
Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 1

Reducing Withdrawal and Failure Rates in Introductory Programming with Subgoal Labeled

Worked Examples

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 2

Abstract

Background: Programming a computer is an increasingly valuable skill, but dropout and failure

rates in introductory programming courses are regularly as high as 50%. Like many fields,

programming requires students to learn complex problem-solving procedures from instructors

who tend to have tacit knowledge about low-level procedures that they have automatized. The

subgoal learning framework has been used in programming and other fields to breakdown

procedural problem solving into smaller pieces that novices can grasp more easily, but it has only

been used in short-term interventions. In this study, the subgoal learning framework was

implemented throughout a semester-long introductory programming course to explore its

longitudinal effects. Of 265 students in multiple sections of the course, half received subgoal-

oriented instruction while the other half received typical instruction.

Results: Learning subgoals consistently improved performance on quizzes, which were

formative and given within a week of learning a new procedure, but not on exams, which were

summative. While exam performance was not statistically better, the subgoal group had lower

variance in exam scores and fewer students dropped or failed the course than in the control

group. To better understand the learning process, we examined students’ responses to open-

ended questions that asked them to explain the problem-solving process. Furthermore, we

explored characteristics of learners to determine how subgoal learning affected students at risk of

dropout or failure.

Conclusions: Students in an introductory programming course performed better on initial

assessments when they received instructions that used our intervention, subgoal labels. Though

the students did not perform better than the control group on exams on average, they were less

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 3

likely to get failing grades or to drop the course. Overall, subgoal labels seemed especially

effective for students who might otherwise struggle to pass or complete the course.

Keywords: worked examples, subgoal learning, programming education, failure rates

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 4

Reducing Withdrawal and Failure Rates in Introductory Programming with Subgoal Labeled

Worked Examples

Understanding how to program a computer is becoming a basic literacy skill (Scaffidi et

al., 2005). The idea of computer literacy is shifting from being only a consumer of technology

(e.g., using Microsoft Office and browsing the Internet) to also including being a producer of

technology (e.g., writing or adapting computer programs and making websites). Programming

enables people to develop solutions that increase efficiency in their personal and professional

lives, and software development is an in-demand career path in many sectors (US Bureau of

Labor Statistics, 2017).

To meet the demand for programming skill, many learners engage in formal

programming instruction, including tens of thousands of students enrolling in coding boot camps

or introduction to programming courses at universities. Though opportunities to learn to program

are growing, these opportunities have high withdrawal and failure rates. Students continue to

withdraw or fail introductory programming courses at rates of 30–50% (Bennedsen & Caspersen,

2007, 2019), often because they find the material too difficult (Margolis & Fisher, 2003). Online

tutorials boast millions of users but have attrition rates as high as 90% (Jordan, 2014). Even

when learners complete these courses, they still score poorly on tests of basic coding knowledge

(Lee & Ko, 2015).

It may be that students struggle in introductory programming instruction because the

instructional material used to teach programming overloads students' cognitive resources

(Garner, 2002; Mason & Cooper, 2012). Better designed materials could enhance learning by

reducing unnecessary load (Sweller, 2010). The authors addressed this instructional challenge

with subgoal labeled worked examples. Worked examples are a common tool in programming

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 5

education because they demonstrate how to solve programming problems before students can

solve problems for themselves (Renkl & Atkinson, 2003). These worked examples, however,

include many pieces of information, primarily the problem-solving procedure, coding concepts,

and syntax of the programming language. Every word and punctuation mark in a worked

example can be a source of cognitive load that may not be important in learning to solve

problems. To help students focus on the problem-solving procedure, we added subgoal labels, or

short instructional explanations of the purpose of pieces of code. Subgoal labels have been

shown to reduce the cognitive load during problem solving in both mathematics and science

(Catrambone, 1998; Chi et al., 1989; Margulieux et al., 2018) and increase performance in

programming (Margulieux et al., 2012; Morrison et al., 2015; Morrison et al., 2016). Prior work

in programming, however, was conducted primarily in laboratory settings and for only an hour of

instruction at a time. In contrast, the guiding research questions for the study were:

1. How do subgoal labeled worked examples affect problem solving throughout an

introductory programming course?

2. Which learner characteristics predict whether subgoal labeled worked examples will

be more or less effective?

Literature Review

Learning computer programming means learning both the procedures to accomplish

various goals and learning the information that is relevant to these procedures (van Merriënboer

& Paas, 1990). Expert programmers can easily solve problems because they can automatically

detect abstract features of problems for which they have problem-solving schemata, or scripts for

problem-solving procedures (Hansen et al., 2013). For example, they can tell when a problem

will require a loop and which type somewhat reflexively, leaving their cognitive resources

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 6

available to deal with problem-specific details. Programming novices, however, struggle to

match problems to problem-solving schemata (Weiser & Shertz, 1983; Wiedenbeck et al., 1993).

The difference is reminiscent of Chi et al.’s (1994) study that found physics novices focused on

surface features of problems, like whether they have a ramp, while physics experts focused on

structural features, like whether they used Newton’s Third Law. Similarly, programming novices

have not developed foundational problem-solving schemata and tend to focus on the surface

features of problems, like whether the loop is finding the sum or the average, not structural

features, like whether a for or while loop would be more appropriate.

Cognitive Load and Worked Examples in Programming Instruction

Instructional design aims to simplify complex skills during the initial learning process to

help students develop schemata while not overwhelming them. One effective method for

instruction is to reduce cognitive load (Renkl & Atkinson, 2003). Cognitive load refers to the use

of cognitive resources in working memory (Sweller, 1988). Cognitive Load Theory considers the

balance between total resources available in working memory and resources demanded by the

task (Sweller, 2010). Sources of cognitive load are distinguished by whether they are necessary

for the concept or procedure. Intrinsic cognitive load is inherent in the procedure, such as

applying Newton’s Third Law to a physics problem or applying a while loop to a program. In

contrast, extraneous cognitive load is incidental to the problem or learning environment but not

inherent in the procedure, such as a physics problem involving a ramp or a program finding the

average of a list of numbers. Intrinsic cognitive load can be changed only by changing the

knowledge of the learner or changing the task, such as providing part of a solution for a learner,

but extraneous load can be changed through instructional design techniques (Sweller, 2010).

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 7

A common tool for reducing cognitive load in programming instruction is using worked

examples to model problem solving instead of asking students to write code from scratch

(Leppink et al., 2014). Worked examples constrain the learner's search space. When studying the

worked example, the learner has only to determine how the example goes from one step to the

next—a very reduced search space which is a means-end search (i.e., they know the result and

must only find a path to get to that one end). This instructional strategy reduces the amount of

cognitive processing required from the learner (Sweller, 2011).

Worked examples, however, can lead to shallow processing by learners who focus on the

details of the example instead of the structure of the problem solution. Focusing on superficial

details of the example causes learners to ineffectually store procedural knowledge around

superficial details instead of procedural schemata (Eiriksdottir & Catrambone, 2011). To

promote structural processing of worked examples and, thus, improve retention and transfer,

designers can manipulate worked examples to promote subgoal learning. Subgoal learning refers

to a strategy used predominantly in STEM fields that helps students deconstruct problem-solving

procedures into subgoals, structural parts of the overall procedure, to better recognize the

fundamental components of the problem-solving process and build schemata (Atkinson et al.,

2003; Catrambone, 1998).

Subgoal Labeled Worked Examples

Subgoal labeling is a technique used to promote subgoal learning that has been used to

help learners recognize the fundamental structure of the procedure being exemplified in worked

examples (Catrambone, 1994, 1996, 1998). Subgoal labels are structure-based instructional

explanations that describe the subgoal of a set of steps in a worked example to the learner.

Studies (Atkinson, 2002; Atkinson & Derry, 2000; Catrambone 1994, 1996, 1998; Margulieux &

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 8

Catrambone, 2016; Margulieux et al., 2018; Morrison et al., 2015) have consistently found that

subgoal-oriented instructions improved problem-solving performance across a variety of STEM

domains, such as programming and statistics.

Within programming, an example assignment statement may look like this:

C = A + B * D / E;

For a novice programmer, there are several steps involved in determining exactly how the

computer will interpret this statement. The major subgoals (for Java and many other typed

programming languages) are determining the value and data type for the expression on the right-

hand side of the assignment operator (=) and determining the data type of the variable on the left-

hand side of the assignment operator. For determining the data type and value of the expression

on the right-hand side, the value and data type of each variable must be determined, the order of

operations must be determined, and then the calculation occurs. An experienced programmer

does not necessarily break down the right side of the equation into these functional steps while

programming because they have automatized the process, making their cognitive load while

solving the problem much less than that of a novice.

Novice programmers find it much easier to remember how to evaluate an assignment

statement if they break down the task into manageable pieces. A focus on determining the parts

of the assignment statement is much less overwhelming than an outcome-focused problem

statement like “evaluate the assignment statement,” leading to less floundering for students who

do not know where to start (Margulieux & Catrambone, 2016). In addition, because novices who

learn subgoals follow functional steps rather than a specific step from one example solution, they

find it easier to then transfer their knowledge to other problems of the same type (Margulieux et

al., 2012; Morrison et al., 2015). Emphasizing subgoal learning has helped college students to

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 9

retain knowledge longer and solve novel problems more accurately (Catrambone, 1998;

Margulieux et al., 2012).

By helping learners organize information and focus on the structural features of worked

examples, subgoal labels are believed to reduce the extraneous cognitive load that can hinder

learning but is inherent in worked examples (Atkinson et al., 2000). Worked examples introduce

extraneous cognitive load because they are necessarily specific to a context, and students must

process the incidental information about the context, even though it is not relevant to the

underlying procedure (Sweller, 2010). Subgoal labels can reduce the focus on these incidental

features by highlighting the fundamental features of the procedure (Atkinson et al., 2000).

Identifying Subgoals for Introductory Programming and Designing Worked Examples

To select the programming topics for which to create subgoal labeled worked examples,

the authors compared several introductory programming textbooks. At this stage in the project,

we considered only textbooks focused on teaching this material in the Java programming

language. After tallying the number of times that each topic appeared across textbooks, the most

common topics were expressions, selection statements, loops, methods, objects/classes, and

arrays. Each of these topics was split into evaluating (i.e., reading or tracing existing code) and

writing code. For methods, this split translated into calling and writing methods, and for

objects/class, this split translated to using objects and writing classes.

To identify the subgoals in all 12 of these topics, the authors used the Task Analysis by

Problem Solving (TAPS) protocol (Catrambone, 2011). A detailed account our application of the

TAPS protocol in this project can be found in Margulieux et al. (2019), as well as a complete list

of the subgoals identified and subgoal labels used. As a summary of this process, the TAPS

protocol involves a subject matter expert and an analyst. The purpose of TAPS is for the subject

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 10

matter expert to work through problems, describing how they are solving them, while the analyst

creates a complete list of procedural steps for solving problems of a particular type. The value of

TAPS is that the analyst identifies procedural knowledge that the subject matter expert has

automatized and asks questions to help the subject matter expert verbalize these processes. The

analyst can identify automatized knowledge when he asks the subject matter expert why she took

a certain step, and the subject matter expert says something akin to, “that’s how it’s done,” or

“based on intuition.” The task analysis is complete when the analyst can solve any novel problem

using only the identified procedural steps and any declarative knowledge that is necessary. The

identified steps become subgoal labels in worked examples. In this project, the subject matter

expert was author Morrison, who has 24 years of experience teaching introductory programming,

and the analyst was author Margulieux, who has seven years of performing the TAPS protocol in

various domains, including programming.

In a typical worked example for evaluating or writing selection statements, the student

would get the problem and each step taken to solve the problem. Instructors typically walk

students through the example but would likely have trouble articulating automated procedural

knowledge, such as why a step was taken (Atkinson et al., 2003). Therefore, the authors added

subgoal labels, as identified through the TAPS protocol, to worked examples as short

instructional explanations of the procedural knowledge. In Figure 1, the problem is evaluating a

selection statement. An instructor, as a programming expert, likely considers solving this

problem a single functional step. Through TAPS, however, the authors found three functional

steps: diagram which statements go together, for if statement, determine whether true or false,

and follow the correct branch. The step for diagramming is particularly important for novices

once statements get more complicated because novices need practice to automate how to group

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 11

lines (Hansen, Lumsdaine, & Goldstone, 2012). Eventually, these subgoals will become

automatized, and the novices will think of the problem as a single procedural step, like their

instructor. To examine the effect of subgoal labeled worked examples throughout an introductory

programming course, the authors compared students who learned with conventional worked

examples to those learned with subgoal labels.

Assume the following given declarations:
double omega = 2.5, kappa = 3.0, ρ = 0;

Evaluate this statement and determine the value of all variables used.
if (kappa > omega)

 ρ = kappa + 2;

Subgoal 1: Diagram which statements go together
if (kappa > omega)

 ρ = kappa + 2;

Subgoal 2: For if statement, determine whether true or false
3.0 > 2.5 TRUE

Subgoal 3: If true – follow true branch, if false – do nothing or follow else branch
ρ = kappa + 2 = 3.0 + 2 = 5.0

Answer:
omega = 2.5, kappa = 3.0, ρ = 5.0;

Present Study

The present study used subgoal labeled worked examples throughout a semester-long

introductory programming course to explore the long-term and cumulative effects of subgoal

labels. The experiment was conducted during Fall 2018 in five sections of a course that used

Java at a Midwestern university. This research context provided both the ecological validity of a

classroom-based experiment and a high level of experimental control for a quasi-experiment

because all sections of the introductory programming course at this university used the same

curriculum, timeline for topics, quizzes, and exams. The students can register for any lab section

Figure 1. Subgoal labeled worked example for evaluating selection statements.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 12

regardless of which lecture section they are enrolled in, further ensuring that instruction is

equivalent across sections. Thus, problem-solving performance and grades across sections can be

directly compared.

Three of the sections used the instructional materials that are typically used in this course,

and the other two sections replaced worked examples with subgoal labeled worked examples.

Because the subgoal labeled worked examples developed for this research were aimed to

introduce new types of problems and not more advanced procedures within each type, the new

materials filled only 5 of 15 weeks of the semester. Other than the worked examples during these

five weeks, all instruction was the same throughout the courses.

The lecture sections of the course were similar except for the design of worked examples.

All sections were led by three, full-time faculty, each with at least a decade of experience

teaching intro programming. The course followed a flipped classroom model in which the

students watch lectures about programming concepts and problem-solving procedures before

class time. Then during class time, the instructors would present worked examples and practice

problems for the students. Outside of lecture, students had homework assignments and two-hour

lab sections with lab assignments. They took weekly quizzes and four exams throughout the

semester, including a non-cumulative final exam.

The quizzes and exams provided both quantitative and qualitative data to compare the

groups. The quizzes included a question that asked students to explain in plain English how they

would solve a given programming problem (i.e., not explain in a programming language). This

type of question is common in programming instruction to measure students’ problem-solving

schemata because it asks students to focus on the procedural components of a solution without

focusing on the code of a specific problem (Corney et al., 2011; Sudol-DeLyser, 2015). As

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 13

others in programming instruction have done, these qualitative data were analyzed using the

SOLO taxonomy to quantify the results for a large sample size (Lister et al., 2006; Sheard et al.,

2008; Whalley et al., 2006). The SOLO (Structure of the Observed Learning Outcome)

taxonomy was developed by Biggs and Collis (1982) to analyze how well responses to open-

ended questions demonstrated learning objectives based on five levels of complexity:

1. Prestructural – little to no demonstration of understanding

2. Unistructural – single-dimensional understanding

3. Multistructural – multi-dimensional but disjointed understanding

4. Relational – multi-dimensional and connected understanding

5. Extended Abstract – demonstration of understanding based on abstract principles

and concepts that can be applied beyond the immediate problem

Using these data to compare the sections with subgoal labeled worked examples to those

with conventional worked examples, the following research questions were addressed:

1. How do subgoal labeled worked examples affect problem solving throughout an

introductory programming course?

2. Which learner characteristics predict whether subgoal labeled worked examples will

be more or less effective?

The first research question has been addressed with preliminary data analysis in previous

conference papers. Margulieux et al. (2019) focused on the design process for identifying

subgoals and designing materials, and simple comparisons between quiz and exam scores were

used to demonstrate the efficacy of the new materials. In addition, Decker et al. (2019) focused

on the qualitative analysis of explain in plain English responses using the SOLO taxonomy to

explore early differences in student problem solving. This paper builds upon these previous

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 14

papers by simultaneously considering all data sources and possible interactions to address the

first research question. More importantly, this paper is the only one to address the second

research question by examining the role of learner characteristics in performance. Prior subgoal

studies before this project have considered learner characteristics, but they largely found no

differences in the context of laboratory studies (Margulieux et al., 2012, 2018; Margulieux &

Catrambone, 2016, 2019). Because this study was conducted across a semester in authentic

courses, we found many significant predictors of performance based on learner characteristics,

and the analyses suggest that subgoal labeled worked examples are most effective for students

whose learner characteristics suggest they might be at risk of withdrawing or failing.

Method

Research Design

The classroom-based quasi-experiment manipulated one variable, the design of worked

examples when students were first introduced to types of programming problems: expressions,

selection statements, loops, methods, and arrays. Learner characteristics were also collected,

including self-reported reason for taking the course, level of interest the course content, anxiety

about course performance, age, gender, race, primary language, family socioeconomic status,

academic major, full-time or part-time student status, high school GPA, college GPA, year in

school, and prior experience with programming. All except prior experience with programming

were collected with a single multiple-choice or short-answer question on a demographic survey.

To report prior experience, students filled out a matrix that asked them which types of

programming experiences they had (i.e., self-taught, informal setting, formal setting), during

which grades (i.e., elementary, middle, or high school), and how extensive the experiences were

(i.e., a day, a week, less than two months, or more than two months). These learner

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 15

characteristics were analyzed as possible predictor variables, even though they were not

manipulated.

The study collected data on problem-solving performance through two quantitative

measures and one qualitative measure. The two quantitative measures are grades on the four

exams (i.e., product data) throughout the semester and the weekly quizzes (i.e., process data).

Only quizzes given during each of the five weeks after using the subgoal labeled worked

examples were analyzed to focus on the effect of the instructional materials. Qualitative data

came from explain in plain English questions on the quizzes. Though given the sample size,

these data were analyzed quantitatively after being scored based on the SOLO taxonomy.

Participants

Participants were recruited from five sections of an introduction to programming course,

and all measurements used for data collection were part of their normal course requirements. A

total of 307 students were enrolled in the course at the beginning of the semester. Students were

excluded from analysis if they did not complete at least one weekly quiz or one exam to account

for non-participation in the course. A few students also opt-ed out of participating in the research

study. The final sample size was N = 265 with 120 students in the two subgoal sections and 145

students in the three control sections. One of the control sections was taught 100% online. The

online control section was initially analyzed as a separate control group from the in-person

sections in case students in the sections were systematically different (e.g., primarily part-time

students or primarily non-majors). No differences in demographic characteristics or performance

on quizzes or exams were found between the in-person and online control groups, except that the

online group tended to be older. Thus, they were combined for final analyses. Participants’

demographic characteristics are summarized in Table 1. Differences in characteristics between

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 16

the subgoal and control group were explored via visual inspection of measures of central

tendency (i.e., mean, median, or mode) and variance (i.e., standard deviation, range, or

distribution), but no meaningful differences were found. The characteristics of this sample seem

representative of the population of students at public universities who are taking introductory

programming courses.

Table 1. Demographic and Learner Characteristics of Participants.

Characteristic Data Collection Responses

Age Open-ended 85% between 18-23, range - 17-46

Gender Male, Female, Other 67% male, 31% female, 2% other

Race
Caucasian, Latinx, Asian,

Black, Other, Mixed

73% Caucasian, 5% Latinx, 8% Asian,

3% Black, 11% Other or Mixed

Primary language English, not English 90% English

Family SES
< $25k, 25-50k, 50-100k, 100-

200k, > 200k

27% below $50k, 69% $50-200k,

4% above $200k

Major Computing, Engineering, Other 43% computing, 40% engineering

Status Full-time, part-time 92% full-time

High School GPA Open-ended Average – 3.56/4.0

College GPA Open-ended Average – 3.42/4.0

Year in School 1st, 2nd, 3rd, 4th, 5th, other 47% 1st, 25% 2nd, 16% 3rd, 12% higher

Expected grade A, B, C, D, F 64% A, 28% B, 8% C

Expected difficulty
Likert-type 1 – very difficult to

5 – not at all difficult
Average – 2.97

Level of interest in

course

Likert-type 1 – not at all

interested to 5 – very interested
Average – 3.84

Reason for taking

course (select all

that apply)

Advised to, Required for major,

Interested in topic, Relevant to

career path

31% advised to, 92% required for

major, 57% interested in topic, 56%

relevant to career path

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 17

Prior experience

with programming

(select all that

apply)

Matrix that crossed K-5, 6-8,

and 9-12 grades with informal,

formal, or self-guided learning

34% had no prior experience; 31%

had experience in K-5, 25% in 6-8,

and 61% in 9-12; 18% had informal

experience, 50% had formal, and 29%

had self-guided

Data Collection and Analysis

The two measures of problem-solving performance were five quizzes and four exams.

Quizzes included multiple-choice, short answer, and explain in plain English questions. Exams

included multiple-choice (a third to half of the points), short answer, and long answer questions.

All questions focused on assessing students’ skill in solving problems with programming

procedures. Students had four days to complete quizzes in an online system, and each exam took

two hours of class time. The programming problems included on the quizzes and exams were

either similar to questions presented in class for easier difficulty or questions given on homework

assignments for harder difficulty. Each quiz accounted for 0.44% of the students’ overall grade;

thus, each quiz was low stakes because it had little effect on students’ overall grades. Each test,

in contrast, accounted for 7.5% of the students’ overall grade. The datasets used and analyzed

during the current study are available from the authors on reasonable request.

The questions on each of the assessments were the same across all sections, as was the

grading. Each quiz or exam was graded by the same member of the courses’ instructional team

so that all questions were graded by the same person to reduce bias across sections. For the

explain in plain English questions, if students wrote a sensical answer, they received full points

and did not receive feedback. Then their de-identified responses were scored by the authors

based on the SOLO taxonomy after the course had finished.

To score the explain in plain English questions, the three authors worked concurrently

and with the responses blinded so that they did not know which students belonged to the subgoal

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 18

or control groups. For each question, the scorers first cooperatively examined about 10

responses, looking for examples of each of the five categories. The initial discussions focused on

the concepts relevant to the question to help distinguish between the first three categories

(prestructural, unistructural, and multistructural) and the connections among them to distinguish

between the advanced two categories (relational and extended abstract). The scorers rated each

response and discussed discrepancies until agreement was reached and a general rubric for the

distinctions between each category was created (see Figure 2).

Explain in plain English: For the problem below, explain the general steps that you would take
to solve the problem. You do not need to solve the problem. Instead imagine that you are
describing the general steps that you would take to evaluate code like this to yourself before
you learned this unit/topic/etc.

int alpha = 20

int eta = 5

double beta = 4.5

double gamma = 5.5

double delta = 0.5

double result = ((beta + gamma) – (++alpha * delta)) * (eta++ % alpha);

SOLO
Category

Question-specific rubric Example response

Prestructural Nonsensical answer or
answer with no relevant
information

“Solve each equation in parentheses.”

Unistructural Partial description of the
procedure

“If I were solving this equation I would first
replace each name with its associated
variable and rewrite the equation. From here
you can solve the equation.”

Multistructural A complete description of
the procedure without
explanation

“Add beta and gamma. Add one to alpha then
multiply it by delta. Subtract the second value
from the first value. Take eta and add one to
it. Then find the remainder of eta and alpha.
Finally multiply the remainder of eta and alpha
with the difference of the values.”

Relational A complete description of
the procedure and
relational information about
either evaluating pre- and
post-increments or

“First I would make sure that all ints are
assigned to integers, and all doubles are
assigned to doubles. I would then use the
order of operations to do the arithmetic and
find the double result. First, I would add beta

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 19

evaluating the
appropriateness of data
type between the variables

and gamma. Second, I would add 1 to alpha,
and multiply alpha by delta. After that I would
add 1 to eta and take it modular to alpha.
Finally I would multiply my last two results
together, and subtract them from my first
result. This would give me a double.”

Extended
abstract

A complete description of
the procedure and
explanation of abstract
principles that apply to
evaluating all expressions

“First determine if the expression is
compatible which it is because int's can store
into a double, next update variables on right
side if they are a pre operation meaning if they
have a ++ or -- before the variable. Next use
PEDMAS to solve the equation, make sure the
result is the same data type as the variable.
So since result is a double the solution needs
to be a double. Finally update any post
operation variables that have ++ or -- after the
variable.”

Figure 2. Example of explain in plain English question, rubric developed for SOLO

classification, and student responses for each level of SOLO.

After the initial discussion, all three scorers rated 10 more responses before comparing

answers, resolving discrepancies, and adding details to the rubric when appropriate. They

continued this process for the first 20% of responses. If they reached an acceptable level of

interrater reliability within the first 20% of responses (based on initial scores, not resolved

scores), the remaining responses were scored by one person. If interrater reliability was not

acceptable, they coded an additional 20% of responses and assessed reliability again. One

question was thrown out because it was a yes/no type question, and most student responses did

not lend themselves to analysis based on the SOLO taxonomy. Of the remaining four questions,

three reached acceptable interrater reliability after the first 40% of responses. The other question

never reached acceptable interrater reliability, and each response was compared and discussed by

the scorers.

For interrater reliability, the intraclass correlation coefficient of absolute agreement,

ICC(A), best suited our purpose. It determines whether multiple raters gave a response the same

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 20

score, which is appropriate for the categories within the SOLO taxonomy. Interrater reliability

was deemed sufficient when it reached 0.75 or higher (Koo & Li, 2016). The final rubrics for

each question and examples of student responses for each category within the SOLO taxonomy

can be found in Decker et al. (2019). Student scores on the explain in plain English questions are

used as ordinal data, with prestructural being lowest and extended abstract being highest, to

compare the subgoal and control groups.

Students’ quiz and exam scores were calculated three different ways to compare the

subgoal and control groups. Given that participation often dwindles throughout introductory

programming courses, we needed a way to distinguish between quizzes and exams that were

completed or not. Therefore, we calculated three scores for the quizzes and exams:

 Average score – includes only quizzes and exams that students completed, excludes

zeros for missing assessments

 Total score – includes all grades, including zeros for quizzes and exams that students

did not complete

 Number of assessments – the number of quizzes and exams completed to provide an

additional data point to compare the groups.

These scores account for a major source of variance in the data, whether the assessment was

taken or not, and allow us to examine retention between groups.

Results and Discussion

This section is organized around the two research questions for this study. First, we

address the question, “How do subgoal labeled worked examples affect problem solving

throughout an introductory programming course?” with data from the SOLO scoring, quizzes,

and exams. Then we address the second question, “Which learner characteristics predict whether

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 21

subgoal labeled worked examples will be more or less effective?” by exploring the effect of

demographic and learner characteristics (see Table 1) within the context of the results.

Explain in Plain English SOLO Scores

Scoring based on the SOLO taxonomy provided ordinal data. Having ordinal data means

we can argue that scoring at higher levels of the taxonomy demonstrates better understanding

than scoring at lower levels, but we cannot use mathematical operations to describe the

difference between scores. For example, we cannot argue that the difference between a

unistructural and multistructural score is the same as the difference between a multistructural and

relational score, though we can argue that a relational score demonstrates better learner than the

others. Therefore, our analysis of SOLO scores relied on descriptive statistics, specifically mode

and frequencies of scores in each group. Each set of scores for the quizzes were analyzed

separately because using an average or total of ordinal scores requires mathematical operations

and, thus, is not valid.

For the first quiz, which was about expressions, the subgoal group scored higher than the

control group (see Table 2). The most common score in the subgoal group was relational while

the most common score for the control group was multistructural. In addition, 68% of the

subgoal group achieved the top two scores at nearly twice the rate of the control group, 37%.

Instead, the control group achieved the bottom two scores at more than twice the rate (27%) of

the subgoal group (11%).

 Prestructural Unistructural Multistructural Relational Extended abstract

Subgoal

Mode = 4

1

(1%)

8

(10%)

18

(21%)

43

(51%)

14

(17%)

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 22

Control

Mode = 3

6

(8%)

14

(19%)

27

(36%)

25

(33%)

3

(4%)

Table 2. Mode and frequencies between subgoal and control groups on quiz 1.

The fourth quiz, which was about writing methods, follows a similar pattern as the first

quiz (see Table 3). The most common score in the subgoal group was relational while the most

common score for the control group was multistructural. Moreover, 66% of the subgoal group

gave a relational or extended abstract response, which is again nearly double the percentage in

the control group, 34%. The control group, in contrast, gave prestructural or unistructural

responses at six times the rate (31%) of the subgoal group (5%).

 Prestructural Unistructural Multistructural Relational Extended abstract

Subgoal

Mode = 4

1

(1%)

4

(4%)

27

(29%)

53

(58%)

7

(8%)

Control

Mode = 3

11

(12%)

17

(19%)

32

(35%)

27

(29%)

5

(5%)

Table 3. Mode and frequencies between subgoal and control groups on quiz 4.

For the second quiz, which was about loops, the data have a slightly different pattern, but

the subgoal group still scored higher than the control group (see Table 4). Nearly half of the

participants in both groups gave a multistructural response (50% for subgoals, 46% for control),

making it the most common response for both groups. A higher percentage of subgoal students

than control students gave the additional information necessary to achieve a relational score

(29% vs. 17%). In contrast, the control group had a higher proportion of responses that were

missing relevant information than the subgoal group, earning a unistructural or prestructural

score (37% vs. 18%).

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 23

 Prestructural Unistructural Multistructural Relational Extended abstract

Subgoal

Mode = 3

5

(5%)

13

(13%)

49

(50%)

28

(29%)

3

(3%)

Control

Mode = 3

11

(11%)

25

(26%)

45

(46%)

16

(17%)

0

(0%)

Table 4. Mode and frequencies between subgoal and control groups on quiz 2.

The third quiz, which was about nested loops, did not follow the same trend as the other

quizzes, and the responses were overall worse than those on the other quizzes (see Table 5). This

quiz was the one that never had sufficient interrater reliability, and the raters discussed each

response. The most common response for both groups was unistructural, suggesting that most

students were missing relevant information in their answers.

 Prestructural Unistructural Multistructural Relational Extended abstract

Subgoal

Mode = 2

8

(9%)

48

(53%)

23

(26%)

8

(9%)

3

(3%)

Control

Mode = 2

12

(12%)

39

(38%)

32

(31%)

17

(17%)

2

(2%)

Table 5. Mode and frequencies between subgoal and control groups on quiz 3.

Though we expected that each student would consistently earn higher or lower SOLO

scores, we found a different result. In total, 31 students earned an extended abstract score, and

only 6 of them achieved the score twice. In addition, only 7 out of 265 students received scores

of only relational or higher. The pattern is the same for the other end of the spectrum. Ten

students earned more than one prestructural score, but only four students received scores of only

unistructural or lower. Most students scored a mid-level, multistructural response at least once,

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 24

regardless of how poor or strong their other responses were. This finding suggests that SOLO

score was not strongly predicted by the student.

Though SOLO scores were not consistent within students, they were strong predictors of

quiz and exam performance. For these analyses, we used ANOVA with quiz score as the

outcome variable and SOLO scores as a random (i.e., not manipulated) predictor variable.

Though the outcome and predictor variable might seem dependent on each other because the

SOLO scores come from the explain in plain English questions on the quizzes, the data are

independent because they are scored differently. Because students received full points on the

quiz for providing any sensible answer on the explain in plain English question, students who did

not provide a sensible answer did not receive a SOLO score. Thus, the explain in plain English

question is an added constant (i.e., linear transformation without discriminatory value) to all

quizzes in the analysis. SOLO scores were matched to the quiz for which they were given and to

the next exam (see Table 6). The minimum effect size was d = 0.33, and the largest effect size

was d = 0.93, showing that higher SOLO scores were strongly related to higher assessment

scores. These findings partially validate the SOLO scoring by providing corroborating evidence

that higher SOLO scores are associated with better learning outcomes.

Table 6. SOLO Scores as Predictors for Assessment Scores.

SOLO score source Assessment score source F p d

Quiz 1 Quiz 1 11.15 .001 0.41

Quiz 1 Exam 1 7.11 .008 0.33

Quiz 2 Quiz 2 30.31 < .001 0.68

Quiz 2 Exam 2 38.94 < .001 0.77

Quiz 3 Quiz 3 20.80 < .001 0.57

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 25

Quiz 3 Exam 3 17.35 < .001 0.52

Quiz 4 Quiz 4 56.03 < .001 0.93

Quiz 4 Exam 3 35.07 < .001 0.73

Quiz Performance

The subgoal group’s performance was compared to the control group’s performance for

all three calculations of quiz score: average score (excluding missing quizzes), total score

(including missing quizzes), and number of quizzes taken. For all three calculations, the subgoal

group performed better than the control group. For the average quiz score, the subgoal group (M

= 48%, SD = 14%) outscored the control group (M = 41%, SD = 16%) with a medium effect size,

d = 0.44, t(264) = 12.03, p = .001. This finding suggests that the subgoal group performed better

than the control group based on only quizzes that students took. In addition, the subgoal group (M

= 12.0, SD = 5.6) performed better on total score than the control group (M = 9.5, SD = 6.3), based

on a maximum score of 31 with a medium effect size, d = 0.42, U = 6703, p = .001. For this

comparison, the test for homogeneity was statistically significant, p = .03, because the variance of

the subgoal group was lower than that of the control group. Thus, we use the non-parametric, more

conservative Mann-Whitney test instead of the parametric t-test, which assumes homogeneity of

variance. This finding suggests that the subgoal group took more quizzes in addition to performing

better on quizzes, and it is supported by the number of quizzes taken in each group. Out of five

quizzes, the subgoal group (M = 3.9, SD = 1.2) completed more quizzes than the control group (M

= 3.4, SD = 1.6), U = 7126, p = .01. Again, Mann-Whitney is used for a non-parametric test

because homogeneity was violated due to the subgoal group having less variance than the control

group, p < .01.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 26

To explore whether subgoal materials had a consistent effect on performance over the

semester or whether they were more effective on some quizzes than others, we used a repeated

measures analysis. Due to the missing data points for some students, only 97 had a complete set

of quiz scores that could be used for the analysis. With these limited data, we found no effect of

quiz on the scores, F(4, 93) = 2.04, p = .21, nor an interaction between group and quiz, F(4, 93)

= 1.31, p = .56. Each quiz tested only the topics that had been discussed in the previous week.

Thus, the quizzes were not cumulative except in the way that programming concepts, like math

concepts, build upon each other. This finding suggests that the subgoal labeled materials had the

same effect size throughout the semester, and they were not more effective at the beginning of

the class when students were more novice or later in the class when concepts are more complex.

Therefore, the subgoal materials seem to be effective at improving problem-solving performance

shortly after a new topic is introduced, as measured by the quizzes.

Exam Performance

Students in the subgoal group took more quizzes and performed better on them than the

control group, but the same pattern is not seen in exam scores. For the average exam score,

excluding missing exams, the subgoal group (M = 75%, SD = 15%) did not score statistically

better than the control group (M = 72%, SD = 18%) but did achieve the threshold for a small

effect, d = 0.20, U = 7975, p = .24. The variance for the subgoal group was sufficiently less than

the control group to violate homogeneity, p = .02. For the total exam score, however, the subgoal

group (M = 140.3, SD = 42.4) did perform statistically better than the control group (M = 128.2, SD

= 51.6), based on a maximum score of 200 with a small effect size, d = 0.26, t(264) = 4.20, p = .04.

This finding suggests that the subgoal group took more exams than the control group but did not

perform better on them, and it is supported by the number of exams taken in each group. Out of

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 27

four exams, the subgoal group (M = 3.7, SD = 0.8) took more than the non-subgoal group (M = 3.5,

SD = 1.0) with a small effect size, d = 0.22, U = 7785, p = .045. The variance of the subgoal group

was again sufficiently lower than that of the control group to warrant using Mann-Whitney, p <

.01.

In an authentic classroom setting, exam scores are influenced by many factors other than

the intervention. Students are often motivated to achieve a minimum grade, and they will change

their behaviors to achieve it (Robbins et al., 2004). Even though we did not find that the subgoal

group performed better than the control group on the exams, they were more likely to take all of

the exams, i.e., not withdraw or fail the course, and they had lower variance in scores, i.e., fewer

students performing very poorly on exams. Therefore, it seems possible that receiving subgoal

labeled materials helped students who might otherwise withdraw or fail the course to complete it.

This possibility is supported by the difference in quiz scores between groups. Students in the

subgoal group performed better on quizzes given shortly after learning materials. Therefore, they

might have struggled less when initially learning the materials and thus persisted in the course.

To explore this possibility and address our second research question, we explored the

interactions between learner characteristics and subgoal labeled materials. Though we did not

collect self-reported effort or time spent studying because they are too error prone to be reliable

(Kuncel et al., 2005), we collected a large range of demographic and learner characteristics that

have predicted performance and risk of withdrawal or failure in prior work (Pea & Kurland,

1983; Quille & Bergin, 2019; Rountree et al., 2004). From these characteristics (see Table 1), we

examined which correlated with performance in our context to identify characteristics that were

risk factors for withdrawing or failing the course. Then we compared students in at-risk groups

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 28

between the subgoal and control groups to determine whether subgoal labeled materials helped

to mitigate risk factors.

Demographic and Learner Characteristics

Because demographic and learner characteristics were not manipulated variables, we

used correlations to explore their relationship with performance. For these analyses, we used

average exam score to represent performance because 1) total exam score was affected by

whether students took all exams and did not accurately represent their performance on the other

exams, like average exam score, and 2) exams are worth a significant portion of the final grade,

unlike quizzes, so they are high stakes enough to encourage students’ best effort. Average exam

score was a continuous variable, so if the characteristic was also measured as a continuous

variable, we used Pearson’s r coefficient; if the characteristic used binomial data, we used

Spearman’s ρ coefficient.

We collected many characteristics (see Table 1) and, thus, ran many correlation analyses.

Therefore, we expected that some results, while statistically significant, are most likely due to

Type I error, or a false positive, especially because we have a large sample size. To reduce the

risk of making erroneous conclusions, we focus our discussion on the size of the correlation

coefficient to emphasize the strength of the relationship between variables. To be considered a

meaningful correlation, it must have an r/ρ > 0.20, which is a small-moderate effect size (Cohen,

1988). In addition, we decreased the p-value cutoff to 0.01 to be considered statistically

significant. Analyses that did not meet both criteria were not considered meaningful and are

generally not reported to save space. However, correlations that are close to the cutoffs and

aligned with other findings are reported as corroborating evidence. Correlations that surpass

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 29

these cutoffs but are not aligned with other findings are likely unreliable and discussed only

briefly.

Learner Characteristics that Correlate with Performance Across Groups

To identify the risk factors for withdrawing or failing the course, we correlated learner

characteristics with performance. No demographic characteristics, such as age, gender, or race,

correlated with performance, but other learner characteristics did (see Table 7). These

characteristics are used in later analyses as risk factors, meaning students who score close to the

low end of these characteristics were more likely to perform worse on exams. Despite

correlations between learner characteristics and performance and SOLO scores predicting

performance, no learner characteristics correlated with SOLO scores.

Table 7. Correlations between Learner Characteristics and Performance for All Students and

Measures of Central Tendency for Each Group to Demonstrate Equivalency.

Characteristic Data Type Subgoal

Group

Control

Group

r/ρ with

performance

p

Interest in topic binomial 63% 58% .24 <.001

Relevant to career binomial 61% 59% .27 <.001

Expected grade continuous 62% A, 32%

B, 6% C

65% A, 26%

B, 8% C

.36 <.001

Expected difficulty continuous M = 3.52 M = 3.65 .30 <.001

High school GPA continuous M = 3.59/4 M = 3.55/4 .26 .001

College GPA continuous M = 3.39/4 M = 3.44/4 .35 <.001

We selected cutoffs to determine at-risk status for the continuous variables based on the

participants’ responses. For expected grade, the cutoff was whether students expected to get an A

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 30

because most students (64%) said that they expected to get an A in the course. For expected

difficulty, the cutoff was rating expected difficult as 2 or 1 on a 5-point scale from 1 – very

difficult to 5 – not at all difficult, which is below the mean of 2.97. For high school GPA, the

cutoff was below 3.6, which was the mean. For college GPA, the cutoff was below 3.4, which

was the mean and indicates that students are closer to a B average than an A average.

Correlations for Students with Risk Factors

We conducted a series of analyses using data from only students who had risk factors to

compare subgoal and control groups. We cycled through each risk factor, allowing us to explore

the effect of subgoal labels on at risk students within the paradigm of correlational analyses. For

example, for students who expected the course to be difficult, all other risk factors correlated

with performance. In some cases, there was a significant correlation for both groups, but the size

of the coefficient in the control group was substantially larger (see Table 8). In other cases, the

correlation was significant only for the control group. Both finding suggest that the subgoal

intervention mitigated the effect of risk factors on performance.

Table 8. Correlations between Risk Factors and Performance for Students who Expected High

Difficulty. Statistically significant relationships are highlighted with a gray background.

Risk Factor Subgoal r/ρ Subgoal p Control r/ρ Control p

Interest in topic .22 .08 .30 .008

Relevance to career .31 .01 .29 <.001

Expected grade .22 .10 .38 .001

High school GPA .40 .02 .61 <.001

College GPA .33 .12 .50 .001

Advised to take course .03 .82 .31 .006

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 31

From the results of analyses based on all risk factors, we have identified three patterns

(see Table 9). The first is that expected difficulty of the course correlated with performance when

accounting for other risk factors, but only in the control group or more strongly in the control

group. These correlations were present both when analyzing students who had the other risk

factors and when analyzing students who expected the course to be difficult. Furthermore, when

looking at only students who expected the course to be difficult, the average exam score in the

subgoal group was close to the average for all students (74% compared to 75%) while the

average in the control group was lower (67% compared to 72%). Therefore, it is likely that

subgoal materials had a mitigating effect on this risk factor that prevented multiple risk factors

from having a compound effect on performance.

Table 9. Summary of Correlations of Compound Risk Factors and Performance.

 Correlation with secondary risk factor, listed as subgoal/control

Interest

in topic

Relevant

to career

Expected

grade

Expected

difficulty

High

School

GPA

College

GPA

Age Current

Major

Interest

in topic

(n = 114)

 NS NS .19/.30* NS .58*/.02 -.49*/-.16 NS

Relevant

to career

(n = 117)

NS .38*/.18 .15/.41* NS .57*/.09 -.23*/-.11 NS

Expected

grade

(n = 95)

NS NS NS NS NS NS -.18/.67*

Expected

difficulty

(n = 129)

.22/.30* .31*/.29* .22/.38* .40*/.61* .33/.50* -.52*/-.12 NS

HS GPA

(n = 121)
NS NS NS .26/.38* .54*/.14 NS NS

College

GPA

(n = 124)

NS NS NS .08/.57* NS NS -.11/.41*

Note: Down the left side of the table is the first risk factor, based on factors identified in Table 7,

used to narrow the analysis to only students at risk based on that factor. Across the top of the

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 32

table is the second risk factor. NS = non-significant correlations for both groups. * indicates

statistically significant relationship. Details for risk factor cutoffs and analyses can be found

earlier in the results section. The lighter shaded cells indicate the control group had a stronger

correlation, and the darker shaded cells indicate that the subgoal group has a stronger correlation.

The second pattern is that college GPA correlated with performance in the subgoal group

but not the control group when analyzing students with risk factors. For students who did not list

interest in the topic or relevance to career as reasons for taking the course and students with

lower high school GPAs, higher college GPA related to higher exam performance only for the

subgoal group. Higher college GPA often relates to higher performance because students are

often internally motivated to achieve a certain grade (Komarraiu et al., 2009; Kusurkar et al.,

2013). Moreover, when looking at only students with below average college GPAs, the average

exam score in the subgoal group was close to the average for all students (76% compared to

75%) while the average in the control group was lower (69% compared to 72%). Perhaps for

students with these risk factors, the subgoal materials allowed them to achieve their goals, as

indicated by college GPA.

The last pattern is that age negatively correlated with performance for students with risk

factors, but only for the subgoal group. This finding means that younger students with risk

factors, such as not indicating interest in the topic or relevant to career, performed better in the

subgoal group than the control group. In this case, students who were less than 20 years old in

the subgoal group performed better than the overall average (80% compared to 75%) and those

in the control group performed equivalently (72% compared to 72%). The mostly likely reason

for this difference is the difference in self-regulation and metacognitive skills between more

junior and more senior college students (Kitsantas et al., 2008; Ramdass & Zimmerman, 2011;

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 33

Strage, 1998). Younger students with less developed self-regulation and metacognition,

especially if they have risk factors, would likely benefit more from the additional guidance that

subgoal labels provide on worked examples while more senior students have developed more

strategies for learning with less guidance. In summary, learner characteristics can have strong

relationships with performance, and subgoal labels seemed to help students with risk factors to

achieve better performance than those with risk factors in the control group.

Comparison of Students with Missing Exams or Failing Average

To provide another perspective of students who struggled in the course, we explored

differences between the subgoal and control groups for students who did not complete all exams

and students who had an average exam score below 70%, which is failing in this course. These

are the students at highest risk of withdrawing or failing the course. In both cases, we found that

about half as many students in the subgoal group met these criteria as in the control group.

For students who were missing exams, the control group had higher percentages of

students not take exams. The first two exams were before the deadline for withdrawing the

course. In the control group, 10 students took one exam (7%) and 19 took two exams (13%).

This rate was halved in the subgoal group in which 6 students took one exam (5%) and 6 took

two exams (5%).

In addition to the difference in rates, the average exam scores for students who missed at

least one exam were different between groups. The sample size was too small to use inferential

statistics meaningfully, but the descriptive statistics suggest a meaningful difference. For

students who took all but one exam, the subgoal group had a mean of 69.2% and a standard

deviation of 20.8%, and the control group had a mean of 59.2% and a standard deviation of

23.4%. This difference represents a whole letter grade difference between groups. For students

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 34

who took two exams, the subgoal group (M = 64.0%, SD = 14.4%) again performed almost a

letter grade better than the control group (M = 54.6%, SD = 17.2%). For students who took only

one exam, the subgoal group (M = 63.0%, SD = 19.6%) had the same advantage over the control

group (M = 54.0%, SD = 17.6%). When we consider these results in addition to previous results

of exam performance that showed lower variance in exam scores in the subgoal group than in the

control group, it is likely that fewer students in the subgoal group had failing exam grades earlier

in the semester leading to fewer students withdrawing from the subgoal group than the control

group.

To explore this possibility, we also examined students in both groups who had taken all

exams and had an average exam score of 70% or lower. This cutoff, in addition to being

meaningful in terms of passing or failing, was close to the mean score, 73%. We again found the

rate of meeting this criterion was almost double in the control group (n = 64, 44%) as in the

subgoal group (n = 30, 25%). Based on findings from exam performance alone, which is a good

but not perfect representative of their overall grade, students in the subgoal group were half as

likely to withdraw and half as likely to fail than the control group. These findings are important

because they indicate subgoals had a significant positive effect on overall course performance,

even though we found that subgoals did not statistically improve average exam performance.

Limitations

This study has many of the same limitations that most classroom-based experiments do.

First, we were not able to randomly assign students to groups because students select the sections

that work best for their schedule, weakening arguments for causal relationships. We attempted to

identify any systematic differences between sections by comparing them based on an analysis of

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 35

an extensive list of demographic and learner characteristics, and we found no meaningful

differences.

The second limitation was that the instructor who taught the subgoal group was part of

the research team. As with many classroom implementations of instructional manipulations, or at

least the initial implementation, having a member of the research team as the instructor ensures

fidelity of implementation and that the research team can quickly adapt to errors or overlooked

details. Thus, having a researcher as an instructor might have improved the integrity of the

instructional manipulation, but it also introduces a potential source of bias. In our case, the

researcher is a veteran introductory programming instructor with substantial prior experience.

Having substantial prior experience can increase consistency of instruction and reduce potential

bias, but some bias is still likely in the data.

Conclusion

Our research questions asked how subgoal labeled instructions affect problem-solving

performance throughout a semester-long programming class and how learner characteristics

interacted with that effect. Our results found that the group who learned with subgoals performed

better than the group who learned with conventional instructional materials on quizzes within a

week of learning new problems-solving procedures. Later problem-solving performance on

exams, however, was equivalent between the two groups, suggesting that subgoal labels promote

better initial performance but not consistently better performance.

These performance findings are qualified by several results that suggest students who

were at risk of struggling in the control group were more likely to withdraw from or fail the

course than students who were at risk of struggling in the subgoal group. First, the variance in

quiz and exam scores was lower in the subgoal group than the control group, meaning that fewer

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 36

students received very low grades on these problem-solving assessments. Second, students in the

subgoal group were more likely than those in the control group to take all quizzes and exams,

suggesting that they persisted until the end of the course. Third, for students with risk factors

based on their learner characteristics, their performance was more likely to be related to other

risk factors in the control group but not the subgoal group, suggesting subgoals might mitigate

risk factors. Last, for students who did miss assignments, their scores on other assignments were

more likely to be higher if they were in the subgoal group, suggesting that they were less likely

to be struggling overall.

Because the intervention is built into the instructional materials that students receive,

applying the intervention in classrooms should have a low barrier. To make adoption easier, our

research group is developing and testing online resources that have subgoal labeled worked

examples and practice problems. These resources could be used in class to demonstrate problem-

solving procedures with the worked examples and then practice applying procedures with the

practice problems. In addition, the resources could be assigned as homework, which would be

the least adoption cost for instructors.

Beyond programming instruction, this is the first classroom-based experiment of the

subgoal learning framework. Prior work has found subgoal labels to be effective in highly

controlled classroom settings, but they were never tested as a long-term intervention or when

learners have other pressures to succeed, such as to achieve a minimum grade. In the general

context of the subgoal learning framework, this study contributes two important findings. First,

as was theorized but not previously tested, the benefit of subgoal learning diminishes as learners

gain more experience with the problem-solving procedure. Subgoal labels help point out

similarities in problem-solving instances before learners have enough knowledge to recognize

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 37

similarities for themselves. Therefore, it fits with the framework that students who learn without

subgoal labels would eventually catch up to their peers who learned with subgoal labels as they

gain more knowledge. The experience of learning without subgoals, however, might be more

time-intensive or frustrating than learning with subgoals, leading to higher withdrawal or failure

rates from students who are at risk. Therefore, performance for those who persist might end up

the same, but performance for those who do not is substantially different.

The second important contribution to the subgoal learning framework is that the subgoal

labeled materials were effective for each new procedure that was introduced. For each quiz given

after subgoal labeled materials, the subgoal group performed better than the control group. This

finding suggests that subgoal labeled materials are effective for new procedures even as the

learners gain knowledge and experience in other problem-solving procedures in the domain.

Because the average exam scores were equivalent between groups in between these quizzes, we

do not expect that the subgoal group gained an advantage early in the semester that they

maintained throughout the semester, but it is possible. We think that it is more likely, however,

that subgoal labels are most effective when students are learning a new procedure that they have

little knowledge about, and that the efficacy diminishes as students gain more knowledge. Based

on the difference in quiz scores, equivalence in exam scores, and difference in withdrawal and

failure rates, subgoal labels should be used to improve problem-solving performance, especially

by those who might otherwise struggle during initial problem-solving attempts. Subgoal labels

are likely not effective for improving problem-solving for those who already know the problem-

solving procedure or whose personal learning strategies already help them to master new

material.

Declarations

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 38

Availability of Data and Materials

The datasets used and analyzed during the current study are available from the authors on

reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work is funded in part by the National Science Foundation under grants 1712025, 1712231

and 1927906. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the NSF.

Authors’ Contributions

Authors Decker and Morrison selected the topics to be included in the instructional design and

created the worked examples and practice problems. Authors Margulieux and Morrison

conducted the task analysis procedure. Author Morrison taught the subgoal sections of the course

and, thus, was responsible for most of the daily maintenance of data collection. Author

Margulieux conducted the analysis to address the second research question and wrote the first

draft of the paper. All authors conduced the analysis to address the first research question and

revised drafts of the paper.

Acknowledgements

The authors would like to thank the National Science Foundation for funding this work and the

instructional team and students at University of Nebraska Omaha for their support in conducting

this research.

List of Abbreviations

ANOVA – Analysis of variance

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 39

ICC(A) – Intraclass correlation coefficient of absolute agreement

GPA – Grade point average

HS – High school

SES – Socioeconomic status

SOLO – Structure of the Observed Learning Outcome

STEM – Science, technology, engineering, and mathematics

TAPS – Task analysis by problem solving

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 40

References

Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical agents.

Journal of Educational Psychology, 94(2), 416-427.

Atkinson, R. K., Catrambone, R., & Merrill, M. M. (2003). Aiding transfer in statistics:

Examining the use of conceptually oriented equations and elaborations during subgoal

learning. Journal of Educational Psychology, 95(4), 762-773.

Atkinson, R. K., & Derry, S. J. (2000). Computer-based examples designed to encourage optimal

example processing: A study examining the impact of sequentially presented, subgoal-

oriented worked examples. In B. Fishman & S. O'Connor-Divelbiss (Eds.), Fourth

International Conference of the Learning Sciences (pp. 132-133). Mahwah, NJ: Erlbaum.

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples:

Instructional principles from the worked examples research. Review of the Educational

Research, 70(2), 181-214.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM

SIGCSE Bulletin, 39(2), 32–36.

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory programming: 12 years

later. ACM Inroads, 10(2), 30-36.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy

(Structure of the Observed Learning Outcome). Academic Press.

Catrambone, R. (1994). Improving examples to improve transfer to novel problems. Memory and

Cognition, 22, 605‐615.

Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 22, 1020-1031.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 41

Catrambone, R. (1998). The subgoal learning model: Creating better examples so that students

can solve novel problems. Journal of Experimental Psychology: General, 127, 355-376.

Catrambone, R. (2011). Task analysis by problem solving (TAPS): Uncovering expert

knowledge to develop high-quality instructional materials and training. Paper presented

at the 2011 Learning and Technology Symposium (Columbus, GA, June).

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations:

How students study and use examples in learning to solve problems. Cognitive Science,

13, 145-182.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations

improves understanding. Cognitive Science, 18(3), 439-477.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Mahwah:

Erlbaum.

Corney, M., Lister, R., & Teague, D. (2011). Early relational reasoning and the novice

programmer: Swapping as the hello world of relational reasoning. In Proceedings of the

Thirteenth Australasian Computing Education Conference-Volume 114 (pp. 95-104).

Australian Computer Society, Inc.

Decker, A., Margulieux, L. E., Morrison, B. B. (2019). Using the SOLO Taxonomy to

understand subgoal labels effect on problem solving processes in CS1. In Proceedings of

the Fifteenth Annual Conference on International Computing Education Research. New

York, NY: ACM.

Eiriksdottir, E., & Catrambone, R. (2011). Procedural instructions, principles, and examples how

to structure instructions for procedural tasks to enhance performance, learning, and

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 42

transfer. Human Factors: The Journal of the Human Factors and Ergonomics Society,

53(6), 749–770.

Garner, S. (2002). Reducing the cognitive load on novice programmers. In Proceedings of 2002

World Conference on Educational Multimedia, Hypermedia, & Telecommuniations (pp.

578-583). Association for the Advancement of Computing in Education (AACE).

Hansen, M. E., Lumsdaine, A., & Goldstone, R. L. (2012). Cognitive architectures: A way

forward for the psychology of programming. In Proceedings of the ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and

Software (pp. 27-38). ACM.

Hansen, M., Lumsdaine, A., & Goldstone, R. L. (2013). An experiment on the cognitive

complexity of code. In Proceedings of the Thirty-Fifth Annual Conference of the

Cognitive Science Society. Berlin, Germany.

Jordan, K. (2014). Initial trends in enrolment and completion of massive open online courses.

The International Review of Research in Open and Distributed Learning, 15(1).

Kitsantas, A., Winsler, A., & Huie, F. (2008). Self-regulation and ability predictors of academic

success during college: A predictive validity study. Journal of Advanced Academics,

20(1), 42-68.

Komarraju, M., Karau, S. J., & Schmeck, R. R. (2009). Role of the Big Five personality traits in

predicting college students' academic motivation and achievement. Learning and

Individual Differences, 19(1), 47-52.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation

coefficients for reliability research. Journal of Chiropractic Medicine. 15(2), 155–163.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 43

Kuncel, N. R., Credé, M., & Thomas, L. L. (2005). The validity of self-reported grade point

averages, class ranks, and test scores: A meta-analysis and review of the

literature. Review of Educational Research, 75(1), 63-82.

Kusurkar, R. A., Ten Cate, T. J., Vos, C. M. P., Westers, P., & Croiset, G. (2013). How

motivation affects academic performance: a structural equation modelling analysis.

Advances in Health Sciences Education, 18(1), 57-69.

Lee, M. J., & Ko, A. J. (2015). Comparing the effectiveness of online learning approaches on

CS1 learning outcomes. In Proceedings of the Eleventh Annual International Conference

on International Computing Education Research (pp. 237–246). New York, NY: ACM

Leppink, J., Paas, F., Van Gog, T., van Der Vleuten, C. P., & Van Merriënboer, J. J. (2014).

Effects of pairs of problems and examples on task performance and different types of

cognitive load. Learning and Instruction, 30, 32–42.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest

for the trees: novice programmers and the SOLO taxonomy. ACM SIGCSE

Bulletin, 38(3), 118-122.

Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing. MIT press.

Margulieux, L. E., & Catrambone, R. (2016). Improving problem solving with subgoal labels in

expository text and worked examples. Learning and Instruction, 42, 58-71.

Margulieux, L. E., & Catrambone, R. (2019). Finding the best types of guidance for constructing

self-explanations of subgoals in programming. Journal of the Learning Sciences, 28(1),

108-151.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 44

Margulieux, L. E., Catrambone, R., & Schaeffer, L. M. (2018). Varying effects of subgoal

labeled expository text in programming, chemistry, and statistics. Instructional Science,

46(5), 707-722.

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled instructional material

improves performance and transfer in learning to develop mobile applications. In

Proceedings of the Ninth Annual International Conference on International Computing

Education Research (pp. 71-78). New York, NY: ACM.

Margulieux, L. E., Morrison, B. B., & Decker, A. (2019). Design and pilot testing of subgoal

labeled worked examples for five core concepts in CS1. In ITiCSE '19: Innovation and

Technology in Computer Science Education Proceedings (pp. 548-553). New York, NY:

ACM.

Mason, R., & Cooper, G. (2012). Why the bottom 10% just can't do it: Mental effort measures

and implication for introductory programming courses. In Proceedings of the Fourteenth

Australasian Computing Education Conference-Volume 123 (pp. 187-196). Australian

Computer Society, Inc..

Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops: A replication study

illuminates impact of HS courses. In Proceedings of the Twelfth Annual International

Conference on International Computing Education Research (pp. 221-230). New York,

NY: ACM.

Morrison, B. B., Margulieux. L. E., & Guzdial, M. (2015). Subgoals, context, and worked

examples in learning computing problem solving. In Proceedings of the Eleventh Annual

International Conference on International Computing Education Research (pp. 21-29).

New York, NY: ACM.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 45

Pea, R. D., & Kurland, D. M. (1983). On the Cognitive Prerequisites of Learning Computer

Programming. Technical Report No. 18.

Quille, K., & Bergin, S. (2019). CS1: how will they do? How can we help? A decade of research

and practice. Computer Science Education, 29(2-3), 254-282.

Ramdass, D., & Zimmerman, B. J. (2011). Developing self-regulation skills: The important role

of homework. Journal of Advanced Academics, 22(2), 194-218.

Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem

solving in cognitive skill acquisition: A cognitive load perspective. Educational

Psychologist, 38(1), 15–22.

Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do

psychosocial and study skill factors predict college outcomes? A meta-

analysis. Psychological Bulletin, 130(2), 261-288.

Rountree, N., Rountree, J., Robins, A., & Hannah, R. (2004). Interacting factors that predict

success and failure in a CS1 course. In ACM SIGCSE Bulletin (Vol. 36, No. 4, pp. 101-

104). ACM.

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users and end user

programmers. In 2005 IEEE Symposium on Visual Languages and Human-Centric

Computing (pp. 207–214). IEEE.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., & Whalley, J. L. (2008). Going

SOLO to assess novice programmers. ACM SIGCSE Bulletin, 40(3), 209-213.

Strage, A. A. (1998). Family context variables and the development of self-regulation in college

students. Adolescence, 33(129), 17-31.

Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 46

Sudol-DeLyser, L. A. (2015). Expression of abstraction: Self explanation in code production.

In Proceedings of the 46th ACM Technical Symposium on Computer Science

Education (pp. 272-277). ACM.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science, 12(2), 257–285.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load.

Educational Psychology Review, 22(2), 123–138.

Sweller, J. (2011). Cognitive load theory. In Psychology of Learning and Motivation (Vol. 55,

pp. 37-76). Academic Press.

van Merriënboer, J. J., & Paas, F. G. (1990). Automation and schema acquisition in learning

elementary computer programming: Implications for the design of practice. Computers in

Human Behavior, 6(3), 273–289.

US Bureau of Labor Statistics (2017). Projections Overview : Occupational Outlook Handbook.

Weiser, M., & Shertz, J. (1983). Programming problem representation in novice and expert

programmers. International Journal of Man-Machine Studies, 19(4), 391-398.

Wiedenbeck, S., Fix, V., & Scholtz, J. (1993). Characteristics of the mental representations of

novice and expert programmers: an empirical study. International Journal of Man-

Machine Studies, 39(5), 793-812.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K., & Prasad, C.

(2006). An Australasian study of reading and comprehension skills in novice

programmers, using the bloom and SOLO taxonomies. In Conferences in Research and

Practice in Information Technology Series, 243-252.

