Earth Syst. Dynam., 10, 473-484, 2019

https://doi.org/10.5194/esd-10-473-2019 Earth System
© Author(s) 2019. This work is distributed under Dynamics
the Creative Commons Attribution 4.0 License.

Different response of surface temperature and air
temperature to deforestation in climate models

Johannes Winckler'?, Christian H. Reick!, Sebastiaan Luyssaert>, Alessandro Cescatti*, Paul C. Stoy’,
Quentin Lejeune®?, Thomas Raddatz', Andreas Chlond!, Marvin Heidkamp'-?, and Julia Pongratz'-’

'Max Planck Institute for Meteorology, Hamburg, Germany
2International Max Planck Research School on Earth System Modeling, Hamburg, Germany
3 Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
“Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
5 Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT, USA
SInstitute for Atmospheric and Climate Science, ETH-Ziirich, Zurich, Switzerland
7Ludwig—Maximilians—Universitét Miinchen, Munich, Germany
dcurrently at: Climate Analytics, Berlin, Germany

Correspondence: Julia Pongratz (julia.pongratz@geographie.uni-muenchen.de)

Received: 30 August 2018 — Discussion started: 9 October 2018
Revised: 23 May 2019 — Accepted: 15 June 2019 — Published: 19 July 2019

Abstract. When quantifying temperature changes induced by deforestation (e.g., cooling in high latitudes,
warming in low latitudes), satellite data, in situ observations, and climate models differ concerning the height
at which the temperature is typically measured/simulated. In this study the effects of deforestation on surface
temperature, near-surface air temperature, and lower atmospheric temperature are compared by analyzing the
biogeophysical temperature effects of large-scale deforestation in the Max Planck Institute Earth System Model
(MPI-ESM) separately for local effects (which are only apparent at the location of deforestation) and nonlocal
effects (which are also apparent elsewhere). While the nonlocal effects (cooling in most regions) influence the
temperature of the surface and lowest atmospheric layer equally, the local effects (warming in the tropics but a
cooling in the higher latitudes) mainly affect the temperature of the surface. In agreement with observation-based
studies, the local effects on surface and near-surface air temperature respond differently in the MPI-ESM, both
concerning the magnitude of local temperature changes and the latitude at which the local deforestation effects
turn from a cooling to a warming (at 45-55° N for surface temperature and around 35° N for near-surface air
temperature). Subsequently, our single-model results are compared to model data from multiple climate mod-
els from the Climate Model Intercomparison Project (CMIP5). This inter-model comparison shows that in the
northern midlatitudes, both concerning the summer warming and winter cooling, near-surface air temperature is
affected by the local effects only about half as strongly as surface temperature. This study shows that the choice
of temperature variable has a considerable effect on the observed and simulated temperature change. Studies
about the biogeophysical effects of deforestation must carefully choose which temperature to consider.
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1 Introduction

Afforestation has been proposed as a tool to mitigate climate
change globally (UNFCCC, 2011), mainly because forests
can store large amounts of carbon (Luyssaert et al., 2008; Le
Quéré et al., 2017). In addition, changes in forest cover can
cause a warming or cooling via an alteration of the exchange
of energy and water between the Earth’s surface and the at-
mosphere, i.e., the so-called biogeophysical effects (Bonan,
2008). Earth System models have been employed to assess
how these biogeophysical effects affect the temperature of
the surface (e.g., Bala et al., 2007; Pongratz et al., 2010;
Davin and de Noblet-Ducoudré, 2010; Boisier et al., 2012;
Devaraju et al., 2015; Li et al., 2016) and the temperature of
the near-surface air (usually air temperature 2 m above zero-
plane displacement height) (e.g., Claussen et al., 2001; Gib-
bard et al., 2005; Findell et al., 2006; Pitman et al., 2009;
Bathiany et al., 2010; de Noblet-Ducoudré et al., 2012; Jones
et al., 2013; Luyssaert et al., 2018). The different temper-
ature variables that are considered in studies about defor-
estation effects are relevant for different questions and ap-
plications. Satellite-based studies on changes in radiometric
surface temperature provide important information about the
biophysical mechanisms of surface energy partitioning and
thereby surface—atmosphere interactions (Duveiller et al.,
2018). Compared to changes in surface temperature, changes
in air temperature may be considered more relevant for hu-
man living conditions because of their importance, e.g., for
the perceived temperature (e.g., Staiger et al., 2011). Within-
and below-canopy air temperature (which is not included
in this study) is the most relevant variable for many organ-
isms that live within forests (e.g., De Frenne et al., 2013; De
Frenne et al., 2019). The coupling between ground temper-
ature and air temperature is strongly influenced by the type
of vegetation that covers the surface (Baldocchi, 2013; Melo-
Aguilar et al., 2018), but it remains unclear whether surface
temperature and near-surface air temperature respond differ-
ently to deforestation in climate models. This is the focus of
the present study.

An answer to this question could help to reconcile appar-
ent inconsistencies in observation-based studies on the ef-
fects of deforestation on surface temperature and air tem-
perature. Studies based on satellite observations investigated
changes in radiometric surface temperature resulting from
deforestation (Li et al., 2015; Alkama and Cescatti, 2016;
Duveiller et al., 2018). These studies reported that deforesta-
tion results in a local cooling in the boreal regions (north
of approximately 45-55°N) and a warming in lower lati-
tudes, highlighting that the contributions from changes in
surface albedo and other surface properties vary with lati-
tude (Bright et al., 2017). Studies based on observations of
air temperature from weather stations and FLUXNET tow-
ers (Lee et al., 2011; Zhang et al., 2014) also reported a
deforestation-induced boreal local cooling and a warming for
lower latitudes, but they indicated that the transition between
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cooling and warming is located further south (at approxi-
mately 35°N). It remains unclear whether part of this ap-
parent inconsistency can be attributed to the different heights
above the surface at which temperature changes are consid-
ered. In contrast to observations, climate models allow us to
assess the biogeophysical effects on surface temperature, on
near-surface air temperature, and on the temperature of the
atmosphere within a single consistent framework, rendering
climate models suitable tools to investigate this question.

Both air and surface temperature are affected by local and
nonlocal biogeophysical effects of deforestation. We define
local effects as effects that are only apparent in deforested
locations and nonlocal effects as effects that are also appar-
ent in non-deforested locations (see Sect. 2.1 and Winckler
et al., 2017). Local effects can, for example, be caused by a
redistribution of heat between the surface and the atmosphere
(e.g., Vanden Broucke et al., 2015), while the nonlocal effects
can be caused by advection (Winckler et al., 2019a) or by
changes in global circulation (Swann et al., 2012; Devaraju
et al., 2015; Lague and Swann, 2016). In this study, local
and nonlocal effects are analyzed separately for three rea-
sons. First, the difference between local and nonlocal effects
matters for decision makers: the local effects may be relevant
for policies that aim at adapting to a warming climate lo-
cally because they link the climate effects to the areas where
policies are implemented (Duveiller et al., 2018). The non-
local effects are also relevant for international policies that
aim at mitigating global climate change because the nonlocal
effects may dominate the global mean biogeophysical tem-
perature response to deforestation (Winckler et al., 2019a).
Second, the observation-based data sets only record the lo-
cal effects when comparing temperature between nearby lo-
cations with and without forest, or between locations with
and without deforestation. The nearby locations share the
same background climate, and thus the nonlocal effects can-
cel out when temperature differences between the locations
are considered (Lee et al., 2011; Li et al., 2015; Alkama
and Cescatti, 2016; Duveiller et al., 2018). For a consistent
comparison to observation-based data sets, the local effects
need to be separated from the nonlocal effects when analyz-
ing climate model results. The third reason to consider local
and nonlocal temperature changes separately is that different
mechanisms trigger local and nonlocal temperature changes
(Winckler et al., 2017). If surface and air temperature re-
spond differently to deforestation, it is unclear whether this
difference arises from mechanisms that trigger the local tem-
perature changes (predominantly via changes in the turbu-
lent heat fluxes; Winckler et al., 2019a), from mechanisms
that trigger the nonlocal temperature changes (predominantly
via the incoming radiation that reaches the surface; Winckler
et al., 2019a), or from both. A separate analysis of local and
nonlocal temperature changes facilitates an investigation of
the mechanisms that may cause a different response of sur-
face and air temperature to deforestation.
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Here, we investigate how deforestation in the MPI-ESM
(Max Planck Institute Earth System Model) affects surface
and air temperature differently and analyze this separately for
the local and nonlocal effects. A previous study contrasted
the response of surface temperature only with the response
of near-surface air temperature and found mainly differences
between surface and air temperature for the local effects (Ap-
pendix C in Winckler et al., 2017). We go beyond this previ-
ous study by additionally analyzing the effects on tempera-
ture in the lowest atmospheric layer and by using simulations
with an interactive ocean which enables us to better cap-
ture the nonlocal temperature effects of deforestation from
the surface to the lower atmosphere (Davin and de Noblet-
Ducoudré, 2010). To further analyze the mechanisms that are
responsible for differences in these three temperature vari-
ables, we investigate the local effects separately for the re-
sponse in mean daily minimum and maximum temperature.
To test the robustness of our results for this particular climate
model, we compare the simulation results of the MPI-ESM
to existing simulation results from multiple climate models
from the Climate Model Intercomparison Project CMIP5. In
this inter-model comparison, we contrast the response of the
local effects on near-surface air temperature and surface tem-
perature.

2 Methods

2.1 Simulations of large-scale deforestation in the
MPI-ESM

Using the fully coupled climate model MPI-ESM (Giorgetta
et al., 2013), the temperature response to deforestation at the
surface, at 2m and the lowest layer of the atmosphere are
obtained from simulations of large-scale deforestation. Sim-
ulations are performed at T63 atmospheric resolution (about
1.9°) for 550 years, and the last 200 years (which are free
of substantial trends in the investigated variables, not shown)
are used for the analysis. Two simulations are performed: a
first simulation (“forest world”) with forest plant functional
types on all areas that can potentially be covered with veg-
etation (i.e., forests do not exist in deserts, etc., Fig. S1 in
the Supplement). These vegetated areas are taken from a pre-
vious study (Pongratz et al., 2008), which derived a map of
potential vegetation from remote sensing (Ramankutty and
Foley, 1999). The non-forest plant functional types were re-
placed by the forest types occurring in that grid cell (pre-
serving the relative fraction of the different forest types). In a
second simulation forests in the forest world are completely
replaced by grasslands in three of four grid boxes in a regular
spatial pattern (Fig. S1, equivalent to simulation “3/4” in a
previous study; Winckler et al., 2019a). In both simulations,
atmospheric CO; concentrations are prescribed at preindus-
trial level in order to obtain only the biogeophysical effects of
deforestation. The total, i.e., local plus nonlocal, biogeophys-
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ical deforestation effects are then computed as the differences
(e.g., in temperature) between these two simulations.

Following the approach in Winckler et al. (2017), the total
effects can be separated into the local and nonlocal effects of
deforestation as follows:

ATiora = A Tli)cal + A Thonlocal» (1)

where A Tioa are the temperature changes that are sim-
ulated at a deforested grid box and ATlgCal = A Tiocal +
A Tiocalxnonlocal includes both the local effects and possible
interactions between local and nonlocal effects. However,
such interactions were found to be small across a wide range
of deforestation scenarios (Winckler et al., 2017), and in the
following we refer AT, . as “local effects”. The nonlo-
cal effects are determined from non-deforested grid boxes,
where only the nonlocal effects are present. The nonlocal ef-
fects are spatially interpolated to the deforested grid boxes
using bilinear interpolation. The local effects at deforested
grid boxes can thus be obtained by subtracting the nonlocal
effects from the simulated total effects:

A Tlgca] = A Tiotal — A Thonlocal - 2)

The local effects that are obtained this way are similar to the
local effects that were obtained in previous studies by com-
paring temperatures in sub-grid tiles (Malyshev et al., 2015;
Schultz et al., 2017; Meier et al., 2018). In contrast to their
methods, the method that is applied in this study includes lo-
cal feedbacks between the surface and the atmosphere lead-
ing, for example, to local changes in clouds or precipitation.
In addition, the method used in this study allows us to as-
sess the local effects on the temperature of the lowest layer
of the atmosphere (which in most models is not calculated
separately for sub-grid tiles) and to assess nonlocal effects
on temperature. The choice of deforesting three of four grid
boxes is to some extent arbitrary; varying the spatial extent
of deforestation influences the magnitude of the nonlocal ef-
fects on surface temperature (Winckler et al., 2019a), but
the local effects on surface temperature within a grid box
are largely insensitive to deforestation elsewhere (Winckler
etal., 2017). A detailed description and discussion of the sep-
aration approach can be found in Winckler et al. (2017).

2.2 Temperature of the surface, the lowest atmospheric
layer, and near-surface air in the MPI-ESM

This study investigates the response of three types of tem-
perature to deforestation in the MPI-ESM: surface tempera-
ture (Tsyf), the temperature of the lowest atmospheric layer
(Tatm), and near-surface air temperature (75, called “tas”
in CMIPS). Although these temperature variables are part of
the standard output of climate model simulations, different
models may calculate them differently. In the following, de-
tails are provided on the calculations of these variables in the
MPI-ESM.
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The surface temperature Ty, in the MPI-ESM is deter-
mined by solving the surface energy balance equation in a
bulk canopy layer. For simplicity this layer has a heat ca-
pacity that is independent of the vegetation type. This bulk
canopy layer exchanges heat with deeper soil layers via the
ground heat flux.

It is not possible to assign one geometrical height to the
surface layer in the MPI-ESM because there is an internal
inconsistency between the two different aspects that are in-
volved in the process of solving the surface energy balance
equation: the calculation of the surface radiative budget (ab-
sorption of solar radiation and emission of terrestrial radi-
ation to the atmosphere) and the calculation of the turbulent
heat fluxes (latent and sensible heat). From the perspective of
the radiative budget, the surface is where this radiative bud-
get is calculated (i.e., where the energy balance is solved). In
the presence of vegetation this is somewhere in the canopy,
but geometrically its exact height cannot be specified. From
the perspective of turbulent fluxes, the geometrical height
d + z¢ above the surface is where the wind speed would be-
come zero in the wind profile based on Monin—Obukhov the-
ory (Leclerc and Foken, 2014). Here, z¢ denotes the aerody-
namic roughness length and d is the zero-plane displacement
height. This d takes into account the displacement effect ex-
erted by vegetation (Leclerc and Foken, 2014; Campbell and
Norman, 1998). Geometrically the height d + zp may differ
from the height where the radiative budget is calculated.

What does this inconsistency imply for the comparison be-
tween Ty in the MPI-ESM and satellite-based products?
For comparison with satellite observations only the radia-
tive perspective is relevant — because satellites estimate tem-
perature based on the emissions of terrestrial radiation. That
the Monin—Obukhov theory provides a different definition of
surface height must be considered as a special approxima-
tion to solve the energy balance but has no consequences for
comparison with satellite observations of Tgyf.

The “atmospheric temperature” Ty, is defined here as the
temperature of the lowest of the 47 atmospheric layers in the
MPI-ESM (Stevens et al., 2013). The thickness of this layer
is around 60m (at 15°C), and the temperature is volume-
averaged in this layer. This temperature is used for the calcu-
lation of the turbulent heat fluxes and T,f.

The near-surface air temperature 75y, is estimated in the
MPI-ESM as temperature of the air at 2 m above d + zg. Be-
cause it is unclear (and irrelevant for the calculations) where
within the canopy this d 4 z¢ is, a comparison of T, be-
tween the MPI-ESM and observations is challenging, espe-
cially in forests (see Sect. 4). The MPI-ESM does not have a
representation of within-canopy air temperature or separate
temperatures of the surface and the vegetation canopy.

In the MPI-ESM, following Geleyn (1988), T>q, is ob-
tained via a procedure based on Monin—Obukhov similarity
theory that uses the values at the surface and the lowest at-
mospheric layer. This procedure employs dry static energy
instead of temperature because dry static energy is a con-
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served quantity in an adiabatic process.

SZaero = CP TZaem + 8 Zaero> (3)

where ¢, is the heat capacity of moist air, and g is the gravi-
tational acceleration of the Earth, and s, and T, are the
dry static energy and temperature at the aerodynamic height
Zaero = Z — (d + zo) where z is the height above the surface.
At 2 m above d + z, the dry static energy is then obtained

as follows:
2m
§2m = Ssurf + (Satm — Ssurf) ¥ E’ Ri ), 4

where sgf and sym denote the dry static energy at the
surface and the lowest atmospheric layer, and y is a non-
linear function based on Monin—Obukhov similarity the-
ory with values ranging between 0 and 1 that depends on
the roughness length zg and on the bulk Richardson num-
ber R;, which is closely related to the temperature gradi-
ent Tgut — Tam. Different functions for y are used for near-
surface neutral (R; =~ 0), stable (R; < 0), and unstable con-
ditions (R; > 0) (Geleyn, 1988; ECMWF Research Depart-
ment, 1991, Sect. 3.1.3). Note that both squf and su¢m, but also
R; and z¢ are affected by deforestation. After this procedure,
T>m is obtained as Tyero from Eq. (3) by setting zaero = 2m.

2.3 Isolation of local effects across CMIP5 models

The response of Ty f and T3, to deforestation in the North-
ern Hemisphere midlatitudes is compared across a wide
range of climate models from CMIP5: CanESM2, CCSM4,
CESM1-CAMS, GFDL-CM3, HadGEM2-ES, IPSL-CM5A-
LR, MPI-ESM-LR, and NorESM1-M. Given that the these
models did not simulate the 3/4 deforestation (see Sect. 2.1),
we invoke the difference between “historical” and “piCon-
trol” simulations to isolate the local temperature response
from the CMIP5 ensemble (Taylor et al., 2012). The histori-
cal simulations are subject to all forcings including changes
in greenhouse gases and land use, while the piControl sim-
ulations are subject to constant boundary conditions and no
forcings. To isolate the local effects of deforestation, we use
a method that was already applied and validated on these
simulations (Lejeune et al., 2018). This method assumes that
temperature in neighboring grid boxes can be affected differ-
ently by the local effects of deforestation, depending on the
forest cover change in each grid box, whereas other climate
forcings (like greenhouse gases, but also the nonlocal effects)
influence neighboring grid boxes in a similar way. Linear re-
gressions are fitted between temporal changes in temperature
(the so-called predictand) and forest cover change (the so-
called predictor) within a spatially moving window encom-
passing 5 x 5 model grid boxes. In the center of this moving
window, the local effects are then defined as the tempera-
ture change for a hypothetical conversion of 100 % forest into
100 % open land (given by the slope of the regression) and is
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by construction largely independent of the changes due to the
nonlocal greenhouse gas forcing and nonlocal deforestation
effects (given by the y intercept of the regression).

We consider here the difference between the last 30 years
(1971-2000) of historical simulations for which data in all
models are available and 30 years of the preindustrial control
simulations (piControl), from which the temporal changes in
both temperature variables and forest fraction since 1860 are
computed. The historical simulations consist of several en-
semble members for each model, where each ensemble mem-
ber experiences the same forcings but starts from different
initial conditions. The moving-window method is applied to
several combinations of ensemble members from the histor-
ical simulations and time slices from the piControl simula-
tions for each model, and the number of analyzed ensemble
members is shown in Table S1 in the Supplement.

For this inter-model comparison, we focus on the local
effects for two reasons. (1) The nonlocal deforestation ef-
fects cannot be isolated from the analyzed set of simulations
because the nonlocal deforestation effects cannot be distin-
guished from nonlocal greenhouse gas forcing in these sim-
ulations. (2) The local effects exhibit a better signal / noise
ratio compared to the nonlocal effects (e.g., Lejeune et al.,
2017). This is important because the climate variability can
be large compared to the nonlocal effects for the short time
spans (30 years) that are analyzed here (Winckler et al.,
2019a). Furthermore, climate variability is especially large
in the midlatitudes (Deser et al., 2012) that are analyzed in
the inter-model comparison.

3 Results

3.1 Different temperature response of surface and air
temperature in the MPI-ESM

In the MPI-ESM, deforestation in three of four grid boxes
triggers substantial nonlocal cooling in most regions (Fig. 1).
This happens because deforestation locally reduces the in-
put of latent and sensible heat from the surface to the at-
mosphere (Winckler et al., 2019a). Thus, the atmosphere
becomes cooler and drier (not shown), and this leads to a
reduction in Ty, in many regions, mainly because of re-
duced longwave incoming radiation (Davin and de Noblet-
Ducoudré, 2010; Winckler et al., 2019a). The spatial pattern
of these nonlocal effects is very similar for Tyyf, Tom, and
Tatm-

In contrast to the nonlocal effects, the local effects differ
strongly between Ty, T2 m, and Tyy,. Deforestation strongly
influences the local surface energy balance: the imposed
changes in surface properties in the model (surface albedo,
evapotranspirative efficiency and surface roughness) cause a
surface warming for the local effects in most regions, except
for the high northern latitudes where the local effects cause
a surface cooling (Fig. 1). The changes in surface properties
influence not only the local Tyt but also the flux of sensi-
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ble heat from the surface into the lower boundary layer (not
shown). Intuitively one would expect that the change in sen-
sible heat flux alters Tym; €.g., an increased input of sensi-
ble heat into the atmosphere could raise the temperature of
the atmospheric air above a deforested location. However, in
our model results Ty, is largely unaffected by the local ef-
fects of deforestation (Fig. 1). We interpret this lack of local
effects in Ty as follows: it takes long enough for the low-
est atmospheric layer to warm up (due to the deforestation-
induced increase in sensible heat flux) for the heated air to be
transported to higher atmospheric layers and the neighboring
grid boxes. Due to the advection, the change in Ty, is hence
not only seen in a deforested location but also in nearby grid
boxes that are not deforested. Thus, this warming or cooling
is accounted for in the nonlocal effects. In the nearby grid
boxes, the change in Ty, and/or atmospheric moisture can
then also influence Tyt via changes in longwave incoming
radiation (Davin and de Noblet-Ducoudré, 2010; Winckler
et al., 2019a), which could explain why the nonlocal effects
are similar for Tpyy and Tgye. While in Ty, advection can
lead to a direct exchange of heat between neighboring grid
cells, the same is not possible for Tgf; there is no direct hor-
izontal exchange of heat between the surface of neighbor-
ing grid cells, and this difference (advection for Ty, but not
Tsurf) may explain why local effects can be seen in Ty but
not in Tyym.

Because T>, is an interpolation between Ty, and Ty,
we expected that the local response of 7>, would also lie
in between the response of Ty f and Tym. In a lot of re-
gions this is the case, but in other regions, most notably those
that show a cooling, the local effects on 75, seem to cool
more than T, and in some regions even the sign differs be-
tween A Tgyf and A To y (e.g., parts of the US and regions in
the southern extratropics; Fig. S3). The different response of
Tsurf and Ty in relation to the observation-based findings is
discussed in Sect. 4.

To better understand the apparent discrepancy between
A Tgyef and A To y, we separately analyze the local temper-
ature response for boreal winter (DJF) and summer (JJA)
and the response of mean daily minimum temperature (Tiin,
which approximately corresponds to nighttime conditions)
and maximum temperature (7Tmax, Which approximately cor-
responds to daytime conditions). For Ty, the response to
deforestation locally differs strongly between DJF, JJA, Tin,
and Tmax values (Fig. 2). For Northern Hemisphere DJF and
Tmin, deforestation leads to a local Ty cooling, while for
JJA and Tnax, deforestation leads to a local Ty warming.
This is qualitatively in good agreement with observation-
based studies that show a local cooling in the boreal regions
in DJF (Alkama and Cescatti, 2016; Bright et al., 2017; Du-
veiller et al., 2018) and in agreement with the local increase
in the diurnal amplitude due to deforestation (Li et al., 2015;
Alkama and Cescatti, 2016; Schultz et al., 2017). Similarly
as in the case of long-term mean temperature (Fig. 1), Tym
locally shows little response to deforestation, neither for DJF,
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Nonlocal

I | |
-50 -40 -30 -20 -15 -1.0 -05 =01
ATIK]

01 05 1.0 15 2.0 30 40 5.0

Figure 1. The deforestation-induced annual mean response of temperature in the lowest atmospheric layer (7Tatm ), near-surface air (75 ),
and at the surface (7). Deforestation was applied to three of four grid boxes (Fig. S1). Stippling indicates where results are not statistically
significant at a 5 % level for a Student’s ¢ test accounting for lag-1 autocorrelation (Zwiers and von Storch, 1995). Zonal averages are shown

in Fig. S2.

JJA, Tin, nor Tiax (Fig. 2). For both Tyyf and 73, the an-
nual mean response then depends on the balance between the
daytime and nighttime response and on the balance between
the responses in different seasons.

For near-surface air temperature, the Tjax response is sub-
stantially weaker, and in many areas of opposite sign, than
for the surface, similar to the lowest atmospheric layer (land
mean absolute changes for Thax: 1.62 K for Ty, 0.19K for
T>m, and 0.10 K for Tyim). On the contrary, most regions ex-
hibit a strong Tpi, cooling of 7>y, similar to the T, re-
sponse of Ty (land mean absolute changes for Tyn: 0.67 K
for Tgurf, 0.48 K for Tp py, and 0.10 K for Taey).

Tmax responds differently for 7yt and 75, not only for an-
nual mean Tax, but in some tropical or subtropical regions
also for Tinax during DJF and JJA (Fig. S9). We interpret this
as follows: during the daytime when Tiy,x occurs, the Tgyf is
higher than the temperature of the lowest atmospheric layer
(Fig. S4) because the surface is heated by incoming radiation.
In accordance with previous studies (e.g., Li et al., 2015), de-
forestation further increases Tyt (Fig. 2) and thus also the

Earth Syst. Dynam., 10, 473-484, 2019

difference between Ty and Ty, (illustrated in Fig. S5b).
Intuitively, one would expect that an increase in this dif-
ference would result also in an increase in T. But by
the increased surface temperature, the well-mixed zone in
the boundary layer not only extends to larger heights, but
also extends further down. Accordingly, the cooler air from
above mixes further down, and if this affects heights below
2m, Trpy is lowered. In the model’s calculation of T, a
deforestation-induced increase in Ty increases the differ-
ence between Ty, and T, and thus leads to an even more
negative Richardson number R;. This Richardson number
enters the similarity function for the calculation of sy, (¥
in Eq. 4; see underlying report; ECMWF Research Depart-
ment, 1991) such that the vertical profile of s>, becomes
more nonlinear and the calculated 7>, approaches Tymm. As
a result, daily maximum 75, in the model may decrease al-
though Ty, increases.

During nighttime when T, occurs, the surface loses en-
ergy via outgoing longwave radiation, and thus the surface
is often cooler than the overlying atmosphere (Fig. S4). In
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Figure 2. Seasonal and diurnal temperature response to the local effects of deforestation, separately for boreal winter (DJF) and summer
(JJA) and daily maximum (7max) and minimum temperature (7, ). Stippling indicates where results are not statistically significant at a 5 %
level for a Student’s ¢ test accounting for lag-1 autocorrelation (Zwiers and von Storch, 1995).

accordance with previous studies (e.g., Schultz et al., 2017),
deforestation further decreases Ty and thus Tgys and Taem
further diverge. For 7>, one expects that less vertical mix-
ing than during the daytime results in 7>, tending towards
Tsurf. In the model’s calculation of 7>, this behavior is a
result of the y in Eq. (4) being less nonlinear in stable com-
pared to unstable conditions (for the concrete form of the y
function, see ECMWF Research Department, 1991) with the
consequence that 7>, at deforested locations stays closer to
Tsurf compared to daytime conditions (Fig. S5a). As a result,
in most regions the calculated 7> 1, follows the deforestation-
induced nighttime surface cooling but not necessarily the
deforestation-induced daytime surface warming.

The different 75 , responses for DJF and JJA in the model
may be caused by the same mechanism that may be respon-
sible for the different behaviors for Tinin and Tiax. In JJA,
when the surface is often warmer than the overlying atmo-
sphere, deforestation leads to a further local Ty, warming
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(Fig. 2). Similar to the case of Tmax, 72 m barely responds or
even responds with a cooling in some regions. In DJF, when
the surface is often cooler than the overlying atmosphere, de-
forestation leads to a local Ty, cooling. Similar to the case of
Tmin,» T2 m also shows a substantial cooling in most Northern
Hemisphere regions. The reason why 75 ,, responds similarly
to Tyrf in Northern Hemisphere DJF but not JJA may be sim-
ilar to the reason why T, responds similar to Tgyef for Thin
but not for Ti,, as described in the previous two paragraphs.
Our findings are in qualitative agreement with the findings
of Meier et al. (2018) (their Fig. 9), who found a strong
deforestation-induced daytime Ty, warming and a moder-
ate 7>, cooling in many regions using the CLM (Community
Land Model). Whether or not Ty and 7> r, respond similarly
to deforestation may strongly depend on how T3, is calcu-
lated in the respective climate model. For the summer and
winter response in the northern midlatitudes, the responses
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of Ty and Ty, are compared across climate models from
CMIPS in the following.

3.2 Different temperature response of surface
temperature and air temperature across climate
models

While the above results refer only to the MPI-ESM climate
model, quantitatively the local effects on Tyt and Ty also
differ in other climate models (Fig. 3). We analyze the lo-
cal effects of historical deforestation and the average over
midlatitude areas (40-60° N) that have experienced intense
deforestation (> 15%) since 1860. We choose the northern
midlatitudes for two reasons. (1) This is where most his-
torical deforestation happened, and regions with intense de-
forestation are required in the moving-window approach for
isolating the local effects across models (see Sect. 2.3), and
(2) the midlatitudes are a suitable test case because there the
local effects on Tyt have a different sign in the winter (DJF)
and summer season (JJA) (Fig. 2).

In the areas considered, in most models (with the excep-
tion of CanESM2 and GFDL-CM3) Tyt and 7>y, respond
similarly for changes in annual means (Fig. 3a). This is also
true for the MPI-ESM — Tyt and T>y, respond similarly
when averaged over the respective regions (midlatitude ar-
eas (40-60° N) that have experienced intense deforestation
(> 15 %) since 1860). A difference in response between Ty, s
and 7>, becomes apparent also for the midlatitudes when an-
alyzing seasons (DJF and JJA separately) instead of annual
means. Almost all of the tested models show substantial dif-
ferences between Ty, and 7>, at a seasonal scale (Fig. 3b—
).

In JJA (Fig. 3c), all but one model show a surface warm-
ing locally, with the Ty responding more strongly than 75,
by a factor of around 2 (Table S1). Only the HadGEM2-
ES climate model is an outlier: there, T+ responds to de-
forestation with a local cooling (—0.13 K), which is not in
agreement with observation-based studies (Li et al., 2015;
Alkama and Cescatti, 2016; Bright et al., 2017; Duveiller
et al., 2018), and in the HadGEM2-ES 7>, cools even more
strongly (—0.27 K) than Tgyf. This inter-model comparison
confirms that the local deforestation responses of Tyt and
T> m quantitatively differ strongly in JJA, but in contrast with
the MPI-ESM results shown above (Fig. 2), all models in
Fig. 3 show the same sign of the JJA responses for Ty, and
T m.

In DJF (Fig. 3b), all but one model show a surface cool-
ing locally, again with Tyt responding stronger than 75, in
most models. An exception is the CanESM2 model, which
locally responds to deforestation with a strong Tg,f warm-
ing and T, cooling. In some of the other climate mod-
els (CCSM4, CESM1-CAMS, NorESM1-M, all sharing the
same land surface model CLM4), the Ty, cooling is approx-
imately twice the cooling of 7>, analogous to the JJA re-
sponse. In other models (GFDL-CM3, HadGEM2-ES, IPSL-
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CMS5A-LR, MPI-ESM-LR), the two variables respond more
similarly in DJF compared to JJA.

Overall, the inter-model comparison suggests that the
quantitatively different response of Tyt and 75, is not spe-
cific to the MPI-ESM model. In agreement with previous
studies (Pitman et al., 2009; Boisier et al., 2012; de Noblet-
Ducoudré et al., 2012; Lejeune et al., 2017), the inter-model
spread in the temperature response in Fig. 3 is large (e.g.,
in JJA inter-model (excluding the HadGEM?2) standard de-
viation 0.20 K, inter-model mean 0.38 K). However, the in-
vestigated models agree better concerning the ratio between
the To and Ty response (JJA inter-model (excluding the
HadGEM?2) standard deviation 0.11, inter-model mean 0.50).
Both for DJF and JJA (Table S1), and for most of the inves-
tigated models, the ratio of changes in 7>y, and Tyt of 0.5
(range 0.35-0.65, excluding HadGEM?2) is largely indepen-
dent of the magnitude and sign of the Tt response. The tem-
perature response of 7>y, is between zero and the response
of Ty With a ratio that depends on the exact way in which
T>m is calculated in the respective models (but most likely
all models use a Monin—Obukhov approach). Further studies
may investigate to what extent the calculation of 75, differs
across models.

4 Discussion and conclusions

This study shows that in climate models, surface temperature
(Tsurf) and near-surface air temperature (7> ) respond differ-
ently to deforestation. In the MPI-ESM, the nonlocal cooling
in most regions (present also in locations that were not defor-
ested) of Tyt and 7>y, is similar, while the local warming in
the tropics and cooling in the higher latitudes (present only in
locations that were deforested) differs. In the northern mid-
and high latitudes, the annual mean local cooling of 75, can
be stronger than the local cooling of T, but in most regions
Tsurf responds more strongly than 7> . Across most models,
the local effects of deforestation on T, and 75 1 in the mid-
latitudes differ by a factor of 2, for both local warming during
summer and local cooling during winter.

This study illustrates that the conclusions concerning the
effects of deforestation can depend on the considered tem-
perature measure. The differences in magnitude and pattern
between A Tyt (e.g., Li et al., 2015; Alkama and Cescatti,
2016; Duveiller et al., 2018) and A 7>, (e.g., Lee et al.,
2011; Zhang et al., 2014) obtained from observation-based
studies largely agree with our findings (more cooling for 75
than for Tg,s in the midlatitudes for the local effects in the
MPI-ESM (see Figs. 1 and S2)), and thus our results make
it seem plausible that the consideration of different tempera-
ture measures can explain some of the discrepancies between
the satellite-based and in situ-based studies. A consistent
comparison between satellite-based and in situ-based studies
can be challenging because they may report different vari-
ables. Because of the heterogeneous emissivity of the land
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Figure 3. Local effects on near-surface air temperature (7 ,) and surface temperature (7g,f) for CMIP5 models. Values are averaged
over midlatitude areas (40-60° N) that have experienced intense deforestation (> 15 %) since 1860. Positive values indicate a deforestation-
induced warming. Each transparent marker denotes one combination of ensemble members from the historical and piControl experiments,
respectively. The solid markers denote the mean values. The corresponding maps are shown in Figs. S6-S8. The local effects are isolated as

in the study by Lejeune et al. (2018).

surface (Jin and Dickinson, 2010), satellite-based data sets
usually report changes in radiometric surface temperature,
which represents a combination of temperature at the top
of the vegetation and the soil (through gaps in the canopy).
Satellite-based direct estimates of air temperature (based on
the intensity of upwelling microwave radiation from atmo-
spheric oxygen) are available only for broad vertical layers of
the atmosphere and at a coarse spatial scale (Von Engeln and
Biihler, 2002). Instead of direct observations, air temperature
was derived from surface temperature by empirical meth-
ods (Alkama and Cescatti, 2016) or process-oriented models
(i.e., by solving the surface energy budget) (Hou et al., 2013).
More direct observational investigations on the effects of de-
forestation on air temperature were based on recordings from
weather stations and FLUXNET towers, which measure tem-
perature at different heights. For instance, weather stations,
e.g., in forest clearings, recorded temperatures at a height of
between 1.2 and 2.0m above ground level (WMO, 2008),
while FLUXNET sites recorded temperatures typically 2—
15 m above forest canopies (Lee et al., 2011; Zhang et al.,
2014). The different measurement height may lead to system-
atic differences because of the steep vertical temperature pro-
file that develops near the surface under stable atmospheric
conditions (e.g., at night) especially over open land (Schultz
etal., 2017). In contrast to satellite-based products, which are
available at a high spatial resolution, the spatial distribution
of FLUXNET towers and weather stations is biased toward
developed countries and there is a relatively poor geograph-
ical coverage of rural areas in developing countries where
deforestation has occurred recently (Hansen et al., 2013). To
perform a meaningful comparison, near-surface air temper-
ature would have to be available at the same height above
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canopy top (preferably multiple heights) for the various land
cover types and with a good geographical coverage.

The comparison of deforestation effects in observations
and climate models is even more challenging. First, the re-
spective variables in the models are only a proxy of the vari-
ables that were recorded in observation-based data sets (see
Sect. 2.2 for the MPI-ESM). Second, model-based studies
usually analyzed the combination of local and nonlocal ef-
fects (especially relevant for simulations of large-scale de-
forestation where the nonlocal effects can be large), while
observation-based studies only analyzed local effects, for
which Tyt and 7>, respond differently (Fig. 1). Any nonlo-
cal effects are excluded from the observations because pos-
sible nonlocal effects are present both in forest locations
and nearby open land, and thus the nonlocal effects can-
cel out when looking at the difference between forests and
open land, which is acknowledged by these studies (e.g., Li
et al., 2015; Alkama and Cescatti, 2016; Bright et al., 2017;
Duveiller et al., 2018). Note that Earth system models con-
sider further climate effects when simulating deforestation-
induced releases of land carbon into the atmosphere (e.g.,
Pongratz et al., 2010; Le Quéré et al., 2017). Because CO» is
a well-mixed greenhouse gas, the resulting warming can be
expected to act essentially nonlocally and likely influences
surface and air temperature similarly.

The different response of surface temperature (7gyf) and
near-surface air temperature (7>y,) is relevant for climate
policies. Strategies that aim at adapting locally to warming
air temperature may focus on perceived temperature and thus
T>m, but this study shows that the local effects on 7>, may
substantially differ from those on Tyy. Our results for the
MPI-ESM suggest that the difference between 7>, and Tyf
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is particularly strong for mean daily maximum temperature
(see Fig. 2). Further studies may investigate whether this is
also true for other climate models and observation-based data
sets. Consequently, strategies in the agricultural sector that
aim at adapting locally to warming soil and canopy temper-
atures may focus on the local effects on surface temperature
because this variable is relevant for the organisms that live
there. On the other hand, for international policies that aim at
mitigating global warming, what matters is not only temper-
ature at the location of deforestation but also in nearby and
in remote regions. Thus, international policies may addition-
ally consider the nonlocal effects. For the nonlocal effects,
the responses of Tyyf and T are rather similar (Fig. 1),
and a distinction between the two temperature measures is
therefore less relevant. To sum up, this study emphasizes that
the local biogeophysical effects of deforestation influence
Tsurr and T, differently, and thus, a careful choice based on
the respective application has to be made regarding whether
a study should focus on changes in surface temperature or
near-surface air temperature.
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