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Abstract
The 2016–2017 shallow submarine eruption of Bogoslof volcano in Alaska injected plumes of ash and seawater to maximum
heights of ~ 12 km. More than 4550 volcanic lightning strokes were detected by the World Wide Lightning Location Network
(WWLLN) and Vaisala’s Global Lightning Dataset (GLD360) over 9 months. Lightning assisted monitoring efforts by confirming
ash-producing explosions in near-real time, but only 32 out of the 70 explosive events produced detectable lightning. What led to
electrical activity within some of the volcanic plumes, but not others? And why did the lightning intensity wax and wane over the
lifetime of individual explosions? We address these questions using multiparametric observations from ground-based lightning
sensors, satellite imagery, photographs, acoustic signals, and 1D plume modeling. Detailed time-series of monitoring data show that
the plumes did not produce detectable lightning until they rose higher than the atmospheric freezing level (approximated by − 20 °C
temperatures). For example, on 28 May 2017 (event 40), the delayed onset of lightning coincides with modeled ice formation in
upper levels of the plume. Model results suggest that microphysical conditions inside the plume rivaled those of severe thunder-
storms, with liquid water contents > 5 g m−3 and vigorous updrafts > 40 m s−1 in the mixed-phase region where liquid water and ice
coexist. Based on these findings, we infer that ‘thunderstorm-style’ collisional ice-charging catalyzed the volcanic lightning.
However, charge mechanisms likely operated on a continuum, with silicate collisions dominating electrification in the near-vent
region, and ice charging taking over in the upper-level plumes. A key implication of this study is that lightning during the Bogoslof
eruption provided a reliable indicator of sustained, ash-rich plumes (and associated hazards) above the atmospheric freezing level.
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Introduction

December 2016 marked the beginning of the shallow subma-
rine eruption of Bogoslof, an island volcano partly submerged
beneath Alaska’s Bering Sea (Fig. 1a). Most of the explosive
events originated under shallow seawater (depths 5–100 m),
but dramatic reshaping of the vent led to shifts between sub-
marine and subaerial activity over the 9-month eruption
(Coombs et al. 2019; Waythomas et al. 2020). Seventy dis-
crete explosions were punctuated by time breaks, sending
plumes of ash and vaporized seawater up to ~ 12 km above
sea level (asl). Roughly half of these events produced detect-
able lightning. The electrical activity aided monitoring efforts
by verifying the presence of hazardous airborne ash (Coombs
et al. 2018). It also provided a means to study electrification of
volcanic plumes from the shallow submarine realm.

The origin of lightning in volcanic eruptions remains a
topic of great interest to the research community. In some
respects, the process is straightforward. First, airborne parti-
cles undergo electrifying collisions. Then, circulation within
the plume carries charged particles into separate regions,
building up an electric field that triggers lightning (Mather
and Harrison 2006; James et al. 2008). Generally, the taller,
more powerful eruption plumes tend to produce more abun-
dant, energetic lightning (McNutt andWilliams 2010). But the
details of exactly how and where electrical discharges
originate—in the volcanic vent, upper atmosphere, or some
combination—are central to the question of how to use light-
ning data to identify the timing and severity of volcanic haz-
ards. These aspects have come under scrutiny with new ob-
servations from active eruptions and laboratory experiments.

Several studies over the past decade have suggested that ice
charging plays an important role in the generation of globally-
detectable volcanic lightning (Williams and McNutt 2005;
Thomas et al. 2010; Arason et al. 2011). In ordinary thunder-
storms, the presence of ice is not only important, but essential,

for lightning to occur (Saunders 2008). The same has been
inferred for convective wildfire plumes (LaRoche and Lang
2017). These systems produce lightning when there is a ver-
tical flux through the mixed-phase region of the cloud,
prompting collisions of ice crystals, soft hail (graupel), and
supercooled liquid drops (Tsutomu 1978; Saunders and Peck
1998; Deierling et al. 2008; Emersic and Saunders 2010).
Observations and numerical simulations show that ice and
hailstones can readily develop in eruption columns, especially
if magma-water interaction takes place, and the plume rises
into freezing upper levels of the atmosphere (Van Eaton et al.
2012; Van Eaton et al. 2015).

Yet, there are also examples of silicate charging in
nature—electrified sand storms and dust devils, for example
(Williams et al. 2009). Silicate charging involves (1)
fractoemission from fracturing rock (James et al. 2000;
James et al. 2008) and (2) tribocharging from colliding ash
particles (Cimarelli et al. 2013; Méndez Harper and Dufek
2016; Gaudin and Cimarelli 2019). Recent field campaigns
have emphasized that silicate charging provides the sole
source of electrification in smaller plumes that do not rise high
enough to freeze. For example, eruptions of Sakurajima
Volcano in Japan have produced lightning within seconds of
explosive onset, with plume heights < 1 km above the vent
and plume temperatures hotter than 100 °C (Cimarelli et al.
2016; Behnke et al. 2018; Smith et al. 2018b). But when it
comes to larger eruptions capable of producing ice and other
hydrometeors, it is currently unknown how the relative roles
of silicate- and ice-charging regulate lightning development
over the lifecycle of a volcanic plume.

The gold standard in lightning studies involves deploying a
lightning mapping array, or LMA, close to a volcano (within
10 s of km) to measure the very high frequency radiation pro-
duced by electrical discharges. Studies using this approach have
identified three broad categories of electrical signals from vol-
canic eruptions (Thomas et al. 2010; Behnke et al. 2013). First,

Fig. 1 Area map of Bogoslof volcano (a) in Alaska’s Aleutian arc and
locations of volcanic lightning detected by the combined WWLLN and
GLD360 dataset from December 2016 to August 2017. b Histogram of

lightning locations (n = 4552 strokes) shows that most of the electrical
activity occurred within 25 km of the Bogoslof, assuming a vent location
of 53.9334 N, 168.0392 W
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continual radio frequency impulses (also known as vent
discharges) can be detected before the ash plume even rises
above the crater rim (Behnke et al. 2018). This radiation source
is not technically lightning at all, but a type of ‘cold’ plasma
discharge confined to the high-velocity jet (Behnke et al. 2018).
Continual radio frequency impulses are a unique signature of a
volcanic eruption—they have not yet been detected from any
other type of thunderstorms. Furthermore, they seem to prefer-
entially occur during impulsive, ash-rich explosions (Smith
et al. 2018b). The second type of electrical discharge is near-
vent lightning, which develops some seconds to minutes after
eruptive onset. These relatively small-scale discharges occur
within a few kilometers of the volcanic vent, characterized by
flash lengths < 7 km (based on the 2006 eruption of Augustine
in Alaska). The third category, plume lightning, develops after
the eruption column has become convective. The flashes ex-
ceed ~ 7 km in length and may take place far from the vent,
within the vertical column, umbrella cloud, and downwind ash
plume. For example, the 2015 eruption of Calbuco in Chile
generated volcanic lightning > 100 km downwind (Van Eaton
et al. 2016). Plume lightning is indistinguishable from ordinary
thunderstorm lightning in terms of electrical characteristics
(Thomas et al. 2010; Behnke et al. 2013). However, it is not
clear whether silicate charging, ice charging, or some combina-
tion is required to produce high rates of globally detectable
lightning in volcanic plumes. Is ice a necessary ingredient, as
in regular thunderstorms and wildfires?

The Bogoslof eruption provides an unusual opportunity to
investigate this question. The explosions were generally dis-
crete and well-defined, with time breaks on the order of hours
to weeks. Plume heights weremoderate, mostly in the range of
4–10 km asl (maximum 12 km), and atmospheric conditions
were quantified using weather models (ERA-interim
reanalysis) (Schneider et al. 2020; Schwaiger et al. 2020).
Satellite analysis shows that the eruption clouds were rich in
condensed water and ice (Lopez et al. 2020; Schneider et al.
2020). Furthermore, the eruptive infrasound took on a differ-
ent character depending on the presence (or absence) of sea-
water flooding the volcanic vent (Fee et al. 2020). This multi-
parametric time series allows us to investigate the lightning
during different stages of eruption development and seawater
interaction. First, we cover some relevant background on the
eruption dynamics and detection methods. Then, we examine
the overall lightning characteristics, and unpack the details of
eight well-characterized, intensely electrified explosions. Our
overall aims are to shed light on the origin of the volcanic
lightning, and better understand its operational niche during
eruption response.

The 2016–2017 Surtseyan eruption of Bogoslof

Bogoslof volcano is located in the central Aleutian arc of
Alaska (Fig. 1). Although the majority of the stratovolcano

is submerged beneath the Bering Sea, its summit rises 100–
150 m above the water’s surface and forms Bogoslof Island, a
protected wilderness area and important breeding site for sea-
birds, seals, and sea lions. In December 2016, Bogoslof
erupted for the first time since 1992. The activity consisted
of 70 recorded explosive events and at least two phases of
subaerial dome growth, all primarily basaltic in composition
(Loewen et al. 2019). Most of the explosions were short-lived
and pulsatory on timescales of minutes to tens of minutes,
with only a few sustained for more than an hour (Wech et al.
2018; Lyons et al. 2020). The volcanic plume heights gener-
ally remained within the troposphere, although some rose to
modestly stratospheric levels (note: the cold-point tropopause
ranged 7–13 km high during the eruption). Airborne ash
disrupted local and international air traffic for months, and
on three occasions, ash was deposited on communities or
ships downwind (Coombs et al. 2018; Coombs et al. 2019).
From satellite, nearly all the volcanic clouds appeared light in
color and lacked a brightness temperature difference in
multispectral imagery, suggesting that the ash signal was
masked by abundant water. Schneider et al. (2020) concluded
that the high-altitude clouds detected by satellite were ashy
and phreatomagmatic—not merely ash-free clouds of
steam—based on (1) deposition of juvenile ash every time
the clouds drifted over land or ship; (2) measurable growth
of Bogoslof Island from high-temperature pyroclastic ejecta;
and (3) abundance of magmatic SO2 gas produced by the
explosions, as detected by Lopez et al. (2020). In other words,
the plumes were water-rich, but not ash poor.

Seawater flooded freely into the crater during most of the
eruption, but buildup of lava domes and tephra periodically
blocked access, leading to phases of subaerial activity
(Coombs et al. 2019; Waythomas et al. 2020). These changes
could be tracked using infrasound data because the acoustic
signals took on a different character when the eruption plumes
were blasting up through seawater versus directly into the air.
When the acoustic source originated underwater, the higher-
frequency infrasound was muffled, and only the lower fre-
quencies (< 2 Hz) reached the microphone array on Okmok
volcano ~ 60 km away (Fee et al. 2020). In contrast, eruptions
directly into air retained the higher-frequency infrasound. This
technique made it possible to identify when there was water
infilling the vent, and likely, enhanced magma-water interac-
tion during individual eruptive events.

The Bogoslof eruption was similar in several respects to the
1963–1967 Icelandic eruption of Surtsey, the type-example of
Surtseyan volcanism (Thorarinsson 1967; Walker and
Croasdale 1972; Moore 1985; Houghton et al. 2015).
Bogoslof and Surtsey both saw prolonged interaction of mag-
ma and seawater, generating phreatomagmatic plumes rich in
volcanic lightning, but generally < 15 km high (Fig. 2b). They
were both small-volume, basaltic, and shallow submarine-to-
emergent in nature. Bogoslof’s pyroclast textures are
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consistent with slowly-ascending, chilled magma (Loewen
et al. 2019; Lyons et al. 2019). But it remains to be seen if this
is quantitatively different from Surtsey’s eruptive products in
terms of bubble textures and crystal content (c.f., Schipper and
White 2016).

In the mid-1960s, there was an ambitious field campaign to
measure Surtsey’s electrical signals (Anderson et al. 1965).
Focusing on a period of activity from 5 to 16 February
1964, Anderson et al. (1965) flew an airplane directly through
the clouds with electric field meters embedded in the wing
tips. On one of these airborne surveys, the crew noted volcanic
bombs shooting up past the aircraft at 500 m altitude. Next,
they equipped a fishing vessel with instruments to measure
electrical potential, sailing within 100 m of the active crater
and weaving underneath the ash clouds. The team also spent
time taking direct observations with long-exposure photogra-
phy and hand-drawn sketches of volcanic lightning from the
nearby village of Vestmannaeyjar. Several findings are worth
highlighting. Over their period of observation, Surtsey’s light-
ning (1) occurred within seconds of explosive onset, (2) was
confined within the lower regions of the plumes, and (3) de-
veloped exclusively from high-velocity jets of black tephra,
yet was absent from the ash-poor steam explosions. Although

one steam plume from a lava-ocean entry on 24 July 1964 did
carry a net positive charge, it failed to generate visible light-
ning. Overall, these observations are consistent with what
would now be recognized as near-vent lightning—which has
been linked to silicate charging within the conduit and jet
(Smith et al. 2018b). Notably, Anderson et al. (1965)
discerned that the electrical activity in December 1964, which
was before the instruments were deployed (pictured in Fig.
2b), produced a different style of visually “more intense elec-
trical displays,” which they suggested may have been related
to thunderstorm electrification processes (i.e., ice charging).

Compared to Surtsey, direct visual observations of the
Bogoslof eruptions were scarce. Figure 2d shows the only
photograph of volcanic lightning captured during the entire
eruption. The closest populated area is the city of Unalaska
(~ 4.5 k residents), hosting the port of Dutch Harbor about
100 km east of Bogoslof. Although a Federal Aviation
Administration webcamwas pointed toward the volcano, poor
visibility prevented consistent observations. Therefore, our
plume heights are determined exclusively from satellite
(Lopez et al. 2020; Schneider et al. 2020). Without any sen-
sors directly on the island, and no weather radar within range,
the 70 explosive events were defined by remote monitoring

Surtsey, 1 Dec 1963

(b)

Bogoslof, 26 Aug 2017

(c)

Fire 
Island

Hot dome interac�ng 
with seawater

Bogoslof, 23 Dec 2016

(d)

Volcanic 
lightning

Bogoslof, 1910

(a)

Fig. 2 Photographs of phreatomagmatic activity fromBogoslof in Alaska
and Surtsey in Iceland. a Water-rich tephra explosion from Bogoslof on
18 September 1910, taken by F.E. Bagger; http://vilda.alaska.edu/u?/
cdmg2,3102. b Long-exposure (90-s) nighttime photograph of volcanic
lightning from the Icelandic eruption of Surtsey on 1 December 1963,
when the plumewas ~ 8 km asl, by Sigurgeir Jónasson (Jónasson 1965). c
Steam-dominated plume from Bogoslof on 26 August 2017 due to inter-
action of seawater and a fresh lava dome (not categorized as an explosive

event). Taken from an aircraft about 24 km SW, by Dave Withrow
(NOAA). No lightning was detected from this ash-poor plume. d The
only photograph of volcanic lightning from the 2016–2017 eruption of
Bogoslof was captured in the early morning of 23 December 2016 by US
Coast Guard crew. Image shows lightning and a towering, incandescent
column rising up into the regional cloud deck; AVO image ID 103591
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data, including infrasound, seismicity, satellite-detected ash
clouds, and ground-based radio antennas to detect volcanic
lightning (Coombs et al. 2018; Coombs et al. 2019). The
eruption was geophysically monitored in unprecedented detail
for a submarine volcano (Tepp et al. 2020). Using this dataset,
we address why some of the explosions produced more light-
ning than others—and some, not at all. We aim to build on the
landmark observations of electrical activity from Surtseyan
eruptions (Anderson et al. 1965), optimize the use of lightning
in volcano monitoring (Behnke andMcNutt 2014), and devel-
op a more quantitative understanding of what globally-
detected lightning tells us about eruption hazards in near-real
time (Shevtsov et al. 2016; Van Eaton et al. 2016; Coombs
et al. 2018).

Data, terminology, and methods

Several lightning networks and novel detection methods were
brought to bear on Bogoslof’s electrical activity during the
December 2016–August 2017 eruption. We use measure-
ments from the following sources:

& The World Wide Lightning Location Network’s Global
Volcanic Lightning Monitor (WWLLN)

& Vaisala’s Global Lightning Dataset (GLD360)
& Two-sensor solutions from GLD360 (using 2 sensors in-

stead of the standard 3+)
& Volcanic thunder detected by the microphone array on

Okmok volcano, 60 km south of Bogoslof, as reported
by Haney et al. (2018) and Haney et al. (2020)

& Lightning detected as glitches on the microphone array
cables at Okmok volcano (Haney et al. 2020)

Not included in this study are detections from two addi-
tional Earth Networks Total Lightning Network stations,
which were deployed in the Aleutians toward the end of the
eruption. Data from those sensors will be examined in follow-
up work (Lapierre et al. 2018; Haney et al. 2020). No LMA
was installed during the eruption (c.f., Behnke et al. 2013;
Behnke et al. 2014), so our measurements do not capture all
of the electrical discharges that occurred. It is also worth not-
ing that the eruptive activity was outside the coverage of sat-
ellite-based, geostationary lightning mappers (Schultz et al.
2016; Andrews et al. 2018).

For this paper, we use the term strokes to broadly encom-
pass the individual lightning detections regardless of detection
method or classification as in-cloud or cloud-to-ground. In
practice, a single flash of lightning can generate multiple
strokes, but we have not grouped the strokes into parent
flashes. Return strokes (and cloud pulses) create radio waves
in the very low frequency (VLF) band from 3 to 30 kHz. The
VLF energy from lightning propagates thousands of kilome-
ters away at the speed of light, conducted by the Earth-

ionosphere waveguide. Long-range detection systems like
WWLLN and GLD360 use ground-based radio antennas to
measure the electric or magnetic field, providing 2D lightning
locations with a spatial accuracy typically < 5 km and a timing
accuracy on the order of 10 μs (Abarca et al. 2010; Said et al.
2013). Altitudes of lightning sources were not directly mea-
surable with the network configurations available during our
study.

WWLLN had approximately 80 active sensors worldwide
at the time of the eruption. The detection algorithm uses five
or more stations to locate VLF radiation using the time of
group arrival to each sensor (Rodger et al. 2005). Previous
studies of relative detection efficiency have shown that
WWLLN locates about 10% of all lightning detected by
VLF sensors around the world (Hutchins et al. 2012a; Bitzer
and Burchfield 2016). The network is particularly sensitive to
cloud-to-ground lightning, capturing 40–50% of all strokes
with peak current > 40 kA (Hutchins et al. 2012b).

Vaisala’s GLD360 network determines lightning locations
using both time of arrival and magnetic-direction finding at
three or more sensors (Said et al. 2010; Said and Murphy
2016). The lightning ‘effective’ peak currents are estimated
from the measured strength of the VLF electric field and a
propagation model accounting for attenuation in the Earth-
ionosphere waveguide (Said 2018). These estimates are typi-
cally within 25–50% of peak currents measured from rocket-
triggered lightning (Mallick et al. 2014) and the National
Lightning Detection Network (Said 2018). GLD360 does
not explicitly distinguish in-cloud and cloud-to-ground light-
ning, but we use the threshold defined by Biagi et al. (2007) to
infer that lower peak currents (weaker than ± 15 kA) are sta-
tistically more likely to originate from in-cloud lightning
(Fig. 3b). The GLD360 has a detection efficiency in the range
of 67–80% for cloud-to-ground lightning over the continental
United States (Said et al. 2013; Mallick et al. 2014; Said and
Murphy 2016). Poorer network performance should be ex-
pected around Bogoslof due to fewer sensors in the region,
but we estimate the cloud-to-ground lightning detection effi-
ciency was still above ~ 70%, using the modeling approach of
Pessi et al. (2009).

In addition to the GLD360 production dataset described
above, which captured lightning with peak currents as small
as 2 kA during the Bogoslof eruption, we were also curious
about the weakest electrical activity that could be detected for
early warning. We applied the sparse network technique de-
veloped by Lapierre et al. (2018), using only the two closest
GLD360 sensors to Bogoslof, and assuming the signals orig-
inated within 100 km of the vent. The advantage of the two-
sensor solution is improved sensitivity to low-current light-
ning (< 2 kA)—in this case, it allowed earlier detection of
several explosions and more than doubled the total strokes
detected (Table 1). Disadvantages include poorer location ac-
curacy and a noisier dataset, increasing false positives by ~ 1
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stroke min−1. To mitigate these effects, we ignored the extra
detections unless they were (1) associated with rates > 5 per
min or (2) confirmed by a third sensor. Results of the two-
sensor solution are described separately in this paper
(Table 1), and unless otherwise specified, GLD360 data come
from the production dataset.

Lightning data from the WWLLN and GLD360 networks
were cross-correlated to identify duplicate measurements of
the same stroke. Using this method,WWLLN detections were
removed if they overlapped within 5 km and 1 ms of a
GLD360 detection. Lightning from non-volcanic thunder-
storms was also removed, and this process was relatively
straightforward for two reasons: (1) most of the explosive
events were isolated, short-lived events, typically tens of mi-
nutes or less; and (2) ordinary lightning is uncommon in
Alaska—in our case, there were < 30 non-volcanic lightning
strokes within 100 km of Bogolsof during the 9-month erup-
tion. Thus, volcanic and non-volcanic lightning rarely coin-
cided in time and space. Average lightning stroke rates were
calculated in non-overlapping, 5-min windows over the entire
eruption, and results were divided by 5 min to obtain the
average strokes per min (Fig. 3; Table 1). For this investiga-
tion, we classified the eruption plumes as electrically active if
volcanic lightning was detected by at least one of the global
lightning networks or by the cable glitches reported in Haney
et al. (2020). We recognize that even the plumes that failed to
produce detectable lightning may still have carried a charge,
and some probably generated weak discharges that were be-
low our detection threshold (peak currents ~ 2 kA or less).

Volcanic plume heights were detected by satellite from
Schneider et al. (2020) and Lopez et al. (2020). Ash plume
heights were determined primarily by cloud-top temperatures
in thermal infrared, or displacement measurements in visible
satellite images (Schneider et al. 2020). For cases in which

plume heights were not measurable due to regional cloud cov-
er or untimely satellite passes, we used the mean height of SO2

clouds from Lopez et al. (2020). In reality, the SO2 gas often
separates from the ash component, particularly during
phreatomagmatic eruptions (Schneider et al. 1999)—a notable
example is the 2011 eruption of Grímsvötn, Iceland (Moxnes
et al. 2014). So we emphasize that the SO2 heights only give a
rough approximation of ash injection height. However, Lopez
et al. (2020) showed that for the majority of cases (> 80%), the
two methods were within 2 km of each other. Error bars of
20% are shown for all plume heights in Fig. 3c, based on a
comparison of independent satellite methods by Schneider
et al. (2020). The 20% uncertainty accounts for an error of
~ 2 km for plumes that reach 10 km asl, and generally more
tightly constrained heights for lower-level plumes (see
Schneider et al. (2020) for additional details).

To reconstruct the development of Bogoslof’s water-rich
plumes, we used the 1D model Plumeria, which accounts for
water phase changes (Mastin 2007) and effects of the back-
ground wind field (Mastin 2014). Plumeria calculates mean
properties of a steady-state volcanic plume as a function of
height, and we implemented a freezing parameterization based
on the experimental work of Schill et al. (2015) to handle
heterogeneous ice nucleation in the presence of volcanic ash
and sea aerosols. Using these assumptions, liquid water and
ice coexist in the plume over temperatures of − 15 °C
and − 23 °C. Model inputs include the atmospheric profile
over Bogoslof from ECMWF ERA-Interim reanalysis, as in
Schwaiger et al. (2020), and eruption source parameters such
as plume height and water content, based on explosive event
40 from 28May 2017.We varied the amount of external water
incorporated into the plume from 0 to 30 wt.% to investigate
how different amounts of magma-water interaction would af-
fect the plume dimensions, freezing level, and airborne con-
centrations of hydrometeors. Results from the full suite of
model runs are available in Supplementary Material (Fig. S1
and Table S1).

Overview of lightning characteristics

The combined database from WWLLN and GLD360 con-
tains > 4550 volcanic lightning strokes over the 2016–
2017 eruptive sequence (Supplementary Material).
Figure 1 shows that the lightning occurred within a fairly
restricted area around the volcano—98% of the strokes
were within 25 km of Bogoslof (Fig. 1b). The modest
spatial footprint of electrical activity is consistent with
the generally low plume heights (maximum ~ 12 km asl)
compared to more powerful, examples from Kelud and
Calbuco, which both exceeded 20 km asl (Van Eaton
et al. 2016; Hargie et al. 2019). Figure 3 provides an
overview of volcanic, atmospheric, and lightning proper-
ties for the full eruptive sequence. Table 1 summarizes

�Fig. 3 Overview of volcanic lightning, plume heights, and atmospheric
temperatures during the 2016–2017 eruption of Bogoslof. a Lightning
abundance shown as number of strokes and peak rate (strokes min−1)
during each of the 70 explosive events from the combined WWLLN
and GLD360 datasets. Asterisks highlight the case studies examined in
detail. b Distribution of peak currents and lightning polarity during each
explosive event; low-current lightning is inferred to be in-cloud. c
Satellite-detected maximum plume height from each event, shown as
vertical bars; plumes that generated lightning are shown in red; error bars
give 20% uncertainty. Unknown heights (dashed bars) are given an arbi-
trary value of 2 km. Shading indicates where atmospheric temperatures
over Bogoslof volcano reached 0 °C and − 20 °C, as determined from
ERA-Interim reanalysis. Note that lightning from event 56 (2 July) was
detected only by glitches on infrasound cables, described in Haney et al.
(2020). Stars indicate the two plumes that generated lightning without
clear evidence of rising above the − 20 °C isotherm (events 9 and 49).
However, both may have been higher than suggested by this plot—event
9 is pictured in Fig. 2d, and event 49 injected an SO2 cloud to 6.4 km asl
(Lopez et al. 2020). Lightning was generated by all plumes measured
above 9 km asl (not including the height uncertainties)
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key parameters, including mass eruption rates based on
empirical relationships to plume height (Mastin et al.
2009; Mastin 2014).

An immediate observation is that fewer than half of
the explosive events generated lightning (32 out of 70
events). Figure 3c shows that all plumes rising > 9 km
asl also produced lightning, along with 90% of the
plumes > 8 km (18 out of 20). Based on this finding,
the highest plumes were clearly more likely to become
lightning-rich.

However, there is only a weak linear correlation across
the full range of plume heights observed (Fig. 4a).
Roughly 24% of the variability in lightning rate can be
explained by the maximum plume height (red dashed line,
Fig. 4a). Some of the scatter is from a suite of explosions
that produced less lightning than expected from plume
height alone (7–12 km). One explanation is that these
events were short-lived—Fig. 4b shows that the briefest
explosions (< 5 min, based on infrasound detection dura-
tion) were less likely to generate lightning. But there is
also a seasonal effect visible in Fig. 3a. Notice how vol-
canic lightning decreased during the late spring and sum-
mertime events, despite similar maximum plume heights
(Fig. 3a). We initially considered the possibility that the
lightning sensors were saturated by enhanced global light-
ning during the northern hemisphere summer, but found a
negligible impact (no relevant sensors were down for
more than a few minutes). This suggests a ‘real’ decrease
in lightning generation from the summertime eruption
plumes. Two notable changes were taking place during
these later events. First, the explosions became shorter-
lived—average infrasound detection durations decreased
by 50% after event 38 on 13 March 2017 (Table 1;
Lyons et al. 2020). Many of these short-lived explosions
failed to produce detectable lightning despite (briefly)
reaching a high altitude (Fig. 4b). Second, the atmosphere
became seasonably warmer during the spring and summer
(shaded regions in Fig. 3c). Warmer atmospheric temper-
atures require plumes to rise higher to reach freezing
levels where ice charging can occur, as observed during
the 2010 eruption of Eyjafjallajökull in Iceland (Arason
et al. 2011). Arason et al. (2011) identified − 20 °C as a
possible threshold for volcanic plumes, beyond which the
plume cools sufficiently to create a mixed-phase region of
graupel, ice crystals, and supercooled liquid drops—the
crucial ingredients for thunderstorm-style charging.

Figure 3c compares the height of electrically-active
plumes with the height of the − 20 °C and 0 °C isotherms
above Bogoslof, determined from ERA-Interim reanalysis
(Schwaiger et al. 2020). Among the lightning producers,
shown as red bars in Fig. 3c, all but two injected into the
freezing level of the atmosphere (stars in Fig. 3c). One of
the exceptions is event 9 on 23 Dec 2016, which generatedT
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22 lightning strokes, and was not observed in satellite due
to regional cloud cover at least 9 km altitude. But based on
the distant photographs of a towering, incandescent col-
umn penetrating the cloud deck (Fig. 2d), it probably did
rise higher than the local freezing level of ~ 4 km. The
other exception is event 49 on 13 June 2017, which pro-
duced only one in-cloud lightning stroke (and two electri-
cal glitches) without rising above the freezing level of
5.2 km. However, its SO2 cloud was detected at heights
of 6.4 km ~ 4 h after the end of the explosive event
(Lopez et al. 2020), so some amount of higher-level injec-
tion is possible. Figure 3c also reveals that nine plumes
rose above the − 20 °C level without producing any detect-
able lightning (events 6, 12, 21, 22, 34, 41, 53, 67, and 69).
These were short-lived events (infrasound detection
durations < 2 min or not detected at all; Table 1), which
produced small, rapidly dissipating clouds (Schneider et al.
2020). We suspect that these intense, but brief, explosions
were not sustained long enough to create globally-
detectable lightning. Following from these general obser-
vations, the question remains if ice formation played a
governing role in the electrification of Bogoslof’s plumes.
To examine the issue, we consider eight case studies in
finer temporal and spatial resolution.

Detailed case studies

Using eight case studies of electrically-active plumes, we ex-
amine the time series of eruption dynamics inferred from
plume heights, plume morphology, and infrasound frequency.
Comparing these observations with lightning stroke rates,
peak currents, and results from 1D plume modeling allows
us to consider how electrical activity is influenced by (1)
plumes rising above the local freezing level and (2) submarine
vs. subaerial vent conditions.

Two moderate-intensity, submarine explosions

First, we examine two of the most electrically active ex-
plosions of the 2016–2017 eruption. Event 39 (17 May)
and event 40 (28 May) produced some of the highest
plumes of the eruption, although they were both moderate
intensity in terms of mass eruption rate (~ 106 kg s−1,
using empirical plume height scaling relationships;
Table 1). Shallow seawater likely covered the vent for
the entire duration of these explosions, based on the per-
sistent, low frequency infrasound (Fee et al. 2020).
Figure 5 illustrates the plume dynamics and lightning
from event 40 on 28 May. Notice the burst of low-
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frequency infrasound (yellow color) at 22:16 UTC, sig-
naling the start of explosive eruption through seawater
(Fig. 5a). The beginning of an eruption column was first
observed at 22:20 in visible satellite imagery (Himawari-
8), but was too small to obtain height information.
Figure 5a shows that acoustic energy increased over the
next 10 min, as the vertical ash column rose to a height of
6.5 km asl by 22:30, which is within uncertainty of the
local freezing level (dashed white line in Fig. 5a). Note
that the plume was still electrically quiet at this point,
despite its substantial height (Fig. 5b). Moments later, a
fortuitous pass of the Worldview satellite imaged the ris-
ing column, which was only 2 min away from becoming
an intense lightning storm (Fig. 5c). The plume morphol-
ogy reveals a well-mixed, turbulent column that had not
yet reached the level of neutral buoyancy or formed an
umbrella cloud. The color of the plume grades from light,
ashy gray at its base (label in Fig. 5c) to stark white
toward the top, reflecting both the high proportion of sea-
water incorporated into the plume, and the rapid conden-
sation of water in the near-vent area. Similar processes
were observed during the Icelandic eruption of Surtsey,
when the plume “abruptly turned white as the steam
cooled and condensed” (Anderson et al. 1965).

At Surtsey, Thorarinsson (1967) described icy precipitation
falling from the water-rich plumes, noting “tephra fell in hail

showers, one grain of tephra within each hailstone”. This relates
to the Bogoslof plume pictured in Fig. 5c because nucleation of
water and ice on the ash particles obscured their recognition in
both the visible (Fig. 5c) and infrared wavelengths (Schneider
et al. 2020). The cloud did not drift toward land, so there was no
recognizable ash fall, but the presence of ash-laden eddies in the
lower eruption column (Fig. 5c), and production of a sizeable
SO2 cloud (Lopez et al. 2020), including several aircraft en-
counters (Coombs et al. 2019), support a phreatomagmatic,
ash-rich source rather than an ash-free steam plume. A final
observation from Fig. 5c is that the top of the rising column is
capped by a pileus cloud—a smooth, gauzy veil made of con-
densed water and, likely, ice crystals (Garrett et al. 2006). In
meteorology, pileus clouds develop when parcels of moist air
are forced ahead of strong updrafts. A prominent example oc-
curred during the 2009 eruption of Sarychev Peak, Russia,
photographed from the International Space Station (Rybin
et al. 2011; their Fig. 5). Taken together, these features point
to condensed water and ice formation within the volcanic
plume in the minutes leading up to lightning generation. After
22:34 UTC, the column continued to rise into the stratosphere,
with an overshooting top reaching 12 km by 22:40.

The finding that condensation occurred close to sea level
(image in Fig. 5c) provides some useful constraints on water
contents in the volcanic plume. A sensitivity analysis using
the 1D model Plumeria shows that ~ 25 wt.% external water
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was required for low-altitude condensation on 28 May
(Supplementary Fig. S1). The model scenario in Fig. 6 reveals
several interesting features. For one, it confirms that freezing
would have taken place at heights of ~ 7 km in the plume (Fig.
6a, b), coinciding with the time of the Worldview image and
onset of lightning generation (Fig. 5a–c). It also shows a
mixed-phase region from 7 to 8 km (shading in Fig. 6b),
where liquid water and ice coexist within vigorous updrafts
of 40–50 m/s (Fig. 6c). These conditions are ripe for collision-
al ice charging (Deierling et al. 2008). In fact, the extremely
high liquid water contents (6–9 g m−3) are on par with those in
the most severe thunderstorms, > 5 g m−3 (Williams 1995;
Loney et al. 2002). Under this scenario, it is likely that ice-
charging would take an active role in plume electrification.

Bogoslof’s event 39 on 17 May began generating low-
frequency infrasound at 6:29 UTC (Fig. 7a). But due to an
extensive weather system over the region, the white, ice-rich
plume merged with background clouds, making it difficult to
track precise changes in plume height during the > 1 h of
lightning activity. There were several weak lightning strokes
detected around 6:43 UTC using the high-sensitivity, two-
sensor GLD360 method (lightning symbol in Fig. 7b).
Around this time, a satellite pass at 6:45 UTC showed the
plume still apparently below the cloud deck, which was ~

5 km (note freezing level at 4.4 km; dashed line in Fig. 7a).
After 6:57 UTC, all of the available satellite retrievals show
injection to 8–10 km asl, which is well above the freezing
level. Despite the cloud’s white color and absence of a bright-
ness temperature difference in multispectral satellite data, it
was indeed ash-rich, depositing ash fall in the village of
Nikolski ~ 124 km southwest. The fall deposits contained ju-
venile, vesicular glass (Loewen et al. 2019). Peak lightning
rates of ~ 39 min−1 coincide with the strongest infrasound
energies during this event from 7:30–7:50, and almost all of
the lightning was in-cloud (98%).

These moderate-intensity, shallow submarine explosions
provide two consistent observations: (1) both produced high
rates of in-cloud lightning > 30–40 strokes min−1 once the
plumes were well above the − 20 °C isotherm, but not before-
hand, and (2) there were considerable delays from the start of
eruptive activity (see infrasound onset in Figs. 5a and 7a) to
the onset of globally-detectable lightning (~ 20 min each),
apparently reflecting the time needed to create the conditions
for lightning (discussed further in the section on volcanic
lightning for monitoring).

Transitions between submarine and emergent
activity

Here, we examine four explosive events that transitioned be-
tween submarine and subaerial vent conditions (Fig. 8).
During three of these (events 29, 37, and 63), the vent “dried
out,” presumably as the buildup of tephra blocked seawater
access (Fee et al. 2020; Waythomas et al. 2020), whereas
event 48 on 10 June destroyed a subaerial dome, flooding
the vent with seawater partway through eruption. These
transitioning explosions provide a means to investigate if ex-
plosions through water affected the lightning generation.
Figure 8 summarizes lightning data alongside satellite-
derived plume heights (white circles) and infrasound frequen-
cy (yellow-blue spectrograms). Across these diverse events,
three features are evident: (1) they all created long-lasting
plumes (> 1 h) straddling the freezing level of the atmosphere,
(2) most lightning only became detectable once plume heights
exceeded the − 20 °C isotherm (keeping in mind the error bars
on the plume heights), and (3) the presence of seawater in the
vent had no systematic influence on the timing or intensity of
volcanic lightning.

Consider event 29 on 31 Jan 2017 (Fig. 8a). This explo-
sion produced low-level plumes < 6 km asl over a period of
6 h, resulting in ash fall on Unalaska Island. Ash clouds first
became visible in satellite at 6:30 UTC while the vent in-
undated was with seawater, based on the lower-frequency
(< 2 Hz) infrasound. During this phase, plume heights were
sustained above the − 20 °C isotherm of 3 km asl for ~ 30
mins; yet, there was only weak, in-cloud lightning (1–2
strokes per min). The lightning abruptly shut off after
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7:00 UTC as the plume dipped below (or near) the − 20 °C
isotherm for the remainder of the submarine activity. By
8:40 UTC, higher-frequency infrasound suggests the vent
was subaerial. Overall, it appears that the volcanic lightning
“turned off and on” depending the plume’s height above the
freezing level (Fig. 8a). But there were much higher stroke
rates during the dry phase of explosive activity, with more
cloud-to-ocean lightning (indicated by peak currents great-
er than ± 15 kA). The plume generated more lightning, de-
spite no significant change in ash cloud heights across the
wet-to-dry transition. In this case, it does appear that light-
ning intensified when there was less water in the vent. A
possible explanation is that the abundance of high-
conductivity liquid water dissipated the electric charge
from particle collisions near the vent. Without sufficient
buildup of charge, there cannot be electrical breakdown.
However, it is important to observe that this response to
water inundation is not consistent across the other explo-
sive events examined (e.g., Figs. 8b–d and 9).

The larger explosion on 8 March (event 37; Fig. 8b) shows
little sensitivity to water levels in the vent. With a maximum
plume height up to 11.3 km asl, the eruption rate was nearly an
order of magnitude higher than event 29 (31 Jan; Table 1).
Once the plume rose above the regional cloud deck after 8:10,

its height increased over the next few hours, suggesting a
gradual increase in mass eruption rate. Lightning was only
detected once the plume reached (or exceeded) the − 20 °C
isotherm at 5.6 km (Fig. 8b). Lightning stroke rates reached
25 min−1, surpassed only by the eruptive events on 17 May
and 28 May. Interestingly, the lightning was dominantly in-
cloud judging by low peak currents (> 90% were weaker than
± 15 kA) and showed little change across the wet-to-dry tran-
sition. When the vent “dried out” by ~ 9:40 UTC (based on
infrasound), plume heights continued to increase by 1–2 km,
but without any notable change in lightning rates or peak
currents.

Event 48 on 10 June (Fig. 8c), known as the ‘dome
destroying event,’ obliterated a subaerial lava pile about
110 m across (Coombs et al. 2019). Infrasound frequencies
suggest that the explosion initiated from a subaerial vent and
became progressively more water-rich as the dome
disintegrated and allowed seawater to flood the crater.
Infrasound started as early as 8:27 UTC, but during this early
part of the explosion, no plumes rose above cloud deck at 5–
6 km asl (near the freezing level of 4.9 km). Activity occurring
below the cloud deck did produce some lightning, indicated
by several glitches around 11:15 (Haney et al. 2020).
However, the volcanic plume did not rise above surrounding
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clouds until after ~ 12:00. Globally detected lightning began at
12:16, and plume heights hovered around 7–8 km asl, produc-
ing one of only two ash signals (satellite brightness tempera-
ture difference) of the entire Bogoslof eruption (Schneider
et al. 2020). The ash signal suggests lower ice contents in
the plume (which can mask the brightness temperature differ-
ence), consistent with an origin from the subaerial dome, rath-
er than from an underwater explosion.When seawater flooded
into the vent after ~ 12:50 (based on infrasound), the plume
briefly reached its maximum height of 9.5 km asl. But in this
case, lightning characteristics appear unchanged by the influx
of water (Fig. 8c). Low stroke rates (< 2 min−1), and predom-
inantly in-cloud lightning persist across the dry-to-wet
transition.

Event 63 on 7 August 2017 lasted at least 3 h, with a
slow-climbing plume that “dried out” toward the end of
the activity (Fig. 8d). As the water-rich plume rose above
7 km asl, it produced lightning within minutes of reaching
the freezing level (Fig. 8d). Infrasound signals indicate
that the vent dried out by 19:50 UTC, likely due to build-
up of proximal tephra that blocked seawater access
(Coombs et al. 2019). Across the transition period, plume
heights remained relatively stable without any appreciable
changes in lightning. Finally, the plume rose to ~ 11 km
before the end of ash emissions. It is intriguing that even
though the maximum plume height (briefly) matched that
of event 37 on March 8, the lightning rates never
exceeded 4 strokes min−1 (compared to > 20 min−1 during
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event 37). This suggests that the duration of high-level
emissions was an important factor—short-lived bursts do
not seem to produce the same lightning abundance as
sustained, higher-intensity eruptions (Smith 2019), as
seen in Fig. 4b.

Two short-lived events—subaerial vs. submarine

From the observations described above, it seems that
Bogoslof’s lightning production was strongly modulated by
plume rise into freezing levels of the atmosphere where ice
charging could take place. A natural hypothesis is that in-
creased magma-water interaction may lead to an increase in
plume water and therefore an increase in ice-triggered light-
ning. Do the Bogoslof plumes from entirely underwater vents
generate more lightning than their subaerial counterparts? It is
only possible to address this question with Bogoslof’s lower-

intensity explosions, because none of the larger examples
(with sustained plume heights > 10 km asl) were entirely sub-
aerial. Here, we examine two short-duration, lower-level ex-
plosions (< 10 km asl) that sent ash above the freezing level
during the Alaska winter, one entirely subaerial and one en-
tirely submarine. Figure 9 shows that the events produced
comparable amounts of lightning. Both had low stroke rates
in the range of 1–4 min−1, and only slight differences in the
amount of higher-current (cloud-to-ocean) lightning.

Event 23 on 18 Jan occurred when Bogoslof’s vent was
above water (Fee et al. 2020). It produced a dark-gray cloud in
visible satellite images, and a brightness temperature differ-
ence (Schneider et al. 2020). Although wind directions were
not favorable for infrasound detection at the Okmok micro-
phone array, satellite thermal data confirmed the presence of
hot, fresh deposits on a subaerial vent following the explosion
(Coombs et al. 2019). Photographs taken from Dutch Harbor
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24 Page 16 of 23 Bull Volcanol (2020) 82: 24



~ 98 km east (location in Fig. 1) show the plume’s morphol-
ogy during peak lightning generation (Fig. 9c, d).

Ash emissions lasted at least 16 min and produced scant,
yet energetic lightning (peak 1.8 strokes min−1 with 43% of
peak currents > 15 kA).

By comparison, the entirely submarine event 36 on 20 Feb
produced similar lightning rates (3.2 strokes min−1), although
fewer were cloud-to-ocean strokes. Event 36 was categorized
as submarine from the infrasound analysis of Fee et al. (2020),
with daytime photographs of the plume development from
Alaska Volcano Observatory scientists collecting ashfall on
neighboring Unalaska Island (Fig. 9g, h). The explosion was
short-lived and pulsatory, with a plume rising to 6.1 km asl by
2:30 UTC, and tapering off by 3:00. There was similar low-
rate, low-current lightning during the submarine phase of
event 29 on 31 Jan 2017 (Fig. 8a). Overall, the analysis shows
no systematic difference between the lightning from subma-
rine vs. subaerial episodes.

Discussion

Electrification processes during the Bogoslof eruption

Previous studies have demonstrated that silicate charging (un-
related to ice) can lead to visible, measurable lightning in
small volcanic eruptions and laboratory-scale particle jets.
Even the vaporization of seawater itself produces an electric

charge in lab experiments (Björnsson et al. 1967; Pounder
1972). Thus, we were surprised to find that the Bogoslof erup-
tion plumes only produced globally detectable lightning after
they rose into the − 20 °C freezing level (Figs. 3, 5, 6, 7, 8, and
9). The overall pattern is consistent with observations from the
2010 eruption of Eyjafjallajökull in Iceland. Based on data
from long-range detection systems, Arason et al. (2011) sug-
gested a link between electrical activity and ice formation in
the Eyjafjallajökull plumes. However, Behnke et al. (2014)
observed much more lightning from that eruption using a
close-range LMA system. They concluded that silicate charg-
ing was the dominant mechanism at Eyjafjallajökull because
the vast majority of LMA-detected lightning initiated near the
vent (Behnke et al. 2014), although ice formation may have
had some influence (Woodhouse and Behnke 2014). From
these studies, we infer that there was probably a sizeable pop-
ulation of Bogoslof’s lightning that went undetected by our
long-range methods. However, the undetected population
must have been weak in this case, considering our ability to
detect very low-current lightning (below 1–2 kA, keeping in
mind the 25–50% uncertainty on those estimates). So did ice-
charging influence Bogoslof’s globally detected lightning or
not?

On one hand, the lightning activity does not occur much
farther than 25–30 km from Bogoslof (Fig. 1b) and does not
persist long after the end of each eruptive event, generally
shutting off within 10 min of the infrasound, if not sooner
(Figs. 5, 7, and 8). This hints toward a (near-source) silicate
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charging mechanism, which could be expected to stop when
the eruption stops. On the other hand, several lines of evidence
point to the influence of ice charging:

First, the ash plumes remained electrically quiet until they
rose high enough to freeze (Figs. 5, 6, 7, 8, and 9). This is not
the case at all volcanoes—for example, Sakurajima has gen-
erated high-current, globally-detectable lightning with plume
heights < 3 km asl (Cassandra M. Smith, Unpublished Data).
Yet, Bogoslof produced several plumes reaching > 3 km that
failed to create lightning until freezing. Examples include a
40-min sequence of 3–5 km high plumes on 7 Aug (see Fig.
8d from 18:00–18:40 UTC; event 63) and the ~ 6.5 km plume
on 28 May (see Fig. 5a at 22:30 UTC; event 40).

Second, analysis of stroke migration by Smith et al.
(2018a) showed that lightning travel directions matched the
trajectory of the upper-level ash cloud in 20 out of the 23 cases
examined. This finding provides strong evidence that at least
some of the globally detected lightning developed in situ with-
in the upper cloud (c.f., Van Eaton et al. 2016), rather than
initiating near the vent.

And third, thermodynamic modeling of Bogoslof’s
seawater-rich plumes, exemplified by event 40 on 28 March,
points to a microphysical structure rivaling the most intense
meteorological storms, with liquid water contents > 5 g m−3

and updrafts exceeding 40 m s−1 in the mixed-phase region
(Fig. 6). Based on our modern understanding of severe weath-
er, these conditions would undoubtedly lead to significant
lightning triggered by ice-charging mechanisms (Saunders
2008; Emersic and Saunders 2010). In meteorological thun-
derstorms, collisional (noninductive) ice-charging drives the
electrification process. Clouds become electrified when the
following conditions are met: (1) strong updrafts 10–
20m s−1 extending several kilometers above the freezing level
and (2) microphysical environments containing abundant
supercooled liquid water, graupel, and small ice particles
(Black and Hallett 1999; Reinhart et al. 2014). These ingredi-
ents create the conditions for electrifying collisions (Takahashi
1978; Saunders and Peck 1998; Saunders 2008; Emersic and
Saunders 2010) and may explain why the explosions need to
be sustained for several minutes well above the freezing level
to produce abundant, globally detectable lightning. Shorter-
lived pulses do not have time to generate the mixed-phase
microphysical region and sustain a vertical flux through it.
Recall the nine Bogoslof explosions that rose to the freezing
level, but failed to produce lightning (Fig. 3c) due to their brief
ash emissions (< 2 min, based on infrasound detection
durations; Table 1). By virtue of their smaller area and ash
loading in the atmosphere, these short-lived clouds were also
unlikely to develop the extensive charge layers that lead to
intense electrification (Behnke et al. 2013; Behnke and
Bruning 2015).

If ice-charging matters, then the source of water is
another issue. Why are not there more obvious

differences between Bogoslof’s subaerial eruptions and
those blasting through seawater (Figs. 8 and 9)? Two
potential explanations: (1) the observation may reflect
limitations in our data, rather than a physical reality.
We depended on low temporal- and spatial-resolution
satellite data for the Bogoslof plume heights (rather than
webcam or weather radar), and our long-range lightning
data are limited compared to LMA. Therefore, it is pos-
sible that an electrical response to changing seawater
input was simply below our detection capabilities. (2)
Another possibility is that all of the explosive events
were sufficiently water-rich to get the ice-charging pro-
cess started. Perhaps most (if not all) of the explosions
saw magma-water interaction with saturated sediments
in the submarine conduit (Waythomas et al. 2020), and
therefore contained abundant water in the plume. Our
sensitivity study (Supplementary Fig. S1) shows that
even a few percent external water could lead to appre-
ciable supercooled liquid water contents in the upper
plume (~ 0.5 g cm−3). It is possible that all of the
Bogoslof eruptions were phreatomagmatic, regardless
of whether there was water present in the surficial cra-
ter. Satellite cloud observations certainly support this
idea, with all but one explosion showing water-rich
characteristics in multispectral imagery (Schneider
et al. 2020); the Bogoslof plumes were demonstrably
richer in water and ice than conventional ‘dry’ eruptions
in Alaska, such as Pavlof 2016 (Fee et al. 2017).

Taken together, we infer that different charging mecha-
nisms operated on continuum during the lifecycle of
Bogoslof’s eruption plumes. Silicate charging was probably
active in the near-vent area during most of the explosions,
producing weak electrical activity below our detection thresh-
old, and perhaps even some of the lightning detected in this
study. It was not until the plumes rose (and were sustained)
above the freezing level, that ice-charging also came into play,
triggering the observed, high rates of globally detectable
lightning.

Volcanic lightning for monitoring

During the 9-month-long response effort, the Alaska Volcano
Observatory used all available monitoring systems to detect and
characterize Bogoslof’s eruptive activity. No single methodwas
foolproof on its own (Coombs et al. 2018, 2019). For example,
infrasound signals were affected by local wind noise and com-
plex propagation through the atmosphere (Schwaiger et al.
2020). Seismicity was complicated by ground motions cou-
pling into the ocean, and interference with bathymetry of the
ocean floor (Wech et al. 2018). Many of the satellite views were
obscured by cloudy weather (Schneider et al. 2020). And light-
ning was detectable in fewer than half of the explosive events
(this study). During this time, WWLLN provided a real-time
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data feed of lightning within a 100 km radius of Bogoslof,
which was used to program automated alerts (Coombs et al.
2018). The lightning provided a complementary tool to verify
heightened activity at the volcano in context with
seismoacoustic and satellite data. One explosion in particular
(event 25 on 22 Jan) was raised to alert level red based on
lightning alone (Coombs et al. 2018), because of challenges
with seismic and infrasound detection. At the time, volcanic
lightning added value in a purely qualitative sense—more
strokes around the volcano probably meant more ash in the
atmosphere. But detailed post-analysis from this study and oth-
er eruptions suggests some common traits among lightning-rich
plumes.We explore two interrelated themes as working hypoth-
eses for eruptions that create powerful, globally detectable light-
ning: (1) lightning indicates an ash-rich eruption and (2) it can
take time for lightning to develop—indeed, some plumes may
never produce detectable lightning at all.

(1) Lightning indicates an ash-rich eruption

This is a challenging hypothesis to test using historical
data, because null results are rarely reported and detection
methods vary wildly. But to our knowledge, there has not
yet been an ash-free plume with volcanic lightning detect-
ed by long-range networks. The pioneering observations
of Surtsey in Iceland from 1963 to 1967 showed that
lightning only occurred in the presence of tephra jets,
and was notably absent in the steam plumes, although
those steam plumes did carry a net positive charge
(Anderson et al. 1965). Likewise, the recent work of
Nicoll et al. (2019) showed that ash-free gas plumes from
Stromboli in Italy were charged, but failed to produce
electrical breakdown in the form of lightning. Field stud-
ies at Sakurajima in Japan also emphasize that the more
vigorous, ash-rich eruptions are associated with more
lightning (Smith et al. 2018b; Smith 2019). In fact,
the eruption of freshly fragmented, juvenile particles in-
creased the likelihood of electrical activity compared to
those dominated by older, lithic particles (Smith et al.
2018b). The simplest explanation is that without magma
fragmentation, there is reduced fractoemission, and with
fewer airborne particles, there are fewer opportunites for
collisions followed by gravitational settling to separate
and organize horizontal layers of charge. If volcanic
lightning provides an indicator of airborne ash, then it
provides a unique contribution to monitoring systems,
because seismicity and infrasound can occur from nu-
merous processes unrelated to ash emissions. Thus,
globally detected lightning may help pinpoint the onset
of ash-related hazards, as was the case at Calbuco in
Chile (Van Eaton et al. 2016) and Kelud in Indonesia
(Hargie et al. 2019). Yet, there are caveats, as discussed
below.

(2) It takes time for plumes to develop globally-
detected lightning (and some may not produce
lightning at all). The Bogoslof eruption demon-
strates how long it can take for plumes to become
electrically active (Figs. 5, 6, 7, and 8). During the
2016–2017 erupt ion , p lumes only became
lightning-rich once they rose above the local freez-
ing level, implying that mass eruption rates had to
be sufficient to inject ash above − 20 °C altitudes.
Furthermore, several of the short-lived bursts (Fig.
3c) made it above the freezing level without ever
generating detectable lightning. Figure 10 illustrates
the delayed onset of volcanic lightning compared
to the start of eruptive behavior determined for
each explosion. Note, these start times are based
on above-background geophysical signals, includ-
ing infrasound and seismicity, which do not neces-
sarily correspond to ash emissions (Coombs et al.
2019). There are considerable delays in some cases
(events 29 and 48). Yet other times, lightning oc-
curred earlier (events 4, 13, 16, and 28) or at about
the same time as the recorded onset of eruptive
activity (events 15, 24, and 27). The average offset
is ~ 10 min, not counting the two outliers.

Event 48 on 10 June is an example of how lightning can
dovetail nicely with other data streams. The infrasound signals
ramped up ~ 4 h before any high-altitude ash emissions could
be observed above the meteorological cloud deck ~ 6 km asl.
There was also a gap in satellite coverage from 12:00 to 12:28
UTC, during which the plume began to rise into aircraft cruis-
ing levels (Fig. 8c). By using the onset of lightning in this
instance (cable glitches at 11:15 and global lightning at
12:16), we could more clearly infer times when the ash plume
rose above the freezing level. Another consideration is the
propagation speed of lightning signals. Electromagnetic radi-
ation travels at the speed of light (3 × 108 m/s), which is faster
than seismic energy (solid earth waves; 3 × 103 m/s) and
infrasound (air pressure waves; 3 × 102 m/s). This property
leads to rapid alerts once the plume becomes electrically ac-
tive—WWLLN’s lightning alerts could typically arrive to
AVO duty scientist phones within 1 or 2 min of lightning
onset.

Conclusions

This study examines electrical activity during the eruption of
Bogoslof, Alaska, using multiple ground-based methods of
lightning detection from December 2016 to August 2017. In
addition to lightning detected by global networks WWLLN
and Vaisala’s GLD360, we improved our sensitivity to small-
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scale lightning by imposing a two-sensor solution on the
GLD360 detections (making it possible to detect peak currents
< 1 kA), and by also considering the electrical glitches from
infrasound cables reported by Haney et al. (2020). We com-
pared the lightning data with eruption column heights, atmo-
spheric temperatures, and 1D plume modeling to explore the
timing and mechanisms of plume electrification during the
Surtseyan eruptive activity. Our analysis reveals the
following:

& Globally detected lightning only occurred during
sustained injection of volcanic plumes above the local
atmospheric freezing level (approximated by the − 20 °C
isotherm as in Arason et al. (2011)).

& The plumes remained electrically quiet until they rose
high enough to freeze, even at heights of 3–5 km asl for
more than 30 min (e.g., event 63 on 7 Aug; Fig. 8d).

& Lightning activity was not focused only in the low-altitude
regions of the plumes, as would be expected in a system
dominated by silicate charging (Behnke et al. 2014).
Rather, it followed the ash clouds downwind through time
(Smith et al. 2018a), indicating in situ charging within the
upper plumes

& 1Dmodeling of the water-rich plumes suggests liquid wa-
ter contents > 5 g m−3 and updrafts exceeding 40 m s−1 in
the mixed-phase region—ideal conditions for vigorous ice
charging (Fig. 6)

& We infer that ice charging was a catalyst of globally de-
tectable lightning for these small to moderate-intensity
events (mass eruption rates in the range of 104–
106 kg s−1). However, it is likely that silicate-charging
was also at play, contributing to the overall charge evolu-
tion and generating weak, near-vent electrical activity that
was below the sensitivity of our instruments

& More than half of the 70 explosions failed to become
electrically active, including several short-lived bursts that
rose to − 20 °C altitudes without producing lightning. We
infer that these ash plumeswere not sustained long enough
to buildup sufficient charge. Sustained ash emissions >
5 min increased the likelihood of globally detectable light-
ning (Fig. 4b).

& The presence of seawater in the vent did not systematically
affect lightning generation within uncertainty of our mea-
surements, except perhaps in the case of 31 Jan 2017
(event 29). The Bogoslof plumes may have carried suffi-
cient water for ice-charging regardless of whether they
erupted through water or directly into air during the final
stage of ascent. It is possible that rising magma incorpo-
rated external water from submarine strata during most, if
not all, of the events.

& Improving our ability to detect weak, low-current light-
ning was important for early identification of ash emis-
sions, because the vast majority of Bogoslof’s volcanic

lightning was in-cloud (peak currents less than ± 15 kA),
rather than cloud-to-ocean.

& A strength of volcanic lightning detection within the
broader suite of monitoring tools is verification of airborne
ash, because lightning is rare or perhaps absent in ash-free
plumes of steam. The electrification process may take
some time to develop (minutes to tens of minutes), de-
pending on plume height relative to the atmospheric freez-
ing level. During the Bogoslof eruption, globally detected
volcanic lightning provided a reliable indication of
sustained, ash-rich plumes reaching (or exceeding) the
local − 20 °C freezing altitude.

& In eruption plumes that rise high enough to freeze, electrical
charging mechanisms may operate on a continuum—with
silicate charging dominant in the near-vent region, and colli-
sional ice charging taking place in the higher-level plumes
during growth of mixed-phase hydrometeors.
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