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ABSTRACT 

Subgoal learning has improved student problem-solving 

performance in programming, but it has been tested for only one-

to-two hours of instruction at a time. Our work pioneers 

implementing subgoal learning throughout an entire introductory 

programming course. In this paper we discuss the protocol that 

we used to identify subgoals for core programming procedures, 

present the subgoal labels created for the course, and outline the 

subgoal-labeled instructional materials that were designed for a 

Java-based course. To examine the effect of subgoal labeled 

materials on student performance in the course, we compared 

quiz and exam grades between students who learned using 

subgoal labels and those who learned using conventional 

materials. Initial results indicate that learning with subgoals 

improves performance on early applications of concepts. 

Moreover, variance in performance was lower and persistence in 

the course was higher for students who learned with subgoals 

compared to those who learned with conventional materials, 

suggesting that learning with subgoal labels may uniquely 

benefit students who would normally receive low grades or 

dropout of the course.   
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1 Introduction 

The computing education community is constantly exploring 

methods to improve learning outcomes and student retention in 

college-level introductory programming courses. Subgoal-

labeled worked examples are a promising method to improve 

problem-solving performance for novice learning, but they have  
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been tested only for one to two hours of instruction at a time [7, 

8, 9]. The current project substantially extends this line of work 

by identifying the subgoals for problem-solving procedures 

typically taught throughout an introductory Java programming 

course, developing subgoal-labeled worked examples and paired 

practice problems to be used while teaching the course, and 

conducting a pilot test on the effectiveness of the materials to 

improve problem-solving performance across an entire semester. 

The guiding questions for this work were: 

1. What are the subgoals of problem-solving procedures 

typically taught in college-level introduction to 

programming courses that use an imperative programming 

language? 

2. If students learn procedures using subgoal-oriented 

worked-examples and paired practice problems, do they 

perform better than students who learn using non-subgoal-

oriented materials on course assessments? 

2 Subgoal Learning in Programming 

Education 

Subgoal learning is an instructional design framework used in 

programming education that improves novice problem-solving 

performance [3, 6, 7, 8, 9]. Subgoal learning explicitly teaches 

students the subgoals, or functional pieces, of a problem-solving 

procedure. For example, to solve a problem with a loop, students 

must define and initialize variables, so defining and initializing 

variables is a subgoal of solving a problem with a loop. The 

specific steps taken to achieve this subgoal varies from problem 

to problem, but the function remains the same. Novices solve 

programming problems better when they explicitly learn the 

subgoals of a procedure because they often do not recognize 

these functional pieces on their own [4].  

Worked examples are commonly used to teach problem-

solving procedures for well-structured problems because they 

demonstrate how to apply an abstract procedure to a concrete 

problem before the learner can solve problems independently [2, 

12, 13]. The drawback of worked examples, however, is that they 

must include details specific to a problem. For example, to 

demonstrate how to solve a problem using a for loop, the 

worked example must also include a cover story, such as “write 

a loop that will calculate the average age of the first 100 people 

to take a survey.” Learners tend to organize information about 

the procedure using these easy-to-grasp details rather than 

around the hard-to-conceptualize abstract procedure that they are 

learning, leading to difficulty transferring knowledge to new 

problems [2, 11]. Subgoal learning addresses this problem by 

pointing out shared functional features in worked examples, 

helping learners to organize information so that it can transfer 



 

 

more easily [4, 7]. Furthermore, by drawing learners’ attention to 

the functional features and away from the superficial details, 

subgoal learning can help learners manage cognitive load [9]. 

3  Identifying Subgoals with the TAPS Protocol 

Some readers might think that instructors naturally point out the 

subgoals of problem-solving procedures, but they often do not 

[4]. Unlike declarative knowledge (i.e., factual knowledge, such 

as 2+2=4), procedural knowledge (i.e., knowledge about how to 

do something, such as tying a shoe) becomes more automatized 

the more it is used [1]. Therefore, experts in a domain have 

procedural knowledge that has become automatized over years 

of practice, and they cannot easily recognize or verbalize it. As a 

result, the process of identifying subgoals is arduous because it 

requires accessing tacit procedural knowledge from an expert. To 

access tacit procedural knowledge and identify the subgoals of 

five core programming procedures, we employed a cognitive 

task analysis, specifically the Task Analysis by Problem Solving 

(TAPS) protocol developed by Catrambone [5]. 

3.1 TAPS Protocol 

The TAPS protocol requires a subject-matter expert (SME) and 

a knowledge-extraction expert (KEE) who is unfamiliar with the 

problem-solving procedure. The KEE asks the SME to bring 

problems that exemplify the problem-solving procedure. In the 

following description, the SME will have female pronouns and 

the KEE male pronouns to help distinguish between them.  

The session starts with the KEE asking the SME to solve the 

first problem. The SME does not provide a lecture or explanation 

of the problem-solving process before solving problems. Instead, 

the SME solves the first problem and explains what she is doing 

while the KEE takes notes. During the first problem, the KEE 

typically does not ask many questions while gaining a general 

sense of the procedure, but the KEE might ask the SME to repeat 

steps or re-explain steps that he missed or did not understand.  

When the KEE is finished taking notes on the first problem, 

he asks the SME to solve another problem and explain what she 

is doing. Again, the KEE takes notes on the process, specifically 

looking for similarities between the problems. During the second 

problem, the KEE typically asks more questions, especially 

about 1) analogous components of the two problems, 2) why the 

SME did a problem-solving step, and 3) how the SME knew 

which step to take next. SMEs can typically answer questions 

about analogous steps easily. Beyond the explanation that they 

provide while solving the problem (i.e., the declarative 

knowledge that they have about the procedure), they often 

struggle to explain why they took a step or how they knew which 

step to take next (i.e., the procedural knowledge that they have 

automatized). Automatized procedural knowledge is often what 

instructors struggle to impart to their students because they think 

that it is common knowledge or because they think it is intuitive.  

When the SME starts to struggle to explain steps of the 

problem-solving procedure, this is the level at which the KEE 

often identifies subgoals. In TAPS, it is important that the KEE 

be unfamiliar with the problem-solving procedure because his 

novice perspective will help distinguish between common 

knowledge and automatized procedural knowledge, both of 

which will seem like common knowledge to the SME. The first 

stage of TAPS ends when the KEE feels like he has a complete 

set of notes for explaining the problem-solving procedure. The 

number of problems that the SME solves to reach this point 

depends on the complexity of the procedure, the skill of the KEE 

at extracting knowledge, and the skill of the SME at verbalizing 

tacit knowledge. The first stage typically takes between one and 

four hours. It is a demanding task for both the KEE and SME, 

and we recommend taking an extended break every two hours. 

During the second stage of TAPS, the KEE attempts to solve 

problems using his notes for guidance. When the KEE reaches 

an impasse, he can ask the SME for help and update his notes. 

The SME should not offer help. Once the KEE can reliably solve 

new problems using only his notes, the notes are complete.  

During the final stage of TAPS, the KEE organizes and edits 

the complete notes to create a list of subgoals for the procedure 

and asks the SME for feedback. The subgoals represent only the 

procedural knowledge required for a problem-solving procedure, 

not the declarative knowledge, such as what operation % 

represents (modulus). While both types of knowledge are 

necessary to solve problems, instructors can easily recognize and 

explain declarative knowledge. Therefore, subgoal learning 

interventions focus on the procedural knowledge that instructors 

can struggle to share.  

3.2 Identifying Subgoals in Introductory 

Programming (Java)  

We used the TAPS protocol to identify subgoals of problem-

solving procedures using expression (assignment) statements, 

selection statements, loops, object instantiation and method calls, 

writing classes, and arrays in Java. The SME was one of the 

authors, Morrison, a computing education researcher and 

assistant professor in the CS Department at University of 

Nebraska Omaha. Morrison has 23 years of experience teaching 

programming and over 15 years of experience specifically 

teaching introductory courses in Java. The KEE was another one 

of the authors, Margulieux, a computing education researcher 

and assistant professor in the Department of Learning Sciences 

at Georgia State University. Margulieux has 6 years of 

experience using the TAPS protocol and had never learned 

programming before serving as KEE on this project. 

For each programming concept, the SME and KEE 

identified subgoals for evaluating code and writing code. 

Furthermore, after creating the list of subgoals, they received 

feedback from the other author, Decker, a computing education 

researcher with 18 years of experience teaching introductory 

programming. The subgoals are listed in Figure 1. Part A for each 

subgoal topic lists the evaluate subgoals, and part B lists the write 

subgoals. Some subgoals are broken down into sub-subgoals. 

4 Designing Instruction 

After the identification phase, we designed instructional 

materials to help students learn the subgoals of the problem-

solving procedures. The traditional method of teaching subgoals 

in STEM education is through subgoal-labeled worked examples 

(SLWEs) [4, 7, 9]. Students who study SLWEs perform better 

than those who study unlabeled worked examples because the 

subgoal labels highlight the structure of the problem-solving 

procedure and prompts students to recognize similarities 

between solutions [4, 7, 9]. Therefore, we designed SLWEs for 

each set of subgoals with multiple levels of difficulty. 



 

Figure 1. Subgoals identified through TAPS protocol. 

Subgoals for evaluating and writing expression (assignment) statements 

A. Evaluate expression statement B. Write expression statement 

1. Determine whether data type of expression is compatible 

with data type of variable 

2. Update variable for pre based on side effect 

3. Solve arithmetic equation 

4. Check data type of copied value against data type of variable 

5. Update variable for post based on side effect 

1. Determine expression that will yield variable 

2. Determine data type and name of variable and data type 

of expression 

3. Determine arithmetic equation with operators 

4. Determine expression components 

5. Operators and operands must be compatible 

Subgoals for evaluating and writing selection statements 

A. Evaluate selection statement B. Write selection statement 

1. Diagram which statements go together 

2. For if statement, determine whether expression is true or false 

3. If true – follow true branch, if false –follow else branch or do 

nothing if no else branch 

1. Define how many mutually exclusive paths are needed 

2. Order from most restrictive/selective group to least 

restrictive 

3. Write if statement with Boolean expression 

4. Follow with true bracket including action 

5. Follow with else bracket 

6. Repeat until all groups and actions are accounted for 

Subgoals for evaluating and writing loops. 

A. Evaluate loops B. Write loops 

1. Identify loop parts 

   a. Determine start condition 

   b. Determine update condition 

   c. Determine termination condition 

   d. Determine body that is repeated 

2. Trace the loop 

   a. For every iteration of loop, write down values 

1. Determine purpose of loop 

    a. Pick a loop structure (while, for, do_while) 

2. Define and initialize variables 

3. Determine termination condition 

    a. Invert termination condition to continuation condition 

4. Write loop body 

    a. Update loop control variable to reach termination 

Subgoals for calling and writing methods 

A. Call or trace method calls B. Write methods 

1. Classify method as static method or instance method 

    a. If static, use the class name 

    b. If instance, must have or create an instance 

2. Write (instance / class) dot method name and ( ) 

3. Determine whether parameter(s) are appropriate 

    a. Number of parameters passed must match method 

declaration 

    b.  Data types of parameters passed must match method 

declaration (or be assignable) 

4. Determine what the method will return (if anything: data 

type, void, print, change state of object) and where it will 

be stored (nowhere, somewhere) 

5. Evaluate right hand side of assignment (if there is one). 

Value is dependent on method's purpose         

1. Define method header based on problem 

2. Define return statement at the end 

3. Define method body/logic 

    a. Determine types of logic (expression, selection, loop, 

etc.) 

    b. Define internal variables 

    c. Write statements 

Subgoals for using objects and writing classes  

A. Use objects (creating instances) B. Write classes (associated rules sheet) 

1. Declare variable of appropriate class datatype. 

2. Assign to variable: keyword new, followed by class name, 

followed by ().  

3. Determine whether parameter(s) are appropriate (API) 

    a. Number of parameters  

    b. Data types of the parameters  

1. Name it 

2. Differentiate class-level (static) vs. instance/object-

level variables  

3. Differentiate class-level (static) vs. instance/object 

behaviors/methods 

4. Define instance variables (that you want to be 

interrelated)  

5. Define class variables (static) as needed 

6. Create constructor (behavior) that creates initial state of 

object  

7. Create 1 accessor and 1 mutator behaviors per attribute  

8. Write toString method  

9. Write equals method 

10. Create additional methods as needed 



 

 

Subgoals for evaluating and writing arrays 

A. Evaluate arrays B. Write arrays 

1. Set up array from 0 to size-1 

2. Evaluate data type of statements against array 

3. Trace statements, updating slots as you go 

    a. Remember assignment subgoals 

1. Data type plus [ ] 

2. Variable name = {initializer list}, or new 

datatype [size] 

For each topic in Figure 1, we created several SLWEs in 

increasing level of difficulty. The simplest version may skip 

some of the subgoals identified for the procedure because they 

are not necessary for simple problems. It may also include more 

sub-subgoals than later levels of SLWEs to provide more 

guidance at the earliest stage of learning. The difficulty level of 

SLWEs gradually increase, adding subgoals and reducing sub-

subgoals as the problems increase in complexity. The parameters 

for problem complexity in each level were determined by 

Morrison and Margulieux after identifying the subgoals of each 

procedure, and Decker provided feedback. Based on the 

parameters, Morrison and Decker designed the first draft of the 

SLWE and practice problems (see Figure 2), and Margulieux 

provided feedback and help during iterative design. 

The SLWEs were interleaved with practice problems so that 

after students studied a worked example, they attempted to solve 

at least one similar problem. Interleaving worked examples and 

practice problems improves learning efficiency over studying 

worked examples as in a block before attempting to solve 

problems [14]. The SLWE--practice-problem pairs were 

intended to be used as either a homework assignment or as 

instructional materials that the instructor discusses in class. If 

using the materials in class, other instructional techniques can be 

combined with the materials. For example, instructors might use 

a flipped classroom approach in which students learn about the 

problem-solving procedure conceptually before class; then class 

time is used to practice problem solving with the SLWE--

practice-problem pairs. While students are working on practice 

problems, they can engage in Peer Instruction, which asks 

students to explain their solution to a peer and resolve differences 

in answers before the instructor provides the correct answer and 

has been effective in introductory programming courses [10].  

5  Report of Pilot Test  

The instructional materials were pilot tested in the introductory 

programming courses at University of Nebraska Omaha. There 

are five sections of the course taught by three full-time faculty 

instructors with similar experience levels and supported by six 

graduate teaching assistants. All sections of the course are 

coordinated so that they include the same topics at the same pace 

and have the same quizzes and exams. The course was designed 

as a flipped class in which students watched recorded lectures 

before class and then answered peer instruction questions during 

class and problem solved in small groups. All sections follow this 

format, but the online section uses a different medium for class. 

Two sections of the course were taught by Morrison and used the 

SLWE during class. Three sections of the course, including the 

online section, were taught with conventional, non-subgoal 

worked examples. All other instructional features of the sections 

were the same among the sections. The pilot test compares 

student performance (i.e., quantitative grades) on quizzes and 

exams across sections.  

5.1 Study Methods 

The total number of students across all five sections was 307 

based on enrollment at the beginning of the semester. Students 

were excluded from analysis if they did not complete at least one 

exam and one quiz, effectively dropping the course, making N = 

265. They were split across the conventional course group (n = 

145) and the SLWE course group (n = 120).  

Though we do not have space in the current paper to fully 

discuss learner characteristics, we found no correlations between 

group and demographic factors or learner characteristics, 

including reason for taking the course, expected grade, expected 

difficulty of the course, interest in the course content, anxiety 

about course performance, age, gender, full-time or part-time 

status, race, primary language, family socioeconomic status, 

academic major, high school GPA, college GPA, year in school, 

or prior experience with programming. There were also no 

correlations between these factors and quiz or exam scores. Thus, 

these learner characteristics were not used a covariates or random 

factors in the analysis.  

Figure 2. Example of subgoal-labeled worked examples and practice problem pair for writing expression statements (see Figure 1). 

Subgoal-Labeled Worked Example 1 – Simple arithmetic equation Paired Practice Problems 

Assume the following given declarations: 

int max = 100; 

double tax = 0.5, result, bill = 26.12;  

Write the code to store max multiplied by tax in the variable result. 

SG1: Determine expression that will yield variable 

max * tax 

SG2: Determine data type and name of variable and data type of expression 

Result to be stored in variable result. That variable is a double. The expression max * 

tax is an int multiplied by a double yields a double. A double can be assigned to a double. 

SG3: Determine arithmetic equation with operators 

result = max * tax; 

Practice Problem 1:  

Calculate a 15% tip on the bill. 

 

Practice Problem 2:  

Determine the total amount 

owed including bill, tip, and 

tax. 



 

5.1.1 Data collection sources. Student performance on the 

four exams and five quizzes was collected. We also had the initial 

instructor keep a weekly journal on the teaching experience. 

Below are the characteristics for the student performance items: 

 The majority of quiz questions were either multiple choice 

or short answer.  Exams consisted of multiple choice 

questions (usually 1/3 to 1/2 of the exam grade) and short 

answer and long answer questions.  

 All exam and quiz questions were based on peer instruction 

questions presented in class (near transfer) or the 

homework assignments (far transfer). 

 Exams and quizzes were scored identically across sections.  

All multiple choice and short answer questions were 

automatically graded, and all student responses were 

reviewed by one member of the instructional team. Rubrics 

for open ended questions were developed and a single 

member of the instructional team graded all responses for a 

single question. 

 For exams, students were allotted 2 hours. 

 Quizzes were assigned over weekends, from Friday 

morning until Monday at midnight and had a 20-minute 

time allotment. 

5.2 Results and Discussion 

The quiz and exam scores were each analyzed in a few ways to 

examine the differences in performance between students who 

received SLWEs and those who received conventional, non-

subgoal instruction. The following values were calculated for 

each student: 

1. Total score, which is out of all available points on exams 

or quizzes. Thus, if a student did not turn in an exam or 

quiz (e.g., because they dropped out of the course) this 

score would treat the missing grade as a zero.  

2. Average score, which is the average score for all exams 

or quizzes that were submitted by a student. Thus, if a 

student did not turn in an exam or quiz, this score would 

not be affected by the missing grade. 

3. Number of assessments completed, which is the total 

number of exams or quizzes taken regardless of score.  

Conducting analyses with these different values allows us to 

examine the performance and retention differences between 

groups. Initially in the analyses, the online section was separate 

from the other non-subgoal sections in case the medium of the 

courses affected performance or there was a fundamental 

difference between students who signed up for the online or in-

person courses. In all of the analyses, however, the online and in-

person non-subgoal groups performed equivalently. Therefore, 

they were consolidated for the final analyses. 

5.2.1 Quiz performance. For all three values calculated from 

students’ quiz grades, the subgoal group performed better than 

the non-subgoal group. For the total quiz score, including zeros 

for missing grades, the maximum score was 31. The subgoal 

group (M = 12.0, SD = 5.6) performed better than the non-

subgoal group (M = 9.5, SD = 6.3) with a medium effect size, d 

= 0.42. The SD of the subgoal group was sufficiently less than 

that of the non-subgoal group to violate the homogeneity test, p 

= .03; therefore, the non-parametric and more conservative 

Mann-Whitney test was used to compare groups, U = 6703, p = 

.001. For the average quiz score, not including zeros for missing 

grades, the maximum score was 6.2 points. The subgoal group 

(M = 2.98, SD = 0.9) performed better than the non-subgoal 

group (M = 2.57, SD = 1.0) with a medium effect size, d = 0.44, 

t(264) = 12.03, p = .001. For the number of quizzes taken out of 

five, the subgoal group (M = 3.9, SD = 1.2) took more quizzes 

than the non-subgoal group (M = 3.4, SD = 1.6) with a small-

medium effect size, d = 0.32. The SD of the subgoal group was 

less than that of the non-subgoal group, p < .01; therefore, Mann-

Whitney was used, U = 7126, p = .01. This pattern of results 

means that the subgoal group completed more quizzes and 

performed better on them, regardless of whether the missing 

grades are factored in as zeros or not.  

More detailed examination of scores on each quiz with 

repeated measures analysis suggests that the subgoal group 

consistently performed better than the non-subgoal group on 

each quiz. Mauchley’s test of sphericity was significant, p < .01, 

as is common in repeated measures analyses, and the Huynh-

Feldt correction was used to make the statistical values more 

conservative. There was no main effect of quiz, F(5, 260) = 2.04, 

p = .11, suggesting that the subgoal intervention was equally 

effective across all topics. Given that each quiz was designed to 

test only the new concepts that had been taught, this finding 

means that students benefitted from the SLWEs for each new 

topic, despite gaining knowledge about other programming 

topics. This analysis could only be conducted with the total quiz 

score because the average quiz score would be missing data from 

un-submitted quizzes. Given that the effect size for the difference 

between groups was equivalent for the analyses with the total and 

average quiz scores, this analysis is expected to be representative 

of average quiz score as well.  

5.2.2 Exam performance. Students’ exam grades had a 

different pattern than their quiz grades. For the total of all exam 

scores, including zeros for missing grades, the maximum score 

was 200. The subgoal group (M = 140.3, SD = 42.4) performed 

better than the non-subgoal group (M = 128.2, SD = 51.6) with a 

small effect size, d = 0.26, t(264) = 4.20, p = .04. For the average 

exam score, not including zeros for missing grades, the 

maximum score was 50. In this case, the subgoal group (M = 

37.5, SD = 7.6) did not perform statistically better than the non-

subgoal group (M = 35.8, SD = 9.1), d = 0.20. The SD of the 

subgoal group was less than that of the non-subgoal group, p = 

.02, so Mann-Whitney was used, U = 7975, p = .24. This 

difference in results can be explained by the different in number 

of exams taken. Out of four exams, the subgoal group (M = 3.7, 

SD = 0.8) took more than the non-subgoal group (M = 3.5, SD = 

1.0) with a small effect size, d = 0.22. The SD of the subgoal 

group was less than that of the non-subgoal group, p < .01, so 

Mann-Whitney was used U = 7785, p = .045. The most plausible 

explanation for this pattern of results, based on the statistics, is 

that exam performance was equivalent between the subgoal and 

non-subgoal groups for students who took all exams. The 

difference in the total exam analysis is likely due to the zeros 

from students who did not take all exams. Because students in 

the non-subgoal group had disproportionally more zeros than the 

subgoal group, their mean total score would decrease more than 

the subgoal group’s.  

This pattern of results has two likely implications. First, it 

implies that SLWEs did not improve exam scores, which aligns 

with the theory behind subgoal learning. Subgoal learning has 



 

 

been shown to be effective because it helps learners to recognize 

the abstract structure of problem-solving procedures before they 

have enough knowledge to recognize it for themselves. 

Therefore, subgoal learning should be most effective at the 

beginning of learning a new procedure (e.g., when learners take 

a quiz), and as learners gain more knowledge about a procedure 

(e.g., by the time they take an exam), the effect should diminish. 

Second, the pattern of results implies that students in the subgoal 

group were more likely than those in the non-subgoal group to 

complete the semester. Especially because the subgoal group had 

less variance on exam scores than the non-subgoal group, 

subgoal learning might have helped students who would 

typically drop out of the course to remain in the course and be 

more successful. Further analysis of students who dropped out of 

the course and any common characteristics that they share would 

be needed to determine whether this is the most likely cause of 

the differences between groups. 

5.2.3 Instructor experience. Morrison taught two sections of 

the introductory programming course for this study. Each section 

of students had a different culture. One section contained mostly 

computing majors, was held earlier in the day, and taught in a 

large auditorium classroom. The second section contained 

mostly students taking the course as a requirement for an 

engineering degree and was held late in the afternoon, allowing 

working professional students to attend.  

The students in both sections expressed that the subgoals and 

the SLWEs done during class helped them to learn the material, 

either in anonymous comments in mid-term student surveys or 

through personal discussions. While working through the 

SLWEs during class, students were asked to state what the next 

subgoal to be accomplished would be, or what the code would be 

to accomplish a specific subgoal. By having the students 

continually verbalize the subgoal labels and associated code, it 

was hoped that the students would internalize the subgoals. 

The most rewarding use of teaching with subgoal labels 

occurred at the end of the semester when covering arrays. While 

explaining the typically difficult topic of references versus 

primitives with shallow and deep copies, the notion of revisiting 

subgoals from assignment statements proved especially helpful. 

When walking through code and bringing back the assignment 

subgoal labels, the students could quickly determine what needed 

to be done or whether the code was correct by looking at the data 

types of the variables involved. Reminding the students to 

evaluate the data type of the variables involved in the statements 

allowed them to see if the action was being taken on an array 

element that was a primitive or reference type. This also proved 

beneficial on test questions that used nested [ ], such as 

array[array[1] + array[2]] = 10 

6 Conclusions 

In this project, we used the TAPS protocol to identify the 

subgoals of problem-solving procedures that use 

expression/assignment statements, selection statements, loops, 

object instantiation and method calls, writing classes, and arrays 

in Java (see Figure 1). We then used those subgoals to design 

subgoal-labeled worked examples and paired practice problems 

to be used as the concepts were taught in an introductory 

programming course. To begin exploring the efficacy of the 

materials, we conducted a pilot test that compared quiz and exam 

performance of students who were taught with the subgoal 

materials and those who were taught with the conventional, non-

subgoal materials for the course. Based on a sample of 265 

students over the fall 2018 semester, we found that students who 

learned with the subgoal materials performed better on quizzes 

throughout the semester. This result suggests that the subgoal 

materials helped learners to solve problems using the procedure 

more effectively during the early stages of learning even though 

no performance difference between groups was found on the 

exams. We also found that students who learned with the subgoal 

materials were more likely to submit all of the exams (i.e., not 

drop out of the course). This finding paired with the finding that 

subgoal materials did not predict exam performance suggests that 

the subgoal materials helped more students to stay in the course 

and achieve equivalent exam performance as their peers. 

Moreover, average exam performance in the subgoal group had 

consistently less variance than that in the non-subgoal group, 

suggesting that the subgoal materials helped to equalize 

performance across students.   

Though these results are promising, the pilot test has 

significant limitations. The instructor who was teaching with the 

subgoal materials was also part of the research team. This 

circumstance was necessary to fix any errors or overlooked 

details that would disrupt using the materials in class, but it also 

diminishes the validity of our results. The instructor is a veteran 

at teaching introductory programming and, thus, has significant 

prior experience, which helps to increase consistency of 

instruction and reduce bias. Some level of bias, however, is still 

likely to have been represented in the data. Now that the 

materials have been fully applied in a course, we will begin 

testing them in courses taught by instructors who are independent 

from the project. The promising results that we found in the pilot 

test suggest that further testing is worthwhile. If we can find the 

same pattern of results in more valid experimental settings, then 

we will have strong evidence that adopting the subgoal materials 

can improve learning in introductory programming courses. The 

materials are designed to be used in place of existing worked 

examples and practice problems, as they are currently used in a 

course. Thus, we expect that the barriers for adopting the 

materials will be low but offer substantial benefits, particularly, 

we hope, for students who are most likely to struggle. 
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