

Silver(II) and Silver(III) Intermediates in Alkene Aziridination with a Dinuclear Silver(I) Nitrene Transfer Catalyst

Tasneem Elkoush, Choi L. Mak, Daniel W. Paley, and Michael G. Campbell*

Cite This: *ACS Catal.* 2020, 10, 4820–4826

Read Online

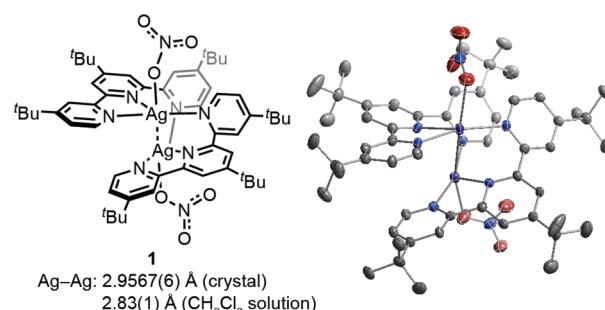
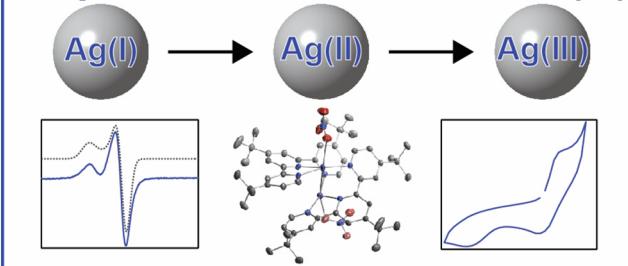
ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: In recent years, synthetically useful homogeneous catalysis has been developed with silver, including nitrene transfer reactions for carbon–nitrogen bond formation. However, the mechanisms of silver-catalyzed redox reactions are generally still poorly understood, including a near-total lack of data on oxidized intermediates. Here, we present a detailed experimental study on the oxidation of a dinuclear silver(I) nitrene transfer catalyst with commonly used hypervalent iodine oxidants (PhINSO_2Ar), including structurally characterized examples of silver(II) oxidation products obtained under catalytically relevant conditions. Furthermore, the silver(I) catalyst is shown to undergo stepwise oxidation to silver(II) and silver(III) intermediates; the generation of silver(III) intermediates has not previously been demonstrated in nitrene transfer catalysis. In contrast to prior mechanistic hypotheses, our data indicates that nitrene transfer occurs from silver(III) in this reaction system.



KEYWORDS: silver, nitrene transfer, aziridination, mechanism, homogeneous catalysis

INTRODUCTION

Although silver is a second-row transition metal, it often seems to be treated as an “honorary” first-row metal, because of its relatively low cost and its propensity for single-electron redox chemistry. Homogeneous redox catalysis with well-defined silver complexes is under-developed, compared to other late transition metals, even among the coinage metals.¹ Scattered reports over the past two decades have suggested that redox cooperation in dinuclear silver complexes may facilitate catalysis,^{2,3} but there has been no experimental data on oxidation products derived from such catalysts. The challenge of understanding the oxidation chemistry of well-defined silver complexes is derived in part from the flexible coordination chemistry of d^{10} silver(I), which often leads to fluxional behavior and ambiguous relationships between solution- and solid-state structures.^{4,5} Here, we present the first experimental study that characterizes oxidation products obtained from a dinuclear silver(I) nitrene transfer catalyst (**1**; see Figure 1). Through a combination of structural characterization and *in situ* spectroscopic analysis, we show that catalyst **1** reacts sequentially with 2 equiv of oxidant to form both silver(II) and silver(III) products. Reactivity studies indicate that nitrene transfer to an alkene substrate occurs from silver(III), which is a hypothesis that is rarely invoked in the field of redox catalysis with silver.

Beginning in 2003, work from the He group demonstrated silver-catalyzed nitrene transfer for aziridination and C–H amination.^{2,6} Isolation and crystallographic analysis of two

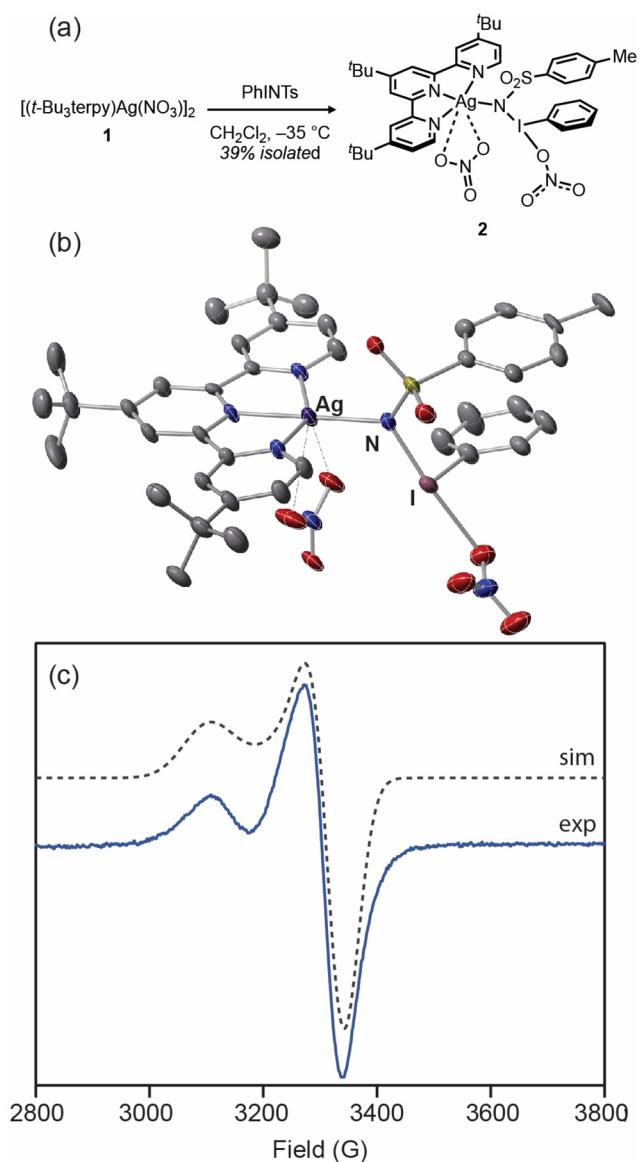
Stepwise Oxidation to Silver(III)

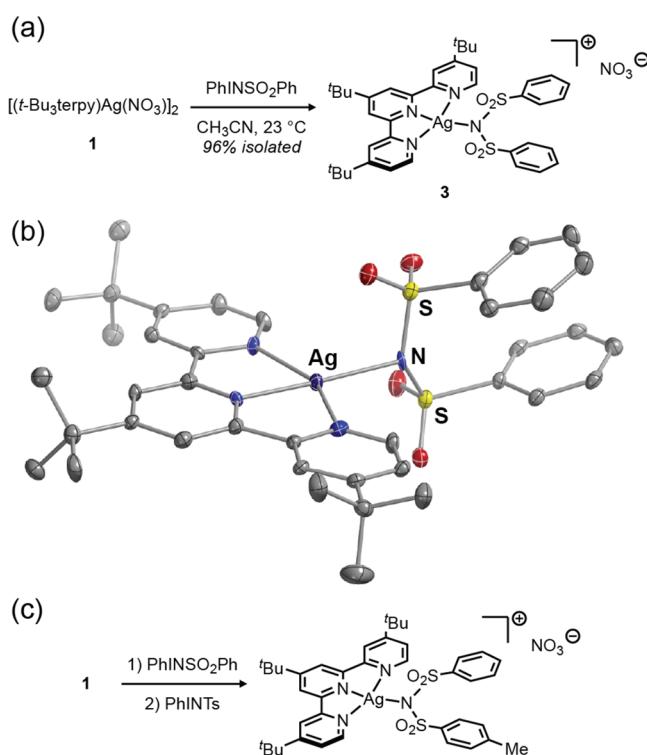
Figure 1. Structure of dinuclear silver(I) nitrene transfer catalyst **1**, based on a combination of solid-state crystallographic and solution-phase EXAFS analysis; X-ray structure is plotted with 50% probability ellipsoids (H atoms omitted for clarity).

different ligated silver catalysts revealed dinuclear complexes with Ag–Ag interactions, and one of the He group’s dinuclear catalysts was subsequently used by Bolm for imination of sulfoxides and sulfides.⁷ Recent work from the Pérez and Schomaker groups has greatly expanded the scope and utility

Received: January 5, 2020

Revised: March 2, 2020


Published: March 30, 2020


of silver-catalyzed nitrene transfer.^{8,9} In particular, work from the Schomaker group has shown how the dynamic behavior of silver(I) complexes in solution can affect selectivity in catalysis, influenced by factors such as ligand choice and metal:ligand ratio.^{4,9a} However, despite these advances, there remains a fundamental lack of mechanistic understanding, particularly with regard to identification of high-valent silver complexes that are relevant to catalysis. This report focuses on studying the oxidation of dinuclear silver(I) complex **1** with hypervalent iodine nitrene transfer reagents (PhINSO_2Ar), which is a catalyst system that has been used for alkene aziridination.^{2a} Prior mechanistic investigations of nitrene transfer reactions catalyzed by **1** have addressed possible high-valent intermediates through computational studies only.^{9c}

RESULTS AND DISCUSSION

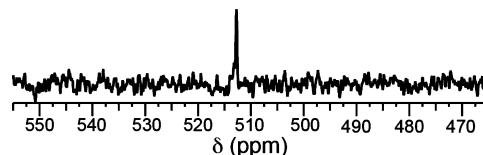

Isolation of Silver(II) Oxidation Products. Our investigations began with efforts to isolate and structurally

Figure 2. (a) Synthesis, (b) crystal structure, and (c) X-band EPR spectrum of silver(II)-PhINTs adduct **2** (50% probability ellipsoids; H atoms and solvent molecules omitted for clarity).

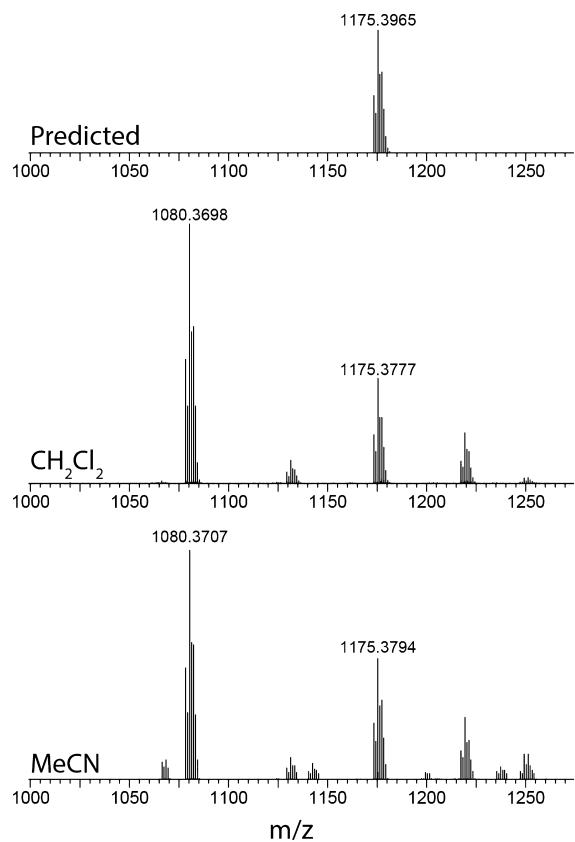


Figure 3. (a) Synthesis and (b) crystal structure of silver(II) complex **3** (50% probability ellipsoids; H atoms, solvent, disorder, and noncoordinated nitrate anion omitted for clarity); (c) sequential addition of two different PhINSO_2Ar derivatives leads to the formation of a mixed sulfonimide ligand.

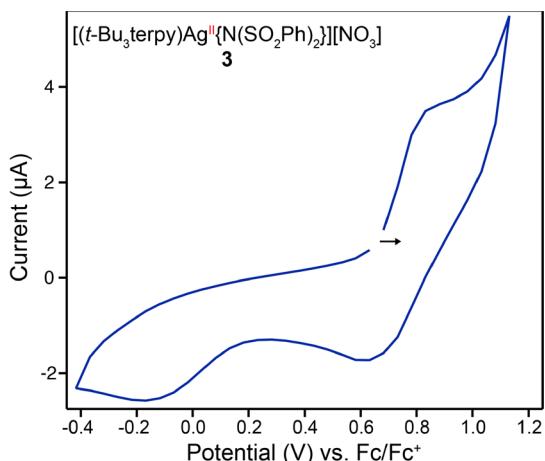


Figure 4. ^{109}Ag NMR spectrum of **1** in CD_3CN (23°C , 18.6 MHz).

characterize oxidation products obtained from **1** and PhINSO_2Ar , using solvents that have been reported for nitrene transfer reactions with this catalyst (CH_2Cl_2 and MeCN). Combining **1** and PhINTs in CH_2Cl_2 produces a color change from pale yellow to dark brown, and the dark color persists for several days if the mixture is held at low temperature under inert atmosphere. Slow diffusion of hexanes into the reaction mixture at -35°C produced dark brown needle-shaped crystals in 39% isolated yield after 1 week. The resulting crystals are thermally and atmospherically sensitive, and were also found to decompose during X-ray data collection using an in-house diffractometer; a complete dataset was obtained by collecting rapid frames using a synchrotron source. Single-crystal X-ray analysis revealed the structure to be a silver(II)-PhINTs adduct (**2**), featuring an unprecedented $\text{Ag}(\text{II})-\text{N}-\text{I}(\text{III})$ core (see Figure 2). The Ag center in **2** adopts a square-planar geometry, as expected for d^9 silver(II),¹⁰ with a nitrate ion weakly coordinated to one of the apical sites. A second nitrate anion coordinates to the iodine center, which has a typical T-shaped geometry.¹¹ Consistent with the square planar silver(II) structure, X-band EPR of a polycrystalline sample at 77 K shows a broad axial spectrum for **2**, with $g_{\perp} = 2.038$ and $g_{\parallel} = 2.186$.^{12,13}

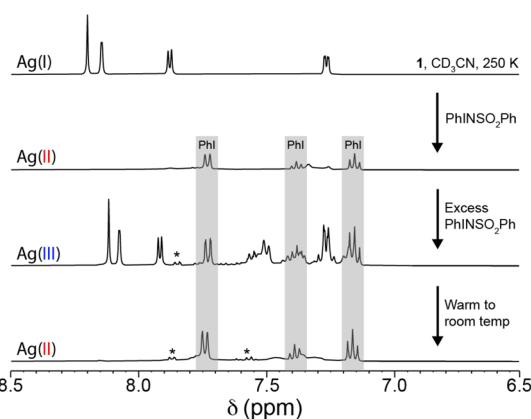


Figure 5. In situ mass spectrometry analysis (ESI⁺) of the initially formed reaction mixture between **1** and PhINSO₂Ph: (top) predicted spectrum for the dinuclear nitrenoid product $[(t\text{-Bu}_3\text{terpy})_2\text{Ag}_2(\text{NSO}_2\text{Ph})]^+$; (middle) experimental spectrum in CH₂Cl₂; (bottom) experimental spectrum in MeCN. The peak at $m/z = 1080$ corresponds to the molecular ion of **1**.

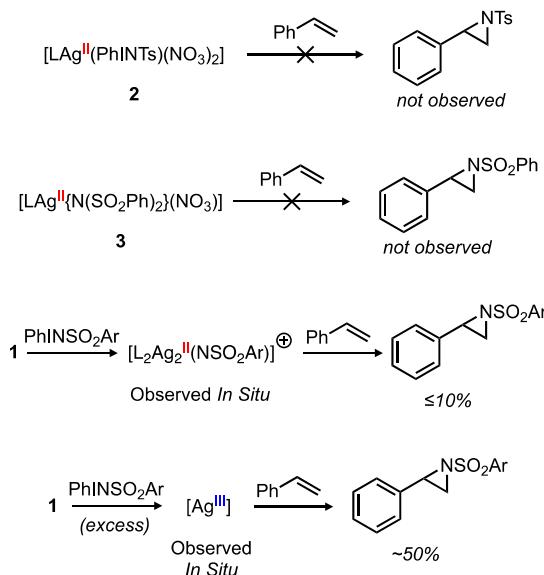


Figure 6. Cyclic voltammogram (0.1 M TBAPF₆/MeCN) of silver(II) complex **3**: the reversible redox couple at 0.73 V is assigned to silver(II)/silver(III), and irreversible reduction to silver(I) is observed at -0.12 V. The starting point and direction of the scan are indicated by an arrow.

Oxidation of **1** in MeCN produced a similar color change from pale yellow to dark brown, followed by further development of a deep brick-red color. The red color persists for at least several days at room temperature, even after exposure to ambient atmosphere. EPR analysis of the red

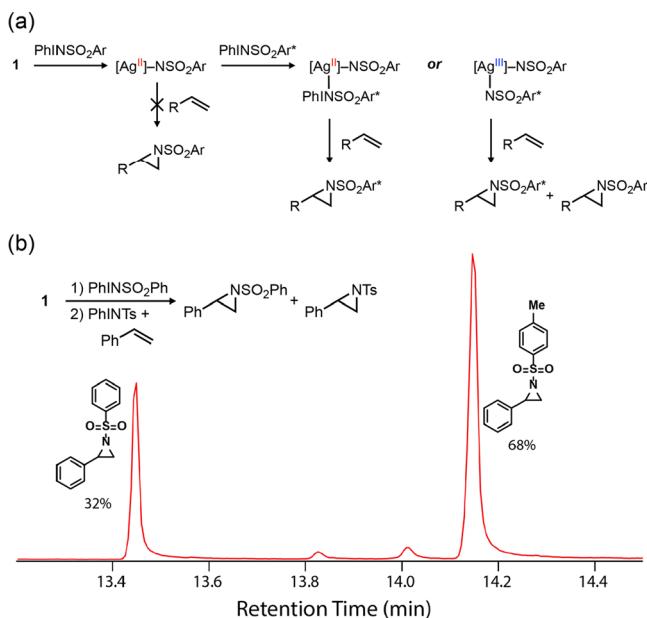

Figure 7. ^1H NMR spectra (400 MHz) showing stepwise formation of paramagnetic silver(II), followed by diamagnetic silver(III) products, when **1** is subjected to reaction with multiple equivalents of PhINSO₂Ph. The in-situ-generated silver(III) product persists briefly at low temperature, but decomposes rapidly to silver(II) upon warming. The peaks indicated by an asterisk (*) correspond to trace amounts of PhSO₂NH₂.

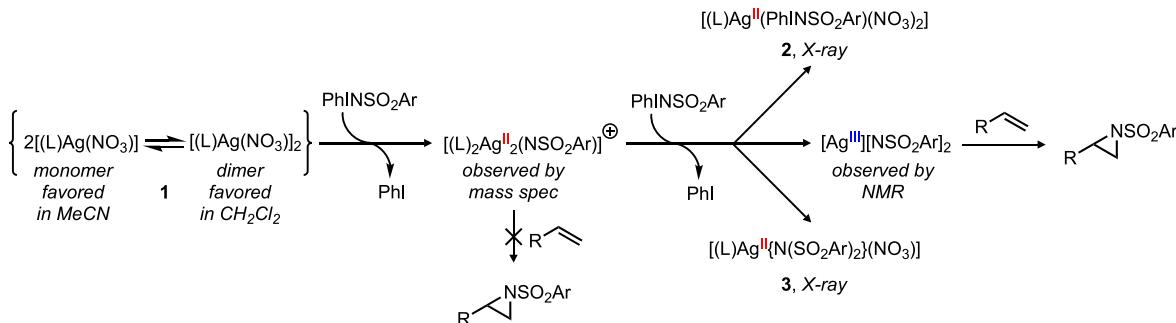
Figure 8. Chemical competency for styrene aziridination of isolated and in-situ-generated silver products derived from **1** and PhINSO₂Ar (yields determined by ^1H NMR, and reported with respect to the silver starting material; L = *t*-Bu₃terpy).

product showed a broad axial spectrum similar to **2**, indicative of silver(II) (see Figure S4 in the Supporting Information). Crystallization of the product obtained using PhINSO₂Ph afforded dark red needles in 96% isolated yield, and single-crystal X-ray diffraction (SCXRD) analysis revealed mononuclear silver(II) complex **3**, featuring a newly formed dibenzenesulfonimide ligand (Figure 3).

A noteworthy feature of oxidation products **2** and **3** is that they both must be formed via reaction of **1** with 2 equiv of PhINSO₂Ar. First, while the Ag center in **2** is in the 2+ oxidation state, the PhINTs fragment is ligated to silver but not reduced. Oxidation of silver must occur in a separate step from PhINTs coordination. This conclusion is also supported by the generation of PhI in the reaction mixture, prior to isolation of **2** (see Figure S8 in the Supporting Information). Second, formation of the dibenzenesulfonimide ligand observed in **3**

Figure 9. (a) Conceptual scheme for double labeling experiment, and (b) representative GC trace demonstrating significant incorporation of nitrene groups from both PhINSO₂Ar derivatives.

can only proceed via coupling of NSO₂Ar fragments from 2 equiv of oxidant, and our data suggests that formation of the [N(SO₂Ar)₂]⁻ anion occurs from a high-valent silver intermediate. When **1** was treated with 1 equiv of PhINSO₂Ph, a dark brown color developed; further treatment with 1 equiv PhINTs led to the characteristic brick red color. Mass spectrometry analysis of the reaction mixture revealed formation of the mixed-sulfonimide ligand [(Ts)N(SO₂Ph)]⁻ (see Figure 3c, as well as Figure S7 in the Supporting Information). While both **2** and **3** are off-cycle products that do not directly participate in aziridination catalysis, their formation indicates the reactivity of **1** with multiple equivalents of oxidant, a finding that is indeed relevant to our mechanistic studies (vide infra).


In Situ Spectroscopic Characterization. In addition to the isolation and characterization of oxidation products obtained from **1** and PhINSO₂Ar, we have used *in situ* characterization methods to interrogate high-valent silver intermediates that may be relevant to catalysis. We have previously reported a solution-phase EXAFS study of silver(I) nitrene transfer catalysts, which indicates that **1** maintains a dimeric structure with a close silver–silver interaction in CH₂Cl₂ solutions (as depicted in Figure 1).⁵ In contrast,

however, **1** displays a predominantly monomeric form in MeCN solutions: X-ray absorption spectroscopy data shows the complete lack of a silver–silver contact in this solvent (Figures S13 and S14 in the Supporting Information). Furthermore, the ¹⁰⁹Ag spectrum of **1** in CD₃CN displays a single resonance at 513 ppm, with no *J*(¹⁰⁹Ag–¹⁰⁷Ag) coupling that is characteristic of dimers with silver–silver interactions (see Figure 4).¹⁴ No ¹⁰⁹Ag NMR signal is observed for **1** in CD₂Cl₂, which we attribute to exchange broadening, likely due to rapid dimer/monomer equilibrium. EXAFS and DOSY-NMR studies clearly establish that the dimer form is favored in this solvent (see refs 5 and 9a). Taken together, these data indicate a dimer/monomer equilibrium for **1**, which favors the dimeric form in CH₂Cl₂ but the monomeric form in MeCN.

Mass spectrometry analysis of the dark reaction mixture initially obtained from **1** and PhINSO₂Ph in both CH₂Cl₂ and MeCN shows a peak consistent with the formation of a dinuclear silver(II)-nitrenoid product with the formula [(*t*-Bu₃terpy)₂Ag₂(NSO₂Ph)]⁺ (see Figure 5). These mass spectrometry findings are consistent with data from the He group in their initial reports of catalyst **1**.^{2b} EPR analysis of the same reaction mixtures also shows a signal consistent with silver(II), overall indicating a net two-electron oxidation of **1** (see Figures S5 and S6 in the Supporting Information). Crystallization from these reaction mixtures ultimately affords silver(II) complexes **2** or **3**, as described above.

Because the structures of isolated oxidation products **2** and **3** indicate the reactivity of **1** with multiple equivalents of PhINSO₂Ar, we sought to determine if the initially formed silver(II) products can undergo further oxidation. While silver(III) is rarely discussed in the homogeneous catalysis literature,¹⁵ presumably due to the assumption that the required oxidation potentials are prohibitively high, our data suggests that silver(III) is quite accessible with the ligand set used in this system. For example, cyclic voltammetry studies of isolated silver(II) complex **3** show that reversible oxidation to silver(III) occurs at a fairly mild potential of 0.73 V (vs Fc/Fc⁺; see Figure 6).

¹H NMR analysis further indicates that the initially formed silver(II) products obtained from **1** and PhINSO₂Ar can undergo reaction with additional oxidant. Sequential addition of 2 equiv of PhINSO₂Ph to **1** at room temperature was conducted. As previously observed, addition of the first equivalent of oxidant produced silver(II) products and 1 equiv of PhI. After addition of the second equivalent, NMR-silent silver(II) products were still present (formation of complex **3** occurs under these conditions, *vide supra*). However, generation of a second equivalent of PhI was

Figure 10. Summary of the reactivity pathways observed between silver(I) catalyst **1** and PhINSO₂Ar (L = *t*-Bu₃terpy).

observed by integration relative to an internal standard, indicating the formation of an unstable oxidized species that is not detected at room temperature (see Figure S8 in the Supporting Information).

With low-temperature handling and a larger excess of oxidant, sequential formation of silver(II) followed by silver(III) products could be observed (Figure 7). The initial paramagnetic silver(II) products formed between **1** and PhINSO₂Ph display no resonances for the aromatic protons of the *t*-Bu₃terpy ligands, and only PhI is observed in the ¹H NMR spectrum. The addition of excess PhINSO₂Ph to this dark brown reaction mixture produces an immediate color change to pale yellow. EPR analysis of the reaction mixture shows no signal, suggesting further oxidation to a d^8 silver(III) complex. After filtration to remove unreacted PhINSO₂Ph, the yellow solution persists sufficiently long for ¹H NMR analysis if held at low temperature, revealing the formation of a diamagnetic silver(III) product. In addition to clearly identifiable resonances for the *t*-Bu₃terpy ligand, new aromatic signals are observed that we tentatively assign to a silver-bound [PhSO₂N] nitrenoid group. Upon warming to room temperature, the mixture rapidly darkens and converts back to silver(II), with only PhI and trace PhSO₂NH₂ observable in the ¹H NMR spectrum. The primary decomposition pathway appears to be generation of complex **3**, which is also consistent with the data discussed above; however, the observation of some PhSO₂NH₂ in the NMR spectrum also suggests that H atom abstraction from solvent may be another possible pathway. Isolation and crystallographic characterization of the silver(III) product has been unsuccessful because of a lack of long-term stability, even at low temperatures.

Reactivity and Chemical Competency Studies. In order to determine the relevance to catalysis of the various oxidation products derived from **1**, we have studied their chemical competency for nitrene transfer to an alkene substrate such as styrene. A summary of results is shown in Figure 8. Isolated silver(II) product **2** is the first structurally characterized example of a metal-iminoiodane complex for any metal, and such complexes have been proposed as relevant intermediates in nitrene transfer reactions catalyzed by other metals such as manganese, iron, and cobalt.¹⁶ However, we find that **2** displays no reactivity toward styrene. As expected from the EPR data and basic molecular orbital considerations for a square planar complex,^{13,17} a spin density plot derived from DFT calculations supports that the unpaired electron of **2** resides in an orbital of $d_{x^2-y^2}$ parentage, with respect to silver, with spin density also observed on each of the four donor N atoms of the ligands (see Figure S3 in the Supporting Information). An intermediate that is active for nitrene transfer would be expected to have more significant spin density localized on the N atom of the NTs fragment.^{9c} Unsurprisingly, the highly stable silver(II) complex **3**, which lacks a reactive nitrene fragment, also shows no reaction with styrene.

As described above, treatment of **1** with PhINSO₂Ar at room temperature results in the formation of silver(II) products, which mass spectrometry analysis indicates to include the dinuclear nitrenoid product $[(t\text{-Bu}_3\text{terpy})_2\text{Ag}_2(\text{NSO}_2\text{Ar})]^+$. When **1** was stirred with 1 equiv of PhINSO₂Ar until **1** was consumed and PhI was generated (\sim 5 min, as determined by ¹H NMR), followed by addition of styrene, the color of the reaction mixture gradually lightened over the course of 10 min. ¹H NMR analysis of the mixture showed \leq 10% production of

aziridine, relative to **1** (Figure S9 in the Supporting Information).

Accurately evaluating the reactivity of the silver(III) product observed from further oxidation with PhINSO₂Ar is challenging, because of the fact that this product quickly begins to decompose back to silver(II) in the absence of excess PhINSO₂Ar. To test for nitrene transfer reactivity, the silver(III)-containing reaction mixture was prepared at -50 °C, filtered cold to remove excess PhINSO₂Ar, quickly added to a chilled vial containing styrene, and then allowed to warm to room temperature. ¹H NMR analysis showed aziridine production in \sim 50% yield relative to **1** (Figure S10 in the Supporting Information). This result indicates substantially higher reactivity for aziridination from silver(III), compared to the initially formed silver(II) products.

Further evidence for aziridination proceeding via a silver(III) intermediate was obtained from double labeling studies using two different PhINSO₂Ar derivatives (PhINTs and PhINSO₂Ph). In these studies, one derivative was used to generate the initial silver(II) products, and then styrene was added, along with the second oxidant derivative. Prior work has established that, in the case of an active metal-iminoiodane intermediate that forms subsequent to the initial (unreactive) metal nitrenoid, the nitrene fragment from the second equivalent of PhINSO₂Ar is expected to be transferred selectively to the alkene substrate.^{16a} On the other hand, if further oxidation with the second equivalent of PhINSO₂Ar occurs, one would expect unselective transfer of either nitrene fragment (Figure 9a). GC analysis of the product mixture confirms that both NTs and NSO₂Ph groups are incorporated into the aziridine product in significant amounts, regardless of the order of addition (see Figure 9b, as well as Figure S12 in the Supporting Information). Total aziridine production was \sim 60%, relative to **1** (Figure S11 in the Supporting Information). We do observe a slight preference for incorporation of the second equivalent of PhINSO₂Ar (\sim 3:1 across the average of replicate trials), which we attribute to partial decomposition of the initially formed silver(II) products prior to addition of the second equivalent of oxidant and styrene. In comparison, catalysts that proceed via metal-iminoiodane intermediates typically display at least 10:1 selectivity for incorporation of the second equivalent of oxidant into the aziridine product.^{16a}

Overall, our results indicate that both silver(II) and silver(III) products can be formed between silver(I) catalyst **1** and PhINSO₂Ar, and that sequential reaction of **1** with 2 equiv of oxidant generates the active silver(III) group transfer species for alkene aziridination. A summary of the reactivity pathways observed in our studies is shown in Figure 10. At this point, we are unable to fully assign the structure of the silver(III) intermediate, although the double labeling studies are suggestive of a complex with two reactive nitrenoid groups. The hypothesis of a high-valent silver complex bearing two nitrenoid groups is also consistent with the observed generation of complex **3**, via coupling of two NSO₂Ar fragments. It is possible that the dinuclear structure of **1** facilitates the formation of such an intermediate, in which each Ag center bears a nitrene; however, a pathway that proceeds through mononuclear silver(III) nitrene intermediates could also account for the currently available data (see Figure S15 and the accompanying discussion in the Supporting Information). We also note that the data reported here for the formally silver(III) complex cannot distinguish between a

“true” d^8 silver(III) center or a more subtle electronic structure description involving ligand orbital involvement in the oxidation process;¹⁸ further structural and spectroscopic characterization will be necessary to explore such distinctions.

CONCLUSIONS

In this study, we have presented a detailed experimental investigation of high-valent species derived from a silver(I) nitrene transfer catalyst and commonly used hypervalent iodine oxidants. We have provided the first examples of isolated and structurally characterized silver(II) complexes generated under catalytically relevant conditions, as well as the first direct observation of a silver(III) intermediate. Reactivity studies indicate that nitrene transfer for alkene aziridination occurs from silver(III). Our results suggest that silver(III) intermediates may be more readily accessible than typically assumed, even for silver catalysts with relatively weak ligand fields. Future efforts in our laboratory will aim to explore the potential generality of silver(III) intermediates in homogeneous catalysis, as well as to structurally characterize silver(III) complexes with relevance to catalysis in order to better understand group transfer reactivity from high-valent silver.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acscatal.0c00065>.

Experimental procedures and spectroscopic data (PDF)

Crystallographic data of 2 (CIF)

Crystallographic data of 3 (CIF)

AUTHOR INFORMATION

Corresponding Author

Michael G. Campbell – Department of Chemistry, Barnard College, New York, New York 10027, United States;
✉ orcid.org/0000-0002-4174-0174; Email: mcampbel@barnard.edu

Authors

Tasneem Elkoush – Department of Chemistry, Barnard College, New York, New York 10027, United States

Choi L. Mak – Department of Chemistry, Barnard College, New York, New York 10027, United States

Daniel W. Paley – Department of Chemistry, Columbia University, New York, New York 10027, United States

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acscatal.0c00065>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Steffen Jockusch for help with EPR data collection, Graham Sazama for EPR spectrum fitting, Brandon Fowler for assistance with mass spectrometry, Benjamin Bostick for XAS data collection and analysis, and Greg Boursalian for helpful discussions. M.G.C. gratefully acknowledges the donors of the ACS PRF (No. 59369-UNI3) for partial support of this research, and the NSF (No. CHE-1827936) for a MRI award in support of a 400 MHz NMR spectrometer at Barnard College. T.E., C.L.M., and M.G.C. thank the Department of Chemistry and the Office of the Provost at Barnard College for

additional financial support. SCXRD data for 2 was collected at the Advanced Photon Source on beamline 15-ID-D. ChemMatCARS Sector 15 is supported by the National Science Foundation, under Grant No. CHE-1346572. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Yu-Sheng Chen is gratefully acknowledged for supporting single-crystal diffraction experiments at ChemMatCARS. SCXRD data for 3 was collected at the Shared Materials Characterization Laboratory at Columbia University.

REFERENCES

- (1) (a) *Silver In Organic Chemistry*; Harmata, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010. (b) Naodovic, M.; Yamamoto, H. Asymmetric Silver-Catalyzed Reactions. *Chem. Rev.* **2008**, *108*, 3132. (c) Weibel, J.-M.; Blanc, A.; Pale, P. Ag-Mediated Reactions: Coupling and Heterocyclization Reactions. *Chem. Rev.* **2008**, *108*, 3149. (d) Alvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-Mediated Synthesis of Heterocycles. *Chem. Rev.* **2008**, *108*, 3174. (e) Yamamoto, Y. Silver-Catalyzed C_{sp^2} -H and C_{sp^3} -Si Bond Transformations and Related Processes. *Chem. Rev.* **2008**, *108*, 3199.
- (2) (a) Cui, Y.; He, C. Efficient Aziridination of Olefins Catalyzed by a Unique Disilver(I) Compound. *J. Am. Chem. Soc.* **2003**, *125*, 16202. (b) Cui, Y.; He, C. A Silver-Catalyzed Intramolecular Amidation of Saturated C–H Bonds. *Angew. Chem., Int. Ed.* **2004**, *43*, 4210. (c) Li, Z.; Capretto, D. A.; Rahaman, R.; He, C. Silver-Catalyzed Intermolecular Amination of C–H Groups. *Angew. Chem., Int. Ed.* **2007**, *46*, 5184. (d) Safin, D. A.; Pialat, A.; Korobkov, I.; Murugesu, M. Unprecedented Trinuclear Ag(I) Complex with 2,4,6-Tris(2-pyrimidyl)-1,3,5-triazine as an Efficient Catalyst for the Aziridination of Olefins. *Chem. - Eur. J.* **2015**, *21*, 6144.
- (3) (a) Furuya, T.; Strom, A. E.; Ritter, T. Silver-Mediated Fluorination of Functionalized Aryl Stannanes. *J. Am. Chem. Soc.* **2009**, *131*, 1662. (b) Tang, P.; Furuya, T.; Ritter, T. Silver-Catalyzed Late-Stage Fluorination. *J. Am. Chem. Soc.* **2010**, *132*, 12150. (c) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. Silver-Mediated Trifluoromethylation of Aryl Stannanes and Arylboronic Acids. *J. Am. Chem. Soc.* **2011**, *133*, 13308. (d) Huang, C.; Han, X.; Shao, Z. C.; Gao, K.; Liu, M.; Wang, Y.; Wu, J.; Hou, H.; Mi, L. Solvent-Induced Assembly of Silver Coordination Polymers (CPs) as Cooperative Catalysts for Synthesizing Cyclopentenone[b]pyrroles Frameworks. *Inorg. Chem.* **2017**, *56*, 4874.
- (4) Huang, M.; Corbin, J. R.; Dolan, N. S.; Fry, C. G.; Vinokur, A. I.; Guzei, I. A.; Schomaker, J. M. Synthesis, Characterization, and Variable-Temperature NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer. *Inorg. Chem.* **2017**, *56*, 6725.
- (5) Mak, C. L.; Bostick, B. C.; Yassin, N. M.; Campbell, M. G. Argentophilic Interactions in Solution: An EXAFS Study of Silver(I) Nitrene Transfer Catalysts. *Inorg. Chem.* **2018**, *57*, 5720.
- (6) Li, Z.; He, C. Recent Advances in Silver-Catalyzed Nitrene, Carbene, and Silylene-Transfer Reactions. *Eur. J. Org. Chem.* **2006**, *2006*, 4313.
- (7) Cho, G. Y.; Bolm, C. Silver-Catalyzed Imination of Sulfoxides and Sulfides. *Org. Lett.* **2005**, *7*, 4983.
- (8) (a) Llaveria, J.; Beltrán, A.; Díaz-Requejo, M. M.; Matheu, M. I.; Castillón, S.; Pérez, P. J. Efficient Silver-Catalyzed Regio- and Stereospecific Aziridination of Dienes. *Angew. Chem., Int. Ed.* **2010**, *49*, 7092. (b) Beltrán, Á.; Lescot, C.; Mar Díaz-Requejo, M.; Pérez, P. J.; Dauban, P. Catalytic C–H amination of alkanes with sulfonimidamides: silver(I)-scorpionates vs. dirhodium(II) carboxylates. *Tetrahedron* **2013**, *69*, 4488. (c) Maestre, L.; Sameera, W. M. C.; Mar Díaz-Requejo, M.; Maseras, F.; Pérez, P. J. A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways. *J. Am. Chem. Soc.* **2013**, *135*, 1338. (d) Arenas, I.; Fuentes, M. Á.; Alvarez, E.; Díaz, Y.; Caballero, A.; Castillón, S.; Pérez, P. J.

Synthesis of a Novel Fluorinated Trisphosphinoborate Ligand and Its Copper and Silver Complexes. Catalytic Activity toward Nitrene Transfer Reactions. *Inorg. Chem.* **2014**, *53*, 3991. (e) Maestre, L.; Dorel, R.; Pablo, Ó.; Escofet, I.; Sameera, W. M. C.; Álvarez, E.; Maseras, F.; Díaz-Requejo, M. M.; Echavarren, A. M.; Pérez, P. J. Functional-Group-Tolerant, Silver-Catalyzed N–N Bond Formation by Nitrene Transfer to Amines. *J. Am. Chem. Soc.* **2017**, *139*, 2216.

(9) (a) Rigoli, J. W.; Weatherly, C. D.; Alderson, J. M.; Vo, B. T.; Schomaker, J. M. Tunable, Chemoselective Amination *via* Silver Catalysis. *J. Am. Chem. Soc.* **2013**, *135*, 17238. (b) Alderson, J. M.; Phelps, A. M.; Scamp, R. J.; Dolan, N. S.; Schomaker, J. M. Ligand-Controlled, Tunable Silver-Catalyzed C–H Amination. *J. Am. Chem. Soc.* **2014**, *136*, 16720. (c) Dolan, N. S.; Scamp, R. J.; Yang, T.; Berry, J. F.; Schomaker, J. M. Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies. *J. Am. Chem. Soc.* **2016**, *138*, 14658. (d) Corbin, J. R.; Schomaker, J. M. Tunable differentiation of tertiary C–H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions. *Chem. Commun.* **2017**, *53*, 4346. (e) Weatherly, C.; Alderson, J. M.; Berry, J. F.; Hein, J. E.; Schomaker, J. M. Catalyst-Controlled Nitrene Transfer by Tuning Metal:Ligand Ratios: Insight into the Mechanisms of Chemoselectivity. *Organometallics* **2017**, *36*, 1649. (f) Ju, M.; Weatherly, C. D.; Guzei, I. A.; Schomaker, J. M. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations. *Angew. Chem., Int. Ed.* **2017**, *56*, 9944. (g) Scamp, R. J.; Jirak, J. G.; Dolan, N. S.; Guzei, I. A.; Schomaker, J. M. A General Catalyst for Site-Selective C(sp³)–H Bond Amination of Activated Secondary over Tertiary Alkyl C(sp³)–H Bonds. *Org. Lett.* **2016**, *18*, 3014. (h) Alderson, J. M.; Corbin, J. R.; Schomaker, J. M. Tunable, Chemo- and Site-Selective Nitrene Transfer Reactions through the Rational Design of Silver(I) Catalysts. *Acc. Chem. Res.* **2017**, *50*, 2147.

(10) (a) Po, H. N. Heterocyclic and Macrocyclic Amine Complexes of Silver(II) and Silver(III). *Coord. Chem. Rev.* **1976**, *20*, 171. (b) Levason, W.; Spicer, M. D. The Chemistry of Copper and Silver in their Higher Oxidation States. *Coord. Chem. Rev.* **1987**, *76*, 45.

(11) Stang, P. J.; Zhdankin, V. V. Organic Polyvalent Iodine Compounds. *Chem. Rev.* **1996**, *96*, 1123.

(12) Ali, M.; Shames, A. I.; Gangopadhyay, S.; Saha, B.; Meyerstein, D. Silver(II) complexes of tetraazamacrocycles: studies on e.p.r. and electron transfer kinetics with thiosulfate ion. *Transition Met. Chem.* **2004**, *29*, 463.

(13) Garribba, E.; Micera, G. The Determination of the Geometry of Cu(II) Complexes: An EPR Spectroscopy Experiment. *J. Chem. Educ.* **2006**, *83*, 1229.

(14) (a) Tate, B. K.; Wyss, C. M.; Bacsa, J.; Kluge, K.; Gelbaum, L.; Sadighi, J. P. A Dinuclear Silver Hydride and an Umpolung Reaction of CO₂. *Chem. Sci.* **2013**, *4*, 3068. (b) Tate, B. K.; Jordan, A. J.; Bacsa, J.; Sadighi, J. P. Stable Mono- and Dinuclear Organosilver Complexes. *Organometallics* **2017**, *36*, 964.

(15) Yang, M.; Su, B.; Wang, Y.; Chen, K.; Jiang, X.; Zhang, Y.-F.; Zhang, X.-S.; Chen, G.; Cheng, Y.; Cao, Z.; Guo, Q.-Y.; Wang, L.; Shi, Z.-J. Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules. *Nat. Commun.* **2014**, *5*, 4707.

(16) (a) Zdilla, M. J.; Abu-Omar, M. M. Mechanism of Catalytic Aziridination with Manganese Corrole: The Often Postulated High-Valent Mn(V) Imido Is Not the Group Transfer Reagent. *J. Am. Chem. Soc.* **2006**, *128*, 16971. (b) Gouré, E.; Avenier, F.; Dubourdeaux, P.; Sénèque, O.; Albrieux, F.; Lebrun, C.; Clémancey, M.; Maldivi, P.; Latour, J.-M. A Diiron(III,IV) Imido Species Very Active in Nitrene-Transfer Reactions. *Angew. Chem., Int. Ed.* **2014**, *53*, 1580. (c) Kundu, S.; Chernev, P.; Engelmann, X.; Chung, C. S.; Dau, H.; Bill, E.; England, J.; Nam, W.; Ray, K. A cobalt(II) iminoiodane complex and its scandium adduct: mechanistic promiscuity in hydrogen atom abstraction reactions. *Dalton Trans.* **2016**, *45*, 14538.

(17) Börgel, J.; Campbell, M. G.; Ritter, T. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes. *J. Chem. Educ.* **2016**, *93*, 118.

(18) DiMucci, I. M.; Lukens, J. T.; Chatterjee, S.; Carsch, K. M.; Titus, C. J.; Lee, S. J.; Nordlund, D.; Betley, T. A.; MacMillan, S. N.; Lancaster, K. M. The Myth of d⁸ Copper(III). *J. Am. Chem. Soc.* **2019**, *141*, 18508.