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The Arctic is currently experiencing some of the fastest rates of 
environmental change on Earth, including reductions in sea 
ice extent1, melting of glaciers and ice sheets2, lengthening of 

the growing season3, thawing of permafrost4 and intensification of 
the hydrologic cycle5. For Arctic coastal communities, perhaps the 
largest impact of climate warming is changes to shorefast sea ice. 
Shorefast ice, also known as landfast sea ice or ‘fast’ ice, is immobile 
sea ice frozen to the shore that forms along the Arctic coastline 
during winter and spring (Fig. 1). Shorefast ice is a stable, criti-
cally important transportation platform, connecting isolated com-
munities and providing access to traditional hunting and fishing 
grounds for 3–9 months each year6–8. The presence of shorefast ice 
also mitigates coastal erosion, which threatens many Arctic com-
munities located along subsiding coastal margins9. Shorefast ice is a 
critical habitat for marine mammals such as seals and polar bears10, 
and the polynyas that form seaward of shorefast ice edges create 
hotspots of high ecological productivity11. Shorefast ice, rather than 
drift ice, therefore provides most of the ‘sea ice services’12 utilized 
by Arctic communities.

Since the early 2000s, residents of many Arctic communities 
have reported that shorefast ice is thinner, freezes later and breaks 
up earlier than in the 1990s6,13–15. These changes increase travel risk, 
reduce hunting success and threaten traditional activities13,14,16, fur-
ther exacerbating insecurity in communities already experiencing 
socioeconomic and cultural stress7,15. Despite its critical socioeco-
nomic importance and reports of its decline, shorefast ice is challeng-
ing to observe and model and therefore has remained understudied. 
Shorefast ice is poorly resolved by the coarse-resolution (about 
25 km) passive microwave sensors typically used to map sea ice 
extent, because shorefast ice forms within narrow fjords and along 
complex coastlines. The few studies that have analysed fine-scale 
changes in shorefast ice have primarily focused on Northern 
Alaska, notably along the coastline near Utqiagvik17–19, whereas 
longer-term changes have relied on coarse-resolution models and/
or observations20,21. Long-term changes in shorefast ice and controls 

on its decline therefore remain largely unknown, especially at the 
community scale outside of Alaska.

Here we document the timing of shorefast ice breakup from 2000 
to 2018 for 28 coastal Arctic communities using daily cloud-filtered 
satellite imagery acquired by NASA’s Moderate Resolution Imaging 
Spectroradiometer (MODIS). The communities are located in 
Nunavut and the Northwest Territories, Canada, and in Western 
Greenland (Fig. 2). All have strong cultural, economic, and environ-
mental ties to shorefast ice. We compare our remotely sensed obser-
vations to surface air temperature records measured by automated 
weather stations (AWS) and atmospheric reanalysis (ERA-Interim) 
and find a strong atmospheric control on the timing of shorefast 
ice breakup. The strength of these correlations allows us to empiri-
cally assess the environmental sensitivity of individual communi-
ties to atmospheric warming. We then use global climate model 
simulations to project which communities may experience the 
greatest changes in shorefast ice duration by 2100. Our place-based 
approach allows us to determine how climate change will affect 
human settlements with important cultural heritage in the Arctic.

Results
Our satellite remote sensing analysis of shorefast ice breakup, defined 
as the first day when the 20 km radius surrounding each commu-
nity reaches >90% open water (see Methods), provides a consistent 
19-year breakup record for all 28 communities in Fig. 2 with an aver-
age uncertainty due to cloud cover of ±1.9 days. We find substantial 
variability in breakup timing across the study region, with colder 
communities, as defined by mean annual air temperature (MAAT), 
experiencing later breakup than warmer communities (R2 = 0.50, 
P < 0.001). From 2000 to 2018, mean breakup timing ranged from 
May 29 (standard deviation ±17 days) in Uummannaq to August 1  
(±10 days) in Grise Fiord, with an average date of July 11 (±15 days) 
across all communities. Regionally, shorefast ice cleared first in the 
Western Northwest Passage (June 30, ±8 days) and remained the 
longest in the Central Northwest Passage (July 24, ±6 days) and 
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Northern Baffin Bay (July 23, ±7 days). On average, breakup var-
ied by 34 days in each community over the 19-year period, rang-
ing from a minimum of 16 days in Tuktoyaktuk to a maximum of 
76 days in Ulukhaktok (Supplementary Table 1). Importantly, this 
interannual variability in shorefast ice breakup timing is not nec-
essarily associated with drift ice extent, given that the correlation 
between shorefast breakup timing and regional drift ice extent22 is 
positively significant for only 9 of 28 communities over the study 
period (see Supplementary Materials).

Much of the interannual variability in shorefast ice breakup  
is associated with local fluctuations in springtime air temperature 
(Fig. 3), here defined as the mean daily air temperature at 2 m above 
the surface during a 36-day spring period defined by the earliest date 
of observed shorefast ice breakup in each fjord (see Methods). Of 23 
communities having at least 10 years of in situ AWS data, 18 exhibit 
a significant correlation between AWS springtime air temperature 
and breakup at 95% confidence (mean R2 = 0.56) (Extended Data 
Fig. 1, Supplementary Table 1). Similarly, 25 of 28 communities 
exhibit a significant correlation at 95% confidence (mean R2 = 0.49) 
when compared with springtime air temperature from ERA-Interim 
reanalysis23 (Fig. 3; Supplementary Table 1). We hypothesize that the 
absence of the relationship in the other three communities is caused 
by persistent year-round open water near the community in Cape 
Dorset and a potential influence of drift ice on shorefast ice breakup 
detection in Ulukhaktok and Resolute. We also note that although 
air temperature appears to be the dominant control on breakup tim-
ing, some of the uncertainty in the correlations may be explained by 
winds and ocean temperatures.

While nearly all of the communities studied here exhibit strong 
empirical correlations between springtime air temperature and 
breakup, the sensitivity of the relationship (that is the slope of lin-
ear regression; Fig. 3) is highly variable between communities. Most 
sensitive is Grise Fiord, at −7.5 days per °C, and least sensitive is 
Tuktoyaktuk at −1.1 days per °C (Supplementary Table 1). Regional 
patterns in sensitivity are also evident, with the Northern Baffin 
Bay region experiencing −6.1 days per °C and Western Northwest 

Passage just −2.5 days per °C (Fig. 4). We find that breakup in 
colder communities is more sensitive to climate fluctuations than 
in warmer communities (R2 = 0.30, P < 0.01; Fig. 4). This observed 
relationship between MAAT and sensitivity strengthens even fur-
ther if the two warmest communities (Uummannaq and Sanikiluaq) 
are excluded (R2 = 0.59, P < 0.001; Fig. 4a).

By applying our observed empirical correlations between spring-
time air temperature and shorefast ice breakup to a range of pro-
jected future air temperatures from CMIP5 global climate model 
simulations24 (see Methods), we find a correspondingly wide range 
of projected reductions in spring shorefast ice duration. Under 
a high emissions scenario (IPCC Representative Concentration 
Pathway 8.5 (RCP8.5)), we find that by 2099, changes in breakup 
timing range from 5 days earlier (Tuktoyaktuk) to 44 days earlier 
(Taloyoak), with an average change of 20 (±9) days earlier across 
all communities (Supplementary Table 1). Regionally, the Central 
Northwest Passage is projected to experience the largest reduction 
in spring shorefast ice season (−31 days) and Western Northwest 
Passage the smallest (−12 days) (Figs. 4, 5). These overall geograph-
ical patterns are preserved under the RCP4.5 (−9 days on average) 
and RCP2.6 (−7 days) scenarios (Fig. 5). As with breakup sensitiv-
ity, there is a linear correlation between MAAT and predicted future 
change in breakup (R2 = 0.24, P = 0.01), suggesting that colder com-
munities will experience greater reductions in springtime shorefast 
ice than warmer communities (Fig. 4c). Similarly, the relationship 
between MAAT and predicted future change is stronger when the 
two warmest communities are excluded (R2 = 0.36, P < 0.01; Fig. 4c).

Discussion
This study presents the first community-level assessment of shore-
fast ice breakup across northern Canada and western Greenland, 
thus providing insight into an understudied process that critically 
affects the livelihoods, cultures, and economies of coastal Arctic 
communities. Our analysis identifies large sub-regional variabil-
ity in both the present-day timing of shorefast ice breakup and its 
sensitivity to future warming. Although future work is needed to 

a b

c d

Fig. 1 | Images of shorefast sea ice. a, Seal hunter returning home by dogsled to Uummannaq, Greenland in April 2019. b, Shorefast ice edge roughly 15 km 
from Uummannaq in May 2019, 10 days before MODIS-detected breakup. c, Snowmobile travel on shorefast sea ice outside Iqaluit, Nunavut in March 
2018. d, Small boat awaiting shorefast ice breakup near Iqaluit, Nunavut in March 2018 (all photos by lead author).
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determine whether these findings are broadly applicable outside  
of the Canadian Arctic Archipelago, a clear northward trend in 
sensitivity is especially notable and underscores the necessity of 
localized approaches for assessing environmental response to 
Arctic climate change.

The strong positive correlations between breakup timing and 
springtime air temperatures over the period 2000–2018 suggest 
that surface−atmosphere interactions exert a first-order control 
on shorefast ice breakup. Few studies have specifically examined 
the relationship between breakup and springtime air temperature, 
but the strong role of atmospheric interactions helps to corrobo-
rate recent work finding surface air temperature to be the dominant 
control on both drift ice extent25 and outlet glacier termini posi-
tions26 in our study region. Although we find no statistically signifi-
cant trends in air temperature or breakup timing in any community 
during our 19-year record, Arctic air temperatures are projected to 
rapidly increase over the coming decades27. The strongly positive 
correlation between springtime air temperatures and shorefast ice 
breakup identified here therefore suggests that breakup will occur 

earlier in the future, highlighting the potential exposure of coastal 
Arctic communities to anthropogenically induced climate warming.

While all communities are likely to experience earlier shorefast 
ice breakup in the future, breakup in colder communities is nota-
bly more sensitive to changes in springtime air temperature than in 
warmer communities (Fig. 4). This regional variability in breakup 
sensitivity has contrasting implications for communities in north-
ern Canada and western Greenland, particularly when socioeco-
nomic and cultural differences are also considered. For example, 
communities that are most reliant on traditional subsistence activi-
ties, such as Clyde River and Taloyoak (−6.5 and −6.9 days per °C, 
respectively), may be especially vulnerable to earlier ice breakup. 
Breakup in these two communities is expected to occur 23 to 44 
days earlier, respectively, by 2099, suggesting that economically and 
culturally significant activities on the ice will be harder to main-
tain in the future6. Communities located along increasingly popular 
Arctic cruise ship routes, such as Cambridge Bay (−4.8 days per °C,  
−29 days in 2099) and Pond Inlet (−5.6 days per °C, −23 days in 
2099), however, may experience some benefits from earlier ice 
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Fig. 2 | Study area map showing locations of 28 communities affected by shorefast sea ice in Nunavut and the Northwest Territories, Canada, and in 
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breakup. Our prediction of a substantially reduced shorefast ice  
season in these communities has the potential to enhance eco-
nomic development through increased ship visits, although rising  
numbers of cruise ships may also have negative environmental and 
cultural impacts28.

In contrast to these examples, communities such as Tuktoyaktuk 
(−1.1 days per °C, −5 days in 2099) and Paulatuk (−2.3 days per °C, 
−11 days in 2099) may be less affected by a reduction in shorefast 
ice duration. Owing to its low climatic sensitivity and high poten-
tial for coastal economic development due to its new year-round 
connection to the North American road network29, Tuktoyaktuk, 
in particular, may be less vulnerable to the cultural and economic 
changes caused by climate warming than other communities 
assessed here. These nuances emphasize the importance of taking a 
community-based approach to climate studies and recognizing that 
even within the rapidly changing Arctic, climate change does not 
affect all communities equally.

The results and projections presented here provide useful insight 
into varying spatial patterns of Arctic climate change and the expo-
sure of coastal communities to environmental change. However, 
other factors beyond air temperature (such as winds, ocean tem-
peratures and surface waves) probably also influence shorefast 

ice breakup timing. Similarly, breakup timing is just one of sev-
eral shorefast ice metrics that affect community ice usage. Future 
work should thus consider incorporating additional environmental 
variables, together with shorefast ice thickness30, ice stability31 and 
freeze-up date32. Such analyses may elucidate the mechanisms con-
trolling breakup and how they differ between warmer and colder 
communities, and thus provide further insight into our projections. 
Additional human and/or geographic factors unrelated to climate 
change may also influence community vulnerability to reduc-
tions in shorefast ice. For example, the two warmest communities, 
Uummannaq, and to a lesser extent Sanikiluaq, already experience 
much earlier breakup than other communities (May 29 and June 
21 on average, respectively) and a shorter ice season. Therefore, 
the sociocultural impact of even comparatively small changes in 
breakup timing could be severe. This is exemplified by the 2005 
winter in Uummannaq when stable shorefast sea ice never formed, 
meaning that locals could not access the ice and many dog teams 
were unused for nearly two years. In a warmer climate, such occur-
rences may become more frequent and lead to the loss of traditional 
cultural activities such as dog sledding and seal hunting on the ice15.

Overall, our study of shorefast sea ice applies broad-scale remote 
sensing and climate modelling tools at a community-level to identify  
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Fig. 3 | Scatter plots of shorefast ice breakup timing (day of year) versus mean springtime air temperature (°C) for all 28 communities as calculated 
using ERA-Interim data. Each row shows communities from the same sub-region as defined in Fig. 1. Black lines show the linear regressions between 
shorefast ice breakup timing and springtime air temperature, with grey shading indicating the uncertainty in this regression, calculated as the 95th 
confidence interval. A dashed line and a single asterisk after community name indicates communities where breakup timing and mean springtime air 
temperature are uncorrelated at P < 0.05. The x and y axes are standardized by range to illustrate the variability in slope.
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complexity at the sub-regional scale. The observed variability in 
shorefast sea ice appears to be localized and not necessarily cor-
related with pan-Arctic drift ice records, corroborating previous 
reports by both local residents15 and scientists18. The high sus-
ceptibility of the coldest, northernmost communities of northern 
Canada and western Greenland to reduced shorefast ice seasons 
emphasizes the importance of considering the local nature of cli-
matic changes alongside community-level differences when mak-
ing policy decisions or other preparations for the consequences of 
climate change. Because shorefast ice is one of many environmental 
assets important to Arctic communities, future research combining 
broad-scale analysis tools with community-level characteristics may 
help provide more actionable information for Arctic populations 
facing substantial climatic and social change.
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Methods
Satellite imagery. Shorefast ice was mapped using the atmospherically corrected 
MODIS Level 2 product, MOD09GQ, a daily product with a ground sampling 
resolution of 250 m (Supplementary Fig. 1) produced from the Moderate Resolution 
Imaging Spectroradiometer aboard NASA’s Terra satellite33. The high temporal and 
spatial resolution of MOD09GQ allowed us to distinguish shorefast ice in narrow 
Arctic fjords with sufficiently fine resolution to resolve the timing of breakup 
accurately. Clouds and cloud shadows were masked using the cloud mask from 
coincident MOD09GA products which were resampled (nearest neighbours) from 
1,000 m to 250 m pixel resolution to match the MOD09GQ products. We analysed 
all daily imagery collected between day of year 60 and 240 (March 1 to August 28) 
over 2000–2018.

Breakup detection. Our classification and breakup detection method builds on 
the river ice breakup detection method presented in Cooley and Pavelsky (2016)34. 
First, we created a land/ocean mask using high-resolution coastline shapefiles 
from Statistics Canada (https://open.canada.ca/data/en/dataset/a883eb14-0c0e-
45c4-b8c4-b54c4a819edb) and GADM (https://gadm.org/index.html), which 
were combined with the resampled MOD09GA cloud masks to exclude all land 
and cloudy pixels in the MOD09GQ images. Each MODIS band 2 (841–876 nm) 
image was then classified into snow, ice and water using simple thresholds in 
band 2 reflectance (<0.1 for water, 0.1–0.5 for ice and >0.5 for snow; reflectance 
is the MOD09GQ digital number multiplied by 0.001). Next, we applied a 5 km × 
5 km grid covering the fjord and/or coastal ocean within about 20 km of each 
community to each image and determined the percentage of cloud-free MODIS 
pixels that were classified as snow, water and ice for each grid cell. This produced a 
daily time series of snow, ice and water percentage for each grid cell from March to 
August for every year between 2000 and 2018 (Extended Data Fig. 2).

Using these time series, we determined the annual date of breakup for each 
5 km × 5 km grid cell. First, all days with >50% cloud cover were removed and 
Hampel and 5-day median filters were applied to the time series to remove outliers 
caused by sensor noise or failure of the MODIS cloud mask. Only grid cells which 
had a snow or ice value >90% for at least three consecutive cloud-free observations 
in each year were analysed to ensure that shorefast ice was present. Breakup date 
detection proceeded for each time series as follows:

	(1)	 We identified the first five-observation period when the grid cell averaged at 
least 50% open water.

	(2)	 We determined the first day within or following this five-observation period 
when the grid cell reached 90% open water.

	(3)	 To account for cloud cover, the breakup date was then defined as the  
midpoint between this date and the previous cloud-free observation,  
with the uncertainty in breakup detection the difference between the two34 
(Extended Data Fig. 2).

This process was repeated for all grid cells within 20 km of the community 
for all years, which yielded a mean uncertainty in breakup timing due to cloud 
obscuration of ±1.9 days. We defined the breakup date for each individual 
community for each year as the mean breakup timing in these grid cells. Breakup 
dates were allowed to be fractional during the temperature analysis, but for 
simplicity were rounded to the nearest day in the table and in the text. While 
we acknowledge that community use of shorefast ice generally ceases before the 
fjord is 90% open water, we chose this breakup threshold because it is a consistent 
metric that is interpretable to both scientists and local community members as 
the point in which the area surrounding each community becomes clear of ice. To 
mitigate the possible influence of drift ice on breakup detection, grid cells that on 
average do not transition from >90% ice to >90% water each spring/summer were 
removed from the analysis, because in our manual examination of the imagery, 
grid cells in our study area containing substantial drift ice tended to have this 
characteristic. We note that this method does not explicitly distinguish between 
drift ice and shorefast ice. While this distinction is not required along the complex 
coastlines and fjords of the Canadian Arctic Archipelago and western Greenland 
where nearly all sea ice is landlocked, we caution against the use of this approach  
in regions of the Arctic where shorefast ice is less extensive, such as along the 
Bering and Chukchi coasts in Alaska.

We assessed the accuracy of this method first through sensitivity analysis 
of the water thresholds. Water reflectance thresholds of 0.08, 0.09, 0.10 (chosen 
threshold), 0.11 and 0.12 were tested for three communities over the full MODIS 
record. Changes to the threshold had comparatively small impacts on breakup 
timing, shifting breakup by only 0−4 days on average (Supplementary Fig. 2), and 
had little to no impact on correlations with air temperature. Therefore, although 
the choice of water threshold may slightly shift the exact date of breakup, it is 
unlikely to affect any of our conclusions.

We also assessed the accuracy of this method using high-resolution Planet 
Labs and Sentinel-2 imagery (both available from https://www.planet.com/
explorer/)35. We compared the breakup dates for each community in 2017 and 
2018 with breakup dates manually detected using high resolution, near-daily 
Planet Labs and Sentinel-2 satellite imagery. This comparison was imperfect 
because there are biases associated with manual detection and furthermore cloud 
cover and missing imagery can affect results when comparing between sensors. 

However, it was a useful external check on the automatically derived breakup 
dates to ensure accuracy of the method. For both 2017 and 2018, manually and 
automatically detected breakup dates were strongly correlated, with an R2 > 0.93. 
The root-mean-square error between manually and automatically detected dates 
was 4.3 days in 2017 and 4.2 days for 2018, and the median difference between the 
dates was 1.8 days for 2017 and 3.4 days for 2018, suggesting confidence in our 
breakup detection method (Supplementary Fig. 3).

Temperature analyses. To assess the relationship between breakup timing and 
springtime air temperature we used both AWS data from each community and 
the ERA-Interim reanalysis product23. For Canadian communities, hourly AWS 
data were obtained from the Government of Canada Historical Weather Data 
(http://climate.weather.gc.ca/). For Greenlandic communities, hourly AWS 
data were obtained from Danish Meteorological Institute (https://www.dmi.dk/
publikationer/). All hourly data were averaged to a daily mean, and to avoid bias 
caused by diurnal temperature variability, days with less than 22 hours of data were 
excluded. To produce the yearly springtime air temperature records, we averaged 
between stations if multiple stations were available and interpolated between days 
if data was missing. Years where more than 4 days of spring air temperature were 
missing were excluded to limit the effect this bias could have on reported results. 
Overall, 23 of 28 communities had AWS data meeting these standards for >10 
years over the period 2000–2018.

We also used ERA-Interim reanalysis data23 because it provides a  
consistent record available over all 28 communities between 2000–2018  
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim) 
and has been shown to perform well over the Arctic36. To produce the 
springtime air temperature time series, six-hourly temperature values from  
the nearest four ERA-Interim grid cells to each community were averaged  
into a daily time series.

For both AWS and ERA-Interim datasets, we calculated the mean air 
temperatures (in °C) for each community over a set period in the spring:

Ts ¼
XEoS�5

EoS�40
Td =36 ð1Þ

where Ts is the mean springtime air temperature (in °C), EoS is the end of spring 
and Td is the daily air temperature (in °C). We defined the ‘end of spring’ as 
the earliest date of breakup for each community, which ranged from 22 April 
to 17 July. This ensured that our calculation of springtime air temperature 
encompassed the period prior to breakup for each community given the wide 
range in breakup timing. To determine the length of the period prior to the 
‘end of spring’ which best predicts breakup timing, we optimized for maximum 
average R2 over all communities and tested between 15 and 75 days prior to 
the earliest breakup. We excluded the five days prior to the end of spring to 
ensure that the mean springtime temperature was calculated only over days 
with near-complete ice cover, thus mitigating any potential effect of a positive 
feedback between open water and air temperature17. This analysis yielded  
40 days prior to the end of spring as the optimal period over which to calculate 
mean springtime air temperature, though changing the number of days prior  
to the end of breakup from 35 to 45 days has little impact on correlations with 
air temperature.

To estimate future changes in breakup, we used daily 2 m air temperature 
outputs from eight CMIP5 global climate models, namely BNU-ESM, CCSM4, 
CESM1-CAM5, CSIRO-Mk3-6-0, GFDL-CM3, IPSL-CM5A-LR, NorESM1  
and BCC-CSM124. These eight model runs were chosen as they all provide  
daily 2 m air temperature data over 2006−2099 under RCP2.6 (low emission), 
RCP4.5 (midrange mitigation) and RCP8.5 (high emissions) scenarios. The 
yearly springtime air temperature time series were produced by averaging 
the daily temperature time series for all grid cells located within a 2° × 2° box 
surrounding each community and calculating mean springtime air temperature 
as described above. We chose this sampling strategy due to inconsistencies 
in CMIP5 model resolutions. Next, all 94-year modelled springtime air 
temperature time series were normalized to their 2006−2018 average, and  
a 10-year median filter was applied. We then calculated projected future  
changes in breakup timing by applying the air temperature sensitivities, 
calculated using ERA-Interim and normalized to 2006−2018, to the future 
springtime air temperature time series.

Data availability
All data needed to evaluate the conclusions of this paper are present in the paper 
and/or the Supplementary Information. Additional data related to the paper 
may be requested from the authors. All data can also be accessed online from the 
following data centres: MOD09GQ and MOD09GA data from https://lpdaac.
usgs.gov, maintained by the NASA EOSDIS LP DAAC at the USGS/EROS Center, 
Sioux Falls, South Dakota; AWS data from http://climate.weather.gc.ca/ (Canada) 
and https://www.dmi.dk/publikationer/ (Greenland); ERA-Interim data from the 
European Centre for Medium-Range Weather Forecast at https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era-interim; and CMIP5 climate model 
outputs from https://esgf-node.llnl.gov/projects/cmip5/.
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Code availability
The codes used in this study are available at: https://github.com/sarahwcooley/
shorefast-sea-ice-breakup37.
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Extended Data Fig. 1 | Scatter plots of shorefast ice breakup timing (day of year) versus mean springtime air temperature (°C) for all 28 communities 
as calculated using AWS data. Each row shows communities from the same sub-region as defined in Fig. 1. Black lines show the linear regressions between 
shorefast ice breakup timing and springtime air temperature, with grey shading indicating the uncertainty in this regression. Single asterisk after community 
name indicates communities where breakup timing and mean springtime air temperature are uncorrelated at p < 0.05; double asterisk after community name 
indicates communities with less than 10 years of AWS data. The x and y axes are standardized by range to illustrate the variability in slope.
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Extended Data Fig. 2 | Example of MODIS-derived percentage water time series for grid cells located near four communities in 2006. The blue circles 
represent the MODIS time series after cloud removal and median filtering. The red line represents the detected breakup date, defined as the mid-point  
of the first day when the grid cell contains greater than 90% water and the previous observation. The grey-shaded region represents the uncertainty due 
to cloud cover.
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