
Using the SOLO Taxonomy to Understand Subgoal Labels 
Effect in CS1 

Adrienne Decker 
Engineering Education 
University at Buffalo 

 Buffalo, NY USA 
adrienne@buffalo.edu 

Lauren E. Margulieux 
 Learning Sciences 

Georgia State University 
 Atlanta, GA USA 

lmargulieux@gsu.edu 

Briana B. Morrison 
 Computer Science 

 University of Nebraska Omaha 
 Omaha, NE USA 

 bbmorrison@unomaha.edu 
 

ABSTRACT 
is work extends previous research on subgoal labeled 
instructions by examining their effect across a semester-long, 
Java-based CS1 course. Across four quizzes, students were asked 
to explain in plain English the process that they would use to solve 
a programming problem. In this mixed methods study, we used 
the SOLO taxonomy to categorize student responses about 
problem-solving processes and compare students who learned 
with subgoal labels to those who did not. e use of the SOLO 
taxonomy classification allows us to look deeper than the mere 
correctness of answers to focus on the quality of the answers 
produced in terms of completeness of relevant concepts and 
explanation of relationships among concepts. Students who 
learned with subgoals produced higher-rated answers in terms of 
complexity and quality on three of four quizzes. Also, they were 
three times more likely to discuss issues of data type on a question 
about assignments and expressions than students who did not 
learn with subgoal labeling. is suggests that the use of subgoal 
labeling enabled students to gain a deeper and more complex 
understanding of the material presented in the course. 
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1 Introduction 
Subgoal-labeled worked examples (SLWE) have shown promise in 
tackling the persistent problems of low retention and success in 
introductory programming courses at the college level [13–15].  
However, these previous studies have exposed students to 
subgoals for only one to two hours of instructional time. e 
current project extends this work by exploring the use of subgoal-
labeled worked examples throughout an entire introductory Java 
programming course [12]. e materials were pilot tested from 
August to December 2018 to examine their effect on student 
performance. is paper discusses the analysis of the data 
collected on quiz questions that instructed students to explain in 
plain English the process that they would use to solve a 
programming problem. Student answers were scored using the 
SOLO taxonomy, which represents answer complexity and 
completeness. e guiding research question for this work was: If 
students learn procedures using SLWE, do they create more complex 
and complete answers to explain in plain English questions than 
students who learn using non-subgoal-oriented materials? 

2 Background 

2.1 Subgoal Learning 
Subgoal learning explicitly teaches students the subgoals, or 
functional pieces, of a problem-solving procedure. For example, to 
solve a problem with a while loop, students must determine a 
stopping case for the loop, so defining a termination condition is 
a subgoal of solving a problem with a while loop. The specific 
steps taken to achieve this subgoal varies from problem to 
problem, but the function remains the same. Novices solve 
programming problems better when they explicitly learn the 
subgoals of a procedure because they often do not recognize these 
functional pieces on their own [3, 4, 8, 13-15]. 

Students typically learn subgoal through subgoal labeled 
worked examples. Worked examples are commonly used to teach 
well-structured problem-solving procedures because they 
demonstrate how to apply an abstract procedure to a concrete 
problem before the learner can solve problems independently [1, 
19, 23]. The drawback of worked examples, however, is that they 
must include details specific to a problem. For example, to 
demonstrate how to solve a problem using a for loop, the 
worked example also includes a context, such as “write a loop that 
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calculates the average age of the first 100 people to take a survey.” 
Learners tend to organize information about the procedure using 
these easy-to-grasp details, like age, rather than around the hard-
to-conceptualize abstract procedure that they are learning, 
leading to difficulty transferring knowledge to new problems [1, 
18]. Subgoal learning addresses this problem by pointing out 
shared functional features in worked examples, helping learners 
to organize information so that it can transfer more easily [4, 13].  

2.2 SOLO Taxonomy 
The Structure of the Observed Learning Outcome (SOLO) 
taxonomy was introduced by Biggs and Collis [2] to provide a 
framework for more consistent, qualitative evaluation of student 
responses to open-ended questions. The taxonomy was designed 
based on student responses to open-ended questions in multiple 
disciplines. The taxonomy has three dimensions: 
1. Capacity: the pieces of information used to produce the 

response, ranging from low (i.e., only the information in the 
question and one relevant piece of information) to high (i.e., 
the question, multiple pieces of relevant information, 
interrelations among information, and abstract principles) 

2. Relating operations: the relationship between the question 
and response, ranging from illogical (e.g., tautologies), to 
question-specific information only (i.e., answers the question 
without relating to principles or concepts), to information 
that generalizes beyond the specific question (i.e., relating 
response to abstract principles and concepts) 

3. Consistency and closure: the consistency between 
information provided and the conclusion that the student 
comes to, ranging from not answering the question, 
providing inconsistent evidence or jumping to conclusions, 
to consistent evidence and multiple conclusions based on 
relevant possible alternatives 

Using the three dimensions, Biggs and Collis defined five levels of 
structural complexity, which can be used to determine how well 
students learned an objective. Students demonstrate their 
knowledge of the subject at one of the five levels of complexity: 
• Prestructural: little to no understanding of the topic 
• Unistructural: understanding of a single aspect of the topic 
• Multistructural: understanding of several aspects of the task 

but each aspect is represented independently 
• Relational: understanding of several aspects of the task and 

how they are related 
• Extended Abstract: understanding of the aspects can be 

generalized beyond the context of the question 
Based on their analysis of student responses, complexity is 
typically at the same level across the three dimensions. For 
example, a prestructural response will typically match the 
prestructural criteria in 1) capacity, 2) relating operations, and 3) 
consistency and closure. Occasionally, a transitional answer will 
exist between two levels of dimensions. 

2.3.1 SOLO in Computing Education Research. The SOLO 
taxonomy has been used extensively in computing education 
research. A 2004 ITiCSE Working Group (the Leeds Group) [10] 
provided the first attempt at mapping the SOLO taxonomy to 

computing. Table 1 summarizes this initial mapping, which is 
most used by other studies, including ours. 

Category Definition 
Prestructural Significant misconception or preconception 

irrelevant to programming 
Unistructural Correct grasp of some but not all aspects of the 

problem (i.e., educated guess) 
Multistructural Understands all parts of the problem but does 

not exhibit an awareness of the relationships 
between the parts; the answer may be correct or 
not 

Relational Parts of the problem are integrated into a 
structure; the answer may be correct or not 

Extended The response goes beyond the immediate 
problem and links to a broader context 

Table 1. Mapping of SOLO taxonomy to computing [10]. 

The SOLO taxonomy, along with the explain in plain English 
(EiPE) questions, have been used many times within computing 
education research, especially for CS1. The BRACElet project 
studied the relationship between novice programmers' code 
writing ability and their explanations of code [11, 24]. In 2011, 
Corney et al. [5] explored student EiPE responses for swapping 
variables, code that represents the simplest case in which a 
programming student can manifest a SOLO relational response. 
Sheard et al. [21] studied exams for CS1 students. They found that 
reading tasks correlated positively with performance on writing 
tasks and that undergraduate students had a lower SOLO score 
than postgraduate students. 

Others have modified the SOLO taxonomy to better map to 
the concepts they were measuring. In Sudol-DeLyser [22], a 
modification was done to the SOLO classification scheme to 
capture the number and types of abstraction statements made by 
students during a think-aloud protocol. Results indicate that 
students with greater proficiency at writing code were more likely 
to use multiple levels of abstraction when describing the code they 
were writing and moved between levels of abstraction with higher 
frequency. Izu et al. [7] used an adjusted SOLO taxonomy to 
classify programming questions' by using a "building block" as the 
granular structure in the taxonomy to overcome the variability in 
problem difficulty. A building block was defined as a code pattern 
or template that students had seen, allowing for differentiation 
between recall and synthesis in problem difficulty. Murphy et al. 
[16, 17] replicated the Leeds Working Group results while using 
Table 1's categories but without the Extended classification. Their 
results support a relationship between explaining and writing 
code. Beyond CS1, Corney et al. [6] used SOLO for CS2 Data 
Structures questions (again with no Extended Abstract category). 
The results found a strong correlation between students' ability to 
explain code at an abstract level and performance on code writing 
and code reading test problems at this level.  

3 Present Study 
We tested the SLWE in introductory programming courses at a 
medium-sized Midwestern university in the United States. The 
university offered five sections of a Java-based CS1 course from 



 

August to December 2018. Students were free to enroll in any 
lecture or lab section. The lecture sections were taught by three 
full-time faculty, and all had more than 15 years of experience 
teaching introductory programming. Two sections were taught by 
one of the authors and incorporated SLWEs in place of the 
conventional worked examples used in the other three sections. 
All sections were coordinated and used the same textbook, slides, 
peer instruction questions, pace of topics, quizzes, tests, labs, and 
Learning Management System (LMS) instance. The only 
difference between the sections was the examples used for in-class 
practice and the introduction of the subgoals. The subgoals used 
in class are given in [12]. The intervention sections used the 
developed SLWE and practice problems while the other sections 
used instructor developed examples.  

The present study compares student responses to four EiPE 
questions between the sections that used SLWE (i.e., subgoal 
group) and those that used the conventional examples (i.e., control 
group). One of the three control sections was taught online and 
initially treated as a separate group in case students who chose to 
enroll in the online course were different than the other students 
in some way. After analyzing the data, however, the online section 
was indistinguishable from the other control sections. Thus, the 
three sections are treated as one control group in the analysis.  

3.1 Previous Results 
In a previous paper [12], we presented the analysis that compares 
quiz and exam grades by group, which we summarize here to 
contextualize the EiPE responses that are the focus of the present 
paper. We had 120 students in the subgoal group and 145 students 
in the control group. Several learner and demographic 
characteristics of the students were collected, but none of them 
correlated with group or grades. We examined student grades on 
the five quizzes given after SLWE were used (out of 15 weekly 
quizzes) and all four exams, each of which included multiple 
choice and short answer questions that were automatically 
graded. The exams also included long answer questions, which 
were graded by the same person across all sections. 

The quiz and exam grades were analyzed in a few ways to 
gain a complete understanding of the data. First, an average score 
was calculated for each student. This score represents the average 
grade on quizzes or exams that the student submitted. Any 
missing grade was not included in the average score. Second, a 
total score was calculated for each student. This score included all 
available points for quizzes or exams, and if a student did not turn 
in a quiz or exam, it was treated as a zero. The total score was 
paired with the number of quizzes and exams completed to help 
us to consider the role of the SLWE on the dropout rate. 

On the five quizzes, students in the subgoal group performed 
better than students in the control group with a medium effect 
size, d = 0.42 for the average score and d = 0.44 for the total score. 
In addition, students in the subgoal group completed more quizzes 
that students in the control group. An interesting result from the 
analysis was that the subgoal group has a significantly lower 
variance in scores than the control group. Given that the subgoal 
group also performed better than the control group, it could be 
the case that the subgoals particularly improved the grades of 

students who would have performed poorly on the quizzes. In 
[12], we argued that this pattern of results suggests that at-risk 
students were less likely to drop out of the subgoal sections than 
control sections of the course. 

On the four exams, students in the subgoal group performed 
better than students in the control group only on the total score 
(i.e., including zeros for missing exams). On the average exam 
score, the groups performed equivalently, but the subgoal group 
again had a lower variance in scores than the control group. Based 
on the number of exams taken in each group, the difference 
between groups in the total score is likely due to the zeros from 
missing exams.  In [12], we argued this pattern of results again 
suggests that students in the subgoal section were less likely to 
drop out of the course. For students who persisted through the 
course, SLWE did not improve the average score on exams, 
though it did reduce variance, which again may point to helping 
at-risk students.  

SLWE improving quiz scores, but not exam scores, aligns 
with the subgoal learning framework, which is designed to help 
novices understand the structure of problem-solving procedures 
before they are able to recognize it for themselves. By the time a 
student has studied for an exam, they are likely to be able to 
recognize problem-solving structures. Therefore, it is expected the 
SLWE have a stronger effect on the quiz grades, which represent 
initial knowledge, than exam grades, which represent well-
developed knowledge. For the present study, we explore how 
SLWE affect students’ initial conceptions of problem-solving 
procedures through EiPE questions given on the quizzes.  

4 Methods 
The total number of students across all sections was 307 based on 
enrollment at the beginning of the semester. Students were 
excluded from analysis if they did not complete at least one exam 
or one quiz, effectively withdrawing from the course. The final 
sample size was N = 265, 145 in the control group and 120 in the 
subgoal group--the same sample as used in the analysis for [12]. 

4.1 Data Collection Sources 
Student performance on four quizzes was collected. Below are the 
characteristics of the student performance items: 
• The quiz questions were short answer, specifically questions 

that instructed students to explain in plain English about 
code. See Figure 1 for two example questions. 

• Each quiz question analyzed here was worth only one point 
on a 5- to 15-point quiz and, even cumulatively, had almost 
no effect on students’ course grades. 

• Questions of this type were included on 4 of 15 weekly 
quizzes. (Administered during weeks 4, 8, 10, and 12 of the 
term.) Explanations of the topical coverage of the questions 
are presented by quiz in Section 5. 

• Neither the subgoal group nor the control group practiced 
this type of question during class. 

• Quizzes were assigned from Friday morning until midnight 
Monday at midnight with a 20-minute time limit and 



 

 

completed online through the LMS. 
• The EiPE quiz questions were graded so that any reasonable 

answer was given full credit. 
• Students were not given feedback on their responses to the 

quiz questions analyzed here. 

 
Figure 1. Sample EiPE questions from quizzes. 

4.2 Classifying Responses Using SOLO 
For each quiz, anonymized student responses were coded based 
on the SOLO taxonomy categories: prestructural, unistructural, 
multistructural, relational, or extended abstract. The anonymous 
student responses were graded as one set, with no indication of 
whether they were in the subgoal or control group. The process 
for coding the responses involved three coders working 
concurrently on the coding process. To start the process, the first 
several responses (about 10) for each question were coded 
cooperatively by all three coders discussing where each response 
fell into the taxonomy and why each believed that categorization 
to be correct. Discrepancies were discussed until agreement was 
reached on the code and a general understanding of what was 
expected in each response for each category was reached.  

Each of the quiz questions had specific concepts, 
relationships, and principles that we used to distinguish between 
levels of the SOLO taxonomy. The coding rubrics were related to 
the information included in the responses rather than to subgoal 
labels. For example, for the first quiz, whether students discussed 
matching data types between the right and left sides of an 
expression statement could be the distinction between a three or 
a four rating. The question-specific distinctions are included in the 
results section to help contextualize the findings. 

After the initial 10 responses, the three coders worked 
independently on an additional set of 10 responses and compared 
answers after they had scored the set and resolved differences. 
This process continued until 20% of the responses were coded by 
all three raters. If an acceptable level of interrater reliability was 
reached, the coders divided up the remaining responses and coded 

independently. If interrater reliability was not acceptable, they 
coded an additional 20% of responses until reliability was above 
the threshold. 

To evaluate interrater reliability, we used the intraclass 
correlation coefficient of absolute agreement, ICC(A). We chose 
this test of reliability because it determines whether multiple 
raters give the same score to different student responses. Other 
more popular tests of reliability determine whether raters are 
consistent in ranking across responses. For example, if one rater 
gave consistently low scores to responses and another gave 
consistently high scores to responses, they could still achieve high 
interrater reliability with Cohen’s kappa or intraclass correlation 
coefficient of consistency. However, for the SOLO taxonomy, we 
need to determine how often raters give the same score because 
each score has a qualitatively unique meaning. An ICC(A) value 
of 0.75 or higher is considered good interrater reliability [9]. 

5 Results 
The SOLO taxonomy categorizes students’ responses based on 
qualitative differences. Therefore, even though we have assigned 
numeric values to student responses, it is not necessarily 
appropriate to use those values mathematically. The SOLO 
categories yield ordinal data, which means that the categories are 
rank ordered (e.g., a five is better than a four) but the difference 
between values is not mathematically equal (e.g. the difference 
between a five and a four is not necessarily the same as the 
difference between a four and a three). Because we used ordinal 
data, the results of any parametric test (i.e., ANOVA) should be 
interpreted with extreme caution. Technically, using ordinal data 
violates the assumptions of a parametric test. We decided to 
present the results of these tests because the tests for homogeneity 
of variance, which helps determine the appropriateness of the 
data for parametric tests, were non-significant. The non-
significant results for Mauchley’s (for repeated measures) and 
Levene’s (for t-test) tests suggest that the variance of data was 
normally distributed and equivalent between groups, which are 
the major concerns for analyzing ordinal data parametricly. We 
used the parametric tests to provide only a high-level view of the 
data before providing more nuanced, reliable descriptive statistics. 

To explore the quality of students’ responses across quizzes, 
we used a repeated measures analysis that links students’ scores 
on each quiz question. Repeated measures analysis requires a data 
point for each measurement, and due to missing data on some 
quizzes, the sample size with complete data was limited, subgoal 
n = 53 (44% of the total sample) and control n = 44 (30% of the 
sample). Even with a limited sample size, the analysis found that 
the quiz question was a strong predictor of students’ scores, F = 
29.9 (sphericity was not violated, p = .215, so no correction was 
used), p < .01, partial η2 = .24. This result suggests that the effect 
of quiz questions would have overshadowed any effect of learner 
differences (i.e., within-subjects variance), such as whether a 
student was more likely to give five or four rated responses. To 
further support this finding, we visually inspected all scores of 
students who received a five (i.e., extended abstract) on one of the 
quizzes. Their scores on the other responses follow a normal 



 

distribution with the most common score on other quizzes being 
a 3. This pattern of results suggests that students’ scores, even for 
students who received a five, were more affected by the question 
being asked than by personal characteristics.  

Because the quiz score was a large predictor of performance, 
the subgoal and control groups were compared for each quiz 
independently. For each quiz, we used a t-test to compare groups, 
but as stated earlier these results are of limited usefulness. To 
explore the data, we examine the mode and frequencies of each 
score. We use these statistics instead of the typical mean and 
standard deviation because it more accurately describes ordinal 
data. For example, the standard deviation in our data was always 
around 1.0 because most students scored a three or four, and the 
numerical difference between those values is 1.0. Thus, this value 
is an artifact of the data analysis method rather than a meaningful 
representation of the variance in groups. 

5.1 iz 1 – Expression Statements 
In the first quiz analyzed (quiz 4 for the term), we had responses 
from 84 students in the subgoal group and 75 students in the 
control group. The raters reached a high level of interrater 
reliability, ICC(A) = 0.85, for the first 20% of responses. Because 
this quiz was early in the semester, the amount of knowledge that 
students could demonstrate was limited. This question asked 
students to explain the steps needed to evaluate a complex 
arithmetic expression that included both parenthesized sub-
expressions and pre- and post- increment/decrement operators 
(see Figure 1). Table 3 provides the question-specific content, 
relationship, and principle information required for each score, i.e. 
the rubric. 

 Overall, the subgoal group had higher SOLO ratings than the 
control group on the first quiz, t(158) = 19.14, p < .01, η2 = .11. To 
examine the differences between groups, we considered the mode 

and frequencies of each score in the groups (see Table 2). Based 
on frequencies, 68% of the students in the subgoal group were able 
to write answers to this question at either a four or a five rating, 
indicating that the students explained how to solve the arithmetic 
expression and how to deal with pre/post increment operations 
and, in many cases, data type compatibility.  

In the control group, students achieved these rankings at 
roughly half of this rate (37%). Only 11% of the students in the 
subgoal group did not articulate the steps needed to solve the basic 
parts of the arithmetic expression (i.e., scores of one or two), while 
the control group had over twice that rate (27%). Overall, the 
subgoals seemed to enable students to articulate more information 
about the process of evaluating arithmetic expressions. 

Note that the criteria to receive a four or five explicitly 
involves the mention of data types or type compatibility. This 
issue is explicit in the subgoals for this part of the course.  
Specifically, one of the subgoals states, “Determine whether the 
data type of expression is compatible with the data type of 
variable”. As such, we undertook another analysis to see how 
often students in the two groups mentioned the issue of data types 
in their responses. The rate is almost double for the subgoal group 
(29%) than the control group (12%) for students mentioned 
compatibility in their answers. We expect that this is due to the 
explicit subgoal that was used in the course dealing with type 
compatibility drawing students' attention to the importance of 
data types. 

 1  2  3 4 5 
Subgoal  
Mode = 4 

1 
(1%) 

8 
(10%) 

18  
(21%) 

43  
(51%) 

14  
(17%) 

Control 
Mode = 3 

6  
(8%) 

14  
(19%)  

27  
(36%) 

25  
(33%) 

3  
(4%) 

Table 2. Quiz 1 score frequencies between subgoal and 
control groups. 

 

SOLO  Description Example 
1 –  
prestructural 

Nonsensical answer or answer that had no 
more information than the question provided 

“Solve each equation.” 

2 –  
unistructural 

Described how to solve part of the problem, 
but the description was incomplete 

“First I would do the things within each set of parentheses. Second, I would do the 
multiplication. Finally I would subtract.” 

3 –  
multistructural 

Described how to solve the complete problem 
but provided no explanation beyond the 
question at hand 

“You need to follow the order of precedence for Java, so first you would do what is 
in the parentheses. In the parentheses you would do the ++ first from right to left, 
followed by modulus, then multiplication and division from left to right.” 

4 –  
relational 

Described how to solve the problem and 
explained in abstract terms either how to 
evaluate pre- and post-increments or how to 
evaluate the appropriateness of data type 
between the variables 

“First I would take the values within the parentheses and try to solve for those 
first. Starting with the one that has multiplication first, then modulus, and last, 
addition. ++Alpha would need 1 added to its value since it is a pre added value. 
Eta++ would add 1 to its value after solving for the result then take the modulus of 
eta++ % alpha.” 

5 –  
extended 
abstract 

Described how to solve the problem and 
explained how to evaluate data type and 
increments for expression statements in 
general 

“First thing I like to establish is what is an int, what is a double, and then what 
kind of answer do they want. We know they are looking for a decimal because it is 
a double. Next, go to the equation and treat it like math class using the orders of 
operation; PEMDAS. Starting from the beginning of that rule we have parenthesis, 
so we'll start by doing everything within their respected parenthesis. beta + 
gamma is pretty general, just add the two together. ++alpha * delta you want to 
add one to the variable alpha and then multiply that with delta. eta++ %alpha you 
will start by doing eta modular alpha and then add 1 because the ++ comes after 
the effected variable. Now follow order of operations.” 

Table 3. SOLO Categories for Quiz 1, Expression Statements.
  



 

 

5.2 iz 2 – Loops 
In the second quiz analyzed (quiz 8 for the term), we had responses 
from 98 students in the subgoal group and 97 students in the 
control group. The raters reached a moderate level of interrater 
reliability, ICC(A) = 0.72, for the first 20% of responses. Thus, the 
raters discussed the criteria and rated an additional 20% of 
responses together to reach a high level of reliability, ICC(A) = 
0.82. The remaining responses were scored by one rater. This 
question asked students to explain the steps needed to write code 
for a process that involved a single loop that processed input from 
the user and accumulated a sum. Table 5 provides the question-
specific information required for each score.  

Overall, the subgroup group scored higher than the control 
group on the second quiz , t(194) = 11.62, p < .01, η2 = .06. We 
examined the differences between groups with the mode and 
frequencies of each score in the groups (see Table 4). This question 
asked about the code that would need to be written to solve the 
presented problem. We see a high occurrence of threes in this data 
(50% for subgoals, 46% for control). The students most often 
explained what needed to be done to solve the problem but 
showed no evidence of abstract thinking. For students who 
crossed into the relational category the rate was higher for the 
subgoal group (29% vs. 17%) and the subgoal group had the only 
five for this question. Also, there is a higher proportion of 
proportion of students who were not able to give a complete 
explanation of an answer in the control group versus the subgoal 
group (37% vs. 18% at a rating of one or two). This pattern also 
shows that in the control group, over one-third of the students 
could not give all the pieces required for an answer that earned a 

three score. We expect that the reason for the differences in this 
question was that the subgoals for loops gave the students a place 
to start their explanation and a way to articulate the pieces of the 
answer even if it was not at the higher cognitive levels of 
relational or extended abstract.  

 
 1 2 3 4 5 
Subgoal  
Mode = 3 

5  
(5%) 

13  
(13%) 

49  
(50%) 

28  
(29%) 

3  
(3%) 

Control  
Mode = 3 

11  
(11%) 

25  
(26%)  

45  
(46%) 

16  
(17%) 

0  
(0%) 

Table 4. Quiz 2 score frequencies between subgoal and 
control groups. 

5.3 iz 4 – Writing Methods 
We discuss the fourth quiz (quiz 12 for the term) before the third 
quiz because the first, second, and fourth quizzes follow the same 
pattern of results, and the third quiz does not. In the fourth quiz, 
we had responses from 92 students in the subgoal group and 92 
students in the control group. The raters reached a high level of 
interrater reliability, ICC(A) = 0.87, for the first 20% of responses, 
and the remaining responses were scored by one rater. The 
question asked students to explain the steps needed to write a 
method header for a described method. Table 6 provides the 
question-specific information required to achieve each score. 

The subgoal group scored higher than the control group on 
the fourth quiz, t(183) = 25.08, p < .01, η2 = .12. We also examined 
group differences between mode and frequencies (see Table 7). 

 
SOLO Description Example 

1 –  
prestructural 

Nonsensical answer, an answer that had no more information 
than the question provided, or alluded to a relevant principle 
but not in enough detail to apply it to the problem 

“You would get the score for 9 hole for each round then print each 
round out.” 

2 –  
unistructural 

Described 1-2 concepts that applied to 
the problem, but description was 
incomplete 

“Declare variables for 18 holes. Println asking for input for each hole, using scanner. 
Println the sum of holes 1-9. Println the sum of holes 10-18. Print ln the sum of all 
holes.” 

3 –  
Multistructural 

Described all concepts needed to solve 
the problem, whether they were 
correctly applied, but provided no 
explanation beyond the question at 
hand 

“Have the scanner along with the 18 variables needed to add up golf scores. After the 
user inputs all of the numbers then you can have the system add them all up and print 
it. Then if you want the sum of the 1st nine holes then add up the 1st nine variables and 
the same for the 2nd half.” 

4 –  
relational 

Described how to solve the problem 
and explained how the different pieces 
of the solution related to each other 

“I would make two loops that would count up to 9 times for each side of the golf course. 
Then within the loop I would have the hole score added to the total score as well as add 
a counter for that hole. This would be the exact same for both sides of the course and at 
the end of each loop I would print out the total score for those loops then I would add 
the two scores together to get a total score for the 18 holes.” 

5 –  
extended 
abstract 

Explained how to solve a problem like 
this in abstract terms 

“The first thing to do is to determine what kind of loop to use. Since the counter value 
or number of iterations is known for the program, both a while or a for loop will work. 
However, a for loop is simpler and more concise to use. Since you know that each half 
of the game needs to be scored, and will be scored the same way, the same block of code 
can  simply be used twice and the sum values at the end of each block can be assigned to 
different variables to delineate which is the first nine and the second nine holes. In the 
for-loop the counter needs to loop exactly 9 times, once for each hole. Within the for 
loop the code needs gather the score for that hole through a user query and add it to a 
sum variable, to get the total score for the entire 9 nine holes. The code is then repeated 
to get the sum for the second nine holes, and then both sums are added together to get 
the total for the round of golf.” 

Table 5. SOLO Categories for Quiz 2, Loops 
 



 

 

SOLO Description Example 
1 –  
prestructural 

Nonsensical answer, an answer that had no 
more information than the question 
provided, or confused classes and methods 

“By determining a constructor and instance then I would write the code using 
methods to create how fast a swallow travels.” 

2 –  
unistructural 

Described 1-2 concepts that applied to the 
problem, but the description was 
incomplete or described a class instead of a 
method 

“Need to figure out what items are ints, doubles, strings. Then from what you are 
making and if it needs to accessed or created you would make it public or private 
class.” 

3 –  
Multistructural 

Described all concepts needed to solve the 
problem but provided no explanation 
beyond the question at hand 

“Write public, then void, and then in parenthesis create 3 variables, a string, a 
double, and an int in that order.” 

4 –  
relational 

Described how to solve the problem and 
explained how the different pieces of the 
choices made to solve this particular 
problem 

“I would start of by specifying that it's public since that was requested and add void 
since it does not return anything and I would call the method speed since that is 
what it is calculating and in the parenthesis I would add "String s, double a, int b" 
since it requested it in that order.” 

5 –  
extended 
abstract 

Explained how to solve a problem like this 
in abstract terms 

“First you would choose whether people should have access to this or not. Public is 
yes, and private is no. Next find if you need to return something or not. Since you 
don't, you would use void. If you needed to return something you would use the 
data type (int, double, etc). Then you choose a name that fits what you are creating. 
For this I will just use "speed". Then you would put the parameters in to what they 
will be entering. It says "a String and a double and an integer in that order". So you 
put that in the () of your method.” 

Table 6. SOLO Categories for Quiz 4, Writing Methods. 

 1 2  3  4 5 
Subgoal  
Mode = 4 

1  
(1%) 

4  
(4%) 

27  
(29%) 

53  
(58%) 

7  
(8%) 

Control  
Mode = 3 

11  
(12%) 

17  
(19%)  

32  
(35%) 

27  
(29%) 

5  
(5%) 

Table 7. Quiz 4 score frequencies between subgoal and 
control groups. 

For this question, 31% of the students in the control group were 
rated only a one or a two on this question, compared to the 5% of 
the subgoal group. On the other end of the scale, 66% of the 
subgoal group were rated a four or five on this question, with only 
34% of the control group receiving the same score. We expect that 
the subgoal labels for writing methods and evaluating methods 
helped students to explain how they would choose the various 
parts of the method header and, therefore, earn a higher score. 
95% of the subgoal students were able to provide a complete 
answer to this problem compared to 69% of the control students. 

5.4 iz 3 – Nested Loops 
The third quiz analyzed (quiz 10 for the term) does not follow the 
same pattern of results found for the other quizzes. The third quiz 
had responses from 90 students in the subgoal group and 102 
students in the control group. The raters checked interrater 
reliability after scoring each quintile of the scores, but they never 
achieved a sufficiently high reliability to warrant a single rater. 
Therefore, two raters discussed and reached agreement for each 
of the responses. This question asked the students to look at a 
nested loop structure and describe how they would determine its 
output. We believe that the low interrater reliability for this 
question was due to the numerous pieces of content knowledge 
required to answer this question. It is also interesting to note that 
for this question, the mode was two for both groups, occurring at 
twice or more times the rate of the other scores. This mode 
indicates that responses at the higher levels of the taxonomy were 
not as prevalent in the data set and did not allow for exemplars 

and discussion which could have also led to the interrater 
reliability issues. Table 6 provides the question-specific content, 
relationship, and principle information required to achieve each 
score.  

The two groups scored equivalently on the third quiz, t(191) 
= 1.13, p = .29, η2 = .01. The mode and frequencies of each score in 
the groups can be found in Table 8. For this question, the subgoal 
group did not produce answers at higher levels of the taxonomy 
at a greater rate than the control group.  In fact, only 12% of the 
subgoal group received ratings of four or five, while 19% of the 
control group received those ratings. The students in the subgoal 
group had a higher proportion of ratings of two (53% vs. 38%).  
Though we cannot be certain why this question displayed such 
different outcomes than the others or what aspects of this 
question made the results different, we expect that the high level 
of content knowledge required for the question played a 
significant role. In addition, the use of the nested loop did not 
match well onto the subgoal labels, providing no extra benefit for 
students who learned with SLWE.  

 
 1  2  3  4  5  
Subgoal  
Mode = 2 

8  
(9%) 

48  
(53%) 

23  
(26%) 

8  
(9%) 

3  
(3%) 

Control  
Mode = 2 

12  
(12%) 

39  
(38%)  

32  
(31%) 

17  
(17%) 

2  
(2%) 

Table 8. Quiz 3 score frequencies between subgoal and 
control groups. 

6 Conclusion 
Overall, the subgoal label group gave more complete answers, 
often including relational and abstract information, on three of the 
four quiz questions. Based on the SOLO taxonomy, subgoal 
students demonstrated a higher level of cognitive understanding 
of the underlying programming principles. For the one question 



 

 

 
 

 
 

SOLO  Description Example 
1 –  
prestructural 

Nonsensical answer, an answer that 
had no more information than the 
question provided, or identified 
content in the code with no 
explanation for how they 
functioned 

“I would start from the first for statement and then continue to the next for statement using 
the previous values needed.” 

2 –  
unistructural 

Described 1-2 concepts that applied 
to the problem, but description was 
incomplete or did not demonstrate 
an understanding of the code 
presented to them 

“First see what loops are grouped together by brackets. The first loop is contained by the 
first and last brackets and the loops inside this one only contain the next line after the for 
loop statement. I would find the output for each smaller loop and then everything inside the 
first loop then display that value the number of times each loop specified.” 

3 –  
Multistructural 

Described all concepts needed to 
solve the problem but provided no 
explanation beyond the question at 
hand 

“To solve this, I would first block each for loop so I know what loop is connected to what 
action (and what actions also come right after a loop has concluded). Then, I would 
determine how many times each individual loop would run. After that it is merely a game of 
running through steps. Loop at the bottom goes a couple times, loop above it goes once. 
Repeat this until the loop above it is complete, then go to the initial loop. This repeats until 
the initial loop also is finished executing. That should give you your output.” 

4 –  
relational 

Described how to solve the problem 
and explained how the different 
pieces of the choices made to solve 
this particular problem 

“First, look at the large 'for loop'. This loop will execute ten times but inside this loop there 
are two nested loops. The first inner loop will execute 10 times on the first round of the 
large loop, nine times during the second time through the large loop and so on. The 
System.out.println( ); after the first nested loop separates the '*' with an empty line each time 
the x value changes. The second nested loop is similar but is not inside the first nested loop 
because the first nested loop does not use curly braces. It is similar to the first nested loop 
and will print ten octothorps the first round of the large loop, then nine the second round 
through.” 

5 –  
extended 
abstract 

Explained how to solve a problem 
like this in abstract terms 

“First, notice that in the first for loop, x counts down from ten to one before becoming false, 
meaning it will execute the internal code 10 times. Next, the first internal for loop counts to 
whatever x is for that specific loop, counting from one each time. This will produce an 
asterisk for each iteration. Because it will only loop the code on the line below it, after the 
loop is finished, it will create a line break and move on to the second for loop. The next for 
loop will start out at ten each time, and reduce until it has reached the x value of that loop. 
Once this loop is finished, another line break will occur and the x loop will move onto its 
next iteration. This will result in Alternating lines of stars and pounds, with the stars 
decreasing by one each time, and the pounds increasing by one each time.” 

Table 9. SOLO Categories for Quiz 3, Nested Loops. 
in which this was not the case, we argue that the question 
required more pieces of content knowledge, making it more 
difficult to achieve higher ratings on SOLO. A majority of students 
tended to write enough to earn a unistructural rating, but they did 
not expand upon their responses beyond the complex structure 
required for that question (nested loops). In addition, the subgoal 
labels from the SLWE did not fit the problem, which likely 
contributed to the subgoal and control students performing 
equivalently.  

There is still much work to be explored in this area with 
regards to the effect subgoal labels have on students’ development 
of knowledge. Although this analysis shows promising results, the 
pilot test has significant limitations. The instructor who was 
teaching using SLWE was also part of the research team. At the 
phase of the development of the subgoal materials, this was 
necessary to fix any errors or overlooked details that would 
disrupt using the materials in class, but it also diminishes the 
validity of our results. The instructor is a veteran at teaching 
introductory programming and, thus, has significant prior 
experience, which helps to increase consistency of instruction and 
reduce bias. Some level of bias, however, is still likely to have been 
represented in the data. 

Our next steps are to test the SLWE in courses taught by 

instructors not directly part of the research team and analyze the 
student performance on the quizzes and exams from those 
courses. The courses will be in a wide range of universities taught 
by various instructors, and we will collect data from students with 
a wide range of learner characteristics. Based on those results, we 
will have a much clearer picture of the impact of implementing 
subgoal materials across an entire course. 
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