Design and Pilot Testing of Subgoal Labeled Worked Examples
for Five Core Concepts in CS1

Lauren Margulieux
Georgia State University
Department of Learning Sciences
Atlanta, GA 30302-3978
Imargulieux@gsu.edu

ABSTRACT

Subgoal learning has improved student problem-solving
performance in programming, but it has been tested for only one-
to-two hours of instruction at a time. Our work pioneers
implementing subgoal learning throughout an entire introductory
programming course. In this paper we discuss the protocol that
we used to identify subgoals for core programming procedures,
present the subgoal labels created for the course, and outline the
subgoal-labeled instructional materials that were designed for a
Java-based course. To examine the effect of subgoal labeled
materials on student performance in the course, we compared
quiz and exam grades between students who learned using
subgoal labels and those who learned using conventional
materials. Initial results indicate that learning with subgoals
improves performance on early applications of concepts.
Moreover, variance in performance was lower and persistence in
the course was higher for students who learned with subgoals
compared to those who learned with conventional materials,
suggesting that learning with subgoal labels may uniquely
benefit students who would normally receive low grades or
dropout of the course.

CCS CONCEPTS

* Social and professional topics — Computer science education

KEYWORDS

CS1; subgoal learning; worked examples; problem solving

ACM Reference format:

Lauren Margulieux, Briana Morrison and Adrienne Decker. 2019.
Design and Pilot Testing of Subgoal Labeled Worked Examples for Five
Core Concepts in CS1. In ITICSE’19: Innovation and Technology in
Computer Science Education Proceedings. ACM, New York, NY, USA4, 7
pages. https://doi.org/10.1145/3304221.3319756

1 Introduction

The computing education community is constantly exploring
methods to improve learning outcomes and student retention in
college-level introductory programming courses. Subgoal-
labeled worked examples are a promising method to improve
problem-solving performance for novice learning, but they have

Briana Morrison
University of Nebraska Omaha
Computer Science Department

Omaha, NE 68182
bbmorrison@unomaha.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.

ITiCSE '19, July 15-17, 2019, Aberdeen, Scotland UK

© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6301-3/19/07.

https://doi.org/10.1145/3304221.3319756

Adrienne Decker
University at Buffalo
Department of Engineering Education
Buffalo, NY 14260-4200
adrienne@buffalo.edu

been tested only for one to two hours of instruction at a time [7,
8, 9]. The current project substantially extends this line of work
by identifying the subgoals for problem-solving procedures
typically taught throughout an introductory Java programming
course, developing subgoal-labeled worked examples and paired
practice problems to be used while teaching the course, and
conducting a pilot test on the effectiveness of the materials to
improve problem-solving performance across an entire semester.
The guiding questions for this work were:

1. What are the subgoals of problem-solving procedures
typically taught in college-level introduction to
programming courses that use an imperative programming
language?

2. If students learn procedures using subgoal-oriented
worked-examples and paired practice problems, do they
perform better than students who learn using non-subgoal-
oriented materials on course assessments?

2 Subgoal Learning in Programming
Education

Subgoal learning is an instructional design framework used in
programming education that improves novice problem-solving
performance [3, 6, 7, 8, 9]. Subgoal learning explicitly teaches
students the subgoals, or functional pieces, of a problem-solving
procedure. For example, to solve a problem with a loop, students
must define and initialize variables, so defining and initializing
variables is a subgoal of solving a problem with a loop. The
specific steps taken to achieve this subgoal varies from problem
to problem, but the function remains the same. Novices solve
programming problems better when they explicitly learn the
subgoals of a procedure because they often do not recognize
these functional pieces on their own [4].

Worked examples are commonly used to teach problem-
solving procedures for well-structured problems because they
demonstrate how to apply an abstract procedure to a concrete
problem before the learner can solve problems independently [2,
12, 13]. The drawback of worked examples, however, is that they
must include details specific to a problem. For example, to
demonstrate how to solve a problem using a for loop, the
worked example must also include a cover story, such as “write
a loop that will calculate the average age of the first 100 people
to take a survey.” Learners tend to organize information about
the procedure using these easy-to-grasp details rather than
around the hard-to-conceptualize abstract procedure that they are
learning, leading to difficulty transferring knowledge to new
problems [2, 11]. Subgoal learning addresses this problem by
pointing out shared functional features in worked examples,
helping learners to organize information so that it can transfer

more easily [4, 7]. Furthermore, by drawing learners’ attention to
the functional features and away from the superficial details,
subgoal learning can help learners manage cognitive load [9].

3 Identifying Subgoals with the TAPS Protocol

Some readers might think that instructors naturally point out the
subgoals of problem-solving procedures, but they often do not
[4]. Unlike declarative knowledge (i.e., factual knowledge, such
as 2+2=4), procedural knowledge (i.e., knowledge about how to
do something, such as tying a shoe) becomes more automatized
the more it is used [1]. Therefore, experts in a domain have
procedural knowledge that has become automatized over years
of practice, and they cannot easily recognize or verbalize it. As a
result, the process of identifying subgoals is arduous because it
requires accessing tacit procedural knowledge from an expert. To
access tacit procedural knowledge and identify the subgoals of
five core programming procedures, we employed a cognitive
task analysis, specifically the Task Analysis by Problem Solving
(TAPS) protocol developed by Catrambone [5].

3.1 TAPS Protocol

The TAPS protocol requires a subject-matter expert (SME) and
a knowledge-extraction expert (KEE) who is unfamiliar with the
problem-solving procedure. The KEE asks the SME to bring
problems that exemplify the problem-solving procedure. In the
following description, the SME will have female pronouns and
the KEE male pronouns to help distinguish between them.

The session starts with the KEE asking the SME to solve the
first problem. The SME does not provide a lecture or explanation
of the problem-solving process before solving problems. Instead,
the SME solves the first problem and explains what she is doing
while the KEE takes notes. During the first problem, the KEE
typically does not ask many questions while gaining a general
sense of the procedure, but the KEE might ask the SME to repeat
steps or re-explain steps that he missed or did not understand.

When the KEE is finished taking notes on the first problem,
he asks the SME to solve another problem and explain what she
is doing. Again, the KEE takes notes on the process, specifically
looking for similarities between the problems. During the second
problem, the KEE typically asks more questions, especially
about 1) analogous components of the two problems, 2) why the
SME did a problem-solving step, and 3) how the SME knew
which step to take next. SMEs can typically answer questions
about analogous steps easily. Beyond the explanation that they
provide while solving the problem (i.e., the declarative
knowledge that they have about the procedure), they often
struggle to explain why they took a step or how they knew which
step to take next (i.e., the procedural knowledge that they have
automatized). Automatized procedural knowledge is often what
instructors struggle to impart to their students because they think
that it is common knowledge or because they think it is intuitive.

When the SME starts to struggle to explain steps of the
problem-solving procedure, this is the level at which the KEE
often identifies subgoals. In TAPS, it is important that the KEE
be unfamiliar with the problem-solving procedure because his
novice perspective will help distinguish between common
knowledge and automatized procedural knowledge, both of
which will seem like common knowledge to the SME. The first
stage of TAPS ends when the KEE feels like he has a complete

set of notes for explaining the problem-solving procedure. The
number of problems that the SME solves to reach this point
depends on the complexity of the procedure, the skill of the KEE
at extracting knowledge, and the skill of the SME at verbalizing
tacit knowledge. The first stage typically takes between one and
four hours. It is a demanding task for both the KEE and SME,
and we recommend taking an extended break every two hours.

During the second stage of TAPS, the KEE attempts to solve
problems using his notes for guidance. When the KEE reaches
an impasse, he can ask the SME for help and update his notes.
The SME should not offer help. Once the KEE can reliably solve
new problems using only his notes, the notes are complete.

During the final stage of TAPS, the KEE organizes and edits
the complete notes to create a list of subgoals for the procedure
and asks the SME for feedback. The subgoals represent only the
procedural knowledge required for a problem-solving procedure,
not the declarative knowledge, such as what operation %
represents (modulus). While both types of knowledge are
necessary to solve problems, instructors can easily recognize and
explain declarative knowledge. Therefore, subgoal learning
interventions focus on the procedural knowledge that instructors
can struggle to share.

3.2 Identifying Subgoals in Introductory
Programming (Java)

We used the TAPS protocol to identify subgoals of problem-
solving procedures using expression (assignment) statements,
selection statements, loops, object instantiation and method calls,
writing classes, and arrays in Java. The SME was one of the
authors, Morrison, a computing education researcher and
assistant professor in the CS Department at University of
Nebraska Omaha. Morrison has 23 years of experience teaching
programming and over 15 years of experience specifically
teaching introductory courses in Java. The KEE was another one
of the authors, Margulieux, a computing education researcher
and assistant professor in the Department of Learning Sciences
at Georgia State University. Margulieux has 6 years of
experience using the TAPS protocol and had never learned
programming before serving as KEE on this project.

For each programming concept, the SME and KEE
identified subgoals for evaluating code and writing code.
Furthermore, after creating the list of subgoals, they received
feedback from the other author, Decker, a computing education
researcher with 18 years of experience teaching introductory
programming. The subgoals are listed in Figure 1. Part A for each
subgoal topic lists the evaluate subgoals, and part B lists the write
subgoals. Some subgoals are broken down into sub-subgoals.

4 Designing Instruction

After the identification phase, we designed instructional
materials to help students learn the subgoals of the problem-
solving procedures. The traditional method of teaching subgoals
in STEM education is through subgoal-labeled worked examples
(SLWEs) [4, 7, 9]. Students who study SLWEs perform better
than those who study unlabeled worked examples because the
subgoal labels highlight the structure of the problem-solving
procedure and prompts students to recognize similarities
between solutions [4, 7, 9]. Therefore, we designed SLWEs for
each set of subgoals with multiple levels of difficulty.

Figure 1. Subgoals identified through TAPS protocol.

Subgoals for evaluating and writing expression (assignment) statements

A. Evaluate expression statement

B. Write expression statement

1. Determine whether data type of expression is compatible
with data type of variable

2. Update variable for pre based on side effect

3. Solve arithmetic equation

4. Check data type of copied value against data type of variable
5. Update variable for post based on side effect

1. Determine expression that will yield variable

2. Determine data type and name of variable and data type
of expression

3. Determine arithmetic equation with operators

4. Determine expression components

5. Operators and operands must be compatible

Subgoals for evaluating and writing selection statements

A. Evaluate selection statement

B. Write selection statement

1. Diagram which statements go together

2. For if statement, determine whether expression is true or false
3. If true — follow true branch, if false —follow else branch or do
nothing if no else branch

1. Define how many mutually exclusive paths are needed
2. Order from most restrictive/selective group to least
restrictive

3. Write if statement with Boolean expression

4. Follow with true bracket including action

5. Follow with else bracket

6. Repeat until all groups and actions are accounted for

Subgoals for evaluating and writing loops.

A. Evaluate loops

B. Write loops

1. Identify loop parts
a. Determine start condition
b. Determine update condition
c¢. Determine termination condition
d. Determine body that is repeated
2. Trace the loop
a. For every iteration of loop, write down values

1. Determine purpose of loop
a. Pick a loop structure (while, for, do_while)
2. Define and initialize variables
3. Determine termination condition
a. Invert termination condition to continuation condition
4. Write loop body
a. Update loop control variable to reach termination

Subgoals for calling and writing methods

A. Call or trace method calls

. Write methods

1. Classify method as static method or instance method
a. If static, use the class name
b. If instance, must have or create an instance
2. Write (instance / class) dot method name and ()
3. Determine whether parameter(s) are appropriate
a. Number of parameters passed must match method
declaration
b. Data types of parameters passed must match method
declaration (or be assignable)

4. Determine what the method will return (if anything: data
type, void, print, change state of object) and where it will
be stored (nowhere, somewhere)

5. Evaluate right hand side of assignment (if there is one).
Value is dependent on method's purpose

. Define method header based on problem

. Define return statement at the end

. Define method body/logic

a. Determine types of logic (expression, selection, loop,
etc.)

b. Define internal variables

c. Write statements

w N =

Subgoals for using objects and writing classes

A. Use objects (creating instances)

B. Write classes (associated rules sheet)

1. Declare variable of appropriate class datatype.
2. Assign to variable: keyword new, followed by class name,
followed by ().
3. Determine whether parameter(s) are appropriate (API)
a. Number of parameters
b. Data types of the parameters

1. Name it

2. Differentiate class-level (static) vs. instance/object-
level variables

3. Differentiate class-level (static) vs. instance/object
behaviors/methods

4. Define instance variables (that you want to be
interrelated)

5. Define class variables (static) as needed

6. Create constructor (behavior) that creates initial state of
object

7. Create 1 accessor and 1 mutator behaviors per attribute
8. Write toString method

9. Write equals method

10. Create additional methods as needed

Subgoals for evaluating and writing arrays

A. Evaluate arrays

B. Write arrays

1. Set up array from 0 to size-1
2. Evaluate data type of statements against array
3. Trace statements, updating slots as you go

a. Remember assignment subgoals

1. Data type plus []
2. Variablename = {initializer list},or new
datatype [size]

For each topic in Figure 1, we created several SLWEs in
increasing level of difficulty. The simplest version may skip
some of the subgoals identified for the procedure because they
are not necessary for simple problems. It may also include more
sub-subgoals than later levels of SLWEs to provide more
guidance at the earliest stage of learning. The difficulty level of
SLWEs gradually increase, adding subgoals and reducing sub-
subgoals as the problems increase in complexity. The parameters
for problem complexity in each level were determined by
Morrison and Margulieux after identifying the subgoals of each
procedure, and Decker provided feedback. Based on the
parameters, Morrison and Decker designed the first draft of the
SLWE and practice problems (see Figure 2), and Margulieux
provided feedback and help during iterative design.

The SLWEs were interleaved with practice problems so that
after students studied a worked example, they attempted to solve
at least one similar problem. Interleaving worked examples and
practice problems improves learning efficiency over studying
worked examples as in a block before attempting to solve
problems [14]. The SLWE--practice-problem pairs were
intended to be used as either a homework assignment or as
instructional materials that the instructor discusses in class. If
using the materials in class, other instructional techniques can be
combined with the materials. For example, instructors might use
a flipped classroom approach in which students learn about the
problem-solving procedure conceptually before class; then class
time is used to practice problem solving with the SLWE--
practice-problem pairs. While students are working on practice
problems, they can engage in Peer Instruction, which asks
students to explain their solution to a peer and resolve differences
in answers before the instructor provides the correct answer and
has been effective in introductory programming courses [10].

5 Report of Pilot Test

The instructional materials were pilot tested in the introductory
programming courses at University of Nebraska Omaha. There

are five sections of the course taught by three full-time faculty
instructors with similar experience levels and supported by six
graduate teaching assistants. All sections of the course are
coordinated so that they include the same topics at the same pace
and have the same quizzes and exams. The course was designed
as a flipped class in which students watched recorded lectures
before class and then answered peer instruction questions during
class and problem solved in small groups. All sections follow this
format, but the online section uses a different medium for class.
Two sections of the course were taught by Morrison and used the
SLWE during class. Three sections of the course, including the
online section, were taught with conventional, non-subgoal
worked examples. All other instructional features of the sections
were the same among the sections. The pilot test compares
student performance (i.e., quantitative grades) on quizzes and
exams across sections.

5.1 Study Methods

The total number of students across all five sections was 307
based on enrollment at the beginning of the semester. Students
were excluded from analysis if they did not complete at least one
exam and one quiz, effectively dropping the course, making N =
265. They were split across the conventional course group (n =
145) and the SLWE course group (n = 120).

Though we do not have space in the current paper to fully
discuss learner characteristics, we found no correlations between
group and demographic factors or learner characteristics,
including reason for taking the course, expected grade, expected
difficulty of the course, interest in the course content, anxiety
about course performance, age, gender, full-time or part-time
status, race, primary language, family socioeconomic status,
academic major, high school GPA, college GPA, year in school,
or prior experience with programming. There were also no
correlations between these factors and quiz or exam scores. Thus,
these learner characteristics were not used a covariates or random
factors in the analysis.

Figure 2. Example of subgoal-labeled worked examples and practice problem pair for writing expression statements (see Figure 1).

Subgoal-Labeled Worked Example 1 — Simple arithmetic equation

Paired Practice Problems

Assume the following given declarations:
int max = 100;
double tax = 0.5, result, bill = 26.12;
SG1: Determine expression that will yield variable

max * tax

SG3: Determine arithmetic equation with operators
result = max * tax;

Write the code to store max multiplied by tax in the variable result.

SG2: Determine data type and name of variable and data type of expression

Result to be stored in variable result. That variable is a double. The expression max *
tax is an int multiplied by a double yields a double. A double can be assigned to a double.

Practice Problem 1:
Calculate a 15% tip on the bill.

Practice Problem 2:

Determine the total amount
owed including bill, tip, and
tax.

5.1.1 Data collection sources. Student performance on the
four exams and five quizzes was collected. We also had the initial
instructor keep a weekly journal on the teaching experience.
Below are the characteristics for the student performance items:

e The majority of quiz questions were either multiple choice
or short answer. Exams consisted of multiple choice
questions (usually 1/3 to 1/2 of the exam grade) and short
answer and long answer questions.

e All exam and quiz questions were based on peer instruction
questions presented in class (near transfer) or the
homework assignments (far transfer).

e Exams and quizzes were scored identically across sections.
All multiple choice and short answer questions were
automatically graded, and all student responses were
reviewed by one member of the instructional team. Rubrics
for open ended questions were developed and a single
member of the instructional team graded all responses for a
single question.

o For exams, students were allotted 2 hours.

e Quizzes were assigned over weekends, from Friday
morning until Monday at midnight and had a 20-minute
time allotment.

5.2 Results and Discussion

The quiz and exam scores were each analyzed in a few ways to
examine the differences in performance between students who
received SLWEs and those who received conventional, non-
subgoal instruction. The following values were calculated for
each student:

1. Total score, which is out of all available points on exams
or quizzes. Thus, if a student did not turn in an exam or
quiz (e.g., because they dropped out of the course) this
score would treat the missing grade as a zero.

2. Average score, which is the average score for all exams
or quizzes that were submitted by a student. Thus, ifa
student did not turn in an exam or quiz, this score would
not be affected by the missing grade.

3. Number of assessments completed, which is the total
number of exams or quizzes taken regardless of score.
Conducting analyses with these different values allows us to
examine the performance and retention differences between
groups. Initially in the analyses, the online section was separate
from the other non-subgoal sections in case the medium of the
courses affected performance or there was a fundamental
difference between students who signed up for the online or in-
person courses. In all of the analyses, however, the online and in-
person non-subgoal groups performed equivalently. Therefore,

they were consolidated for the final analyses.

5.2.1 Quiz performance. For all three values calculated from
students’ quiz grades, the subgoal group performed better than
the non-subgoal group. For the total quiz score, including zeros
for missing grades, the maximum score was 31. The subgoal
group (M = 12.0, SD = 5.6) performed better than the non-
subgoal group (M = 9.5, SD = 6.3) with a medium effect size, d
= 0.42. The SD of the subgoal group was sufficiently less than
that of the non-subgoal group to violate the homogeneity test, p
= .03; therefore, the non-parametric and more conservative
Mann-Whitney test was used to compare groups, U = 6703, p =

.001. For the average quiz score, not including zeros for missing
grades, the maximum score was 6.2 points. The subgoal group
(M = 298, SD = 0.9) performed better than the non-subgoal
group (M =2.57, SD = 1.0) with a medium effect size, d = 0.44,
#(264) =12.03, p=.001. For the number of quizzes taken out of
five, the subgoal group (M = 3.9, SD = 1.2) took more quizzes
than the non-subgoal group (M = 3.4, SD = 1.6) with a small-
medium effect size, d = 0.32. The SD of the subgoal group was
less than that of the non-subgoal group, p <.01; therefore, Mann-
Whitney was used, U = 7126, p = .01. This pattern of results
means that the subgoal group completed more quizzes and
performed better on them, regardless of whether the missing
grades are factored in as zeros or not.

More detailed examination of scores on each quiz with
repeated measures analysis suggests that the subgoal group
consistently performed better than the non-subgoal group on
each quiz. Mauchley’s test of sphericity was significant, p <.01,
as is common in repeated measures analyses, and the Huynh-
Feldt correction was used to make the statistical values more
conservative. There was no main effect of quiz, F(5, 260) =2.04,
p = .11, suggesting that the subgoal intervention was equally
effective across all topics. Given that each quiz was designed to
test only the new concepts that had been taught, this finding
means that students benefitted from the SLWEs for each new
topic, despite gaining knowledge about other programming
topics. This analysis could only be conducted with the total quiz
score because the average quiz score would be missing data from
un-submitted quizzes. Given that the effect size for the difference
between groups was equivalent for the analyses with the total and
average quiz scores, this analysis is expected to be representative
of average quiz score as well.

5.2.2 Exam performance. Students’ exam grades had a
different pattern than their quiz grades. For the total of all exam
scores, including zeros for missing grades, the maximum score
was 200. The subgoal group (M = 140.3, SD = 42.4) performed
better than the non-subgoal group (M = 128.2, SD =51.6) with a
small effect size, d = 0.26, #(264) = 4.20, p = .04. For the average
exam score, not including zeros for missing grades, the
maximum score was 50. In this case, the subgoal group (M =
37.5, SD =7.6) did not perform statistically better than the non-
subgoal group (M = 35.8, SD =9.1), d = 0.20. The SD of the
subgoal group was less than that of the non-subgoal group, p =
.02, so Mann-Whitney was used, U = 7975, p = .24. This
difference in results can be explained by the different in number
of exams taken. Out of four exams, the subgoal group (M = 3.7,
SD = 0.8) took more than the non-subgoal group (M = 3.5, SD =
1.0) with a small effect size, d = 0.22. The SD of the subgoal
group was less than that of the non-subgoal group, p < .01, so
Mann-Whitney was used U = 7785, p = .045. The most plausible
explanation for this pattern of results, based on the statistics, is
that exam performance was equivalent between the subgoal and
non-subgoal groups for students who took all exams. The
difference in the total exam analysis is likely due to the zeros
from students who did not take all exams. Because students in
the non-subgoal group had disproportionally more zeros than the
subgoal group, their mean total score would decrease more than
the subgoal group’s.

This pattern of results has two likely implications. First, it
implies that SLWEs did not improve exam scores, which aligns
with the theory behind subgoal learning. Subgoal learning has

been shown to be effective because it helps learners to recognize
the abstract structure of problem-solving procedures before they
have enough knowledge to recognize it for themselves.
Therefore, subgoal learning should be most effective at the
beginning of learning a new procedure (e.g., when learners take
a quiz), and as learners gain more knowledge about a procedure
(e.g., by the time they take an exam), the effect should diminish.
Second, the pattern of results implies that students in the subgoal
group were more likely than those in the non-subgoal group to
complete the semester. Especially because the subgoal group had
less variance on exam scores than the non-subgoal group,
subgoal learning might have helped students who would
typically drop out of the course to remain in the course and be
more successful. Further analysis of students who dropped out of
the course and any common characteristics that they share would
be needed to determine whether this is the most likely cause of
the differences between groups.

5.2.3 Instructor experience. Morrison taught two sections of
the introductory programming course for this study. Each section
of students had a different culture. One section contained mostly
computing majors, was held earlier in the day, and taught in a
large auditorium classroom. The second section contained
mostly students taking the course as a requirement for an
engineering degree and was held late in the afternoon, allowing
working professional students to attend.

The students in both sections expressed that the subgoals and
the SLWEs done during class helped them to learn the material,
either in anonymous comments in mid-term student surveys or
through personal discussions. While working through the
SLWEs during class, students were asked to state what the next
subgoal to be accomplished would be, or what the code would be
to accomplish a specific subgoal. By having the students
continually verbalize the subgoal labels and associated code, it
was hoped that the students would internalize the subgoals.

The most rewarding use of teaching with subgoal labels
occurred at the end of the semester when covering arrays. While
explaining the typically difficult topic of references versus
primitives with shallow and deep copies, the notion of revisiting
subgoals from assignment statements proved especially helpful.
When walking through code and bringing back the assignment
subgoal labels, the students could quickly determine what needed
to be done or whether the code was correct by looking at the data
types of the variables involved. Reminding the students to
evaluate the data type of the variables involved in the statements
allowed them to see if the action was being taken on an array
element that was a primitive or reference type. This also proved
beneficial on test questions that used nested [], such as

arraylarray[l] + array[2]] = 10

6 Conclusions

In this project, we used the TAPS protocol to identify the
subgoals of problem-solving procedures that use
expression/assignment statements, selection statements, loops,
object instantiation and method calls, writing classes, and arrays
in Java (see Figure 1). We then used those subgoals to design
subgoal-labeled worked examples and paired practice problems
to be used as the concepts were taught in an introductory
programming course. To begin exploring the efficacy of the
materials, we conducted a pilot test that compared quiz and exam
performance of students who were taught with the subgoal

materials and those who were taught with the conventional, non-
subgoal materials for the course. Based on a sample of 265
students over the fall 2018 semester, we found that students who
learned with the subgoal materials performed better on quizzes
throughout the semester. This result suggests that the subgoal
materials helped learners to solve problems using the procedure
more effectively during the early stages of learning even though
no performance difference between groups was found on the
exams. We also found that students who learned with the subgoal
materials were more likely to submit all of the exams (i.e., not
drop out of the course). This finding paired with the finding that
subgoal materials did not predict exam performance suggests that
the subgoal materials helped more students to stay in the course
and achieve equivalent exam performance as their peers.
Moreover, average exam performance in the subgoal group had
consistently less variance than that in the non-subgoal group,
suggesting that the subgoal materials helped to equalize
performance across students.

Though these results are promising, the pilot test has
significant limitations. The instructor who was teaching with the
subgoal materials was also part of the research team. This
circumstance was necessary to fix any errors or overlooked
details that would disrupt using the materials in class, but it also
diminishes the validity of our results. The instructor is a veteran
at teaching introductory programming and, thus, has significant
prior experience, which helps to increase consistency of
instruction and reduce bias. Some level of bias, however, is still
likely to have been represented in the data. Now that the
materials have been fully applied in a course, we will begin
testing them in courses taught by instructors who are independent
from the project. The promising results that we found in the pilot
test suggest that further testing is worthwhile. If we can find the
same pattern of results in more valid experimental settings, then
we will have strong evidence that adopting the subgoal materials
can improve learning in introductory programming courses. The
materials are designed to be used in place of existing worked
examples and practice problems, as they are currently used in a
course. Thus, we expect that the barriers for adopting the
materials will be low but offer substantial benefits, particularly,
we hope, for students who are most likely to struggle.

7 ACKNOWLEDGMENTS

Our thanks to the reviewers who helped to improve this paper.
We also thank the students who consented to be part of this study.
This work is funded in part by the National Science Foundation
under grants 1712231 and 1712025. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the NSF.

8 REFERENCES

[1] Anderson, J. R. (1996). ACT: A simple theory of complex cognition.
American Psychologist, 51(4), 355.

[2] Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning
from examples: Instructional principles from the worked examples
research. Review of Educational Research, 70(2), 181-214.

[3] Brown, N. C., & Wilson, G. (2018). Ten quick tips for teaching
programming. PLoS Computational Biology, 14(4).

[4] Catrambone, R. (1998). The subgoal learning model: Creating better
examples so that students can solve novel problems. Journal of
Experimental Psychology: General, 127(4), 355.

Catrambone, R. (2011). Task analysis by problem solving (TAPS):
Uncovering expert knowledge to develop high-quality instructional
materials and training. Paper presented at the 2011 Learning and
Technology Symposium (Columbus, GA, June).

Joentausta, J., & Hellas, A. (2018, February). Subgoal Labeled Worked
Examples in K-3 Education. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (pp. 616-621). ACM.

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-
labeled instructional material improves performance and transfer in
learning to develop mobile applications. In Proceedings of the Ninth
Annual International Conference on International Computing Education
Research (pp. 71-78). New York, NY: ACM.

Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops:
A replication study illuminates impact of HS courses. In Proceedings of
the Twelfth Annual International Conference on International Computing
Education Research (pp. 221-230). New York, NY: ACM.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals,
context, and worked examples in learning computing problem solving. In

[10]

[11]

[12]

[13]

[14]

Proceedings of the Eleventh Annual International Conference on
International Computing Education Research (pp. 21-29). New York,
NY: ACM.

Porter, L., Bailey Lee, C., Simon, B., & Zingaro, D. (2011). Peer
instruction: Do students really learn from peer discussion in computing?.
In Proceedings of the Seventh International Computing Education
Research Conference (pp. 45-52). ACM.

Renkl, A. (1997). Learning from worked-out examples: A study on
individual differences. Cognitive Science, 21(1), 1-29.

Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., & Salden, R.
(2009). The worked-example effect: Not an artefact of lousy control
conditions. Computers in Human Behavior, 25(2), 258-266.

Sweller, J. (2006). The worked example effect and human cognition.
Learning and Instruction.

Trafton, J. G., & Reiser, B. J. (1993). Studying examples and solving
problems: Contributions to skill acquisition. In Proceedings of the 15th
Conference of the Cognitive Science Society (pp. 1017-1022).

