

Design and Pilot Testing of Subgoal Labeled Worked Examples

for Five Core Concepts in CS1
Lauren Margulieux

Georgia State University

Department of Learning Sciences

Atlanta, GA 30302-3978

lmargulieux@gsu.edu

Briana Morrison

University of Nebraska Omaha

Computer Science Department

Omaha, NE 68182

bbmorrison@unomaha.edu

Adrienne Decker

University at Buffalo

Department of Engineering Education

Buffalo, NY 14260-4200

adrienne@buffalo.edu

ABSTRACT

Subgoal learning has improved student problem-solving

performance in programming, but it has been tested for only one-

to-two hours of instruction at a time. Our work pioneers

implementing subgoal learning throughout an entire introductory

programming course. In this paper we discuss the protocol that

we used to identify subgoals for core programming procedures,

present the subgoal labels created for the course, and outline the

subgoal-labeled instructional materials that were designed for a

Java-based course. To examine the effect of subgoal labeled

materials on student performance in the course, we compared

quiz and exam grades between students who learned using

subgoal labels and those who learned using conventional

materials. Initial results indicate that learning with subgoals

improves performance on early applications of concepts.

Moreover, variance in performance was lower and persistence in

the course was higher for students who learned with subgoals

compared to those who learned with conventional materials,

suggesting that learning with subgoal labels may uniquely

benefit students who would normally receive low grades or

dropout of the course.

CCS CONCEPTS

• Social and professional topics → Computer science education

KEYWORDS
CS1; subgoal learning; worked examples; problem solving

ACM Reference format:

Lauren Margulieux, Briana Morrison and Adrienne Decker. 2019.

Design and Pilot Testing of Subgoal Labeled Worked Examples for Five

Core Concepts in CS1. In ITICSE’19: Innovation and Technology in

Computer Science Education Proceedings. ACM, New York, NY, USA, 7

pages. https://doi.org/10.1145/3304221.3319756

1 Introduction

The computing education community is constantly exploring

methods to improve learning outcomes and student retention in

college-level introductory programming courses. Subgoal-

labeled worked examples are a promising method to improve

problem-solving performance for novice learning, but they have

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the Owner/Author.

ITiCSE '19, July 15–17, 2019, Aberdeen, Scotland UK

© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6301-3/19/07.

https://doi.org/10.1145/3304221.3319756

been tested only for one to two hours of instruction at a time [7,

8, 9]. The current project substantially extends this line of work

by identifying the subgoals for problem-solving procedures

typically taught throughout an introductory Java programming

course, developing subgoal-labeled worked examples and paired

practice problems to be used while teaching the course, and

conducting a pilot test on the effectiveness of the materials to

improve problem-solving performance across an entire semester.

The guiding questions for this work were:

1. What are the subgoals of problem-solving procedures

typically taught in college-level introduction to

programming courses that use an imperative programming

language?

2. If students learn procedures using subgoal-oriented

worked-examples and paired practice problems, do they

perform better than students who learn using non-subgoal-

oriented materials on course assessments?

2 Subgoal Learning in Programming

Education

Subgoal learning is an instructional design framework used in

programming education that improves novice problem-solving

performance [3, 6, 7, 8, 9]. Subgoal learning explicitly teaches

students the subgoals, or functional pieces, of a problem-solving

procedure. For example, to solve a problem with a loop, students

must define and initialize variables, so defining and initializing

variables is a subgoal of solving a problem with a loop. The

specific steps taken to achieve this subgoal varies from problem

to problem, but the function remains the same. Novices solve

programming problems better when they explicitly learn the

subgoals of a procedure because they often do not recognize

these functional pieces on their own [4].

Worked examples are commonly used to teach problem-

solving procedures for well-structured problems because they

demonstrate how to apply an abstract procedure to a concrete

problem before the learner can solve problems independently [2,

12, 13]. The drawback of worked examples, however, is that they

must include details specific to a problem. For example, to

demonstrate how to solve a problem using a for loop, the

worked example must also include a cover story, such as “write

a loop that will calculate the average age of the first 100 people

to take a survey.” Learners tend to organize information about

the procedure using these easy-to-grasp details rather than

around the hard-to-conceptualize abstract procedure that they are

learning, leading to difficulty transferring knowledge to new

problems [2, 11]. Subgoal learning addresses this problem by

pointing out shared functional features in worked examples,

helping learners to organize information so that it can transfer

more easily [4, 7]. Furthermore, by drawing learners’ attention to

the functional features and away from the superficial details,

subgoal learning can help learners manage cognitive load [9].

3 Identifying Subgoals with the TAPS Protocol

Some readers might think that instructors naturally point out the

subgoals of problem-solving procedures, but they often do not

[4]. Unlike declarative knowledge (i.e., factual knowledge, such

as 2+2=4), procedural knowledge (i.e., knowledge about how to

do something, such as tying a shoe) becomes more automatized

the more it is used [1]. Therefore, experts in a domain have

procedural knowledge that has become automatized over years

of practice, and they cannot easily recognize or verbalize it. As a

result, the process of identifying subgoals is arduous because it

requires accessing tacit procedural knowledge from an expert. To

access tacit procedural knowledge and identify the subgoals of

five core programming procedures, we employed a cognitive

task analysis, specifically the Task Analysis by Problem Solving

(TAPS) protocol developed by Catrambone [5].

3.1 TAPS Protocol

The TAPS protocol requires a subject-matter expert (SME) and

a knowledge-extraction expert (KEE) who is unfamiliar with the

problem-solving procedure. The KEE asks the SME to bring

problems that exemplify the problem-solving procedure. In the

following description, the SME will have female pronouns and

the KEE male pronouns to help distinguish between them.

The session starts with the KEE asking the SME to solve the

first problem. The SME does not provide a lecture or explanation

of the problem-solving process before solving problems. Instead,

the SME solves the first problem and explains what she is doing

while the KEE takes notes. During the first problem, the KEE

typically does not ask many questions while gaining a general

sense of the procedure, but the KEE might ask the SME to repeat

steps or re-explain steps that he missed or did not understand.

When the KEE is finished taking notes on the first problem,

he asks the SME to solve another problem and explain what she

is doing. Again, the KEE takes notes on the process, specifically

looking for similarities between the problems. During the second

problem, the KEE typically asks more questions, especially

about 1) analogous components of the two problems, 2) why the

SME did a problem-solving step, and 3) how the SME knew

which step to take next. SMEs can typically answer questions

about analogous steps easily. Beyond the explanation that they

provide while solving the problem (i.e., the declarative

knowledge that they have about the procedure), they often

struggle to explain why they took a step or how they knew which

step to take next (i.e., the procedural knowledge that they have

automatized). Automatized procedural knowledge is often what

instructors struggle to impart to their students because they think

that it is common knowledge or because they think it is intuitive.

When the SME starts to struggle to explain steps of the

problem-solving procedure, this is the level at which the KEE

often identifies subgoals. In TAPS, it is important that the KEE

be unfamiliar with the problem-solving procedure because his

novice perspective will help distinguish between common

knowledge and automatized procedural knowledge, both of

which will seem like common knowledge to the SME. The first

stage of TAPS ends when the KEE feels like he has a complete

set of notes for explaining the problem-solving procedure. The

number of problems that the SME solves to reach this point

depends on the complexity of the procedure, the skill of the KEE

at extracting knowledge, and the skill of the SME at verbalizing

tacit knowledge. The first stage typically takes between one and

four hours. It is a demanding task for both the KEE and SME,

and we recommend taking an extended break every two hours.

During the second stage of TAPS, the KEE attempts to solve

problems using his notes for guidance. When the KEE reaches

an impasse, he can ask the SME for help and update his notes.

The SME should not offer help. Once the KEE can reliably solve

new problems using only his notes, the notes are complete.

During the final stage of TAPS, the KEE organizes and edits

the complete notes to create a list of subgoals for the procedure

and asks the SME for feedback. The subgoals represent only the

procedural knowledge required for a problem-solving procedure,

not the declarative knowledge, such as what operation %

represents (modulus). While both types of knowledge are

necessary to solve problems, instructors can easily recognize and

explain declarative knowledge. Therefore, subgoal learning

interventions focus on the procedural knowledge that instructors

can struggle to share.

3.2 Identifying Subgoals in Introductory

Programming (Java)

We used the TAPS protocol to identify subgoals of problem-

solving procedures using expression (assignment) statements,

selection statements, loops, object instantiation and method calls,

writing classes, and arrays in Java. The SME was one of the

authors, Morrison, a computing education researcher and

assistant professor in the CS Department at University of

Nebraska Omaha. Morrison has 23 years of experience teaching

programming and over 15 years of experience specifically

teaching introductory courses in Java. The KEE was another one

of the authors, Margulieux, a computing education researcher

and assistant professor in the Department of Learning Sciences

at Georgia State University. Margulieux has 6 years of

experience using the TAPS protocol and had never learned

programming before serving as KEE on this project.

For each programming concept, the SME and KEE

identified subgoals for evaluating code and writing code.

Furthermore, after creating the list of subgoals, they received

feedback from the other author, Decker, a computing education

researcher with 18 years of experience teaching introductory

programming. The subgoals are listed in Figure 1. Part A for each

subgoal topic lists the evaluate subgoals, and part B lists the write

subgoals. Some subgoals are broken down into sub-subgoals.

4 Designing Instruction

After the identification phase, we designed instructional

materials to help students learn the subgoals of the problem-

solving procedures. The traditional method of teaching subgoals

in STEM education is through subgoal-labeled worked examples

(SLWEs) [4, 7, 9]. Students who study SLWEs perform better

than those who study unlabeled worked examples because the

subgoal labels highlight the structure of the problem-solving

procedure and prompts students to recognize similarities

between solutions [4, 7, 9]. Therefore, we designed SLWEs for

each set of subgoals with multiple levels of difficulty.

Figure 1. Subgoals identified through TAPS protocol.

Subgoals for evaluating and writing expression (assignment) statements

A. Evaluate expression statement B. Write expression statement

1. Determine whether data type of expression is compatible

with data type of variable

2. Update variable for pre based on side effect

3. Solve arithmetic equation

4. Check data type of copied value against data type of variable

5. Update variable for post based on side effect

1. Determine expression that will yield variable

2. Determine data type and name of variable and data type

of expression

3. Determine arithmetic equation with operators

4. Determine expression components

5. Operators and operands must be compatible

Subgoals for evaluating and writing selection statements

A. Evaluate selection statement B. Write selection statement

1. Diagram which statements go together

2. For if statement, determine whether expression is true or false

3. If true – follow true branch, if false –follow else branch or do

nothing if no else branch

1. Define how many mutually exclusive paths are needed

2. Order from most restrictive/selective group to least

restrictive

3. Write if statement with Boolean expression

4. Follow with true bracket including action

5. Follow with else bracket

6. Repeat until all groups and actions are accounted for

Subgoals for evaluating and writing loops.

A. Evaluate loops B. Write loops

1. Identify loop parts

 a. Determine start condition

 b. Determine update condition

 c. Determine termination condition

 d. Determine body that is repeated

2. Trace the loop

 a. For every iteration of loop, write down values

1. Determine purpose of loop

 a. Pick a loop structure (while, for, do_while)

2. Define and initialize variables

3. Determine termination condition

 a. Invert termination condition to continuation condition

4. Write loop body

 a. Update loop control variable to reach termination

Subgoals for calling and writing methods

A. Call or trace method calls B. Write methods

1. Classify method as static method or instance method

 a. If static, use the class name

 b. If instance, must have or create an instance

2. Write (instance / class) dot method name and ()

3. Determine whether parameter(s) are appropriate

 a. Number of parameters passed must match method

declaration

 b. Data types of parameters passed must match method

declaration (or be assignable)

4. Determine what the method will return (if anything: data

type, void, print, change state of object) and where it will

be stored (nowhere, somewhere)

5. Evaluate right hand side of assignment (if there is one).

Value is dependent on method's purpose

1. Define method header based on problem

2. Define return statement at the end

3. Define method body/logic

 a. Determine types of logic (expression, selection, loop,

etc.)

 b. Define internal variables

 c. Write statements

Subgoals for using objects and writing classes

A. Use objects (creating instances) B. Write classes (associated rules sheet)

1. Declare variable of appropriate class datatype.

2. Assign to variable: keyword new, followed by class name,

followed by ().

3. Determine whether parameter(s) are appropriate (API)

 a. Number of parameters

 b. Data types of the parameters

1. Name it

2. Differentiate class-level (static) vs. instance/object-

level variables

3. Differentiate class-level (static) vs. instance/object

behaviors/methods

4. Define instance variables (that you want to be

interrelated)

5. Define class variables (static) as needed

6. Create constructor (behavior) that creates initial state of

object

7. Create 1 accessor and 1 mutator behaviors per attribute

8. Write toString method

9. Write equals method

10. Create additional methods as needed

Subgoals for evaluating and writing arrays

A. Evaluate arrays B. Write arrays

1. Set up array from 0 to size-1

2. Evaluate data type of statements against array

3. Trace statements, updating slots as you go

 a. Remember assignment subgoals

1. Data type plus []

2. Variable name = {initializer list}, or new

datatype [size]

For each topic in Figure 1, we created several SLWEs in

increasing level of difficulty. The simplest version may skip

some of the subgoals identified for the procedure because they

are not necessary for simple problems. It may also include more

sub-subgoals than later levels of SLWEs to provide more

guidance at the earliest stage of learning. The difficulty level of

SLWEs gradually increase, adding subgoals and reducing sub-

subgoals as the problems increase in complexity. The parameters

for problem complexity in each level were determined by

Morrison and Margulieux after identifying the subgoals of each

procedure, and Decker provided feedback. Based on the

parameters, Morrison and Decker designed the first draft of the

SLWE and practice problems (see Figure 2), and Margulieux

provided feedback and help during iterative design.

The SLWEs were interleaved with practice problems so that

after students studied a worked example, they attempted to solve

at least one similar problem. Interleaving worked examples and

practice problems improves learning efficiency over studying

worked examples as in a block before attempting to solve

problems [14]. The SLWE--practice-problem pairs were

intended to be used as either a homework assignment or as

instructional materials that the instructor discusses in class. If

using the materials in class, other instructional techniques can be

combined with the materials. For example, instructors might use

a flipped classroom approach in which students learn about the

problem-solving procedure conceptually before class; then class

time is used to practice problem solving with the SLWE--

practice-problem pairs. While students are working on practice

problems, they can engage in Peer Instruction, which asks

students to explain their solution to a peer and resolve differences

in answers before the instructor provides the correct answer and

has been effective in introductory programming courses [10].

5 Report of Pilot Test

The instructional materials were pilot tested in the introductory

programming courses at University of Nebraska Omaha. There

are five sections of the course taught by three full-time faculty

instructors with similar experience levels and supported by six

graduate teaching assistants. All sections of the course are

coordinated so that they include the same topics at the same pace

and have the same quizzes and exams. The course was designed

as a flipped class in which students watched recorded lectures

before class and then answered peer instruction questions during

class and problem solved in small groups. All sections follow this

format, but the online section uses a different medium for class.

Two sections of the course were taught by Morrison and used the

SLWE during class. Three sections of the course, including the

online section, were taught with conventional, non-subgoal

worked examples. All other instructional features of the sections

were the same among the sections. The pilot test compares

student performance (i.e., quantitative grades) on quizzes and

exams across sections.

5.1 Study Methods

The total number of students across all five sections was 307

based on enrollment at the beginning of the semester. Students

were excluded from analysis if they did not complete at least one

exam and one quiz, effectively dropping the course, making N =

265. They were split across the conventional course group (n =

145) and the SLWE course group (n = 120).

Though we do not have space in the current paper to fully

discuss learner characteristics, we found no correlations between

group and demographic factors or learner characteristics,

including reason for taking the course, expected grade, expected

difficulty of the course, interest in the course content, anxiety

about course performance, age, gender, full-time or part-time

status, race, primary language, family socioeconomic status,

academic major, high school GPA, college GPA, year in school,

or prior experience with programming. There were also no

correlations between these factors and quiz or exam scores. Thus,

these learner characteristics were not used a covariates or random

factors in the analysis.

Figure 2. Example of subgoal-labeled worked examples and practice problem pair for writing expression statements (see Figure 1).

Subgoal-Labeled Worked Example 1 – Simple arithmetic equation Paired Practice Problems

Assume the following given declarations:

int max = 100;

double tax = 0.5, result, bill = 26.12;

Write the code to store max multiplied by tax in the variable result.

SG1: Determine expression that will yield variable

max * tax

SG2: Determine data type and name of variable and data type of expression

Result to be stored in variable result. That variable is a double. The expression max *

tax is an int multiplied by a double yields a double. A double can be assigned to a double.

SG3: Determine arithmetic equation with operators

result = max * tax;

Practice Problem 1:

Calculate a 15% tip on the bill.

Practice Problem 2:

Determine the total amount

owed including bill, tip, and

tax.

5.1.1 Data collection sources. Student performance on the

four exams and five quizzes was collected. We also had the initial

instructor keep a weekly journal on the teaching experience.

Below are the characteristics for the student performance items:

 The majority of quiz questions were either multiple choice

or short answer. Exams consisted of multiple choice

questions (usually 1/3 to 1/2 of the exam grade) and short

answer and long answer questions.

 All exam and quiz questions were based on peer instruction

questions presented in class (near transfer) or the

homework assignments (far transfer).

 Exams and quizzes were scored identically across sections.

All multiple choice and short answer questions were

automatically graded, and all student responses were

reviewed by one member of the instructional team. Rubrics

for open ended questions were developed and a single

member of the instructional team graded all responses for a

single question.

 For exams, students were allotted 2 hours.

 Quizzes were assigned over weekends, from Friday

morning until Monday at midnight and had a 20-minute

time allotment.

5.2 Results and Discussion

The quiz and exam scores were each analyzed in a few ways to

examine the differences in performance between students who

received SLWEs and those who received conventional, non-

subgoal instruction. The following values were calculated for

each student:

1. Total score, which is out of all available points on exams

or quizzes. Thus, if a student did not turn in an exam or

quiz (e.g., because they dropped out of the course) this

score would treat the missing grade as a zero.

2. Average score, which is the average score for all exams

or quizzes that were submitted by a student. Thus, if a

student did not turn in an exam or quiz, this score would

not be affected by the missing grade.

3. Number of assessments completed, which is the total

number of exams or quizzes taken regardless of score.

Conducting analyses with these different values allows us to

examine the performance and retention differences between

groups. Initially in the analyses, the online section was separate

from the other non-subgoal sections in case the medium of the

courses affected performance or there was a fundamental

difference between students who signed up for the online or in-

person courses. In all of the analyses, however, the online and in-

person non-subgoal groups performed equivalently. Therefore,

they were consolidated for the final analyses.

5.2.1 Quiz performance. For all three values calculated from

students’ quiz grades, the subgoal group performed better than

the non-subgoal group. For the total quiz score, including zeros

for missing grades, the maximum score was 31. The subgoal

group (M = 12.0, SD = 5.6) performed better than the non-

subgoal group (M = 9.5, SD = 6.3) with a medium effect size, d

= 0.42. The SD of the subgoal group was sufficiently less than

that of the non-subgoal group to violate the homogeneity test, p

= .03; therefore, the non-parametric and more conservative

Mann-Whitney test was used to compare groups, U = 6703, p =

.001. For the average quiz score, not including zeros for missing

grades, the maximum score was 6.2 points. The subgoal group

(M = 2.98, SD = 0.9) performed better than the non-subgoal

group (M = 2.57, SD = 1.0) with a medium effect size, d = 0.44,

t(264) = 12.03, p = .001. For the number of quizzes taken out of

five, the subgoal group (M = 3.9, SD = 1.2) took more quizzes

than the non-subgoal group (M = 3.4, SD = 1.6) with a small-

medium effect size, d = 0.32. The SD of the subgoal group was

less than that of the non-subgoal group, p < .01; therefore, Mann-

Whitney was used, U = 7126, p = .01. This pattern of results

means that the subgoal group completed more quizzes and

performed better on them, regardless of whether the missing

grades are factored in as zeros or not.

More detailed examination of scores on each quiz with

repeated measures analysis suggests that the subgoal group

consistently performed better than the non-subgoal group on

each quiz. Mauchley’s test of sphericity was significant, p < .01,

as is common in repeated measures analyses, and the Huynh-

Feldt correction was used to make the statistical values more

conservative. There was no main effect of quiz, F(5, 260) = 2.04,

p = .11, suggesting that the subgoal intervention was equally

effective across all topics. Given that each quiz was designed to

test only the new concepts that had been taught, this finding

means that students benefitted from the SLWEs for each new

topic, despite gaining knowledge about other programming

topics. This analysis could only be conducted with the total quiz

score because the average quiz score would be missing data from

un-submitted quizzes. Given that the effect size for the difference

between groups was equivalent for the analyses with the total and

average quiz scores, this analysis is expected to be representative

of average quiz score as well.

5.2.2 Exam performance. Students’ exam grades had a

different pattern than their quiz grades. For the total of all exam

scores, including zeros for missing grades, the maximum score

was 200. The subgoal group (M = 140.3, SD = 42.4) performed

better than the non-subgoal group (M = 128.2, SD = 51.6) with a

small effect size, d = 0.26, t(264) = 4.20, p = .04. For the average

exam score, not including zeros for missing grades, the

maximum score was 50. In this case, the subgoal group (M =

37.5, SD = 7.6) did not perform statistically better than the non-

subgoal group (M = 35.8, SD = 9.1), d = 0.20. The SD of the

subgoal group was less than that of the non-subgoal group, p =

.02, so Mann-Whitney was used, U = 7975, p = .24. This

difference in results can be explained by the different in number

of exams taken. Out of four exams, the subgoal group (M = 3.7,

SD = 0.8) took more than the non-subgoal group (M = 3.5, SD =

1.0) with a small effect size, d = 0.22. The SD of the subgoal

group was less than that of the non-subgoal group, p < .01, so

Mann-Whitney was used U = 7785, p = .045. The most plausible

explanation for this pattern of results, based on the statistics, is

that exam performance was equivalent between the subgoal and

non-subgoal groups for students who took all exams. The

difference in the total exam analysis is likely due to the zeros

from students who did not take all exams. Because students in

the non-subgoal group had disproportionally more zeros than the

subgoal group, their mean total score would decrease more than

the subgoal group’s.

This pattern of results has two likely implications. First, it

implies that SLWEs did not improve exam scores, which aligns

with the theory behind subgoal learning. Subgoal learning has

been shown to be effective because it helps learners to recognize

the abstract structure of problem-solving procedures before they

have enough knowledge to recognize it for themselves.

Therefore, subgoal learning should be most effective at the

beginning of learning a new procedure (e.g., when learners take

a quiz), and as learners gain more knowledge about a procedure

(e.g., by the time they take an exam), the effect should diminish.

Second, the pattern of results implies that students in the subgoal

group were more likely than those in the non-subgoal group to

complete the semester. Especially because the subgoal group had

less variance on exam scores than the non-subgoal group,

subgoal learning might have helped students who would

typically drop out of the course to remain in the course and be

more successful. Further analysis of students who dropped out of

the course and any common characteristics that they share would

be needed to determine whether this is the most likely cause of

the differences between groups.

5.2.3 Instructor experience. Morrison taught two sections of

the introductory programming course for this study. Each section

of students had a different culture. One section contained mostly

computing majors, was held earlier in the day, and taught in a

large auditorium classroom. The second section contained

mostly students taking the course as a requirement for an

engineering degree and was held late in the afternoon, allowing

working professional students to attend.

The students in both sections expressed that the subgoals and

the SLWEs done during class helped them to learn the material,

either in anonymous comments in mid-term student surveys or

through personal discussions. While working through the

SLWEs during class, students were asked to state what the next

subgoal to be accomplished would be, or what the code would be

to accomplish a specific subgoal. By having the students

continually verbalize the subgoal labels and associated code, it

was hoped that the students would internalize the subgoals.

The most rewarding use of teaching with subgoal labels

occurred at the end of the semester when covering arrays. While

explaining the typically difficult topic of references versus

primitives with shallow and deep copies, the notion of revisiting

subgoals from assignment statements proved especially helpful.

When walking through code and bringing back the assignment

subgoal labels, the students could quickly determine what needed

to be done or whether the code was correct by looking at the data

types of the variables involved. Reminding the students to

evaluate the data type of the variables involved in the statements

allowed them to see if the action was being taken on an array

element that was a primitive or reference type. This also proved

beneficial on test questions that used nested [], such as

array[array[1] + array[2]] = 10

6 Conclusions

In this project, we used the TAPS protocol to identify the

subgoals of problem-solving procedures that use

expression/assignment statements, selection statements, loops,

object instantiation and method calls, writing classes, and arrays

in Java (see Figure 1). We then used those subgoals to design

subgoal-labeled worked examples and paired practice problems

to be used as the concepts were taught in an introductory

programming course. To begin exploring the efficacy of the

materials, we conducted a pilot test that compared quiz and exam

performance of students who were taught with the subgoal

materials and those who were taught with the conventional, non-

subgoal materials for the course. Based on a sample of 265

students over the fall 2018 semester, we found that students who

learned with the subgoal materials performed better on quizzes

throughout the semester. This result suggests that the subgoal

materials helped learners to solve problems using the procedure

more effectively during the early stages of learning even though

no performance difference between groups was found on the

exams. We also found that students who learned with the subgoal

materials were more likely to submit all of the exams (i.e., not

drop out of the course). This finding paired with the finding that

subgoal materials did not predict exam performance suggests that

the subgoal materials helped more students to stay in the course

and achieve equivalent exam performance as their peers.

Moreover, average exam performance in the subgoal group had

consistently less variance than that in the non-subgoal group,

suggesting that the subgoal materials helped to equalize

performance across students.

Though these results are promising, the pilot test has

significant limitations. The instructor who was teaching with the

subgoal materials was also part of the research team. This

circumstance was necessary to fix any errors or overlooked

details that would disrupt using the materials in class, but it also

diminishes the validity of our results. The instructor is a veteran

at teaching introductory programming and, thus, has significant

prior experience, which helps to increase consistency of

instruction and reduce bias. Some level of bias, however, is still

likely to have been represented in the data. Now that the

materials have been fully applied in a course, we will begin

testing them in courses taught by instructors who are independent

from the project. The promising results that we found in the pilot

test suggest that further testing is worthwhile. If we can find the

same pattern of results in more valid experimental settings, then

we will have strong evidence that adopting the subgoal materials

can improve learning in introductory programming courses. The

materials are designed to be used in place of existing worked

examples and practice problems, as they are currently used in a

course. Thus, we expect that the barriers for adopting the

materials will be low but offer substantial benefits, particularly,

we hope, for students who are most likely to struggle.

7 ACKNOWLEDGMENTS

Our thanks to the reviewers who helped to improve this paper.

We also thank the students who consented to be part of this study.

This work is funded in part by the National Science Foundation

under grants 1712231 and 1712025. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of

the NSF.

8 REFERENCES

[1] Anderson, J. R. (1996). ACT: A simple theory of complex cognition.

American Psychologist, 51(4), 355.

[2] Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning

from examples: Instructional principles from the worked examples

research. Review of Educational Research, 70(2), 181-214.

[3] Brown, N. C., & Wilson, G. (2018). Ten quick tips for teaching

programming. PLoS Computational Biology, 14(4).

[4] Catrambone, R. (1998). The subgoal learning model: Creating better

examples so that students can solve novel problems. Journal of
Experimental Psychology: General, 127(4), 355.

[5] Catrambone, R. (2011). Task analysis by problem solving (TAPS):

Uncovering expert knowledge to develop high-quality instructional

materials and training. Paper presented at the 2011 Learning and

Technology Symposium (Columbus, GA, June).

[6] Joentausta, J., & Hellas, A. (2018, February). Subgoal Labeled Worked

Examples in K-3 Education. In Proceedings of the 49th ACM Technical

Symposium on Computer Science Education (pp. 616-621). ACM.

[7] Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-

labeled instructional material improves performance and transfer in

learning to develop mobile applications. In Proceedings of the Ninth

Annual International Conference on International Computing Education

Research (pp. 71-78). New York, NY: ACM.

[8] Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops:

A replication study illuminates impact of HS courses. In Proceedings of

the Twelfth Annual International Conference on International Computing

Education Research (pp. 221-230). New York, NY: ACM.

[9] Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals,

context, and worked examples in learning computing problem solving. In

Proceedings of the Eleventh Annual International Conference on

International Computing Education Research (pp. 21-29). New York,

NY: ACM.

[10] Porter, L., Bailey Lee, C., Simon, B., & Zingaro, D. (2011). Peer

instruction: Do students really learn from peer discussion in computing?.

In Proceedings of the Seventh International Computing Education

Research Conference (pp. 45-52). ACM.

[11] Renkl, A. (1997). Learning from worked‐out examples: A study on

individual differences. Cognitive Science, 21(1), 1-29.

[12] Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., & Salden, R.

(2009). The worked-example effect: Not an artefact of lousy control

conditions. Computers in Human Behavior, 25(2), 258-266.

[13] Sweller, J. (2006). The worked example effect and human cognition.

Learning and Instruction.

[14] Trafton, J. G., & Reiser, B. J. (1993). Studying examples and solving

problems: Contributions to skill acquisition. In Proceedings of the 15th

Conference of the Cognitive Science Society (pp. 1017-1022).

