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Abstract 

Background: Programming a computer is an increasingly valuable skill, but dropout and failure 

rates in introductory programming courses are regularly as high as 50%. Like many fields, 

programming requires students to learn complex problem-solving procedures from instructors 

who tend to have tacit knowledge about low-level procedures that they have automatized. The 

subgoal learning framework has been used in programming and other fields to breakdown 

procedural problem solving into smaller pieces that novices can grasp more easily, but it has only 

been used in short-term interventions. In this study, the subgoal learning framework was 

implemented throughout a semester-long introductory programming course to explore its 

longitudinal effects. Of 265 students in multiple sections of the course, half received subgoal-

oriented instruction while the other half received typical instruction.  

Results: Learning subgoals consistently improved performance on quizzes, which were 

formative and given within a week of learning a new procedure, but not on exams, which were 

summative. While exam performance was not statistically better, the subgoal group had lower 

variance in exam scores and fewer students dropped or failed the course than in the control 

group. To better understand the learning process, we examined students’ responses to open-

ended questions that asked them to explain the problem-solving process. Furthermore, we 

explored characteristics of learners to determine how subgoal learning affected students at risk of 

dropout or failure.  

Conclusions: Students in an introductory programming course performed better on initial 

assessments when they received instructions that used our intervention, subgoal labels. Though 

the students did not perform better than the control group on exams on average, they were less 
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likely to get failing grades or to drop the course. Overall, subgoal labels seemed especially 

effective for students who might otherwise struggle to pass or complete the course. 

 

Keywords: worked examples, subgoal learning, programming education, failure rates 
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Reducing Withdrawal and Failure Rates in Introductory Programming with Subgoal Labeled 

Worked Examples 

Understanding how to program a computer is becoming a basic literacy skill (Scaffidi et 

al., 2005). The idea of computer literacy is shifting from being only a consumer of technology 

(e.g., using Microsoft Office and browsing the Internet) to also including being a producer of 

technology (e.g., writing or adapting computer programs and making websites). Programming 

enables people to develop solutions that increase efficiency in their personal and professional 

lives, and software development is an in-demand career path in many sectors (US Bureau of 

Labor Statistics, 2017).  

To meet the demand for programming skill, many learners engage in formal 

programming instruction, including tens of thousands of students enrolling in coding boot camps 

or introduction to programming courses at universities. Though opportunities to learn to program 

are growing, these opportunities have high withdrawal and failure rates. Students continue to 

withdraw or fail introductory programming courses at rates of 30–50% (Bennedsen & Caspersen, 

2007, 2019), often because they find the material too difficult (Margolis & Fisher, 2003). Online 

tutorials boast millions of users but have attrition rates as high as 90% (Jordan, 2014). Even 

when learners complete these courses, they still score poorly on tests of basic coding knowledge 

(Lee & Ko, 2015).  

It may be that students struggle in introductory programming instruction because the 

instructional material used to teach programming overloads students' cognitive resources 

(Garner, 2002; Mason & Cooper, 2012). Better designed materials could enhance learning by 

reducing unnecessary load (Sweller, 2010). The authors addressed this instructional challenge 

with subgoal labeled worked examples. Worked examples are a common tool in programming 
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education because they demonstrate how to solve programming problems before students can 

solve problems for themselves (Renkl & Atkinson, 2003). These worked examples, however, 

include many pieces of information, primarily the problem-solving procedure, coding concepts, 

and syntax of the programming language. Every word and punctuation mark in a worked 

example can be a source of cognitive load that may not be important in learning to solve 

problems. To help students focus on the problem-solving procedure, we added subgoal labels, or 

short instructional explanations of the purpose of pieces of code. Subgoal labels have been 

shown to reduce the cognitive load during problem solving in both mathematics and science 

(Catrambone, 1998; Chi et al., 1989; Margulieux et al., 2018) and increase performance in 

programming (Margulieux et al., 2012; Morrison et al., 2015; Morrison et al., 2016). Prior work 

in programming, however, was conducted primarily in laboratory settings and for only an hour of 

instruction at a time. In contrast, the guiding research questions for the study were:  

1. How do subgoal labeled worked examples affect problem solving throughout an 

introductory programming course? 

2. Which learner characteristics predict whether subgoal labeled worked examples will 

be more or less effective? 

Literature Review 

Learning computer programming means learning both the procedures to accomplish 

various goals and learning the information that is relevant to these procedures (van Merriënboer 

& Paas, 1990). Expert programmers can easily solve problems because they can automatically 

detect abstract features of problems for which they have problem-solving schemata, or scripts for 

problem-solving procedures (Hansen et al., 2013). For example, they can tell when a problem 

will require a loop and which type somewhat reflexively, leaving their cognitive resources 
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available to deal with problem-specific details. Programming novices, however, struggle to 

match problems to problem-solving schemata (Weiser & Shertz, 1983; Wiedenbeck et al., 1993). 

The difference is reminiscent of Chi et al.’s (1994) study that found physics novices focused on 

surface features of problems, like whether they have a ramp, while physics experts focused on 

structural features, like whether they used Newton’s Third Law. Similarly, programming novices 

have not developed foundational problem-solving schemata and tend to focus on the surface 

features of problems, like whether the loop is finding the sum or the average, not structural 

features, like whether a for or while loop would be more appropriate.  

Cognitive Load and Worked Examples in Programming Instruction 

Instructional design aims to simplify complex skills during the initial learning process to 

help students develop schemata while not overwhelming them. One effective method for 

instruction is to reduce cognitive load (Renkl & Atkinson, 2003). Cognitive load refers to the use 

of cognitive resources in working memory (Sweller, 1988). Cognitive Load Theory considers the 

balance between total resources available in working memory and resources demanded by the 

task (Sweller, 2010). Sources of cognitive load are distinguished by whether they are necessary 

for the concept or procedure. Intrinsic cognitive load is inherent in the procedure, such as 

applying Newton’s Third Law to a physics problem or applying a while loop to a program. In 

contrast, extraneous cognitive load is incidental to the problem or learning environment but not 

inherent in the procedure, such as a physics problem involving a ramp or a program finding the 

average of a list of numbers. Intrinsic cognitive load can be changed only by changing the 

knowledge of the learner or changing the task, such as providing part of a solution for a learner, 

but extraneous load can be changed through instructional design techniques (Sweller, 2010).  
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A common tool for reducing cognitive load in programming instruction is using worked 

examples to model problem solving instead of asking students to write code from scratch 

(Leppink et al., 2014). Worked examples constrain the learner's search space. When studying the 

worked example, the learner has only to determine how the example goes from one step to the 

next—a very reduced search space which is a means-end search (i.e., they know the result and 

must only find a path to get to that one end). This instructional strategy reduces the amount of 

cognitive processing required from the learner (Sweller, 2011). 

Worked examples, however, can lead to shallow processing by learners who focus on the 

details of the example instead of the structure of the problem solution. Focusing on superficial 

details of the example causes learners to ineffectually store procedural knowledge around 

superficial details instead of procedural schemata (Eiriksdottir & Catrambone, 2011). To 

promote structural processing of worked examples and, thus, improve retention and transfer, 

designers can manipulate worked examples to promote subgoal learning. Subgoal learning refers 

to a strategy used predominantly in STEM fields that helps students deconstruct problem-solving 

procedures into subgoals, structural parts of the overall procedure, to better recognize the 

fundamental components of the problem-solving process and build schemata (Atkinson et al., 

2003; Catrambone, 1998).  

Subgoal Labeled Worked Examples 

Subgoal labeling is a technique used to promote subgoal learning that has been used to 

help learners recognize the fundamental structure of the procedure being exemplified in worked 

examples (Catrambone, 1994, 1996, 1998). Subgoal labels are structure-based instructional 

explanations that describe the subgoal of a set of steps in a worked example to the learner. 

Studies (Atkinson, 2002; Atkinson & Derry, 2000; Catrambone 1994, 1996, 1998; Margulieux & 
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Catrambone, 2016; Margulieux et al., 2018; Morrison et al., 2015) have consistently found that 

subgoal-oriented instructions improved problem-solving performance across a variety of STEM 

domains, such as programming and statistics.  

Within programming, an example assignment statement may look like this: 

C = A + B * D / E; 

For a novice programmer, there are several steps involved in determining exactly how the 

computer will interpret this statement. The major subgoals (for Java and many other typed 

programming languages) are determining the value and data type for the expression on the right-

hand side of the assignment operator (=) and determining the data type of the variable on the left-

hand side of the assignment operator. For determining the data type and value of the expression 

on the right-hand side, the value and data type of each variable must be determined, the order of 

operations must be determined, and then the calculation occurs. An experienced programmer 

does not necessarily break down the right side of the equation into these functional steps while 

programming because they have automatized the process, making their cognitive load while 

solving the problem much less than that of a novice.  

Novice programmers find it much easier to remember how to evaluate an assignment 

statement if they break down the task into manageable pieces. A focus on determining the parts 

of the assignment statement is much less overwhelming than an outcome-focused problem 

statement like “evaluate the assignment statement,” leading to less floundering for students who 

do not know where to start (Margulieux & Catrambone, 2016). In addition, because novices who 

learn subgoals follow functional steps rather than a specific step from one example solution, they 

find it easier to then transfer their knowledge to other problems of the same type (Margulieux et 

al., 2012; Morrison et al., 2015). Emphasizing subgoal learning has helped college students to 
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retain knowledge longer and solve novel problems more accurately (Catrambone, 1998; 

Margulieux et al., 2012). 

By helping learners organize information and focus on the structural features of worked 

examples, subgoal labels are believed to reduce the extraneous cognitive load that can hinder 

learning but is inherent in worked examples (Atkinson et al., 2000). Worked examples introduce 

extraneous cognitive load because they are necessarily specific to a context, and students must 

process the incidental information about the context, even though it is not relevant to the 

underlying procedure (Sweller, 2010). Subgoal labels can reduce the focus on these incidental 

features by highlighting the fundamental features of the procedure (Atkinson et al., 2000).  

Identifying Subgoals for Introductory Programming and Designing Worked Examples 

To select the programming topics for which to create subgoal labeled worked examples, 

the authors compared several introductory programming textbooks. At this stage in the project, 

we considered only textbooks focused on teaching this material in the Java programming 

language. After tallying the number of times that each topic appeared across textbooks, the most 

common topics were expressions, selection statements, loops, methods, objects/classes, and 

arrays. Each of these topics was split into evaluating (i.e., reading or tracing existing code) and 

writing code. For methods, this split translated into calling and writing methods, and for 

objects/class, this split translated to using objects and writing classes.  

To identify the subgoals in all 12 of these topics, the authors used the Task Analysis by 

Problem Solving (TAPS) protocol (Catrambone, 2011). A detailed account our application of the 

TAPS protocol in this project can be found in Margulieux et al. (2019), as well as a complete list 

of the subgoals identified and subgoal labels used. As a summary of this process, the TAPS 

protocol involves a subject matter expert and an analyst. The purpose of TAPS is for the subject 
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matter expert to work through problems, describing how they are solving them, while the analyst 

creates a complete list of procedural steps for solving problems of a particular type. The value of 

TAPS is that the analyst identifies procedural knowledge that the subject matter expert has 

automatized and asks questions to help the subject matter expert verbalize these processes. The 

analyst can identify automatized knowledge when he asks the subject matter expert why she took 

a certain step, and the subject matter expert says something akin to, “that’s how it’s done,” or 

“based on intuition.” The task analysis is complete when the analyst can solve any novel problem 

using only the identified procedural steps and any declarative knowledge that is necessary. The 

identified steps become subgoal labels in worked examples. In this project, the subject matter 

expert was author Morrison, who has 24 years of experience teaching introductory programming, 

and the analyst was author Margulieux, who has seven years of performing the TAPS protocol in 

various domains, including programming. 

In a typical worked example for evaluating or writing selection statements, the student 

would get the problem and each step taken to solve the problem. Instructors typically walk 

students through the example but would likely have trouble articulating automated procedural 

knowledge, such as why a step was taken (Atkinson et al., 2003). Therefore, the authors added 

subgoal labels, as identified through the TAPS protocol, to worked examples as short 

instructional explanations of the procedural knowledge. In Figure 1, the problem is evaluating a 

selection statement. An instructor, as a programming expert, likely considers solving this 

problem a single functional step. Through TAPS, however, the authors found three functional 

steps: diagram which statements go together, for if statement, determine whether true or false, 

and follow the correct branch. The step for diagramming is particularly important for novices 

once statements get more complicated because novices need practice to automate how to group 
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lines (Hansen, Lumsdaine, & Goldstone, 2012). Eventually, these subgoals will become 

automatized, and the novices will think of the problem as a single procedural step, like their 

instructor. To examine the effect of subgoal labeled worked examples throughout an introductory 

programming course, the authors compared students who learned with conventional worked 

examples to those learned with subgoal labels. 

Assume the following given declarations: 
double omega = 2.5, kappa = 3.0, ρ = 0;  

Evaluate this statement and determine the value of all variables used.  
if (kappa > omega) 

    ρ = kappa + 2; 

 
Subgoal 1: Diagram which statements go together 
if (kappa > omega) 

    ρ = kappa + 2; 

 

Subgoal 2: For if statement, determine whether true or false 
3.0 > 2.5   TRUE 

 
Subgoal 3: If true – follow true branch, if false – do nothing or follow else branch 
ρ = kappa + 2 = 3.0 + 2 = 5.0 

 
Answer:   
omega = 2.5, kappa = 3.0, ρ = 5.0; 

 

 

Present Study 

The present study used subgoal labeled worked examples throughout a semester-long 

introductory programming course to explore the long-term and cumulative effects of subgoal 

labels. The experiment was conducted during Fall 2018 in five sections of a course that used 

Java at a Midwestern university. This research context provided both the ecological validity of a 

classroom-based experiment and a high level of experimental control for a quasi-experiment 

because all sections of the introductory programming course at this university used the same 

curriculum, timeline for topics, quizzes, and exams. The students can register for any lab section 

Figure 1. Subgoal labeled worked example for evaluating selection statements. 



Running head: REDUCING FAILURE IN INTRODUCTORY PROGRAMMING 12 
 

regardless of which lecture section they are enrolled in, further ensuring that instruction is 

equivalent across sections. Thus, problem-solving performance and grades across sections can be 

directly compared.  

Three of the sections used the instructional materials that are typically used in this course, 

and the other two sections replaced worked examples with subgoal labeled worked examples. 

Because the subgoal labeled worked examples developed for this research were aimed to 

introduce new types of problems and not more advanced procedures within each type, the new 

materials filled only 5 of 15 weeks of the semester. Other than the worked examples during these 

five weeks, all instruction was the same throughout the courses.  

The lecture sections of the course were similar except for the design of worked examples. 

All sections were led by three, full-time faculty, each with at least a decade of experience 

teaching intro programming. The course followed a flipped classroom model in which the 

students watch lectures about programming concepts and problem-solving procedures before 

class time. Then during class time, the instructors would present worked examples and practice 

problems for the students. Outside of lecture, students had homework assignments and two-hour 

lab sections with lab assignments. They took weekly quizzes and four exams throughout the 

semester, including a non-cumulative final exam. 

The quizzes and exams provided both quantitative and qualitative data to compare the 

groups. The quizzes included a question that asked students to explain in plain English how they 

would solve a given programming problem (i.e., not explain in a programming language). This 

type of question is common in programming instruction to measure students’ problem-solving 

schemata because it asks students to focus on the procedural components of a solution without 

focusing on the code of a specific problem (Corney et al., 2011; Sudol-DeLyser, 2015). As 
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others in programming instruction have done, these qualitative data were analyzed using the 

SOLO taxonomy to quantify the results for a large sample size (Lister et al., 2006; Sheard et al., 

2008; Whalley et al., 2006). The SOLO (Structure of the Observed Learning Outcome) 

taxonomy was developed by Biggs and Collis (1982) to analyze how well responses to open-

ended questions demonstrated learning objectives based on five levels of complexity: 

1. Prestructural – little to no demonstration of understanding 

2. Unistructural – single-dimensional understanding 

3. Multistructural – multi-dimensional but disjointed understanding 

4. Relational – multi-dimensional and connected understanding 

5. Extended Abstract – demonstration of understanding based on abstract principles 

and concepts that can be applied beyond the immediate problem 

Using these data to compare the sections with subgoal labeled worked examples to those 

with conventional worked examples, the following research questions were addressed: 

1. How do subgoal labeled worked examples affect problem solving throughout an 

introductory programming course? 

2. Which learner characteristics predict whether subgoal labeled worked examples will 

be more or less effective? 

The first research question has been addressed with preliminary data analysis in previous 

conference papers. Margulieux et al. (2019) focused on the design process for identifying 

subgoals and designing materials, and simple comparisons between quiz and exam scores were 

used to demonstrate the efficacy of the new materials. In addition, Decker et al. (2019) focused 

on the qualitative analysis of explain in plain English responses using the SOLO taxonomy to 

explore early differences in student problem solving. This paper builds upon these previous 
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papers by simultaneously considering all data sources and possible interactions to address the 

first research question. More importantly, this paper is the only one to address the second 

research question by examining the role of learner characteristics in performance. Prior subgoal 

studies before this project have considered learner characteristics, but they largely found no 

differences in the context of laboratory studies (Margulieux et al., 2012, 2018; Margulieux & 

Catrambone, 2016, 2019). Because this study was conducted across a semester in authentic 

courses, we found many significant predictors of performance based on learner characteristics, 

and the analyses suggest that subgoal labeled worked examples are most effective for students 

whose learner characteristics suggest they might be at risk of withdrawing or failing. 

Method 

Research Design 

The classroom-based quasi-experiment manipulated one variable, the design of worked 

examples when students were first introduced to types of programming problems: expressions, 

selection statements, loops, methods, and arrays. Learner characteristics were also collected, 

including self-reported reason for taking the course, level of interest the course content, anxiety 

about course performance, age, gender, race, primary language, family socioeconomic status, 

academic major, full-time or part-time student status, high school GPA, college GPA, year in 

school, and prior experience with programming. All except prior experience with programming 

were collected with a single multiple-choice or short-answer question on a demographic survey. 

To report prior experience, students filled out a matrix that asked them which types of 

programming experiences they had (i.e., self-taught, informal setting, formal setting), during 

which grades (i.e., elementary, middle, or high school), and how extensive the experiences were 

(i.e., a day, a week, less than two months, or more than two months). These learner 
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characteristics were analyzed as possible predictor variables, even though they were not 

manipulated. 

The study collected data on problem-solving performance through two quantitative 

measures and one qualitative measure. The two quantitative measures are grades on the four 

exams (i.e., product data) throughout the semester and the weekly quizzes (i.e., process data). 

Only quizzes given during each of the five weeks after using the subgoal labeled worked 

examples were analyzed to focus on the effect of the instructional materials. Qualitative data 

came from explain in plain English questions on the quizzes. Though given the sample size, 

these data were analyzed quantitatively after being scored based on the SOLO taxonomy. 

Participants 

Participants were recruited from five sections of an introduction to programming course, 

and all measurements used for data collection were part of their normal course requirements. A 

total of 307 students were enrolled in the course at the beginning of the semester. Students were 

excluded from analysis if they did not complete at least one weekly quiz or one exam to account 

for non-participation in the course. A few students also opt-ed out of participating in the research 

study. The final sample size was N = 265 with 120 students in the two subgoal sections and 145 

students in the three control sections. One of the control sections was taught 100% online. The 

online control section was initially analyzed as a separate control group from the in-person 

sections in case students in the sections were systematically different (e.g., primarily part-time 

students or primarily non-majors). No differences in demographic characteristics or performance 

on quizzes or exams were found between the in-person and online control groups, except that the 

online group tended to be older. Thus, they were combined for final analyses. Participants’ 

demographic characteristics are summarized in Table 1. Differences in characteristics between 
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the subgoal and control group were explored via visual inspection of measures of central 

tendency (i.e., mean, median, or mode) and variance (i.e., standard deviation, range, or 

distribution), but no meaningful differences were found. The characteristics of this sample seem 

representative of the population of students at public universities who are taking introductory 

programming courses. 

Table 1. Demographic and Learner Characteristics of Participants. 

Characteristic Data Collection Responses 

Age Open-ended 85% between 18-23, range - 17-46 

Gender Male, Female, Other 67% male, 31% female, 2% other 

Race 
Caucasian, Latinx, Asian, 

Black, Other, Mixed 

73% Caucasian, 5% Latinx, 8% Asian, 

3% Black, 11% Other or Mixed 

Primary language English, not English 90% English 

Family SES 
< $25k, 25-50k, 50-100k, 100-

200k, > 200k 

27% below $50k, 69% $50-200k,  

4% above $200k 

Major Computing, Engineering, Other 43% computing, 40% engineering 

Status Full-time, part-time 92% full-time 

High School GPA Open-ended Average – 3.56/4.0 

College GPA Open-ended Average – 3.42/4.0 

Year in School 1st, 2nd, 3rd, 4th, 5th, other 47% 1st, 25% 2nd, 16% 3rd, 12% higher 

Expected grade A, B, C, D, F 64% A, 28% B, 8% C 

Expected difficulty 
Likert-type 1 – very difficult to 

5 – not at all difficult 
Average – 2.97 

Level of interest in 

course 

Likert-type 1 – not at all 

interested to 5 – very interested 
Average – 3.84 

Reason for taking 

course (select all 

that apply) 

Advised to, Required for major, 

Interested in topic, Relevant to 

career path 

31% advised to, 92% required for 

major, 57% interested in topic, 56% 

relevant to career path 
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Prior experience 

with programming 

(select all that 

apply) 

Matrix that crossed K-5, 6-8, 

and 9-12 grades with informal, 

formal, or self-guided learning 

34% had no prior experience; 31% 

had experience in K-5, 25% in 6-8, 

and 61% in 9-12; 18% had informal 

experience, 50% had formal, and 29% 

had self-guided 

 

Data Collection and Analysis 

The two measures of problem-solving performance were five quizzes and four exams. 

Quizzes included multiple-choice, short answer, and explain in plain English questions. Exams 

included multiple-choice (a third to half of the points), short answer, and long answer questions. 

All questions focused on assessing students’ skill in solving problems with programming 

procedures. Students had four days to complete quizzes in an online system, and each exam took 

two hours of class time. The programming problems included on the quizzes and exams were 

either similar to questions presented in class for easier difficulty or questions given on homework 

assignments for harder difficulty. Each quiz accounted for 0.44% of the students’ overall grade; 

thus, each quiz was low stakes because it had little effect on students’ overall grades. Each test, 

in contrast, accounted for 7.5% of the students’ overall grade. The datasets used and analyzed 

during the current study are available from the authors on reasonable request. 

The questions on each of the assessments were the same across all sections, as was the 

grading. Each quiz or exam was graded by the same member of the courses’ instructional team 

so that all questions were graded by the same person to reduce bias across sections. For the 

explain in plain English questions, if students wrote a sensical answer, they received full points 

and did not receive feedback. Then their de-identified responses were scored by the authors 

based on the SOLO taxonomy after the course had finished.  

To score the explain in plain English questions, the three authors worked concurrently 

and with the responses blinded so that they did not know which students belonged to the subgoal 
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or control groups. For each question, the scorers first cooperatively examined about 10 

responses, looking for examples of each of the five categories. The initial discussions focused on 

the concepts relevant to the question to help distinguish between the first three categories 

(prestructural, unistructural, and multistructural) and the connections among them to distinguish 

between the advanced two categories (relational and extended abstract). The scorers rated each 

response and discussed discrepancies until agreement was reached and a general rubric for the 

distinctions between each category was created (see Figure 2).  

Explain in plain English: For the problem below, explain the general steps that you would take 
to solve the problem. You do not need to solve the problem. Instead imagine that you are 
describing the general steps that you would take to evaluate code like this to yourself before 
you learned this unit/topic/etc. 

int alpha = 20 

int eta = 5 

double beta = 4.5 

double gamma = 5.5 

double delta = 0.5 

double result = ((beta + gamma) – (++alpha * delta)) * (eta++ % alpha); 

 

SOLO 
Category 

Question-specific rubric Example response 

Prestructural Nonsensical answer or 
answer with no relevant 
information  

“Solve each equation in parentheses.” 

Unistructural Partial description of the 
procedure 

“If I were solving this equation I would first 
replace each name with its associated 
variable and rewrite the equation. From here 
you can solve the equation.” 

Multistructural A complete description of 
the procedure without 
explanation 

“Add beta and gamma. Add one to alpha then 
multiply it by delta. Subtract the second value 
from the first value. Take eta and add one to 
it. Then find the remainder of eta and alpha. 
Finally multiply the remainder of eta and alpha 
with the difference of the values.” 

Relational A complete description of 
the procedure and 
relational information about 
either evaluating pre- and 
post-increments or 

“First I would make sure that all ints are 
assigned to integers, and all doubles are 
assigned to doubles. I would then use the 
order of operations to do the arithmetic and 
find the double result. First, I would add beta 
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evaluating the 
appropriateness of data 
type between the variables 

and gamma. Second, I would add 1 to alpha, 
and multiply alpha by delta. After that I would 
add 1 to eta and take it modular to alpha. 
Finally I would multiply my last two results 
together, and subtract them from my first 
result. This would give me a double.” 

Extended 
abstract 

A complete description of 
the procedure and 
explanation of abstract 
principles that apply to 
evaluating all expressions 

“First determine if the expression is 
compatible which it is because int's can store 
into a double, next update variables on right 
side if they are a pre operation meaning if they 
have a ++ or -- before the variable. Next use 
PEDMAS to solve the equation, make sure the 
result is the same data type as the variable. 
So since result is a double the solution needs 
to be a double. Finally update any post 
operation variables that have ++ or -- after the 
variable.” 

Figure 2. Example of explain in plain English question, rubric developed for SOLO 

classification, and student responses for each level of SOLO. 

After the initial discussion, all three scorers rated 10 more responses before comparing 

answers, resolving discrepancies, and adding details to the rubric when appropriate. They 

continued this process for the first 20% of responses. If they reached an acceptable level of 

interrater reliability within the first 20% of responses (based on initial scores, not resolved 

scores), the remaining responses were scored by one person. If interrater reliability was not 

acceptable, they coded an additional 20% of responses and assessed reliability again. One 

question was thrown out because it was a yes/no type question, and most student responses did 

not lend themselves to analysis based on the SOLO taxonomy. Of the remaining four questions, 

three reached acceptable interrater reliability after the first 40% of responses. The other question 

never reached acceptable interrater reliability, and each response was compared and discussed by 

the scorers. 

For interrater reliability, the intraclass correlation coefficient of absolute agreement, 

ICC(A), best suited our purpose. It determines whether multiple raters gave a response the same 
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score, which is appropriate for the categories within the SOLO taxonomy. Interrater reliability 

was deemed sufficient when it reached 0.75 or higher (Koo & Li, 2016). The final rubrics for 

each question and examples of student responses for each category within the SOLO taxonomy 

can be found in Decker et al. (2019). Student scores on the explain in plain English questions are 

used as ordinal data, with prestructural being lowest and extended abstract being highest, to 

compare the subgoal and control groups. 

Students’ quiz and exam scores were calculated three different ways to compare the 

subgoal and control groups. Given that participation often dwindles throughout introductory 

programming courses, we needed a way to distinguish between quizzes and exams that were 

completed or not. Therefore, we calculated three scores for the quizzes and exams: 

 Average score – includes only quizzes and exams that students completed, excludes 

zeros for missing assessments 

 Total score – includes all grades, including zeros for quizzes and exams that students 

did not complete 

 Number of assessments – the number of quizzes and exams completed to provide an 

additional data point to compare the groups. 

These scores account for a major source of variance in the data, whether the assessment was 

taken or not, and allow us to examine retention between groups. 

Results and Discussion 

This section is organized around the two research questions for this study. First, we 

address the question, “How do subgoal labeled worked examples affect problem solving 

throughout an introductory programming course?” with data from the SOLO scoring, quizzes, 

and exams. Then we address the second question, “Which learner characteristics predict whether 
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subgoal labeled worked examples will be more or less effective?” by exploring the effect of 

demographic and learner characteristics (see Table 1) within the context of the results.  

Explain in Plain English SOLO Scores 

Scoring based on the SOLO taxonomy provided ordinal data. Having ordinal data means 

we can argue that scoring at higher levels of the taxonomy demonstrates better understanding 

than scoring at lower levels, but we cannot use mathematical operations to describe the 

difference between scores. For example, we cannot argue that the difference between a 

unistructural and multistructural score is the same as the difference between a multistructural and 

relational score, though we can argue that a relational score demonstrates better learner than the 

others. Therefore, our analysis of SOLO scores relied on descriptive statistics, specifically mode 

and frequencies of scores in each group. Each set of scores for the quizzes were analyzed 

separately because using an average or total of ordinal scores requires mathematical operations 

and, thus, is not valid. 

For the first quiz, which was about expressions, the subgoal group scored higher than the 

control group (see Table 2). The most common score in the subgoal group was relational while 

the most common score for the control group was multistructural. In addition, 68% of the 

subgoal group achieved the top two scores at nearly twice the rate of the control group, 37%. 

Instead, the control group achieved the bottom two scores at more than twice the rate (27%) of 

the subgoal group (11%).  

 Prestructural Unistructural Multistructural Relational Extended abstract 

Subgoal 

Mode = 4 

1 

(1%) 

8 

(10%) 

18 

(21%) 

43 

(51%) 

14 

(17%) 
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Control 

Mode = 3 

6 

(8%) 

14 

(19%) 

27 

(36%) 

25 

(33%) 

3 

(4%) 

Table 2. Mode and frequencies between subgoal and control groups on quiz 1. 

The fourth quiz, which was about writing methods, follows a similar pattern as the first 

quiz (see Table 3). The most common score in the subgoal group was relational while the most 

common score for the control group was multistructural. Moreover, 66% of the subgoal group 

gave a relational or extended abstract response, which is again nearly double the percentage in 

the control group, 34%. The control group, in contrast, gave prestructural or unistructural 

responses at six times the rate (31%) of the subgoal group (5%). 

 Prestructural Unistructural Multistructural Relational Extended abstract 

Subgoal  

Mode = 4 

1 

(1%) 

4 

(4%) 

27 

(29%) 

53 

(58%) 

7 

(8%) 

Control  

Mode = 3 

11 

(12%) 

17 

(19%) 

32 

(35%) 

27 

(29%) 

5 

(5%) 

Table 3. Mode and frequencies between subgoal and control groups on quiz 4. 

For the second quiz, which was about loops, the data have a slightly different pattern, but 

the subgoal group still scored higher than the control group (see Table 4). Nearly half of the 

participants in both groups gave a multistructural response (50% for subgoals, 46% for control), 

making it the most common response for both groups. A higher percentage of subgoal students 

than control students gave the additional information necessary to achieve a relational score 

(29% vs. 17%). In contrast, the control group had a higher proportion of responses that were 

missing relevant information than the subgoal group, earning a unistructural or prestructural 

score (37% vs. 18%).  
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 Prestructural Unistructural Multistructural Relational Extended abstract 

Subgoal  

Mode = 3 

5 

(5%) 

13 

(13%) 

49 

(50%) 

28 

(29%) 

3 

(3%) 

Control  

Mode = 3 

11 

(11%) 

25 

(26%) 

45 

(46%) 

16 

(17%) 

0 

(0%) 

Table 4. Mode and frequencies between subgoal and control groups on quiz 2. 

The third quiz, which was about nested loops, did not follow the same trend as the other 

quizzes, and the responses were overall worse than those on the other quizzes (see Table 5). This 

quiz was the one that never had sufficient interrater reliability, and the raters discussed each 

response. The most common response for both groups was unistructural, suggesting that most 

students were missing relevant information in their answers.  

 Prestructural Unistructural Multistructural Relational Extended abstract 

Subgoal  

Mode = 2 

8 

(9%) 

48 

(53%) 

23 

(26%) 

8 

(9%) 

3 

(3%) 

Control  

Mode = 2 

12 

(12%) 

39 

(38%) 

32 

(31%) 

17 

(17%) 

2 

(2%) 

Table 5. Mode and frequencies between subgoal and control groups on quiz 3. 

Though we expected that each student would consistently earn higher or lower SOLO 

scores, we found a different result. In total, 31 students earned an extended abstract score, and 

only 6 of them achieved the score twice. In addition, only 7 out of 265 students received scores 

of only relational or higher. The pattern is the same for the other end of the spectrum. Ten 

students earned more than one prestructural score, but only four students received scores of only 

unistructural or lower. Most students scored a mid-level, multistructural response at least once, 
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regardless of how poor or strong their other responses were. This finding suggests that SOLO 

score was not strongly predicted by the student.  

Though SOLO scores were not consistent within students, they were strong predictors of 

quiz and exam performance. For these analyses, we used ANOVA with quiz score as the 

outcome variable and SOLO scores as a random (i.e., not manipulated) predictor variable. 

Though the outcome and predictor variable might seem dependent on each other because the 

SOLO scores come from the explain in plain English questions on the quizzes, the data are 

independent because they are scored differently. Because students received full points on the 

quiz for providing any sensible answer on the explain in plain English question, students who did 

not provide a sensible answer did not receive a SOLO score. Thus, the explain in plain English 

question is an added constant (i.e., linear transformation without discriminatory value) to all 

quizzes in the analysis. SOLO scores were matched to the quiz for which they were given and to 

the next exam (see Table 6). The minimum effect size was d = 0.33, and the largest effect size 

was d = 0.93, showing that higher SOLO scores were strongly related to higher assessment 

scores. These findings partially validate the SOLO scoring by providing corroborating evidence 

that higher SOLO scores are associated with better learning outcomes. 

Table 6. SOLO Scores as Predictors for Assessment Scores. 

SOLO score source Assessment score source F p d 

Quiz 1 Quiz 1 11.15 .001 0.41 

Quiz 1 Exam 1 7.11 .008 0.33 

Quiz 2 Quiz 2 30.31 < .001 0.68 

Quiz 2 Exam 2 38.94 < .001 0.77 

Quiz 3 Quiz 3 20.80 < .001 0.57 
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Quiz 3 Exam 3 17.35 < .001 0.52 

Quiz 4 Quiz 4 56.03  < .001 0.93 

Quiz 4 Exam 3 35.07 < .001 0.73 

 

Quiz Performance 

The subgoal group’s performance was compared to the control group’s performance for 

all three calculations of quiz score: average score (excluding missing quizzes), total score 

(including missing quizzes), and number of quizzes taken. For all three calculations, the subgoal 

group performed better than the control group. For the average quiz score, the subgoal group (M 

= 48%, SD = 14%) outscored the control group (M = 41%, SD = 16%) with a medium effect size, 

d = 0.44, t(264) = 12.03, p = .001. This finding suggests that the subgoal group performed better 

than the control group based on only quizzes that students took. In addition, the subgoal group (M 

= 12.0, SD = 5.6) performed better on total score than the control group (M = 9.5, SD = 6.3), based 

on a maximum score of 31 with a medium effect size, d = 0.42, U = 6703, p = .001. For this 

comparison, the test for homogeneity was statistically significant, p = .03, because the variance of 

the subgoal group was lower than that of the control group. Thus, we use the non-parametric, more 

conservative Mann-Whitney test instead of the parametric t-test, which assumes homogeneity of 

variance. This finding suggests that the subgoal group took more quizzes in addition to performing 

better on quizzes, and it is supported by the number of quizzes taken in each group. Out of five 

quizzes, the subgoal group (M = 3.9, SD = 1.2) completed more quizzes than the control group (M 

= 3.4, SD = 1.6), U = 7126, p = .01. Again, Mann-Whitney is used for a non-parametric test 

because homogeneity was violated due to the subgoal group having less variance than the control 

group, p < .01. 
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To explore whether subgoal materials had a consistent effect on performance over the 

semester or whether they were more effective on some quizzes than others, we used a repeated 

measures analysis. Due to the missing data points for some students, only 97 had a complete set 

of quiz scores that could be used for the analysis. With these limited data, we found no effect of 

quiz on the scores, F(4, 93) = 2.04, p = .21, nor an interaction between group and quiz, F(4, 93) 

= 1.31, p = .56. Each quiz tested only the topics that had been discussed in the previous week. 

Thus, the quizzes were not cumulative except in the way that programming concepts, like math 

concepts, build upon each other. This finding suggests that the subgoal labeled materials had the 

same effect size throughout the semester, and they were not more effective at the beginning of 

the class when students were more novice or later in the class when concepts are more complex. 

Therefore, the subgoal materials seem to be effective at improving problem-solving performance 

shortly after a new topic is introduced, as measured by the quizzes. 

Exam Performance 

Students in the subgoal group took more quizzes and performed better on them than the 

control group, but the same pattern is not seen in exam scores. For the average exam score, 

excluding missing exams, the subgoal group (M = 75%, SD = 15%) did not score statistically 

better than the control group (M = 72%, SD = 18%) but did achieve the threshold for a small 

effect, d = 0.20, U = 7975, p = .24. The variance for the subgoal group was sufficiently less than 

the control group to violate homogeneity, p = .02. For the total exam score, however, the subgoal 

group (M = 140.3, SD = 42.4) did perform statistically better than the control group (M = 128.2, SD 

= 51.6), based on a maximum score of 200 with a small effect size, d = 0.26, t(264) = 4.20, p = .04. 

This finding suggests that the subgoal group took more exams than the control group but did not 

perform better on them, and it is supported by the number of exams taken in each group. Out of 
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four exams, the subgoal group (M = 3.7, SD = 0.8) took more than the non-subgoal group (M = 3.5, 

SD = 1.0) with a small effect size, d = 0.22, U = 7785, p = .045. The variance of the subgoal group 

was again sufficiently lower than that of the control group to warrant using Mann-Whitney, p < 

.01. 

In an authentic classroom setting, exam scores are influenced by many factors other than 

the intervention. Students are often motivated to achieve a minimum grade, and they will change 

their behaviors to achieve it (Robbins et al., 2004). Even though we did not find that the subgoal 

group performed better than the control group on the exams, they were more likely to take all of 

the exams, i.e., not withdraw or fail the course, and they had lower variance in scores, i.e., fewer 

students performing very poorly on exams. Therefore, it seems possible that receiving subgoal 

labeled materials helped students who might otherwise withdraw or fail the course to complete it. 

This possibility is supported by the difference in quiz scores between groups. Students in the 

subgoal group performed better on quizzes given shortly after learning materials. Therefore, they 

might have struggled less when initially learning the materials and thus persisted in the course. 

To explore this possibility and address our second research question, we explored the 

interactions between learner characteristics and subgoal labeled materials. Though we did not 

collect self-reported effort or time spent studying because they are too error prone to be reliable 

(Kuncel et al., 2005), we collected a large range of demographic and learner characteristics that 

have predicted performance and risk of withdrawal or failure in prior work (Pea & Kurland, 

1983; Quille & Bergin, 2019; Rountree et al., 2004). From these characteristics (see Table 1), we 

examined which correlated with performance in our context to identify characteristics that were 

risk factors for withdrawing or failing the course. Then we compared students in at-risk groups 
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between the subgoal and control groups to determine whether subgoal labeled materials helped 

to mitigate risk factors. 

Demographic and Learner Characteristics 

Because demographic and learner characteristics were not manipulated variables, we 

used correlations to explore their relationship with performance. For these analyses, we used 

average exam score to represent performance because 1) total exam score was affected by 

whether students took all exams and did not accurately represent their performance on the other 

exams, like average exam score, and 2) exams are worth a significant portion of the final grade, 

unlike quizzes, so they are high stakes enough to encourage students’ best effort. Average exam 

score was a continuous variable, so if the characteristic was also measured as a continuous 

variable, we used Pearson’s r coefficient; if the characteristic used binomial data, we used 

Spearman’s ρ coefficient.  

We collected many characteristics (see Table 1) and, thus, ran many correlation analyses. 

Therefore, we expected that some results, while statistically significant, are most likely due to 

Type I error, or a false positive, especially because we have a large sample size. To reduce the 

risk of making erroneous conclusions, we focus our discussion on the size of the correlation 

coefficient to emphasize the strength of the relationship between variables. To be considered a 

meaningful correlation, it must have an r/ρ > 0.20, which is a small-moderate effect size (Cohen, 

1988). In addition, we decreased the p-value cutoff to 0.01 to be considered statistically 

significant. Analyses that did not meet both criteria were not considered meaningful and are 

generally not reported to save space. However, correlations that are close to the cutoffs and 

aligned with other findings are reported as corroborating evidence. Correlations that surpass 
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these cutoffs but are not aligned with other findings are likely unreliable and discussed only 

briefly.   

Learner Characteristics that Correlate with Performance Across Groups  

To identify the risk factors for withdrawing or failing the course, we correlated learner 

characteristics with performance. No demographic characteristics, such as age, gender, or race, 

correlated with performance, but other learner characteristics did (see Table 7). These 

characteristics are used in later analyses as risk factors, meaning students who score close to the 

low end of these characteristics were more likely to perform worse on exams. Despite 

correlations between learner characteristics and performance and SOLO scores predicting 

performance, no learner characteristics correlated with SOLO scores.  

Table 7. Correlations between Learner Characteristics and Performance for All Students and 

Measures of Central Tendency for Each Group to Demonstrate Equivalency. 

Characteristic Data Type Subgoal 

Group 

Control 

Group 

r/ρ with 

performance 

p 

Interest in topic  binomial 63%  58% .24 <.001 

Relevant to career binomial 61%  59% .27 <.001 

Expected grade continuous 62% A, 32% 

B, 6% C 

65% A, 26% 

B, 8% C 

.36 <.001 

Expected difficulty continuous M = 3.52 M = 3.65 .30 <.001 

High school GPA continuous M = 3.59/4 M = 3.55/4 .26 .001 

College GPA continuous M = 3.39/4 M = 3.44/4 .35 <.001 

We selected cutoffs to determine at-risk status for the continuous variables based on the 

participants’ responses. For expected grade, the cutoff was whether students expected to get an A 
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because most students (64%) said that they expected to get an A in the course. For expected 

difficulty, the cutoff was rating expected difficult as 2 or 1 on a 5-point scale from 1 – very 

difficult to 5 – not at all difficult, which is below the mean of 2.97. For high school GPA, the 

cutoff was below 3.6, which was the mean. For college GPA, the cutoff was below 3.4, which 

was the mean and indicates that students are closer to a B average than an A average. 

Correlations for Students with Risk Factors 

We conducted a series of analyses using data from only students who had risk factors to 

compare subgoal and control groups.  We cycled through each risk factor, allowing us to explore 

the effect of subgoal labels on at risk students within the paradigm of correlational analyses. For 

example, for students who expected the course to be difficult, all other risk factors correlated 

with performance. In some cases, there was a significant correlation for both groups, but the size 

of the coefficient in the control group was substantially larger (see Table 8). In other cases, the 

correlation was significant only for the control group. Both finding suggest that the subgoal 

intervention mitigated the effect of risk factors on performance.  

Table 8. Correlations between Risk Factors and Performance for Students who Expected High 

Difficulty. Statistically significant relationships are highlighted with a gray background. 

Risk Factor Subgoal r/ρ Subgoal p Control r/ρ Control p 

Interest in topic .22 .08 .30 .008 

Relevance to career .31 .01 .29 <.001 

Expected grade .22 .10 .38 .001 

High school GPA .40 .02 .61 <.001 

College GPA .33 .12 .50 .001 

Advised to take course .03 .82 .31 .006 
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From the results of analyses based on all risk factors, we have identified three patterns 

(see Table 9). The first is that expected difficulty of the course correlated with performance when 

accounting for other risk factors, but only in the control group or more strongly in the control 

group. These correlations were present both when analyzing students who had the other risk 

factors and when analyzing students who expected the course to be difficult. Furthermore, when 

looking at only students who expected the course to be difficult, the average exam score in the 

subgoal group was close to the average for all students (74% compared to 75%) while the 

average in the control group was lower (67% compared to 72%). Therefore, it is likely that 

subgoal materials had a mitigating effect on this risk factor that prevented multiple risk factors 

from having a compound effect on performance. 

Table 9. Summary of Correlations of Compound Risk Factors and Performance.  

 Correlation with secondary risk factor, listed as subgoal/control 

Interest 

in topic 

Relevant 

to career 

Expected 

grade 

Expected 

difficulty 

High 

School 

GPA 

College 

GPA 

Age Current 

Major 

Interest 

in topic 

(n = 114) 

 NS NS .19/.30* NS .58*/.02 -.49*/-.16 NS 

Relevant 

to career 

(n = 117) 

NS  .38*/.18 .15/.41* NS .57*/.09 -.23*/-.11 NS 

Expected 

grade 

(n = 95) 

NS NS  NS NS NS NS -.18/.67* 

Expected 

difficulty 

(n = 129) 

.22/.30* .31*/.29* .22/.38*  .40*/.61* .33/.50* -.52*/-.12 NS 

HS GPA 

(n = 121) 
NS NS NS .26/.38*  .54*/.14 NS NS 

College 

GPA 

(n = 124) 

NS NS NS .08/.57* NS  NS -.11/.41* 

Note: Down the left side of the table is the first risk factor, based on factors identified in Table 7, 

used to narrow the analysis to only students at risk based on that factor. Across the top of the 
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table is the second risk factor. NS = non-significant correlations for both groups. * indicates 

statistically significant relationship. Details for risk factor cutoffs and analyses can be found 

earlier in the results section. The lighter shaded cells indicate the control group had a stronger 

correlation, and the darker shaded cells indicate that the subgoal group has a stronger correlation. 

The second pattern is that college GPA correlated with performance in the subgoal group 

but not the control group when analyzing students with risk factors. For students who did not list 

interest in the topic or relevance to career as reasons for taking the course and students with 

lower high school GPAs, higher college GPA related to higher exam performance only for the 

subgoal group. Higher college GPA often relates to higher performance because students are 

often internally motivated to achieve a certain grade (Komarraiu et al., 2009; Kusurkar et al., 

2013). Moreover, when looking at only students with below average college GPAs, the average 

exam score in the subgoal group was close to the average for all students (76% compared to 

75%) while the average in the control group was lower (69% compared to 72%). Perhaps for 

students with these risk factors, the subgoal materials allowed them to achieve their goals, as 

indicated by college GPA. 

The last pattern is that age negatively correlated with performance for students with risk 

factors, but only for the subgoal group. This finding means that younger students with risk 

factors, such as not indicating interest in the topic or relevant to career, performed better in the 

subgoal group than the control group. In this case, students who were less than 20 years old in 

the subgoal group performed better than the overall average (80% compared to 75%) and those 

in the control group performed equivalently (72% compared to 72%). The mostly likely reason 

for this difference is the difference in self-regulation and metacognitive skills between more 

junior and more senior college students (Kitsantas et al., 2008; Ramdass & Zimmerman, 2011; 
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Strage, 1998). Younger students with less developed self-regulation and metacognition, 

especially if they have risk factors, would likely benefit more from the additional guidance that 

subgoal labels provide on worked examples while more senior students have developed more 

strategies for learning with less guidance. In summary, learner characteristics can have strong 

relationships with performance, and subgoal labels seemed to help students with risk factors to 

achieve better performance than those with risk factors in the control group. 

Comparison of Students with Missing Exams or Failing Average 

To provide another perspective of students who struggled in the course, we explored 

differences between the subgoal and control groups for students who did not complete all exams 

and students who had an average exam score below 70%, which is failing in this course. These 

are the students at highest risk of withdrawing or failing the course. In both cases, we found that 

about half as many students in the subgoal group met these criteria as in the control group.  

For students who were missing exams, the control group had higher percentages of 

students not take exams. The first two exams were before the deadline for withdrawing the 

course. In the control group, 10 students took one exam (7%) and 19 took two exams (13%). 

This rate was halved in the subgoal group in which 6 students took one exam (5%) and 6 took 

two exams (5%).  

In addition to the difference in rates, the average exam scores for students who missed at 

least one exam were different between groups. The sample size was too small to use inferential 

statistics meaningfully, but the descriptive statistics suggest a meaningful difference. For 

students who took all but one exam, the subgoal group had a mean of 69.2% and a standard 

deviation of 20.8%, and the control group had a mean of 59.2% and a standard deviation of 

23.4%. This difference represents a whole letter grade difference between groups. For students 
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who took two exams, the subgoal group (M = 64.0%, SD = 14.4%) again performed almost a 

letter grade better than the control group (M = 54.6%, SD = 17.2%). For students who took only 

one exam, the subgoal group (M = 63.0%, SD = 19.6%) had the same advantage over the control 

group (M = 54.0%, SD = 17.6%). When we consider these results in addition to previous results 

of exam performance that showed lower variance in exam scores in the subgoal group than in the 

control group, it is likely that fewer students in the subgoal group had failing exam grades earlier 

in the semester leading to fewer students withdrawing from the subgoal group than the control 

group. 

To explore this possibility, we also examined students in both groups who had taken all 

exams and had an average exam score of 70% or lower. This cutoff, in addition to being 

meaningful in terms of passing or failing, was close to the mean score, 73%. We again found the 

rate of meeting this criterion was almost double in the control group (n = 64, 44%) as in the 

subgoal group (n = 30, 25%). Based on findings from exam performance alone, which is a good 

but not perfect representative of their overall grade, students in the subgoal group were half as 

likely to withdraw and half as likely to fail than the control group. These findings are important 

because they indicate subgoals had a significant positive effect on overall course performance, 

even though we found that subgoals did not statistically improve average exam performance. 

Limitations 

This study has many of the same limitations that most classroom-based experiments do. 

First, we were not able to randomly assign students to groups because students select the sections 

that work best for their schedule, weakening arguments for causal relationships. We attempted to 

identify any systematic differences between sections by comparing them based on an analysis of 
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an extensive list of demographic and learner characteristics, and we found no meaningful 

differences.  

The second limitation was that the instructor who taught the subgoal group was part of 

the research team. As with many classroom implementations of instructional manipulations, or at 

least the initial implementation, having a member of the research team as the instructor ensures 

fidelity of implementation and that the research team can quickly adapt to errors or overlooked 

details. Thus, having a researcher as an instructor might have improved the integrity of the 

instructional manipulation, but it also introduces a potential source of bias. In our case, the 

researcher is a veteran introductory programming instructor with substantial prior experience. 

Having substantial prior experience can increase consistency of instruction and reduce potential 

bias, but some bias is still likely in the data.  

Conclusion 

Our research questions asked how subgoal labeled instructions affect problem-solving 

performance throughout a semester-long programming class and how learner characteristics 

interacted with that effect. Our results found that the group who learned with subgoals performed 

better than the group who learned with conventional instructional materials on quizzes within a 

week of learning new problems-solving procedures. Later problem-solving performance on 

exams, however, was equivalent between the two groups, suggesting that subgoal labels promote 

better initial performance but not consistently better performance.  

These performance findings are qualified by several results that suggest students who 

were at risk of struggling in the control group were more likely to withdraw from or fail the 

course than students who were at risk of struggling in the subgoal group. First, the variance in 

quiz and exam scores was lower in the subgoal group than the control group, meaning that fewer 
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students received very low grades on these problem-solving assessments. Second, students in the 

subgoal group were more likely than those in the control group to take all quizzes and exams, 

suggesting that they persisted until the end of the course. Third, for students with risk factors 

based on their learner characteristics, their performance was more likely to be related to other 

risk factors in the control group but not the subgoal group, suggesting subgoals might mitigate 

risk factors. Last, for students who did miss assignments, their scores on other assignments were 

more likely to be higher if they were in the subgoal group, suggesting that they were less likely 

to be struggling overall. 

Because the intervention is built into the instructional materials that students receive, 

applying the intervention in classrooms should have a low barrier. To make adoption easier, our 

research group is developing and testing online resources that have subgoal labeled worked 

examples and practice problems. These resources could be used in class to demonstrate problem-

solving procedures with the worked examples and then practice applying procedures with the 

practice problems. In addition, the resources could be assigned as homework, which would be 

the least adoption cost for instructors.   

Beyond programming instruction, this is the first classroom-based experiment of the 

subgoal learning framework. Prior work has found subgoal labels to be effective in highly 

controlled classroom settings, but they were never tested as a long-term intervention or when 

learners have other pressures to succeed, such as to achieve a minimum grade. In the general 

context of the subgoal learning framework, this study contributes two important findings. First, 

as was theorized but not previously tested, the benefit of subgoal learning diminishes as learners 

gain more experience with the problem-solving procedure. Subgoal labels help point out 

similarities in problem-solving instances before learners have enough knowledge to recognize 
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similarities for themselves. Therefore, it fits with the framework that students who learn without 

subgoal labels would eventually catch up to their peers who learned with subgoal labels as they 

gain more knowledge. The experience of learning without subgoals, however, might be more 

time-intensive or frustrating than learning with subgoals, leading to higher withdrawal or failure 

rates from students who are at risk. Therefore, performance for those who persist might end up 

the same, but performance for those who do not is substantially different. 

The second important contribution to the subgoal learning framework is that the subgoal 

labeled materials were effective for each new procedure that was introduced. For each quiz given 

after subgoal labeled materials, the subgoal group performed better than the control group. This 

finding suggests that subgoal labeled materials are effective for new procedures even as the 

learners gain knowledge and experience in other problem-solving procedures in the domain. 

Because the average exam scores were equivalent between groups in between these quizzes, we 

do not expect that the subgoal group gained an advantage early in the semester that they 

maintained throughout the semester, but it is possible. We think that it is more likely, however, 

that subgoal labels are most effective when students are learning a new procedure that they have 

little knowledge about, and that the efficacy diminishes as students gain more knowledge. Based 

on the difference in quiz scores, equivalence in exam scores, and difference in withdrawal and 

failure rates, subgoal labels should be used to improve problem-solving performance, especially 

by those who might otherwise struggle during initial problem-solving attempts. Subgoal labels 

are likely not effective for improving problem-solving for those who already know the problem-

solving procedure or whose personal learning strategies already help them to master new 

material. 
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