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Abstract

We prove effective Nullstellensatz and elimination theorems for difference equa-
tions in sequence rings. More precisely, we compute an explicit function of geometric
quantities associated to a system of difference equations (and these geometric quan-
tities may themselves be bounded by a function of the number of variables, the order
of the equations, and the degrees of the equations) so that for any system of difference
equations in variables x = (z1,...,%;) and u = (uq,...,u,), if these equations
have any nontrivial consequences in the x variables, then such a consequence may be
seen algebraically considering transforms up to the order of our bound. Specializing
to the case of m = 0, we obtain an effective method to test whether a given system
of difference equations is consistent.

Keywords. difference equations, effective Nullstellensatz, elimination of unknowns

1 Introduction

Let K be an algebraically closed field of arbitrary characteristic. We say that a sequence
(a;)32, from K satisfies a difference equation with constant coefficients if there is a
nonzero polynomial F'(z, ..., z.) € K[x,...,z.] such that, for every natural number j,
the equation F'(aj, aji1, ..., a;j+.) = 0 holds. This can also be defined for systems of dif-
ference equations in several variables. Such difference equations and the sequences that
solve them are ubiquitous throughout mathematics and in its applications to the sciences,
including such areas as combinatorics, number theory, control theory, and epidemiology,

amongst many others (see Section 4 for some of the examples).
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In this paper we resolve some fundamental problems about difference equations. The
questions we answer include the following (for precise statements, including the way
non-constant coefficients can appear, see Section 3):

1. Under what conditions does a system of difference equations have a sequence solu-
tion?

2. Can these conditions be made sufficiently transparent to allow for efficient compu-
tation?

3. Given a system of difference equations on (n + m)-tuples of sequences, how does
one eliminate some of the variables so as to deduce the consequences of these equa-
tions on the first n variables?

Our solution to the first question is a conceptual difference Nullstellensatz, to the second,
an effective difference Nullstellensatz, and to the third, an effective difference elimina-
tion algorithm. Even though the abstract Nullstellensatz is intellectually satisfying in that
conditions of different kinds are shown to be equivalent, namely the existential condition
that there is a sequence solution to a system of difference equations and the universal
condition that the difference ideal generated by the equations is proper, the difficult work
and applications, both theoretical and practical, comes with our main effective theorems.

Effective elimination theorems and methods have a long history and play central roles
in computational algebra. Row reduction, or Gaussian elimination, is a fundamental tech-
nique in linear algebra. Elimination for polynomial equations is substantially more com-
plicated and has been the subject of intensive and sophisticated work [4, 23, 22]. In re-
cent work of the first two authors joined by Vo [29], effective elimination theorems were
obtained for algebraic differential equations through a reduction to the polynomial case
through the decomposition-elimination-prolongation method. Elimination of unknowns
for systems of linear difference equations is an essential part of the classical transfer ma-
trix method in combinatorics [34, §4.7].

While these questions are important and difference equations have been studied inten-
sively both for their applications and theory, to our knowledge, none of these questions
has received a satisfactory answer in the literature. We explain below how some known
results, both positive and negative, may help explain the existence of this lacuna. In par-
ticular, in some essential ways, the effective Nullstellensatz and elimination problems for
difference equations are substantially more difficult than the corresponding problems for
differential equations and the methods of [29] do not routinely transpose to this context.

The foundational work on difference algebra, that is, the study of the theory of dif-
ference rings and of difference equations as encoded through the algebraic properties
of rings of difference polynomials, was initiated by Cohn in [6], following the tradition
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of Ritt and Kolchin in differential algebra. Deep results have been obtained in this sub-
ject, but their relevance to the problems at hand is hampered by their restrictions, for the
Nullstellensatz and elimination theorems, to the case in which solutions are sought in
difference fields, and thus have little bearing on the structures used in practice, namely
difference rings presented as rings of sequences, such as CY given with the shift opera-
tor o : (a;)32, — (ai+1)2,. Moreover, even if restricted to difference fields, the known
elimination theorems are at best theoretically effective.

Chatzidakis and Hrushovski studied difference fields from the perspective of mathe-
matical logic in [5]. There, they established a recursive axiomatization for the theory of
existentially closed difference fields and proved a quantifier simplification theorem. From
this it follows that in principle there are effective procedures to check the consistency of
difference equations in difference fields and to perform difference elimination in differ-
ence fields. More recent work of Tomasi¢ [36, 37] geometrizes the quantifier simplifica-
tion theorem and brings the complexity of these algorithms to primitive recursive, though
this effectivity is still theoretical — to call the implicit bounds astronomical would be a
gross understatement — and a practical implementation of this work is infeasible. In sym-
bolic computation, steps have been taken towards extending the characteristic set method
from differential algebra to the study of difference and difference-differential equations in
works of Gao, van der Hoeven, Li, Yuan, Zhang [14, 13, 27, 26]. These methods are more
efficient than those coming from logic, but as they are restricted to the study of inversive
prime difference ideals, they, too, are fundamentally results about solutions to difference
equations in difference fields and the constructions of difference resultants depend on re-
strictive hypotheses. A similar approach was taken by Lyzell, Glad, Enqvist, Ljung [28]
aiming at solving a problem in discrete-time control theory.

The situation for difference equations in sequence rings differs starkly. Simple ex-
amples show that consistency checking in difference fields is not the same problem as
consistency checking for sequences. For example, the system of difference equations
zo(z) = 0, x + o(x) = 1 has no solution in a difference field, but the sequence
0,1,0,1,...1is a solution in CN.

More seriously, theorems of Hrushovski and Point [21] show that the logical methods
used for difference fields fail dramatically for sequence rings. In particular, they show that
the first-order theory of CN regarded as a difference ring is undecidable. Thus, we cannot
derive a consistency checking method from a recursive axiomatization of this theory nor
can we produce an elimination algorithm from an effective quantifier elimination theo-
rem; no such axiomatization or quantifier elimination procedure exists. That we succeed
in solving the effective consistency checking and effective elimination problems for dif-
ference equations in sequence rings is all the more surprising given these undecidability
results.
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Let us explain more precisely what we actually prove and where the new ideas appear
in our arguments. We have two main theorems: Theorem 3.1 an effective Nullstellensatz
and Theorem 3.4 an effective difference elimination theorem. Strictly speaking, the ef-
fective Nullstellensatz is a special case of an effective elimination theorem, but we prove
elimination by bootstrapping through the Nullstellensatz.

The key to our work is a new proof technique based on the spirit of the decomposition-
elimination-prolongation (DEP) method. As is completely standard, a system of differ-
ence equations may be regarded as a system of algebraic equations in more variables to-
gether with specifications that certain coordinates should be obtained from others by the
application of the distinguished endomorphism and the usual DEP methods allow for one
to cleverly reduce questions about the original system of difference equations to questions
entirely about algebraic equations. A version of the DEP method for difference equations
in difference fields is employed in [19] for the purpose of computing explicit bounds in
Diophantine geometric problems. This DEP method cannot work for the problems at hand
as explained in Section 5. We overcome this obstacle by taking a different approach to re-
ducing the question about the original system to the question about algebraic equations.
The core of this reduction is for us to show that every system of difference equations that
has a solution actually has what we call a skew-periodic solution with the components
being (not necessarily closed!) points of the affine variety corresponding to the original
system, and the length of the period can be bounded in terms of the geometric data of the
original system (see Section 6.2.3).

With our theorems we explicitly bound the number of prolongations required to solve
the problems at hand, i.e. testing a system of difference equations for consistency or com-
puting a nontrivial element of the elimination ideal. For the elimination problem, our
bound is not sensitive to the number of variables that are not being eliminated, see Re-
mark 3.6. The bounds are small enough in many cases to permit efficient computation,
see Section 4.

We draw an interesting theoretical conclusion from our work towards the explicit
bounds for the difference elimination problem in Section 7. Specifically, with Theo-
rem 7.1, we show that for (K, o) any algebraically closed difference field, whenever a
finite system of difference equations over K is consistent in the sense that it has a so-
lution in some difference ring, then it already has a solution in the ring of sequences of
elements of K. We give a soft proof of such a difference Nullstellensatz under the hypoth-
esis that K is uncountable with Proposition 6.3. The proof of Theorem 7.1 is much more
difficult than it may have been expected to be. In extending this difference Nullstellensatz
to general K we use crucially our result that a system of difference equations is consistent
if and only if it has a skew-periodic solution and then appeal to remarkable theorems of
Hrushovski on the first-order theory of the Frobenius automorphism and of Varshavsky
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on intersections of correspondences with the graph of the Frobenius.

The paper is organized as follows. We give the basic definitions in Section 2, and then
introduce the notation and terminology specific to our paper. The main results, Theo-
rem 3.1 for the effective Nullstellensatz and Theorem 3.4 for the effective elimination, are
expressed in Section 3. In Section 4, we illustrate our results in several practical examples.
With Section 5, we present counterexamples to an effective strong difference Nullstellen-
satz and to the application of the usual DEP method to these problems. The proofs of the
main theorems are presented in Section 6. Finally, in Section 7, we strengthen the differ-
ence Nullstellensatz giving equivalent criteria for the existence of sequence solutions to
systems difference equations over any algebraically closed field.

2 Preliminaries

Throughout the paper, N denotes the set of non-negative integers. A detailed introduction
to difference rings can be found in [6, 25].

Definition 2.1 (Difference rings).

e A difference ring is a pair (A, o) where A is a commutative ring and 0 : A — A'is
a ring endomorphism.

e As an example, if R is any commutative ring, then the sequence rings R" and
RZ are difference rings with o defined by o((2;)ien) := (zir1)ien (@((%i)icz) =

(%i11)iez, respectively).

e A map of difference rings ¢ : (A,0) — (B, 7) is given by a map of rings 1) : A —
B such thatthat T o) =1 o o.

e We often abuse notation saying that A is a difference ring when we mean the pair
(4,0).

Definition 2.2 (Difference polynomials). Let A be a difference ring.

e The free difference A-algebra in one generator x over A, A{x}, also called the ring
of difference polynomials in x over A, may be realized as the ordinary polynomial
ring A[{o?(z) : j € N}| in the indeterminates {¢7(z) : j € N}.

e Iterating this procedure, one obtains the difference polynomial ring A{x1,...,z,}
in n variables.

e Every difference polynomial in A{z1,...,x,} can be considered as an ordinary
polynomial in indeterminates of the form o*(z;).
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e For P € A{zy,...,x,}and 1 < i < n, we define the order of P with respect to x;,
denoted ord,, (P) to be the maximal h for which o”(x;) appears in P. If no o"(z;)

appears, we set ord,, (P) := —1. We also set ord P := max ord,, P.

Example 2.3. ord,,(c®(z1) + z2 + o(z3)? + 1)=1.

Definition 2.4. If (A, o) is a difference ring and /' C A{xy,...,x,} is a set of dif-
ference polynomials over A, (A,0) C (B, o) is an extension of difference rings, and
b = (b1,...,b,) € B" is an n-tuple from B, then we say that b is a solution of the
system I’ = 0 if, under the unique map of difference rings A{z1,...,x,} — B given by

extending the given map A — B and sending x; — b; for 1 < i < n, every element of F
is sent to 0.

Example 2.5. Let (A,0) = (Q,id) and (B,0) = (QY, o), where o is the shift (to the
left) operator. Then the tuple

b=((1,0,1,0,...),(2018,1,0,1,...)) € B?

is a solution of the system

0'(332) — X = 0.

{U(l’l)—f—fﬂl—l:o,

Definition 2.6. If (A, o) is a difference ring, F' C A{xy,...,z,}, and B is a non-negative
integer, the B-th transform of F'is the set

oP(F) = {JB(f)|fEF}.

So, the O-th transform of F'is F'. The B-th transform of a system of difference equations
is defined similarly.

Example 2.7. The 2-nd transform of the system
o(x1)’ = xy + 22
ri+a+1=0

is the system
o3(21)° = 0%(11) + 0% (22)?
02(x3)3 + 0*(z1) +1=0.

The ideal generated by a set /' in a commutative ring R is denoted by (F').

Definition 2.8. A difference equation g(z1,...,x,) = 0 is said to be a consequence of
a system of difference equations F' = 0, where F' C k{zy,...,x,}, if there exists a
non-negative integer B such that

g€ {(d'(F)|0<i<B).
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Example 2.9. Let F' = 0 be the system

fQIO'(JIQ)—Ig:O.

{fl :iL'QU(.Tl)—J}l—l =0

The equation o(x)x5 — o(x1) — 1 is a consequence of F' = 0 with B = 2 because
o(fi) = o*(@1) fo = o(20(21) — 21 = 1) = 0*(21)(0(22) — 23) = 0*(x1) 25 — o (21) — 1.

We define the degree of an affine algebraic variety following [16, Definition 1 and
Remark 2] as follows.

Definition 2.10. Let X be an irreducible affine variety of dimension r in A". Then we
define

deg X := max {|XNE| | E is an affine subspace of A" with dim £ = n—r and |[XNE| < co0}.

Let X be an affine variety defined over a field k. Let X = X; U ... U Xy be the
decomposition of X into irreducible components over the algebraic closure of k. Then we
define

N
deg X := Z deg X;.
i=1

3 Main results

Foralld € Z~p and D € Z~( we define

D+1 if d =0,
B(d,D)= ¢ 2 4 2° 44D 1 ifd=1,
B(d—1,D) + DBU=-LD)ifd > 1.

3.1 Effective difference Nullstellensatz

Theorem 3.1. Let

e k be a difference field and F = 0 a system of difference equations, where F' :=

{fl,---,fN}Ck{ul,...,ur}.

o We set

h; == 'HllaXNOI"dui f; and H="h+...+h.+r,
J=1

so, H is an upper bound on the number of the u-unknowns and their transforms

that appear in F'.
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e d(F) and D(F) denote the dimension and degree of the affine variety defined by F
over k in the affine H-space, respectively.

The following statements are equivalent:
1. The system F' = 0 has a solution in a difference ring containing k;,

2. The system {c'(F) =0 |0 < i < B(d, D)} is consistent as a system of polynomial
equations.

Corollary 3.2. If k = C in Theorem 3.1, then the following statements are equivalent:
1. The system F' = 0 has a solution in CZ ;

2. The system {c*(F) = 0 | 0 < i < B(d, D)} has a solution in C as a system of

polynomial equations.

Remark 3.3. We do not prove an effective strong Nullstellensatz generalizing Corol-
lary 3.2, because such a statement is false as shown in Section 5.2.

3.2 Effective elimination
We will introduce the notation that will be used in Theorem 3.4.
o Letx = (z1,...,%,)and u = (uy,. .., u,) be two sets of unknowns.

e Consider a system F' = 0 of difference equations, where F' := {f1,..., fn} C
k{x,u}. We would like to have an effective method for determining whether there
exists a nonzero consequence of the system /' = ( involving only the x-variables.

o We set

hi::'rrllaxNorduifj and H=h;i+...+h.+r,
J=1,..,

so, [ is an upper bound on the number of the u-unknowns and their transforms that
appear in F'.

e Let F be the field of fractions of k{x} and X denote the associated affine subvariety
of A defined by I’ = 0 over E. Note that X is not necessarily irreducible.

e We denote the dimension and degree of X by d,(F’) and D, (F’), respectively.

Theorem 3.4. For all integers d > 0 and D > 1 and systems F' = 0 in x and u with
du(F) = dand Dy(F) = D, the following statements are equivalent:

1. There exists a non-zero difference equation g(x) = 0 that is a consequence of the

system F' = 0;
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2. (0'(F) | 0<i< B(d,D))Nnk{x} # {0}.

Remark 3.5. Based on the existing elimination results for differential-algebraic equa-
tions [29, Theorem 3], it is tempting to find, for a positive integer h, a bound B such that
the ideal

(o'(F)|0<i< B)

contains all the consequences of the system /' = 0 depending only on x-variables of
order at most h. However, as we show in Section 5.3, there is no such bound in terms of
degrees, orders, and the number of variables. Moreover, every such bound will depend on
the coefficients of F'.

Remark 3.6. The bound in Theorem 3.4 is especially small if the number of the variables
to eliminate is moderate. More precisely, d < H — 1, and D does not exceed the product
of the degrees of H + 1 equations of the highest degree. For particular examples, see
Section 4.

3.3 Consequences for computation

Theorem 3.1 and Corollary 3.2 reduce consistency questions for systems of difference
equations to consistency questions (in algebraically closed fields) of polynomial systems
in finitely many variables and Theorem 3.4 reduces the question of existence/finding a
consequence in the x variables of a system of difference equations in the variables x and
u to a question about a polynomial ideal in a polynomial ring in finitely many variables.
These algebraic problems are classical and have been computationally solved using, for
example, Grobner bases, triangular sets, numerical algebraic geometry, etc. For all of
these methods, implementations exist in many computer algebra systems and independent
software packages (see, for example, [7, 2, 35]).

4 Numerical values and practical examples

In the following table, we compute B(d, D) — 1 for small d and D.

~—

AND[1]2][3 45
0 |1[2]3 45
1 [2]6]13]24]40

Remark 4.1. Almost all examples of modeling phenomena in the sciences using polyno-
mial difference equations that we have seen in the literature can be written as systems with
the same number of equations as unknowns in such a way that none of the equations is a
consequence of the others. The above table is applicable to elimination problems for such
systems with n equations if the problem is to eliminate [n/2]| unknowns or less, as such
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problems typically result in varieties X (see the notation of Section 3.2) of dimension 0
or 1.

Remark 4.2. One can significantly speed up checking if an elimination is possible by
1. Applying the number of transforms that is in the bound;
2. Substituting random values into the variables that are not being eliminated.

Using techniques from [29, Section 5] (see also [17]) based on the DeMillo-Lipton-
Schwartz-Zippel lemma [39, Proposition 98], for each number p, 0 < p < 1, we can
find the range for the random substitution so that the probability of the elimination being
possible if and only if the “substituted” system has no solutions is greater than p. So, this
would give an efficient probabilistic test for the possibility of elimination.

Remark 4.3. Although there could be special tricks and methods for each of the examples
below, our approach provides a general and fully automated procedure.

Example 4.4. Consider the May-Leonard model for 2-plant annual competition, scaled

{anrl = (}L_ﬂ + bxn;

down from [31]:
Yni1 = ot by,

which can be rewritten as

{(x +ay)o(z) = (1 —b)z + bx(z + aqy),

4.1)
(w2 +y)o(y) = (1 = b)y + by(azz +y),

where k = Q(a, as, b), with o acting as the identity on k. To verify whether y can be
eliminated from (4.1), we then consider the affine variety X defined by (4.1) over the
field Q(ay, an, b, x, o(x)) with coordinates y, o(y). A computation shows that d = 0 and
D =1,andso B(d,D)—1 =2—1 = 1. A computation shows that it is not only sufficient
but also necessary to apply this single transform to perform the elimination. So, our main
result gives a sharp upper bound for this example.

Example 4.5. Consider the May-Leonard model for 3-plant annual competition [31]:

o (1-b)xn

et anr(al%:)Urﬁlzn + by,
— _ (d=byn

Ynt1 = azm?"'ybys"’ﬁ%n + by,
— _ (d=bzm

Zn+1 - a3zn+639n+zn + bz”’

which can be rewritten as

(o + ary + Br2)o(z) = (1 — b)a + balz + vy + fir2),
(aoz +y + Baz)o(y) = (1 = b)y + by(aoz +y + fa2), (4.2)
(azz + B3y + 2)o(z) = (1 = b)z + bz(asx + By + 2),
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where £ = Q(ay, a9, a3, 01, [3, f3,b), with o acting as the identity on k. To ver-
ify whether y and z can be eliminated from (4.2), we consider the affine variety
X defined by (4.2) over the field Q (aq, s, as, 1, B3, 83, b, z,0(x)) with coordinates
y,0(y), z,0(z). A computation shows that d = 1 and D = 3, and so B(d, D) — 1 = 13.
A computation shows that

e two prolongations are necessary and sufficient

e carrying out a computation with 13 transforms and probability p = 0.99 as de-
scribed in Remark 4.2 to check if an elimination is possible does not take signifi-
cantly more time than doing this with two transforms.

Example 4.6. Consider the stage structured Leslie-Gower model [8, eq. (5)]:

_ 1
Ju1 = brga, An
AnJrl =

S 1
Jn+1 = b2 Ttdga, In

1
1T 7, teiim In

— 1 ;
Unt1 = 5214, g I

which can be rewritten as

4.3)

= 827,
where k = Q(by, bs, ¢1,Co,dy, da, 51, 82) With o acting as the identity on k. To verify
whether J and j can be eliminated from (4.3), we consider the affine variety X de-
fined by (4.3) over the field Q(by, be, c1, 2, dy, da, S1, S2,a, A, 0(a),o(A)) with coordi-
nates 7, 0(j), J,o(J). A computation shows that d = 0; D = 1 as the equations are linear
inj,0(j),J,0(J). Then

B(d,D)—1=2—-1=1.
A computation shows that it is not only sufficient but also necessary to apply this single

transform to perform the elimination. So, our main result gives a sharp upper bound for
this example.

Example 4.7. A discrete multi-population SI model from [1], similarly to the previous
examples, can be rewritten as

0(5)25(1—%1—%1')
U(S): ( cAtI dNA2t »
o(I) =1 +S<aAtI+bAt> (44)
0(@): +s (C +dTA2tl>7
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where k = Q(a, b, ¢, d, At, N1, Ny) with ¢ acting as the identity on k.

e To verify whether 7,7 can be eliminated from (4.4), we consider the affine variety
defined by (4.4) over Q(a, b, ¢, d, At, Ny, Ny, s,0(s),S,0(S)),andsod = 0,D =
1, thus

B(d,D)—1=2-1=1.

e To verify whether /, 7, s can be eliminated from (4.4), we consider the affine variety
defined by (4.4) over Q(a, b, ¢, d, At, Ny, Ny, S,0(S)),and sod = 2, D = 2. We
compute

B(2,2) —1=135—1=134.

It turns out to be computationally feasible to carry out a computation with 134
transforms and probability p = 0.99 as described in Remark 4.2. The output of the
computation is that the elimination is possible.

Example 4.8. Let F), be the n-th Fibonacci number. It turns out [10, p. 856] that the
sequence A, := Fy. satisfies a nonlinear difference equation. Such an equation can be
found using difference elimination as follows. We introduce B,, := F5» 1. Then standard
identities [o, = Fy(2F;41 — Fy) and Foppqy = FZ,, + F? for the Fibonacci numbers
imply the following system of difference equations

{An—l—l - An(2Bn - An)7

4.5
Boiy = A2 + B2, (+3)

Considered as a system of polynomial equations in B,, and B, .1, (4.5) defines an affine
variety of dimension zero and degree two over Q(A,,, A,+1). Theorem 3.4 implies that it
is sufficient to consider system (4.5) and two of its transforms to eliminate 5. Performing
this elimination, we find the difference equation

5F24nF2n+1 - 2F22nF2n+2 + F23n+1 = 07

giving an alternative to the difference equation stated in [10, p. 856]. Our approach to
finding a difference equation for F,. can be viewed as a generalization of the transfer
matrix method [34, §4.7] to the case of nonlinear recurrences.

Example 4.9. The following example shows that our bound is sharp in the case d = 0
(this is the case in Examples 4.4, 4.6, and 4.8). We fix a positive integer [ and consider
the system

(4.6)

zz—1)-...-(zr—D+1)=0,
o(z) —z—1=0.

System (4.6) does not have a solution in CZ, because the elements of the solution can
only take values from 0, 1, ..., D — 1 and strictly increase. On the other hand, the system
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consisting of the 0-th,..., D — 1 = (B(0, D) — 2)-th transforms of (4.6) has a solution
cri(x) =1 for 0 < ¢ < D. Hence, it is necessary to consider one more transform in order
to express 1 (i.e. eliminate x).

Example 4.10. This example obtained by analyzing the proof of Proposition 6.24 shows
that our bound is sharp for d = 1 and D = 2. Consider a system of difference equations
given by any set of generators of the polynomial ideal / := I; N I, of the polynomial ring

Qlz,o(2),y,0(y)], where
L= (z,0(x)+0o(y) —Ly+20(y) — 1), L:={o(z),y,x+30(y) —1).

The variety X defined by [/ is a union of two affine subspaces of dimension one, so
d =dimX = 1and D = degX = 2. Thus, B(d, D) — 1 = 6. Our computation in
MAPLE shows that

Le(l,o(l),...,0%1)) but 1¢&({I,0(I),...,0°(I)).

Thus, our bound for d = 1 and D = 2 is sharp.

S Counterexamples

5.1 Failure of the standard DEP method

Consider the system of difference equations given by any set of generators of the polyno-
mial ideal / := I; N I, of the polynomial ring Q[z, o(x),y, o (y), z, w|, where

Lii={o(y)z — Lz,0(x) —y), lL:=(o(z),0(y)—1(y—1z—1(z—Dw-1).

We do not present the actual generators of I due to the size of this set, the generators can
be computed by a computer algebra system such as MAPLE. A computation in MAPLE
shows that

1€ (I,0(I),0%(I),0%(I),0*(I)).

Therefore, by Proposition 6.3, the system has no solutions in any difference ring. Using
MAPLE, one can also verify that

I={(I,0(1))NQ[z,0(x),y,0(y), z,w], (5.1)
o(I) = (I,0(I)) NQlo(z),0*(x), o (y), o*(y), 0(2), o(w)]. (5.2)

Most of the existing effective bounds for systems of ordinary differential and difference
equations [3, 9, 19, 20, 29] use sufficient conditions for the existence of a solution based
on the system and its first prolongation (differential equations) or first transform (differ-
ence equations), introduced for difference equations in [6, Section 14, Chapter 8] and
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also known as geometric axioms [5, 30] in model theory, which are summarized under
the DEP method mentioned in the introduction. In our case, it is tempting to formulate an

analogue of such conditions as:

Let I' be the affine variety defined by the system and its first transform. If
the projections of I' onto the varieties defined by the system and by its first
transform alone, respectively, are dominant, then the system is consistent.

However, this is false in the above example as we have shown, where I' is the
affine variety corresponding to the ideal (I, o (/)) in the affine space with coordinates
x,0(x),0%(x),y,0(y),0%(y), 2,0(2),w,o(w), and (the Zariski closures of) the projec-

tions are given by the intersections in (5.1) and (5.2).

5.2 Non-existence of coefficient-independent effective strong Null-
stellensatz

A (non-effective) strong Nullstellensatz for systems of difference equations can be stated
as follows. Let fi = ... = fy = 0 be a system of difference equations. If a difference
polynomial f vanishes at all solutions of the system in CY, then there exists £ such that f
belongs to the radical of the ideal generated by the O-th,. . ., /-th transforms of fi, ..., fn.

The following example shows that there is no uniform upper bound for this ¢ in terms

of the degree, order, and number of variables of f1, ..., fy. For every positive integer M,
consider
flza(@_m_ﬁzoa (5.3)
fo=a(ylx—1)=1) =0.

Let f =y(r—1)—1land x = {1,}°°,and y = {y,}>°, any solution of (5.3) in CN, If
yp(zr — 1) — 1 # 0 for some k, then z;, = 0. Hence, s = 1, and so

Tt (Ykprr (Tpgpns —1) — 1) = —1.

Therefore, f vanishes at every solution of (5.3) in CN. However, f does not belong to the
radical of the ideal generated by the O-th,. .., (M — 1)-th transforms of f; and f,. These
transforms belong to the polynomial ring C[z, ...,0™(z),y, ..., 1 (y)]. Consider the
substitution

k M
ak(x):Mforevery0<k<M, ak(y): k_MforeverylékgM—l, y = 0.

A direct computation shows that the polynomials fi,...,c™71(f)), fo,...,a™71(fy)
vanish after this substitution, but f does not.
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5.3 Non-existence of coefficient-independent effective full elimina-
tion theorem.

Let F' C k{x,u} be a finite set of difference polynomials and & a positive integer. Since
k [x, U ah(x)} is Noetherian, there exists a positive integer ¢ such that

(0" (F) | 0<i<oo)nk[x,...,0"(x)] = ('(F) | 0 <i < ONk[x,...,0"(x)]. (5.4)

A bound on such an ¢ in terms of h, degrees and orders of F', and the number of variables
would be a natural difference counterpart of the full elimination result for differential-
algebraic equations [29, Theorem 3]. However, the following modification of the example
from Section 5.2 shows that such a bound does not exist. We fix a positive integer M and
consider system (5.3) with one extra equation

fs=z—ylx—1)+1=0,

where z is a new unknown. We have shown in Section 5.2 that y(z — 1) — 1 vanishes on
every solution of (5.3) in CN. Then z vanishes on every solution of f; = f, = f3 = 0 in
CN. Then Hilbert’s Nullstellensatz [33, Tag 00FU] combined with the Rabinowitz trick
implies that there exists a positive integer /N such that

2N e (o' ({fi, fo. 3}) | 0 < i < o0).
On the other hand, following the argument from Section 5.2, we see that
N ({fr for f53) | 0 < i < M),
Thus, an integer ¢ such that
(0 ({1, fo, s1) |0 < i < 00) NCLe] = (0" ({1, fo, f5}) | 0 < i < ) NC[e]

must satisfy £ > M. Hence there is no coefficient-independent bound for such an /.

6 Proofs of the main results

6.1 Difference Nullstellensatz
Definition 6.1 (Inversive difference rings).
e We say that a difference ring (A, o) is inversive if ¢ : A — A is an automorphism.

e For any difference ring (A, o), there is an inversive difference ring (A", ¢) and a
map of difference ring (A, o) — (A", o) that is universal for maps from (A, o) to
inversive difference rings (see [25, Proposition 2.1.7]).


https://stacks.math.columbia.edu/tag/00FU
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e Given a difference ring (A, o), the ring of inversive difference polynomials over A
in the variables, A{z1,...,z,}", is realized as the ordinary polynomial ring over A
in the formal variables o’/ (x;), for j € Z and 1 < i < n, with o extending the given
endomorphism on A and

U(Uj(l’z‘)) = Uj“(ﬂcz‘)
on the variables.

*

e If (A, o) is inversive, then so is A{xy, ..., x,}*.

Definition 6.2. Let & be a difference field, ' C k{z1,...,x,} a finite set of difference
polynomials, and & = max{ord f | f € F'}. The set of n tuples ay, ..., a,, € k“*", where
a;, == (aip,-..,0ie1n-1), is called a partial solution of length ( if, for every f € F and
0 < s < ¢ — 1, the polynomial o*( f) vanishes after the substitution

ai(mj):aj7z~f0revery1 <j<n, 0<i<l+h—1

Let K be an inversive difference field. Then the difference ring of sequences K% with
respect to the shift automorphism can be endowed with a structure of a difference K-
algebra via the embedding of difference rings iy : K — K% defined by

ik(f) = (...,o_l(f),f,a(f),o2(f),...) for f € K.
This can be similarly done for K.

Proposition 6.3. For all uncountable algebraically closed inversive difference fields K

and finite sets F' C K{x1,...,x,}, the following statements are equivalent:
1. F has a solution in KZ.
2. F has a solution in K~.
3. F has finite partial solutions of length ( for all { > 0.
4. The ideal [F] := ({0?(F) | j € N}) C K{x1,...,x,} does not contain 1.
5. The ideal [F1* := ({c?(F) | j € Z}) C K{xz1,...,x,}* does not contain 1.
6. I has a solution in some difference K-algebra.

Proof. The implications 1| =—> 2,2 =—> 3,and 6 = 4 are straightforward.
3 = 4. Assume that there exist arbitrarily long partial solutions, but 1 € [F]. Then
there is an expression of the form

)4
1= "> ais0'(f), 6.1)
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where a; y € K{z1,...,2,}. Let h = max{ord f | f € F'}. Consider a partial solution
of F' of length ¢ 4+ h + 1 and plug it into the equality (6.1). Then the right-hand side will
vanish, so we arrive at contradiction.

4 = 5. Assume that 1 € [F]*. We fix some representation of 1 as an element
of [F]*. Let N be the maximum number such that =% (z;) occurs in the representation.
Applying o to both sides of the representation, we obtain a representation of 1 as an
element of [F).

5 = 6.Letn: K{z1,...,2,}" — K{z1,...,2,}"/[F]* be the canonical surjec-
tion. Then (7(x1),...,m(xy,)) is a solution of F in K{z1,...,x,}*/[F]*.

5 = 1. Let F be the inversive difference subfield of K generated by the co-
efficients of elements of F' over the prime subfield of K. Since 1 does not belong to
[F]* N E{xy,...,x,}*, there exists a maximal (not necessarily difference) ideal m C
E{xy,...,z,}* containing [F|* N E{xy,...,2,}*. Then L := E{xy,...,2,}"/misa
field, and the transcendence degree of L over E is at most countable. Since K is alge-
braically closed and has uncountable transcendence degree, there exists an embedding
p: L — K over the common subfield £. Composing ¢ with the canonical surjection
E{xi,...,z,}* — L, we obtain an F-algebra homomorphism ¢: E{z1,...,x,}* = K
such that [F]* C Ker). For every 1 < i < n, we construct a sequence a; := {a;  }jez €
K7 by the formula

Qi 5 = Qﬂ (U](l'l)) .

A direct computation shows that (ay, ..., a,) is a solution of F'in KZ. Ol

6.2 Variety and two projections

Let k be a difference field and F' = 0 a system of difference equations, where F' =
{fi,-- s fn} T k{uy,... u.}. We set

h; == maXNorduifj and H=h+...+h,+71.

j=1,...,

For the rest of Section 6, we fix K to be an inversive uncountable algebraically closed
difference field containing k. With the system £’ = 0 of difference equations, we associate
the following geometric data:

e the subvariety X of A defined by the polynomials fi,. .., fx;

e two projections 7, mp: A — A" defined by

T (ul, 0" (uy), u, ,ahr(uT)) = (ul, oo ) ug, L o 1(ur)),
(6.2)
Ty (ul, oM (uy), ug, ,ah’”(ur)) = (J(ul), oM (uy), o (ug), .. ,ah*(ur)).
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Let Z C A be a variety defined by polynomials g¢i,...,g9, € K[AY]. Let 0%(2),
where ¢ € Z, denote the variety defined by the polynomials gf L g;’i € K[Af], where
g"i means the result of applying o to all coefficients of g. The coordinate-wise application
of o defines a bijection between Z and o'(Z).

Definition 6.4. A sequence py,...,pr € AY(K) is a partial solution of the triple
(X, 1, ’/TQ) lf

m1(piv1) = ma(p;) forevery 1 < i < ¢,

pi € 0 HX)(K) forevery 1 <i < /.
A two-sided infinite sequence with such a property is called a solution of the triple
(Xa Ty, 7T2) .

Lemma 6.5. For every positive integer l, the system F = 0 has a partial solution of
length 0 if and only if the triple (X, 7y, m3) has a partial solution of length (.

The system F' = 0 has a solution in K” if and only if the triple (X, 7, 72) has an
infinite solution.

Proof. Let h = max h; h;. Consider a part1a1 solution uy,...,u, € K" of F, where
<i<r
w;, = (U1, ..,up) forevery 1 <i < r. We set
pj = (ul,ja . ,u17j+h1,U27j, . aur,j—f—hr) for every 1 < j < 6

By the construction

7T2(pj) = (Ul,j+17 ceey UL j4hy s U2 5415 - - - aur,j—i-hr) =m (pj+1)7

0 pjr1 € Ty " (ma(p;)) forevery 1 < j < £ — 1. The definition of partial solution implies
that p; € o/~1(X) for every 1 < j < (. Hence, p1,...,p, is a partial solution of the
triple (X, 71, o). The above argument can be straightforwardly reversed to construct a
partial solution of F' from a partial solution of (X, 7y, ms). The case of infinite solutions
is completely analogous. [

In the introduced geometric language, we can formulate the following question equiv-
alent to an effective difference Nullstellensatz

Question 6.6. Let X be an algebraic subvariety of A and i, 7y be the surjective linear
maps A" — AP defined by (6.2) and (6.3). How long a partial solution of (X, w1, 72) is
it sufficient to find in order to conclude that the triple (X, 7y, m2) has an infinite solution?

Thus, in what follows, we fix a triple (X, 71, m5), where X is an algebraic subvariety

of A and ;, my are surjective linear maps A" — A”~" defined over the o-constants of
K.
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6.2.1 Trains

The goal of this section is to generalize the notion of a solution of the triple to not neces-
sarily zero-dimensional points.

Definition 6.7. For ¢ a positive integer or +00, a sequence of irreducible subvarieties
(Y1,...,Y,) in A" is said to be a train of length £ in X if

71(Yig1) = mo(Y;) for every 1 < i < £, where Y denotes the Zariski closure of Y,
Y; C o} X) forevery 1 < i < /.

Remark 6.8. Let py, ..., p, € A be a partial solution of (X, 71, ) (see Definition 6.4).
Considering the singletons {p; }, ..., {p¢} as irreducible zero-dimensional subvarieties of
A" we see that ({p1},...,{p¢}) is a train in X.

Lemma 6.9. For every train (Y1, ...,Y;) in X, there exists a partial solution py, ...,y
of (X, 1, ms) such that, for all i, 1 < i < {, we have p; € Y;.

Proof. We will prove the following statement by induction on /: there exists a nonempty
open subset U C Y, such that, for every point p, € U, there exists a partial solution
p1,---,pe of (X, m,m2) such that, for every i, 1 < i < /, we have p; € Y;. In the case
¢ =1, we can set U = Y, because every single point in X is a partial solution of length
one.

Assume that ¢ > 1. Applying the inductive hypothesis to the train (Y7,...,Y, 1), we
obtain an open nonempty subset Uy C Y;_;. Since Uy is dense in Y,_1, mo(Up) is dense in

o (Ye_1) = m1(Yy). Since 1 (Y;) is a constructible dense subset in 71 (Y;), mo(Up) Ny (Y7)

is also dense constructible in 7 (Y;). Let U; C m2(Up) N m1(Y7) be an open dense subset
of m Then U, := Y, N 7 *(U;) is nonempty open in Y;. We claim that every point
pe¢ € U, can be extended to a partial solution py, . . . , py such that p; € Y;. By the definition
of Us, m(pe) € ma(Up), so there exists p,_; € Uy such that mo(pe—1) = m1(pe). By the

inductive hypothesis, p,_; can be further extended to a partial solution. O]

Corollary 6.10. If there is an infinite train in X, then there is a solution for the triple
(X, 1, 71'2).

Proof. Since there is an infinite train, there are arbitrarily long finite trains. Due to
Lemma 6.9, there are arbitrarily long finite partial solutions of (X, 7y, 7). Lemma 6.5
implies that there are arbitrarily long finite partial solutions of the corresponding sys-
tem F'. Hence, due to Proposition 6.3, there is a solution of F'in K Z Lemma 6.5 implies
that there exists an infinite solution of the triple (X, 7y, 72). Ol

Definition 6.11 (Train operations).



20 Alexey Ovchinnikov, Gleb Pogudin, Thomas Scanlon

e For two trains Y and Y of the same length, the inclusion Y C Y is understood as
a component-wise containment.

e ForatrainY in X andi € Z, o*(Y) is the result of the component-wise application
of o' to Y, and, since m; and 7, are defined over the constants, ai(Y) is a train in
o' (X).

Remark 6.12. Since the component-wise union of any chain of trains of the same length
is again a train of this length, trains of fixed length satisfy Zorn’s lemma with respect to
inclusion. Hence, maximal trains of a fixed length are well-defined.

6.2.2 The number of maximal trains

Our next Lemma 6.13 appears to be part of the folklore, but for want of a written reference,
we offer a proof here.

Lemma 6.13. Let px: X — Z and py: Y — Z be dominant morphisms of affine vari-
eties over an algebraically closed field. Assume that X and Y are irreducible. Consider
the fibered product X X ;Y of ¢x and @y, considered as a variety, and denote the nat-
ural morphisms to X and Y by wx and Ty, respectively. Then there exists an irreducible

component V- C X Xz Y such that the restrictions of both wx and wy to V are dominant.

Proof. Denote the algebras of regular functions on X, Y, and Z by A, B, and C, respec-
tively. Since X, Y, and Z are irreducible (7 is irreducible as an image of an irreducible
variety under a dominant morphism), these algebras are domains. We denote the fields of
fractions of A, B, and C' by E, F, and L, respectively. The dominant maps ¢y and @y
give rise to injective homomorphisms wﬁ: C — Aand goiz C — B. These homomor-
phisms equip A and B with a C'-algebra structure. Then, the algebra of regular functions
on X xz Y, asascheme,is A ®c B (see [33, Tag 0114]).

Let p be any prime ideal in £ @, F. Let D := (E® F)/pand 7: E®p F — D
be the canonical projection. Consider the natural homomorphismi: A ®c B — E ®; F.
Since 1 € i(A ®¢ B), the composition 7 o i is a nonzero homomorphism. Consider the
natural embeddings 14: A - A ®c B and ig: B — A ®¢ B. We will show that the
compositions Toio0is: A — Dand moioig: B — D are injective. Introducing the
natural embeddings ig: F — E ®p F'and j4: A — E, we can rewrite

MOL0%y =TO1LEOjy.

The homomorphisms i and j4 are injective. The restriction of 7 to ig(FE) is also injec-
tive, since F is a field. Hence, the whole composition moiz 07 4 is injective. The argument
for m o ¢ 0 15 is analogous.
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Thus, we have an irreducible subvariety of X x Y, and hence of the variety (X x
Y )rea [33, Tag 0356], defined by the ideal Ker( o 7) that projects dominantly on both X
and Y. Hence, the component containing this subvariety also projects dominantly on X
and Y. [

Definition 6.14 (Marked trains). Let X; U X, U. ..U X, be the decomposition of X into
irreducible components.

e A pair (Y,c), where Y = (Y;,...,Y,) isatrain in X and ¢ = (c,...,¢7) €
{1,...,s}", is called a marked train of length ¢ and signature c if Y; C o*~1(X,.)

T

forevery 1 < < /(.

e Every train has at least one signature (maybe several), so that it becomes a marked
train.

e Analogously to trains, we define a notion of a maximal train of given length ¢ and
signature c.

Letc = (c1,...,c) € {1,...,5}" be atuple. Consider
X=X, x0(Xe) x ... x o"7HX,,) C (AT

We denote the projections (A#)* — AH onto the components by 9,1, . ..,y , respec-
tively. We introduce

We = {p € X°|m (ri(p)) = m (Yris1(p)) foralli, 1 <i<l}. (6.4
The restrictions of ¢ 1, ..., 1., to W, will be denoted by the same symbols.

Lemma 6.15. For every irreducible subvariety Z C W,

(zpm(Z), o ,W,E(Z))

is a marked train of signature c.

Proof. Foreveryi,1 <i </,

Yi = 10i(Z) C hei(We) C o' H( X))

Moreover, since Z is irreducible, 1), ;(Z) is also irreducible. Fix some i, 1 < i < {. We
will show that m5(Y;) = m1(Yi41). We can write m2(Y;) as ma (1 (Z)). By (6.4), the latter
is equal to 7 (¢0¢;4+1(Z)), which is the same as 7 (Y;41). O

Lemma 6.16. For every marked train (Y1, ...,Y;) of signature c in X, there exists an

irreducible subvariety Y C W, such that, for every i, 1 <i < {, we have Y; = 1,;(Y).
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Proof. We will prove the lemma by induction on ¢. For ¢ = 1, ¢ = (¢;), W, = X,,, and
wecansetY =Y.

Let ¢ > 1. Apply the inductive hypothesis to the train (Y,...,Y; 1) of signature
¢’ := (c1,...,c_1) and obtain an irreducible subvariety Y’ C Wy C (AH)*"L. Then
there is a natural embedding of Y’ x Y, into (A)*. Denote (Y’ x Y;) N W, by W. Since
Y” is already contained in W/,

W={peY xY|m (Yee-1(p) = m1 (Yee(p))}. (6.5)
Let 2/1 = (1/1571, ng’g, . ,'ng,g_l) : (AH)Z — (AH)E_l and
Z =y (wéfl,éfl(yl)) =T1 (Ye)- (6.6)

Then equality (6.5) implies (see [15, Ex. 2.26]) that W together with the morphisms
: W — Y and ¢y W — Y, is the fibered product of the morphisms 7 o
Yo_140-1:Y' — Z and my: Y, — Z. Equality (6.6) implies that both of these morphisms
are dominant.

Due to Lemma 6.13, there exists an irreducible subset Y C W such that¢: Y — Y’
and ¢,,: Y — Y, are dominant. For every ¢, 1 < ¢ < /, since ¢y; = ¢,_1, o v, the
restriction 1¢;: Y — Y, is dominant as a composition of two dominant morphisms. [

Lemma 6.17. Let the degree of X; be D; (see Definition 2.10), and fix a tuple ¢ =
(c1,...,c0) € {1,...,s}". The number of maximal trains of signature c in X does not
exceed D¢, - D, -...- D,,.

Proof. Since W, is the intersection of X ¢ with a linear subspace,
deg W, < deg X¢ = deg X, - dega(X,,) - ...-dego’ 1 (X,,). (6.7)

Since application of o to a variety does not change the degree, the product in (6.7) does
not exceed D., - ... D.,. Hence, the number of components of W, does not exceed
D, -...-D,,.

Let (Y7,...,Y;) be a maximal train in X of signature c. Lemma 6.16 implies that
there exists an irreducible subvariety Y C W, such that for every 7, 1 < ¢ < /, we

have Y; = 9y,;(Y'). Let C be an irreducible component of W, containing Y. Lemma 6.15
implies that

(904, 0e())

is also a train of signature c. Moreover, since C' O Y, this train contains (Y7,...,Y}).
The maximality of the latter implies that these trains are equal. Hence, Y could be chosen
to be an irreducible component of W,. Thus, we obtain an injective map from the set of
maximal trains of signature c to the set of all irreducible component of W,. Hence, the
number of maximal trains also does not exceed D,, - ... - D,,. ]
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Corollary 6.18. The number of maximal trains in X of length { does not exceed (deg X)*.

Proof. Since every maximal train can be considered as a marked maximal train, the num-
ber of maximal trains of length ¢ in X does not exceed the sum of products D,, -...- D,,
over all tuples c of length /. This sum is equal to

s s s 0
> DY [P =@ +...+D,) =D". O

c1=1co=1 cp=11i=1

6.2.3 A bound for trains

Definition 6.19. For a train Y = (Y},...,Y}) in X, we introduce the codimension of Y’
as
codimY := dim X — min dimY;.
1<i<t
Definition 6.20. We call a train Y = (Y7,...,Y}) in X skew-cyclic if ¢ > 1 and Y, =
0571 (Y'l ) )

Lemma 6.21. If there exists a skew-cyclic train in X of codimension d, then there exists
an infinite train in X of codimension d.

Proof. Let (Y7,...,Y;) be a skew-cyclic train in X of codimension d. Then we can con-
struct an infinite train of codimension d as follows:

(Y1, Yo, Yoot 0 (V)0 (Va), 0 (Vi) 0 (Va),nn) . O

Definition 6.22. We define B’(d, D) to be the smallest natural number N such that, for
every triple (X, 1, my) such that the deg X < D, the existence of a train of length N and
codimension at most d in X implies the existence of a skew-cyclic train in X of length at
most /N and codimension at most d, or oo if such N does not exist.

The following statement implies that B’(d, D) is finite for all d € Z>o and D € Z~
and gives an upper bound for B'(d, D).

Proposition 6.23. For all D € Z-,
1. B'(0,D) < D+ 1and
2. foreveryd € 7o, B'(d +1,D) < B'(d, D) + DF'(¢D),

Proof. Throughout the proof, we will use the observation that the existence of a skew-
cyclic train in ¢?( X ) for some i € Z implies (via component-wise application of o~*) the
existence of a skew-cyclic train of the same codimension in X.



24 Alexey Ovchinnikov, Gleb Pogudin, Thomas Scanlon

We prove the first statement of the proposition. Consider a train (Y3,...,Ypy) of
codimension zero and length D + 1. Since, for every ¢, 1 < ¢ < D + 1, we have
dimY; = dim X, then every o~ “*(Y;) is an irreducible component of X. The num-
ber of components of X does not exceed D, so some of the o~""!(Y;)’s coincide. If
o~ HY;) = oItH(Y;) for some i < j, then Y; = o77(Y;), so (V;,...,Y;) is a skew-
cyclic train of codimension zero.

We prove the second statement of the proposition. Consider a train (Y3, ...,Ys) of
codimension at most d + 1 and length

B := B'(d, D) + DF'®P),
We introduce N := DP'@D) 1 1 trains ZW, ... ZWN) of length ¢ := B'(d, D) in
X,0(X),... ,O'N_l(X), respectively, such that, for all 7, 1 < i < N, we have
20 = (20, Z2) = (Y, Vi),

For every 7, 1 < ¢ < N, consider a maximal train 70 — (Zfi), e Zéz)) of length
¢ in o"1(X) containing Z®. Then o~"(Z®) is a maximal train of length ¢ in X. If
there exists 7 such that codim Z(®) < d, then there is a skew-cyclic train of length at
most B'(d, D) and codimension at most d due to the definition of B’(d, D). Otherwise,
codim Z0) = d + 1 forevery 1 <i < V.

Corollary 6.18 implies that there are at most D* = N — 1 maximal trains of length /
in X. Hence, there are a and b, 1 < a < b < N, such that

0_—a+1(§(a)) _ O_—b—i—l(”Zv(b)).
Since codim Z@ = codim Z® = d + 1, there exists j, 1 < j < ¢, such that
dim Z\” = dim Z\"” = dim X — (d + 1).

Hence, since both Z ](-a) and Z ;a) are irreducible, dim Z ](a) >dimX —(d+1)and Z ](-a) C
Z ;a), they are equal. Analogously, Z;b) = ZJ(-b). Therefore,

0 Yarym) = 0 (ZY) = 0 (Z))

Hence,

Yipjo1 = 0" (Yarjo1),

s0, (Yatj—1, Yatsj, - -, Yorj_1) is a skew-cyclic train of codimension at most d + 1. [

Proposition 6.24. B'(1,D) < 22 + 22 1 1D 11 for every D > 1.
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Proof. Letdeg X < D. Assume that there is no skew-cyclic train of codimension at most

one in X. Let

X:X1UX2UUXS

be the irreducible decomposition of X and D; := deg X,;. We construct a directed graph

(with loops and multiple edges) GG with vertices numbered from 1 to s as follows. For

every maximal train among the marked trains of signature (4, 7) in X, we draw an edge

from ¢ to j (the number of such trains is finite by Lemma 6.17). The codimension of an

edge is defined to be the codimension of the corresponding train.

Case 1:

Case 2:

there is a directed cycle (cy, . .., ¢y, ¢1) consisting of edges of codimension zero
(since the graph has s vertices, there would be such a cycle with { < s). Then
there is a skew-cyclic train

(Xer, 0(Xey), - 07 (Xe,), 0' (X)),
of codimension zero and length at most s +1 < D + 1.

there is no such a directed cycle in G. Therefore, we can reenumerate the compo-
nents in such a way that i < j for every codimension zero edge (i, 7). Consider
atrain Y = (Y1,...,Ys) in X of length

D? D? 4D
~% T2 73
and codimension one. The train Y can be considered as a marked train with

l: +1 (6.8)

respect to a signature ¢ = (Cl,...,Cg). For every i, 1 < ¢ < /{, we
choose a maximal marked train 7; of signature (c;,c;;1) in X containing
(o7 (Y;), 07 (Yiy1)) and let e; be the edge in G corresponding to T;. Note
that

(e1,...,€01)

is a path in G.

Case 2a: some edge e corresponding to a maximal train, denoted (Z,, Z3), of
codimension one occurs twice in this path, so e = e; = e; for some
1 <i < j < L. Without loss of generality, we may assume that

dimZ; =dim X — 1.

Since dim Y; and dim Y; are both at least dim X — 1 and (Z;, Z5) is
maximal, we conclude that

Zi =0T (Y) = 0 I (Y)).

Hence, (67" (Y;), 0= (Yiy1), ..., 0 T1(Y})) is a skew-cyclic train

in X of length at most ¢ and codimension at most one.
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Case 2b: every edge of codimension one occurs in the path (e, ..., e,_1) at
most once. Until the end of the proof, we fix the path (eq,..., e, 1),
and all of the quantities below are computed for this path. For an edge
e = (i, ), we introduce the weight w(i, j) := ¢ — j. Let

Ny =i | 1<i<t, wie) =0},
N_:=[{i|1<i<t we) <0},
-1 =

W, = Zmax{(), w(e)}, W_o .= Zmin{(), w(e;)}
i=1 i=1
By the above reenumeration, all edges with positive weight are of
codimension at least one. Therefore, /N, does not exceed the number
of maximal marked trains with signatures of the form (7, j) withi > j.
Hence, due to Lemma 6.17, we obtain

Ny < ) DiD;
1<5<i<s

Since the sum of weights along any path between vertices a and b is
equal to a — b and the vertices in GG are numbered by the integers from
1tos,

Wo4+W_ > —s+1.

Combining this inequality with the fact that N < —W_, we obtain
N_ < W+ + s — 1.

Due to Lemma 6.17,

1<5<e<s
Thus,
(=N, +N_+1< DiDj+ > (i—j)DiDj+s
1<g<iss 1<g<iss (6.9)
<D+ (i —j—1)DiDj + s.
1<j<i<s

For every integer ¢ > 1, we introduce a function

fq<21,...,2’q) = Z (Z—j—l)ZZZJ—i-q

1<y<i<q

We claim that, for every positive integer M, the set

{folzr, - vz2g) | @21, oo 2 €Ly, 21+ ..+ 2= M}



Effective difference elimination and Nullstellensatz 27

reaches its maximum atg = M and z; = ... = 2z, = 1.

To prove the claim, consider any integer p > 1 and a tuple of positive
integers (wy, ..., w,). Let 7 < p be an integer such that w, # 1. We

have
fp+1<w17 ceey Wy—1, Wy — ]-7 17 Wyr41y - 7wp> -
d (i—j—Dwaw+ Y (i—j— Dwa,
J<a<r r<j<t
+ wi((r—j - Dw, +1) (6.10)
J<r
—l—Zwi((i—T— Dw, +w, — 1)+ (p+1)
r<i
and
fp(wb' y Wr, 7wp> -
Z (Z —J— 1)wzw] + Z (Z —J]— 1)wle
J<a<r r<g<u
+ Z (i —j — Dww; + Z(T —j — Dw;w, (6.11)
i<r<i J<r
+ Z(z —r —Dww; +p
r<i

Comparing (6.10) and (6.11) term by term, we see that

for1(w, .o wemg, we—1, 1w, wy) > fp(wr, . Wy, wy).

Hence, the claim is proved. Let D= Dy + ...+ D,. Combining the
claim with (6.9), we obtain

‘€<D2+fﬁ(Dla---7Ds><D2+fﬁ(17--~71>
<D+ fp(l,....1)=D*+ > (i—j—1)+D
1<j<i<D
D—2
D?® D? 4D
=D+ D? i(D—1—i)="—"—+—+ —
+ +;2( )="o+45 3
and arrive at the contradiction with the definition (6.8) of £. ]

Propositions 6.23 and 6.24 imply

Corollary 6.25. Forall d € Z-q and D € Z~,, B'(d, D) < B(d, D).
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6.3 Proof of effective Nullstellensatz

Proof of Theorem 3.1. The = implication is straightforward, we will prove <= . We
will use the notation introduced in Section 6.2. The fact that the system consisting of 0-th,
..., B(d, D) — 1-th transforms of F' = 0 considered as a polynomial system is consistent
implies that ' = 0 has a partial solution of length B(d,D) > B’(d, D). Lemma 6.5
implies that there is a partial solution of the triple (X, m,m5) of length B’(d, D). This
partial solution is a train in X of codimension dim X = d and length B’(d, D). The
definition of B'(d, D) and Lemma 6.21 imply that there exists an infinite train in X. Then
Lemma 6.5 and Corollary 6.10 imply that the system F' = 0 has a solution in some
difference ring extending k. [

Proof of Corollary 3.2. The = implication is straightforward, we will prove <= .
We will use the notation introduced in Section 6.2. If k = C, then K can be chosen to be
C, too. A solution of the system {c(F) =0 | 0 < i < B(d, D)} yields a partial solution
of F' = 0 of length B(d, D). Analogously to the proof of Theorem 3.1, we have that the
system [ = 0 is consistent. Then Proposition 6.3 implies that /' = 0 has a solution in
CzZ, O

6.4 Proof of effective elimination

Proof of Theorem 3.4. The <= implication is straightforward, we will prove —> . Let
Ey D E = Frac(k{x}) be any difference field extension such that F is algebraically
closed and has uncountable transcendence degree over the prime subfield. Since the dif-
ference ideal generated by F' in k{x,u} contains a nonzero polynomial depending only
on x and their transforms, the difference ideal generated by F'in Ey{u} contains 1. So, the
system does not have a solution in EZ. Theorem 3.1 implies that the system F' = 0 does
not have a partial solution in Fy of length B(d, D). Hence, the ideal generated by B(d, D)
transforms of F' contains 1. Since the ideal is defined over F, there is an expression of 1
over I of the form

B(d,D)-1 N
L= Y Y o'y,
i=0  j=1

where ¢; ; € E{u}. Multiplying both sides of the above equality by the product of the
denominators of ¢; ;’s, we obtain an expression of a nonzero polynomial from k{x} as a
k{x, u}-linear combination of B(d, D) transforms of F'. O

7 Difference Nullstellensatz over small fields

An hypothesis of our Proposition 6.3 is that the field /& is uncountable. In practice, this is
a harmless assumption as one might take that field to be C. However, this result may be
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conceptually unsatisfactory, and one might wish to find solutions to difference equations
in sequences taken from a small field, such as the field of algebraic numbers.

With the next proposition, we show how to weaken the uncountability hypothesis by
appealing to a more refined equivalent condition to the consistency of a system of differ-
ence equations coming from our work towards the effective Nullstellensatz and a theorem
of Hrushovski on the limit theory of the Frobenius automorphisms [18]. Our invocation
of Hrushovski’s theorem is essentially contained in Fakhruddin’s proof of the density of
periodic points for polarized algebraic dynamical systems in [12]. For our purposes a
slightly weaker result due to Varshavsky [38] suffices.

Theorem 7.1. For all algebraically closed inversive difference fields K (without any re-
striction on the cardinality) and finite sets F C K{x1,...,2,}, the following statements

are equivalent:

1. F has a solution in KZ.

2. F has a solution in K.

3. F has finite partial solutions in K for all N > 0.

4. The ideal [F] := ({¢(F) | j € N}) C K{xy,...,2,} does not contain 1.
5. The ideal [F]* := ({0?(F) | j € Z}) C K{x1,...,2,}* does not contain 1.
6. F has a solution in some difference K-algebra.

In order to prove Theorem 7.1, we will extract two consequences of [38]. In Lemma 7.2
and 7.3, ¢, denotes the s-th power of the Frobenius automorphism.

Lemma 7.2. For every finitely generated difference subring R of a difference field K,
there exist a prime p, a positive integer s, and a difference homomorphism : R — T,

where I is the algebraic closure of ¥, considered as a difference ring with respect to ¢s.
Proof. The proof will proceed in two steps.

Step 1: We will show that there exists a prime p and a difference field L of character-
istic p such that there exists a homomorphism R — L of difference rings. If
char K > 0, then we can take L to be K. Let now char K = 0 and R generated
by aq,...,as. Since R is a difference subring of a difference field, the ideal

I ={feZ{xy,...,xe} | flar,...,as) =0} (7.1)

is a perfect difference ideal [6, p. 76, §12]. As such, because every finitely gener-
ated difference ring is a Ritt difference ring [6, Chapter 3, Theorems II, and V], 1



30

Step 2:

Alexey Ovchinnikov, Gleb Pogudin, Thomas Scanlon

is finitely generated as a perfect difference ideal. Let ¢y, ..., gs € Z{x1,..., 24}
be a finite set of such generators. Consider a model of ACFA, containing K.
Then the sentence

p =3 (q1(x) = ... = g:(x) = 0)

is true in this model. [5, (1.6), 2nd paragraph] implies that there exists a finite
disjunction, say %, of sentences specifying (up to an isomorphism) a difference
field structure on some Galois extensions of the prime subfield such that

e ¢ and v are equivalent in ACFA,. In particular, 1) holds in some model of
ACFA,.

e There exists a positive integer /V such that, for every prime p > N, ¢ and
1 are equivalent in ACFA,,.

Applying the Chebotarev density theorem as in [5, (1.14)], one can show that,
since ¢ is consistent with ACFA, there are inifinitely many primes p such that
1 holds in some model of ACFA,. We fix such p that is greater than N and
a model L of ACFA, in which ¢ and, consequently, ¢ hold. Then there are
bi,...,by € L such that gy(by,...,b)) = ... = gs(b1,...,by) = 0. Then the
kernel of a difference homomorphism Z{z1,...,x,} — L defined by z; — b;
contains /, so it yields a difference homomorphism R — L.

If char K’ = 0, we replace K with L and R with its image in L. Thus, in what
follows, we assume that char X' = p > 0. Let h be the maximum of the orders
of g1,...,gs. Let by, ..., by be the elements of

{07(a;) |1 <i<,0< 5 <h}

written in some order, so N = (h. Then R is also generated by by,...,by as a
difference ring, and the corresponding vanishing ideal in the difference polyno-
mial ring Z{y1, ..., yn} is generated as a perfect difference ideal by difference
polynomials of order one. Replacing a4, ..., as by by,...,by, We may assume
that 7, defined in (7.1), is generated as a perfect difference ideal by order one
difference polynomials.

Let g C Fplz1,..., %6, Y1, ..,y be the ideal of all polynomials vanishing on
(a1,...,a¢,0(a1),...,0(ar)).Since ay, . . ., ay are elements of a difference field,
the ideals

pr:=qNFyx] and ps:=qNF,[y]

are transformed one to the other under the substitution x — y. Then

X = Spec(F,[x]/p1) = Spec(F,[y]/p2) and C := Spec(F,[x,y]/q)
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are irreducible schemes of finite type over IF,,, and C'is a subset of X x X. Then,
by [38, Theorem 0.1], there exists a positive integer s such that the intersection
of C with the graph of ¢, in F?* is nonempty, where [ is the algebraic closure of
F,. Let (a},...,a;,¢s(a}),...,¢s(a;)) be a point in the intersection. Since the
substitution 7 (z;) = ¢’(a}) annihilates g, it also annihilates every polynomial in
its perfect closure I (mod p). Then the map ¢): R — F defined by ¢ (67 (a;)) =
@7 (a}) is a desired homomorphism of difference rings (R, o) and (F, ¢,). O

Lemma 7.3. For every
e prime number p,
® positive integer s,
e scheme X of finite type defined over I, the algebraic closure of IF,

e irreducible subvariety I' C X X ¢4(X) such that the projections to X and ¢5(X)

are dominant,

there exists an infinite sequence (a;)2 . such that (a;,a;11) € ¢5(T) for every i € 7.

1=—00

Proof. Since X and I are defined over some finite subfield of [F, there is a positive integer
¢ with ¢4 (X) = X and ¢4 (') = I'. Lemma 6.13 implies that there exists an irreducible
component = of the fiber product

D X, x) Ps(1) Xgae(x) X pu_rya(x) Pe—1)s(L)-

such that the projections of = onto I', ¢4(I'), . . ., ¢(¢—1)s(I") are dominant. We denote the
projection = — ¢ (I") by p; forevery 0 < ¢ < ¢ — 1.

Let: ' -5 X and 75: I' — ¢,(X) denote the projections. We define projections
i 2 — ¢g(X) for 0 < i < £ as follows:

T1 0 pg, fore =0,
T =< T10p;=Ty0 pi_q, for0 <i <,
T2 O Pr—1, fori = /.

Note that the 7;’s are dominant. Consider the fiber product of = X x = where the first
= — X is my and the second map = — X is mg. Lemma 6.13 implies that there exists an
irreducible component YT of this product such that the projections of T onto both =’s are
dominant. Take r so that = and T are both defined over [, and

sl |r.

By [38, Theorem 0.1], there is a power ¢, of ¢, and a point a = (ay,...,a,—1) € Z(F)
with (a, ¢:(a)) € YT(F). Note that ¢, leaves invariant I', =, and Y. Since coefficients of
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the m;’s and p;’s are invariant under ¢;, we will denote the conjugation of any of these
maps by any power of ¢; by the same letter. For 0 < ¢ < ¢ and j € Z, define

it jo = mi(Pri(a)).

Let us show that the sequence {a;}°__ satisfies the requirement of the lemma. Con-

1=—00

sider j € Z and 0 < i < £. Then a;+s = 71 (pi(¢rj(a))). We also have

Qirjer1 = T1 (pi+1(9rj (@) = 72 (pi(dr;(a))) fori <€ —1,
aiyjesr = 71 (po(eii+1) (@) = 72 (pe-1(¢rs(a))) fori =€ —1

because = and T are components of the corresponding fiber products. In both cases,
(@ivje; Aivjesr) € pi (045(2)) = pi(Z) C Gsi(T) = Ps(irjo (I').- O
In Lemmas 7.4 and 7.5, for a valued field (K, v), we write
O={zreK : v(x) >0}

for the valuation ring,
m={zre K : v(x)>0}

for the maximal ideal of O, and k = O/m for the residue field. We denote the reduction
map r : O — k by r and will abuse notation writing r for the reduction map on associated
objects.

Lemma 7.4. Let (K,v) be a Henselian field, n < m positive integers, fi,..., [, €

Olxy,...,xn) and a = (a1,...,ay,) € k™. We assume that, for each i, we have

r(fi)(a) = 0 and that the matrix (%(a)) has rank n. Then there is
J 1<i<n, 1<j<m

c=(c1,...,¢cm) € O"suchthat f1(c) = ... = fu(c) =0and r(c) = a.

Proof. By hypothesis, there is some J C {xy,...,x,,} with |J| = n and invertible ma-

trix (%(a ) . Relabeling the variables, we may assume that J = {1,...,n}.
T 1<i<n, j€J
Define f; := z; for n < ¢ < m. Then the square matrix (%(a ) 18 in-
i 1<i<n, 1<j<n

vertible. There exists some b € O™ such that 7(b) = a. Then, by to [24, Section 4,
Multidimensional Hensel’s Lemma], there is some ¢ € O™ with fi(c) = --- = f,(c) =0
and r(c) = r(a). O

Lemma 7.5. Let (K, v) be a Henselian field and f : X — Y a smooth map of schemes of
finite type over O. Suppose that a € X (k) and b € Y (O) satisfy f(a) = r(b). Then there
is a point ¢ € X(O) with f(c) =bandr(c) = a.
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Proof. [33, Tag 01V7] implies that there are affine open neighborhoods U C X and
V C Y of a and r(b), respectively, for which f;;: U — V is standard smooth. That is,
there exist:

e positive integers m and n,
e a finitely generated O-algebra S such that V' = Spec(5),

e polynomials ¢gi,...,9, € S|x1,...,%,) such that U = Spec(T'), where T' =
Sty xml /(91,5 Gn),

such that

e some 1 X n minor of the Jacobian (%) is an invertible element of 7" and
J

e fy is the dual morphism of schemes to the natural homomorphism S — 7.

Since O is a local ring and r(b) is a reduction of b modulo m C O, the point b belongs to
any open neighborhood of 7(b), in particular, b € V' (QO). This corresponds to an O-algebra
homomorphism b*: S — O. Let a* denote the O-algebra homomorphism O[U] — k
corresponding to a € U(k).

For each i, 1 < i < n, consider the polynomials b*(g;) € Olxy,...,z,,] and
a*(g;) € k[zy,..., 1, that are obtained from g; by applying b* and af, respectively, to
the coefficients. The fact r(b) = f(a) implies that r (b*(g;)) = a*(g;). Let a; be the result
of applying a* to the image of z; in T for 1 < j < m. Since a* is a homomorphism,
a*(g:)(ay,...,an) = 0 forevery 1 < i < n and also the Jacobian matrix (%ﬂ) has
full rank at (ay, ..., an).

Then, by Lemma 7.4, we may find (ci, . .., ¢,,) € O™ for which b*(g;)(c1, ..., cm) =
0forl < i < nandr(c) = aj for 1 < j < m. Since b*(g;)(c1,...,cm) = 0 for
1 <i < n,themap c*: T — O defined by ¢!|g = b* and by ¢f(z;) = ¢; for 1 <i < m
is a well-defined O-algebra homomorphism. This gives us a point ¢ € U(QO) such that
f(c) = b. Moreover, r(c) = a since r(¢;) = a; forevery 1 < i < m. O

Corollary 7.6. Let (K, v) be a Henselian field and X a scheme of finite type over O such
that the canonical morphism X — Spec(Q) is smooth. Then, for every a € X (k), there
exists ¢ € X (O) such that r(c) = a.

Proof. The corollary follows from Lemma 7.5 applied to Y = Spec(Q) and b being the
identity map Spec(Q) — Spec(O). O

With these statements in place, we finish the proof of Theorem 7.1.
In what follows, for a positive integer m and a commutative ring R, R™ denotes the
commutative ring generated by the set {r"*|r € R}. For an affine scheme X over a perfect
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ring R of characteristic p and ¢ = p", we define a scheme X @ by X (@ := Spec(0%).
There is a map F,: X — X@ that is dual to the inclusion O% < Oy. This map is a
special case of what is called the relative Frobenius morphism. See [33, Tag 0CC6] for
more details. If R is perfect, F,, defines a bijection between X (R) and X @ (R).If p = 0,
we will assume that ¢ = 1 and F, is the identity map.

Lemma 7.7. If p : I' — Z is morphism of irreducible affine varieties over an alge-
braically closed field K, then there exist

e an dffine variety T,

o morphismsv: ' = Yand71: T — Z,

e a positive integer n and a morphism v : ¥ — I'D where g = p",
such that | = T ov, yov = F,, v is finite, and T is generically smooth.

Proof. If char K =0, take Y = I', v = idpr and 7 = p by [32, Theorem 2.27].

Let char K = p > 0, t1,...,1, be a transcendence basis of K(I') over £ :=
Quot(p*(Oz)), and L be the relative separable closure of E(ty,...,t,) in K(I'). Then, as
K (T) is a finite purely inseparable extension of L, for n > 0 we have K (I')?" C L. Let
q:=p"and A = 1*(Oy)[O}], the ring generated by 1*(Oz) and Of. Set T := Spec(A)
over K.

Dual to the homomorphisms of rings O, — A and A — Or, we have morphisms
7: T — Zand v: I' — Y with 4 = 7 o v. Since the field extensions £ — K (Y) is a
subextension of the the separable extension £ < L, the morphism 7: T — Z is smooth
at the generic point of T due to [33, Tag 07ND]. Form the inclusion Of < A = Ox, we
obtain the morphism v: ¥ — '@ with F}, = y o v.

Since Of C Or is a finite integral extension and Of C A C Or, the extension
A C Or is also a finite integral extension. Hence, the dual map v: ' — 7T is a finite
morphism. ]

Proof of Theorem 7.1. The only implication whose proof in the original argument for
Proposition 6.3 used uncountability is from 5. to 1. We observe that 5. implies 3., be-
cause 1 is not contained in any ideal generated by finitely many transforms of the system,
so Hilbert’s Nullstellensatz implies that there exist arbitrarily long partial solutions of the
system over K. This is exactly 3.

Consider the triple (X, 1, 7o) constructed in Section 6.2. Due to Lemma 6.5, item 3
implies that (X, 7y, m2) has arbitrarily long partial solutions. On the other hand, the exis-
tence of a solution to /7 = 0 in KZ is equivalent to the existence of a two-sided infinite
solution to (X, 7y, m2) over K (see Lemma 6.5). We thus reduce to finding a solution to
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(X, 7, ma) over K. Then Proposition 6.23 implies that there exists an infinite skew-cyclic
train

(.. N, Ys,. .Y 00 (YA), ) (7.2)

in X. Let c be a signature of the train (Y7, ...,Y;) andletY C W, C X be the associated
irreducible variety given by Lemma 6.16. For 1 <1 </, let p;: Y — Y, be the dominant
projection to Y; (which is 1|, in the notation of Lemma 6.16). The projection o7 (Y) —
07 (Y;) obtained by conjugation by o7 of p; will be denoted by o7 (p;) for every j € Z.
Recall that, since (7.2) is a train, m o p, and m; o o* (p1) are dominant onto the same
variety. Due to Lemma 6.13, there exists an irreducible component I', which we fix, of
the fiber product of Y with o/(Y") over 7, o p; and 7 o 0“(py) such that g, : ' — Y and
o : ' — o*(Y) are dominant.

Let us call a sequence (a;)%°__ with a; € 0(Y) and (a;,a;11) € o*(T) for all i a

i=—00

weak solution to (Y, T"). Such a weak solution gives rise to the solution

(‘ e 70-_€(p1)(a—1)7 s ’O-_K(pf)(a—l)a pl(a0)7 102(a0)7 s apf(ao)v O-Z<p1)(a1)7 s ’O-e(pf)(al)v e

of (X, my,m). Thus, it suffices for us to find a weak solution. Lemma 7.7 implies that
there exist

e T, and Y5 be affine varieties

e 1 a positive integer,

e v =Y, 7:Ti—=Y,v: YT, = I'9 morphisms, where ¢ = p™ and i = 1,2,
so that, fori =1, 2,

o viou,=F,,

e 7; is generically smooth,

® [, =T; 0V

We fix some equations defining I', Y, Y, v;, 7;, v;, and p; for i = 1,2. Denote the
difference ring generated by the coefficients of these equations by R. Let 7: ['@ —

Spec(R) be the dual to the natural embedding R — Of. [33, Tag 07ND] implies that 7 is
generically smooth. Let ', Y, Ty, and T3 be the models of I', Y, T, and T5 defined by

)
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these fixed equations over R. Thus, we have the following diagram:

r

AN 7 N
Y [ o (Y)
\ ﬂR)/

Spec(

Let '?‘1, 'f‘g, and '@ be dense open subsets in Ty, T, and M@, respectively, such that 7,
Ty, and 7, respectively, are smooth on these subsets, which exist since smoothness of a
morphism is an open condition (see the discussion just after [33, Tag 01V5]). Let

T =u (T) Ny (T) N EH(T@),

which is dense open in I'. Let [" be a non-empty open subset of T defined by a single
inequality f # 0, where f € Or. The image of [’ under F, is open dense in ()@ c (@,
defined by f¢ # 0. Let

Y= (M) N Ty, i=1,2.

Then v; (") C T/, and ()@ c @,

We apply Lemma 7.2 to (R, c*) and obtain ¢: (R,0%) — (F,¢,), where F is the
algebraic closure of [F,, and, in the case char K’ = 0, p is some prime number provided
by Lemma 7.2. Let Xy denote the base change of a scheme X over R to [F via 1. Let
(a;)2_ . be a sequence such that, for each i € Z,

1=—00

(i, aiy1) € ¢si(TE)(F).

Such a sequence exists by Lemma 7.3. Fix an extension of v to a place ¥ on K (see [11,
Theorem 3.1.1]). Let O be the valuation ring of ¥} and v be a valuation on K. Note that
R C O. Also note that we do not assert that ¢ respects ¢ on all of O nor even that O is
preserved by o. Let E be the residue field of O. Since K is algebraically closed, E is also
algebraically closed [11, Theorem 3.2.11]. Since I, C E, IF is embedded into E.

[33, Tag 01VB] implies that the morphisms of schemes (7))o — Yo, (TH)o —
a‘(Y)o, and (I )8) — Spec(O) are smooth as well as all their shifts/conjugations by o*.
We shall now build a weak solution (b;)°___ to (Yo(O),,(O)) so that

i=—00


https://stacks.math.columbia.edu/tag/01V5
https://stacks.math.columbia.edu/tag/01VB
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Since K is algebraically closed, (K, v) is Henselian [24, Lemma 4.1]. For ¢ = 0 and
i=1,since w: (I )g’) — Spec(O) is smooth, every point in (I )I(Fq) (F) lifts to a point in
(I")Eg)((’)) due to Corollary 7.6. Thus, we may choose some (b, by) € (I")Eg)((’)) special-
izing to (F,(ag), F,(ay)) and set by = F-(b) and by = 1 (by).

Assume that we have already constructed b; for some ¢ > 0 so that ¥(b;) = a;. Due to
Lemma 7.5 applied to the morphism of schemes

cloroa 0" ((T)o) = o (Yo)
and points (o o vy 0 07%) ((a;, a;41)) and by, there exists P € o ((T4)o) such that
<O'i£ o0T10 O'_Z[)(P) = bz and 19(P) = (Qﬁz oV O ¢;Z) ((ai, ai“)) .

Consider
Q=F; (6" om oo (P)) € 0" (To(0)).

Since v is a finite morphism, it is surjective on O-points due to [32, Theorem 1.12]
together with [11, Theorem 3.1.3]. Using this and the fact that F), is bijective on O-points,
o o vy 0 07%(Q) = P. Hence,

(0" opoo™™)(Q) = (0" oy 0o ) (P) = by,
so () can be written as (b;, ¢). Since
Filogiomoviog = oF oyovog” =g oidod;" =id,
we have

IQ) = Frfl © ¢i ©cmnorvo ¢;i ((ai, ait1)) = (ai, aiyq).

Thus, we can set b; .1 = c. In the same way, we produce the b; with ¢ < 0 using the fact
that (T%)o — o*(Y)o is smooth. O
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