group (37% vs. 18% at a rating of one or two). This pattern also
shows that in the control group, over one-third of the students
could not give all the pieces required for an answer that earned a

three score. We expect that the reason for the differences in this
question was that the subgoals for loops gave the students a place
to start their explanation and a way to articulate the pieces of the
answer even if it was not at the higher cognitive levels of
relational or extended abstract.

1 2 3 4 5
Subgoal 5 13 49 28 3
Mode =3 | (5%) (13%) (50%) (29%) (3%)
Control 11 25 45 16 0
Mode =3 | (11%) (26%) (46%) (17%) (0%)

Table 4. Quiz 2 score frequencies between subgoal and
control groups.

5.3 Quiz 4 - Writing Methods

We discuss the fourth quiz (quiz 12 for the term) before the third
quiz because the first, second, and fourth quizzes follow the same
pattern of results, and the third quiz does not. In the fourth quiz,
we had responses from 92 students in the subgoal group and 92
students in the control group. The raters reached a high level of
interrater reliability, ICC(A) = 0.87, for the first 20% of responses,
and the remaining responses were scored by one rater. The
question asked students to explain the steps needed to write a
method header for a described method. Table 6 provides the
question-specific information required to achieve each score.
The subgoal group scored higher than the control group on
the fourth quiz, t(183) = 25.08, p < .01, n2 = .12. We also examined
group differences between mode and frequencies (see Table 7).

SOLO Description | Example
1- Nonsensical answer, an answer that had no more information | “You would get the score for 9 hole for each round then print each
prestructural than the question provided, or alluded to a relevant principle round out.”
but not in enough detail to apply it to the problem

Multistructural | the problem, whether they were
correctly applied, but provided no
explanation beyond the question at

2- Described 1-2 concepts that applied to “Declare variables for 18 holes. Println asking for input for each hole, using scanner.

unistructural the problem, but description was Println the sum of holes 1-9. Println the sum of holes 10-18. Print In the sum of all
incomplete holes.”

3- Described all concepts needed to solve “Have the scanner along with the 18 variables needed to add up golf scores. After the

user inputs all of the numbers then you can have the system add them all up and print
it. Then if you want the sum of the 1%t nine holes then add up the 15! nine variables and
the same for the 2nd half.”

hand
4- Described how to solve the problem “I would make two loops that would count up to 9 times for each side of the golf course.
relational and explained how the different pieces Then within the loop I would have the hole score added to the total score as well as add
of the solution related to each other a counter for that hole. This would be the exact same for both sides of the course and at
the end of each loop I would print out the total score for those loops then I would add
the two scores together to get a total score for the 18 holes.”
5- Explained how to solve a problem like “The first thing to do is to determine what kind of loop to use. Since the counter value
extended this in abstract terms or number of iterations is known for the program, both a while or a for loop will work.
abstract However, a for loop is simpler and more concise to use. Since you know that each half

of the game needs to be scored, and will be scored the same way, the same block of code
can simply be used twice and the sum values at the end of each block can be assigned to
different variables to delineate which is the first nine and the second nine holes. In the
for-loop the counter needs to loop exactly 9 times, once for each hole. Within the for
loop the code needs gather the score for that hole through a user query and add it to a
sum variable, to get the total score for the entire 9 nine holes. The code is then repeated
to get the sum for the second nine holes, and then both sums are added together to get
the total for the round of golf.”

Table 5. SOLO Categories for Quiz 2, Loops

Table 7. Quiz 4 score frequencies between subgoal and
control groups.

For this question, 31% of the students in the control group were
rated only a one or a two on this question, compared to the 5% of
the subgoal group. On the other end of the scale, 66% of the
subgoal group were rated a four or five on this question, with only
34% of the control group receiving the same score. We expect that
the subgoal labels for writing methods and evaluating methods
helped students to explain how they would choose the various
parts of the method header and, therefore, earn a higher score.
95% of the subgoal students were able to provide a complete
answer to this problem compared to 69% of the control students.

5.4 Quiz 3 — Nested Loops

The third quiz analyzed (quiz 10 for the term) does not follow the
same pattern of results found for the other quizzes. The third quiz
had responses from 90 students in the subgoal group and 102
students in the control group. The raters checked interrater
reliability after scoring each quintile of the scores, but they never
achieved a sufficiently high reliability to warrant a single rater.
Therefore, two raters discussed and reached agreement for each
of the responses. This question asked the students to look at a
nested loop structure and describe how they would determine its
output. We believe that the low interrater reliability for this
question was due to the numerous pieces of content knowledge
required to answer this question. It is also interesting to note that
for this question, the mode was two for both groups, occurring at
twice or more times the rate of the other scores. This mode
indicates that responses at the higher levels of the taxonomy were
not as prevalent in the data set and did not allow for exemplars

SOLO Description Example
1- Nonsensical answer, an answer that had no | “By determining a constructor and instance then I would write the code using
prestructural more information than the question methods to create how fast a swallow travels.”
provided, or confused classes and methods
2- Described 1-2 concepts that applied to the “Need to figure out what items are ints, doubles, strings. Then from what you are
unistructural problem, but the description was making and if it needs to accessed or created you would make it public or private
incomplete or described a class instead of a class.”
method
3 - Described all concepts needed to solve the “Write public, then void, and then in parenthesis create 3 variables, a string, a
Multistructural | problem but provided no explanation double, and an int in that order.”
beyond the question at hand
4 - Described how to solve the problem and “I would start of by specifying that it's public since that was requested and add void
relational explained how the different pieces of the since it does not return anything and I would call the method speed since that is
choices made to solve this particular what it is calculating and in the parenthesis I would add "String s, double a, int b"
problem since it requested it in that order.”
5- Explained how to solve a problem like this “First you would choose whether people should have access to this or not. Public is
extended in abstract terms yes, and private is no. Next find if you need to return something or not. Since you
abstract don't, you would use void. If you needed to return something you would use the
data type (int, double, etc). Then you choose a name that fits what you are creating.
For this I will just use "speed". Then you would put the parameters in to what they
will be entering. It says "a String and a double and an integer in that order". So you
put that in the () of your method.”
Table 6. SOLO Categories for Quiz 4, Writing Methods.
1 2 3 4 5 and discussion which could have also led to the interrater
Subgoal 1 4 27 53 7 reliability issues. Table 6 provides the question-specific content,
Mode = 4 (1%) (4%) (29%) (58%) (8%) relationship, and principle information required to achieve each
Control 11 17 32 27 5 score.
Mode =3 | (12%) (19%) (35%) (29%) (5%) The two groups scored equivalently on the third quiz, (191)

=1.13, p = .29, n? = .01. The mode and frequencies of each score in
the groups can be found in Table 8. For this question, the subgoal
group did not produce answers at higher levels of the taxonomy
at a greater rate than the control group. In fact, only 12% of the
subgoal group received ratings of four or five, while 19% of the
control group received those ratings. The students in the subgoal
group had a higher proportion of ratings of two (53% vs. 38%).
Though we cannot be certain why this question displayed such
different outcomes than the others or what aspects of this
question made the results different, we expect that the high level
of content knowledge required for the question played a
significant role. In addition, the use of the nested loop did not
match well onto the subgoal labels, providing no extra benefit for
students who learned with SLWE.

1 2 3 4 5
Subgoal 8 48 23 8 3
Mode =2 | (9%) (53%) (26%) (9%) (3%)
Control 12 39 32 17 2
Mode =2 | (12%) (38%) (31%) (17%) (2%)

Table 8. Quiz 3 score frequencies between subgoal and
control groups.

6 Conclusion

Overall, the subgoal label group gave more complete answers,
often including relational and abstract information, on three of the
four quiz questions. Based on the SOLO taxonomy, subgoal
students demonstrated a higher level of cognitive understanding
of the underlying programming principles. For the one question

SOLO Description Example
1- Nonsensical answer, an answer that | “I would start from the first for statement and then continue to the next for statement using
prestructural had no more information than the the previous values needed.”
question provided, or identified
content in the code with no
explanation for how they
functioned
2- Described 1-2 concepts that applied | “First see what loops are grouped together by brackets. The first loop is contained by the
unistructural to the problem, but description was | first and last brackets and the loops inside this one only contain the next line after the for
incomplete or did not demonstrate loop statement. I would find the output for each smaller loop and then everything inside the
an understanding of the code first loop then display that value the number of times each loop specified.”
presented to them
3- Described all concepts needed to “To solve this, I would first block each for loop so I know what loop is connected to what
Multistructural | solve the problem but provided no action (and what actions also come right after a loop has concluded). Then, I would
explanation beyond the question at | determine how many times each individual loop would run. After that it is merely a game of
hand running through steps. Loop at the bottom goes a couple times, loop above it goes once.
Repeat this until the loop above it is complete, then go to the initial loop. This repeats until
the initial loop also is finished executing. That should give you your output.”
4 - Described how to solve the problem | “First, look at the large 'for loop'. This loop will execute ten times but inside this loop there
relational and explained how the different are two nested loops. The first inner loop will execute 10 times on the first round of the
pieces of the choices made to solve large loop, nine times during the second time through the large loop and so on. The
this particular problem System.out.println(); after the first nested loop separates the "' with an empty line each time
the x value changes. The second nested loop is similar but is not inside the first nested loop
because the first nested loop does not use curly braces. It is similar to the first nested loop
and will print ten octothorps the first round of the large loop, then nine the second round
through.”
5— Explained how to solve a problem “First, notice that in the first for loop, x counts down from ten to one before becoming false,
extended like this in abstract terms meaning it will execute the internal code 10 times. Next, the first internal for loop counts to
abstract whatever x is for that specific loop, counting from one each time. This will produce an
asterisk for each iteration. Because it will only loop the code on the line below it, after the
loop is finished, it will create a line break and move on to the second for loop. The next for
loop will start out at ten each time, and reduce until it has reached the x value of that loop.
Once this loop is finished, another line break will occur and the x loop will move onto its
next iteration. This will result in Alternating lines of stars and pounds, with the stars
decreasing by one each time, and the pounds increasing by one each time.”

Table 9. SOLO Categories for Quiz 3, Nested Loops.

in which this was not the case, we argue that the question
required more pieces of content knowledge, making it more
difficult to achieve higher ratings on SOLO. A majority of students
tended to write enough to earn a unistructural rating, but they did
not expand upon their responses beyond the complex structure
required for that question (nested loops). In addition, the subgoal
labels from the SLWE did not fit the problem, which likely
contributed to the subgoal and control students performing
equivalently.

There is still much work to be explored in this area with
regards to the effect subgoal labels have on students’ development
of knowledge. Although this analysis shows promising results, the
pilot test has significant limitations. The instructor who was
teaching using SLWE was also part of the research team. At the
phase of the development of the subgoal materials, this was
necessary to fix any errors or overlooked details that would
disrupt using the materials in class, but it also diminishes the
validity of our results. The instructor is a veteran at teaching
introductory programming and, thus, has significant prior
experience, which helps to increase consistency of instruction and
reduce bias. Some level of bias, however, is still likely to have been
represented in the data.

Our next steps are to test the SLWE in courses taught by

instructors not directly part of the research team and analyze the
student performance on the quizzes and exams from those
courses. The courses will be in a wide range of universities taught
by various instructors, and we will collect data from students with
a wide range of learner characteristics. Based on those results, we
will have a much clearer picture of the impact of implementing
subgoal materials across an entire course.

ACKNOWLEDGMENTS

This work is funded in part by the National Science Foundation
under grants 1712025, 1712231 and 1927906. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

REFERENCES

[1] Atkinson, RK. et al. 2000. Learning from examples: Instructional principles
from the worked examples research. Review of educational research. 70, 2
(2000), 181-214.

[2] Biggs, J.B. and Collis, K.F. 2014. Evaluating the quality of learning: The SOLO
taxonomy (Structure of the Observed Learning Outcome). Academic Press.

[3] Brown, N.C. and Wilson, G. 2018. Ten quick tips for teaching programming.
PLoS computational biology. 14, 4 (2018).

[4] Catrambone, R. 1998. The subgoal learning model: Creating better examples
so that students can solve novel problems. Journal of Experimental
Psychology: General. 127, 4 (1998), 355.

[10]

[11]

[12]

[13]

[14]

Corney, M. et al. 2011. Early Relational Reasoning and the Novice
Programmer: Swapping as the “Hello World” of Relational Reasoning. 114,
(2011), 10.

Corney, M. et al. 2014. “Explain in Plain English” questions revisited: data
structures problems. Proceedings of the 45th ACM technical symposium on
Computer science education - SIGCSE ’14 (Atlanta, Georgia, USA, 2014), 591—
596.

Izu, C. et al. 2016. A Study of Code Design Skills in Novice Programmers
using the SOLO taxonomy. Proceedings of the 2016 ACM Conference on
International Computing Education Research - ICER ’16 (Melbourne, VIC,
Australia, 2016), 251-259.

Joentausta, J. and Hellas, A. 2018. Subgoal Labeled Worked Examples in K-
3 Education. Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (2018), 616—621.

Koo, T.K. and Li, M.Y. 2016. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. Journal of chiropractic
medicine. 15, 2 (2016), 155-163.

Lister, R. et al. 2004. A multi-national study of reading and tracing skills in
novice programmers. ACM SIGCSE Bulletin (2004), 119-150.

Lister, R. et al. 2006. Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy. ACM SIGCSE Bulletin (2006), 118
122.

Margulieux, L.E. et al. 2019. Design and Pilot Testing of Subgoal Labeled
Worked Examples for Five Core Concepts in CS1. ITICSE’19: Innovation and
Technology in Computer Science Education Proceedings (Aberdeen, Scotland,
Jul. 2019), 7.

Margulieux, L.E. et al. 2012. Subgoal-labeled instructional material improves
performance and transfer in learning to develop mobile applications.
Proceedings of the ninth annual international conference on International
computing education research (2012), 71-78.

Morrison, B.B. et al. 2016. Learning Loops: A Replication Study Illuminates
Impact of HS Courses. Proceedings of the 2016 ACM Conference on

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

International Computing Education Research (New York, NY, USA, 2016),
221-230.

Morrison, B.B. et al. 2015. Subgoals, Context, and Worked Examples in
Learning Computing Problem Solving. Proceedings of the Eleventh Annual
International Conference on International Computing Education Research
(New York, NY, USA, 2015), 21-29.

Murphy, L. et al. 2012. Ability to “explain in plain English” linked to
proficiency in computer-based programming. Proceedings of the ninth
annual international conference on International computing education
research - ICER ’12 (Auckland, New Zealand, 2012), 111.

Murphy, L. 2012. “Explain in plain English” questions: implications for
teaching. Proceedings of the 43rd ACM technical symposium on Computer
Science Education. (2012), 6.

Renkl, A. 1997. Learning from worked-out examples: A study on individual
differences. Cognitive science. 21, 1 (1997), 1-29.

Schwonke, R. et al. 2009. The worked-example effect: Not an artefact of
lousy control conditions. Computers in Human Behavior. 25, 2 (2009), 258—
266.

Seiter, L. 2015. Using SOLO to Classify the Programming Responses of
Primary Grade Students. Proceedings of the 46th ACM Technical Symposium
on Computer Science Education - SIGCSE ’15 (Kansas City, Missouri, USA,
2015), 540-545.

Sheard, J. et al. 2008. Going SOLO to Assess Novice Programmers. ACM
SIGCSE Bulletin. 40, 3 (2008), 5.

Sudol-DeLyser, L.A. 2015. Expression of Abstraction: Self Explanation in
Code Production. Proceedings of the 46th ACM Technical Symposium on
Computer Science Education - SIGCSE ’15 (Kansas City, Missouri, USA, 2015),
272-2717.

Sweller, J. 2006. The worked example effect and human cognition. Learning
and instruction. (2006).

Whalley, J.L. et al. 2006. An Australasian Study of Reading and
Comprehension Skills in Novice Programmers, using the Bloom and SOLO
Taxonomies. Australiasian computer science communications. (2006), 10.

