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Abstract

We prove effective Nullstellensatz and elimination theorems for difference equa-
tions in sequence rings. More precisely, we compute an explicit function of geometric
quantities associated to a system of difference equations (and these geometric quan-
tities may themselves be bounded by a function of the number of variables, the order
of the equations, and the degrees of the equations) so that for any system of difference
equations in variables x = (x1, . . . , xm) and u = (u1, . . . , ur), if these equations
have any nontrivial consequences in the x variables, then such a consequence may be
seen algebraically considering transforms up to the order of our bound. Specializing
to the case of m = 0, we obtain an effective method to test whether a given system
of difference equations is consistent.

Keywords. difference equations, effective Nullstellensatz, elimination of unknowns

1 Introduction

Let K be an algebraically closed field of arbitrary characteristic. We say that a sequence
(aj)

∞
j=0 from K satisfies a difference equation with constant coefficients if there is a

nonzero polynomial F (x0, . . . , xe) ∈ K[x0, . . . , xe] such that, for every natural number j,
the equation F (aj, aj+1, . . . , aj+e) = 0 holds. This can also be defined for systems of dif-
ference equations in several variables. Such difference equations and the sequences that
solve them are ubiquitous throughout mathematics and in its applications to the sciences,
including such areas as combinatorics, number theory, control theory, and epidemiology,
amongst many others (see Section 4 for some of the examples).
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In this paper we resolve some fundamental problems about difference equations. The
questions we answer include the following (for precise statements, including the way
non-constant coefficients can appear, see Section 3):

1. Under what conditions does a system of difference equations have a sequence solu-
tion?

2. Can these conditions be made sufficiently transparent to allow for efficient compu-
tation?

3. Given a system of difference equations on (n + m)-tuples of sequences, how does
one eliminate some of the variables so as to deduce the consequences of these equa-
tions on the first n variables?

Our solution to the first question is a conceptual difference Nullstellensatz, to the second,
an effective difference Nullstellensatz, and to the third, an effective difference elimina-
tion algorithm. Even though the abstract Nullstellensatz is intellectually satisfying in that
conditions of different kinds are shown to be equivalent, namely the existential condition
that there is a sequence solution to a system of difference equations and the universal
condition that the difference ideal generated by the equations is proper, the difficult work
and applications, both theoretical and practical, comes with our main effective theorems.

Effective elimination theorems and methods have a long history and play central roles
in computational algebra. Row reduction, or Gaussian elimination, is a fundamental tech-
nique in linear algebra. Elimination for polynomial equations is substantially more com-
plicated and has been the subject of intensive and sophisticated work [4, 23, 22]. In re-
cent work of the first two authors joined by Vo [29], effective elimination theorems were
obtained for algebraic differential equations through a reduction to the polynomial case
through the decomposition-elimination-prolongation method. Elimination of unknowns
for systems of linear difference equations is an essential part of the classical transfer ma-
trix method in combinatorics [34, §4.7].

While these questions are important and difference equations have been studied inten-
sively both for their applications and theory, to our knowledge, none of these questions
has received a satisfactory answer in the literature. We explain below how some known
results, both positive and negative, may help explain the existence of this lacuna. In par-
ticular, in some essential ways, the effective Nullstellensatz and elimination problems for
difference equations are substantially more difficult than the corresponding problems for
differential equations and the methods of [29] do not routinely transpose to this context.

The foundational work on difference algebra, that is, the study of the theory of dif-
ference rings and of difference equations as encoded through the algebraic properties
of rings of difference polynomials, was initiated by Cohn in [6], following the tradition



Effective difference elimination and Nullstellensatz 3

of Ritt and Kolchin in differential algebra. Deep results have been obtained in this sub-
ject, but their relevance to the problems at hand is hampered by their restrictions, for the
Nullstellensatz and elimination theorems, to the case in which solutions are sought in
difference fields, and thus have little bearing on the structures used in practice, namely
difference rings presented as rings of sequences, such as CN given with the shift opera-
tor σ : (ai)

∞
i=0 7→ (ai+1)∞i=0. Moreover, even if restricted to difference fields, the known

elimination theorems are at best theoretically effective.

Chatzidakis and Hrushovski studied difference fields from the perspective of mathe-
matical logic in [5]. There, they established a recursive axiomatization for the theory of
existentially closed difference fields and proved a quantifier simplification theorem. From
this it follows that in principle there are effective procedures to check the consistency of
difference equations in difference fields and to perform difference elimination in differ-
ence fields. More recent work of Tomašić [36, 37] geometrizes the quantifier simplifica-
tion theorem and brings the complexity of these algorithms to primitive recursive, though
this effectivity is still theoretical — to call the implicit bounds astronomical would be a
gross understatement — and a practical implementation of this work is infeasible. In sym-
bolic computation, steps have been taken towards extending the characteristic set method
from differential algebra to the study of difference and difference-differential equations in
works of Gao, van der Hoeven, Li, Yuan, Zhang [14, 13, 27, 26]. These methods are more
efficient than those coming from logic, but as they are restricted to the study of inversive
prime difference ideals, they, too, are fundamentally results about solutions to difference
equations in difference fields and the constructions of difference resultants depend on re-
strictive hypotheses. A similar approach was taken by Lyzell, Glad, Enqvist, Ljung [28]
aiming at solving a problem in discrete-time control theory.

The situation for difference equations in sequence rings differs starkly. Simple ex-
amples show that consistency checking in difference fields is not the same problem as
consistency checking for sequences. For example, the system of difference equations
xσ(x) = 0, x + σ(x) = 1 has no solution in a difference field, but the sequence
0, 1, 0, 1, . . . is a solution in CN.

More seriously, theorems of Hrushovski and Point [21] show that the logical methods
used for difference fields fail dramatically for sequence rings. In particular, they show that
the first-order theory of CN regarded as a difference ring is undecidable. Thus, we cannot
derive a consistency checking method from a recursive axiomatization of this theory nor
can we produce an elimination algorithm from an effective quantifier elimination theo-
rem; no such axiomatization or quantifier elimination procedure exists. That we succeed
in solving the effective consistency checking and effective elimination problems for dif-
ference equations in sequence rings is all the more surprising given these undecidability
results.
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Let us explain more precisely what we actually prove and where the new ideas appear
in our arguments. We have two main theorems: Theorem 3.1 an effective Nullstellensatz
and Theorem 3.4 an effective difference elimination theorem. Strictly speaking, the ef-
fective Nullstellensatz is a special case of an effective elimination theorem, but we prove
elimination by bootstrapping through the Nullstellensatz.

The key to our work is a new proof technique based on the spirit of the decomposition-
elimination-prolongation (DEP) method. As is completely standard, a system of differ-
ence equations may be regarded as a system of algebraic equations in more variables to-
gether with specifications that certain coordinates should be obtained from others by the
application of the distinguished endomorphism and the usual DEP methods allow for one
to cleverly reduce questions about the original system of difference equations to questions
entirely about algebraic equations. A version of the DEP method for difference equations
in difference fields is employed in [19] for the purpose of computing explicit bounds in
Diophantine geometric problems. This DEP method cannot work for the problems at hand
as explained in Section 5. We overcome this obstacle by taking a different approach to re-
ducing the question about the original system to the question about algebraic equations.
The core of this reduction is for us to show that every system of difference equations that
has a solution actually has what we call a skew-periodic solution with the components
being (not necessarily closed!) points of the affine variety corresponding to the original
system, and the length of the period can be bounded in terms of the geometric data of the
original system (see Section 6.2.3).

With our theorems we explicitly bound the number of prolongations required to solve
the problems at hand, i.e. testing a system of difference equations for consistency or com-
puting a nontrivial element of the elimination ideal. For the elimination problem, our
bound is not sensitive to the number of variables that are not being eliminated, see Re-
mark 3.6. The bounds are small enough in many cases to permit efficient computation,
see Section 4.

We draw an interesting theoretical conclusion from our work towards the explicit
bounds for the difference elimination problem in Section 7. Specifically, with Theo-
rem 7.1, we show that for (K, σ) any algebraically closed difference field, whenever a
finite system of difference equations over K is consistent in the sense that it has a so-
lution in some difference ring, then it already has a solution in the ring of sequences of
elements ofK. We give a soft proof of such a difference Nullstellensatz under the hypoth-
esis that K is uncountable with Proposition 6.3. The proof of Theorem 7.1 is much more
difficult than it may have been expected to be. In extending this difference Nullstellensatz
to generalK we use crucially our result that a system of difference equations is consistent
if and only if it has a skew-periodic solution and then appeal to remarkable theorems of
Hrushovski on the first-order theory of the Frobenius automorphism and of Varshavsky
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on intersections of correspondences with the graph of the Frobenius.
The paper is organized as follows. We give the basic definitions in Section 2, and then

introduce the notation and terminology specific to our paper. The main results, Theo-
rem 3.1 for the effective Nullstellensatz and Theorem 3.4 for the effective elimination, are
expressed in Section 3. In Section 4, we illustrate our results in several practical examples.
With Section 5, we present counterexamples to an effective strong difference Nullstellen-
satz and to the application of the usual DEP method to these problems. The proofs of the
main theorems are presented in Section 6. Finally, in Section 7, we strengthen the differ-
ence Nullstellensatz giving equivalent criteria for the existence of sequence solutions to
systems difference equations over any algebraically closed field.

2 Preliminaries

Throughout the paper, N denotes the set of non-negative integers. A detailed introduction
to difference rings can be found in [6, 25].

Definition 2.1 (Difference rings).

• A difference ring is a pair (A, σ) where A is a commutative ring and σ : A→ A is
a ring endomorphism.

• As an example, if R is any commutative ring, then the sequence rings RN and
RZ are difference rings with σ defined by σ((xi)i∈N) := (xi+1)i∈N (σ((xi)i∈Z) :=

(xi+1)i∈Z, respectively).

• A map of difference rings ψ : (A, σ)→ (B, τ) is given by a map of rings ψ : A→
B such that that τ ◦ ψ = ψ ◦ σ.

• We often abuse notation saying that A is a difference ring when we mean the pair
(A, σ).

Definition 2.2 (Difference polynomials). Let A be a difference ring.

• The free difference A-algebra in one generator x over A, A{x}, also called the ring
of difference polynomials in x over A, may be realized as the ordinary polynomial
ring A[{σj(x) : j ∈ N}] in the indeterminates {σj(x) : j ∈ N}.

• Iterating this procedure, one obtains the difference polynomial ring A{x1, . . . , xn}
in n variables.

• Every difference polynomial in A{x1, . . . , xn} can be considered as an ordinary
polynomial in indeterminates of the form σi(xj).
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• For P ∈ A{x1, . . . , xn} and 1 6 i 6 n, we define the order of P with respect to xi,
denoted ordxi(P ) to be the maximal h for which σh(xi) appears in P . If no σh(xi)
appears, we set ordxi(P ) := −1. We also set ordP := max

16i6n
ordxi P .

Example 2.3. ordx3(σ
3(x1) + x2 + σ(x3)2 + 1)=1.

Definition 2.4. If (A, σ) is a difference ring and F ⊆ A{x1, . . . , xn} is a set of dif-
ference polynomials over A, (A, σ) ⊆ (B, σ) is an extension of difference rings, and
b = (b1, . . . , bn) ∈ Bn is an n-tuple from B, then we say that b is a solution of the
system F = 0 if, under the unique map of difference rings A{x1, . . . , xn} → B given by
extending the given map A→ B and sending xi 7→ bi for 1 6 i 6 n, every element of F
is sent to 0.

Example 2.5. Let (A, σ) = (Q, id) and (B, σ) = (QN, σ), where σ is the shift (to the
left) operator. Then the tuple

b = ((1, 0, 1, 0, . . .), (2018, 1, 0, 1, . . .)) ∈ B2

is a solution of the system {
σ(x1) + x1 − 1 = 0,

σ(x2)− x1 = 0.

Definition 2.6. If (A, σ) is a difference ring, F ⊆ A{x1, . . . , xn}, andB is a non-negative
integer, the B-th transform of F is the set

σB(F ) :=
{
σB(f) | f ∈ F

}
.

So, the 0-th transform of F is F . The B-th transform of a system of difference equations
is defined similarly.

Example 2.7. The 2-nd transform of the system{
σ(x1)5 = x1 + x2

2

x3
3 + x1 + 1 = 0

is the system {
σ3(x1)5 = σ2(x1) + σ2(x2)2

σ2(x3)3 + σ2(x1) + 1 = 0.

The ideal generated by a set F in a commutative ring R is denoted by 〈F 〉.

Definition 2.8. A difference equation g(x1, . . . , xn) = 0 is said to be a consequence of
a system of difference equations F = 0, where F ⊂ k{x1, . . . , xn}, if there exists a
non-negative integer B such that

g ∈
〈
σi(F ) | 0 6 i < B

〉
.
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Example 2.9. Let F = 0 be the system{
f1 = x2σ(x1)− x1 − 1 = 0

f2 = σ(x2)− x2
2 = 0.

The equation σ2(x1)x2
2 − σ(x1)− 1 is a consequence of F = 0 with B = 2 because

σ(f1)−σ2(x1)f2 = σ(x2σ(x1)−x1− 1)−σ2(x1)(σ(x2)−x2
2) = σ2(x1)x2

2−σ(x1)− 1.

We define the degree of an affine algebraic variety following [16, Definition 1 and
Remark 2] as follows.

Definition 2.10. Let X be an irreducible affine variety of dimension r in An. Then we
define

degX := max
{
|X∩E| | E is an affine subspace of An with dimE = n−r and |X∩E| <∞

}
.

Let X be an affine variety defined over a field k. Let X = X1 ∪ . . . ∪ XN be the
decomposition ofX into irreducible components over the algebraic closure of k. Then we
define

degX :=
N∑
i=1

degXi.

3 Main results

For all d ∈ Z>0 and D ∈ Z>0 we define

B(d,D) =


D + 1 if d = 0,
D3

6
+ D2

2
+ 4D

3
+ 1 if d = 1,

B(d− 1, D) +DB(d−1,D) if d > 1.

3.1 Effective difference Nullstellensatz

Theorem 3.1. Let

• k be a difference field and F = 0 a system of difference equations, where F :=

{f1, . . . , fN} ⊂ k{u1, . . . , ur}.

• We set
hi := max

j=1,...,N
ordui fj and H = h1 + . . .+ hr + r,

so, H is an upper bound on the number of the u-unknowns and their transforms
that appear in F .
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• d(F ) and D(F ) denote the dimension and degree of the affine variety defined by F
over k in the affine H-space, respectively.

The following statements are equivalent:

1. The system F = 0 has a solution in a difference ring containing k;

2. The system {σi(F ) = 0 | 0 6 i < B(d,D)} is consistent as a system of polynomial
equations.

Corollary 3.2. If k = C in Theorem 3.1, then the following statements are equivalent:

1. The system F = 0 has a solution in CZ ;

2. The system {σi(F ) = 0 | 0 6 i < B(d,D)} has a solution in C as a system of
polynomial equations.

Remark 3.3. We do not prove an effective strong Nullstellensatz generalizing Corol-
lary 3.2, because such a statement is false as shown in Section 5.2.

3.2 Effective elimination

We will introduce the notation that will be used in Theorem 3.4.

• Let x = (x1, . . . , xm) and u = (u1, . . . , ur) be two sets of unknowns.

• Consider a system F = 0 of difference equations, where F := {f1, . . . , fN} ⊂
k{x,u}. We would like to have an effective method for determining whether there
exists a nonzero consequence of the system F = 0 involving only the x-variables.

• We set
hi := max

j=1,...,N
ordui fj and H = h1 + . . .+ hr + r,

so,H is an upper bound on the number of the u-unknowns and their transforms that
appear in F .

• LetE be the field of fractions of k{x} andX denote the associated affine subvariety
of AH defined by F = 0 over E. Note that X is not necessarily irreducible.

• We denote the dimension and degree of X by du(F ) and Du(F ), respectively.

Theorem 3.4. For all integers d > 0 and D > 1 and systems F = 0 in x and u with
du(F ) = d and Du(F ) = D, the following statements are equivalent:

1. There exists a non-zero difference equation g(x) = 0 that is a consequence of the
system F = 0;
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2.
〈
σi(F ) | 0 6 i < B(d,D)

〉
∩ k{x} 6= {0}.

Remark 3.5. Based on the existing elimination results for differential-algebraic equa-
tions [29, Theorem 3], it is tempting to find, for a positive integer h, a bound B such that
the ideal 〈

σi(F ) | 0 6 i < B
〉

contains all the consequences of the system F = 0 depending only on x-variables of
order at most h. However, as we show in Section 5.3, there is no such bound in terms of
degrees, orders, and the number of variables. Moreover, every such bound will depend on
the coefficients of F .

Remark 3.6. The bound in Theorem 3.4 is especially small if the number of the variables
to eliminate is moderate. More precisely, d 6 H − 1, and D does not exceed the product
of the degrees of H + 1 equations of the highest degree. For particular examples, see
Section 4.

3.3 Consequences for computation

Theorem 3.1 and Corollary 3.2 reduce consistency questions for systems of difference
equations to consistency questions (in algebraically closed fields) of polynomial systems
in finitely many variables and Theorem 3.4 reduces the question of existence/finding a
consequence in the x variables of a system of difference equations in the variables x and
u to a question about a polynomial ideal in a polynomial ring in finitely many variables.
These algebraic problems are classical and have been computationally solved using, for
example, Gröbner bases, triangular sets, numerical algebraic geometry, etc. For all of
these methods, implementations exist in many computer algebra systems and independent
software packages (see, for example, [7, 2, 35]).

4 Numerical values and practical examples

In the following table, we compute B(d,D)− 1 for small d and D.

d \D 1 2 3 4 5
0 1 2 3 4 5
1 2 6 13 24 40

Remark 4.1. Almost all examples of modeling phenomena in the sciences using polyno-
mial difference equations that we have seen in the literature can be written as systems with
the same number of equations as unknowns in such a way that none of the equations is a
consequence of the others. The above table is applicable to elimination problems for such
systems with n equations if the problem is to eliminate dn/2e unknowns or less, as such
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problems typically result in varieties X (see the notation of Section 3.2) of dimension 0

or 1.

Remark 4.2. One can significantly speed up checking if an elimination is possible by

1. Applying the number of transforms that is in the bound;

2. Substituting random values into the variables that are not being eliminated.

Using techniques from [29, Section 5] (see also [17]) based on the DeMillo-Lipton-
Schwartz-Zippel lemma [39, Proposition 98], for each number p, 0 < p < 1, we can
find the range for the random substitution so that the probability of the elimination being
possible if and only if the “substituted” system has no solutions is greater than p. So, this
would give an efficient probabilistic test for the possibility of elimination.

Remark 4.3. Although there could be special tricks and methods for each of the examples
below, our approach provides a general and fully automated procedure.

Example 4.4. Consider the May-Leonard model for 2-plant annual competition, scaled
down from [31]: {

xn+1 = (1−b)xn
xn+α1yn

+ bxn,

yn+1 = (1−b)yn
α2xn+yn

+ byn,

which can be rewritten as{
(x+ α1y)σ(x) = (1− b)x+ bx(x+ α1y),

(α2x+ y)σ(y) = (1− b)y + by(α2x+ y),
(4.1)

where k = Q(α1, α2, b), with σ acting as the identity on k. To verify whether y can be
eliminated from (4.1), we then consider the affine variety X defined by (4.1) over the
field Q(α1, α2, b, x, σ(x)) with coordinates y, σ(y). A computation shows that d = 0 and
D = 1, and soB(d,D)−1 = 2−1 = 1. A computation shows that it is not only sufficient
but also necessary to apply this single transform to perform the elimination. So, our main
result gives a sharp upper bound for this example.

Example 4.5. Consider the May-Leonard model for 3-plant annual competition [31]:
xn+1 = (1−b)xn

xn+α1yn+β1zn
+ bxn,

yn+1 = (1−b)yn
α2xn+yn+β2zn

+ byn,

zn+1 = (1−b)zn
α3xn+β3yn+zn

+ bzn,

which can be rewritten as
(x+ α1y + β1z)σ(x) = (1− b)x+ bx(x+ α1y + β1z),

(α2x+ y + β2z)σ(y) = (1− b)y + by(α2x+ y + β2z),

(α3x+ β3y + z)σ(z) = (1− b)z + bz(α3x+ β3y + z),

(4.2)
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where k = Q(α1, α2, α3, β1, β3, β3, b), with σ acting as the identity on k. To ver-
ify whether y and z can be eliminated from (4.2), we consider the affine variety
X defined by (4.2) over the field Q (α1, α2, α3, β1, β3, β3, b, x, σ(x)) with coordinates
y, σ(y), z, σ(z). A computation shows that d = 1 and D = 3, and so B(d,D) − 1 = 13.
A computation shows that

• two prolongations are necessary and sufficient

• carrying out a computation with 13 transforms and probability p = 0.99 as de-
scribed in Remark 4.2 to check if an elimination is possible does not take signifi-
cantly more time than doing this with two transforms.

Example 4.6. Consider the stage structured Leslie-Gower model [8, eq. (5)]:
Jn+1 = b1

1
1+d1An

An

An+1 = s1
1

1+Jn+c1jn
Jn

jn+1 = b2
1

1+d2an
an

an+1 = s2
1

1+c2Jn+jn
jn,

which can be rewritten as 
(1 + d1A)σ(J) = b1A

(1 + J + c1j)σ(A) = s1J

(1 + d2a)σ(j) = b2a

(1 + c2J + j)σ(a) = s2j,

(4.3)

where k = Q(b1, b2, c1, c2, d1, d2, s1, s2) with σ acting as the identity on k. To verify
whether J and j can be eliminated from (4.3), we consider the affine variety X de-
fined by (4.3) over the field Q(b1, b2, c1, c2, d1, d2, s1, s2, a, A, σ(a), σ(A)) with coordi-
nates j, σ(j), J, σ(J). A computation shows that d = 0; D = 1 as the equations are linear
in j, σ(j), J, σ(J). Then

B(d,D)− 1 = 2− 1 = 1.

A computation shows that it is not only sufficient but also necessary to apply this single
transform to perform the elimination. So, our main result gives a sharp upper bound for
this example.

Example 4.7. A discrete multi-population SI model from [1], similarly to the previous
examples, can be rewritten as

σ(S) = S
(

1− a·∆t
N1
I − b·∆t

N1
i
)

σ(s) = s
(

1− c·∆t
N2
I − d·∆t

N2
i
)

σ(I) = I + S
(
a·∆t
N1
I + b·∆t

N1
i
)

σ(i) = i+ s
(
c·∆t
N2
I + d·∆t

N2
i
)
,

(4.4)
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where k = Q(a, b, c, d,∆t, N1, N2) with σ acting as the identity on k.

• To verify whether I, i can be eliminated from (4.4), we consider the affine variety
defined by (4.4) over Q(a, b, c, d,∆t, N1, N2, s, σ(s), S, σ(S)), and so d = 0, D =

1, thus
B(d,D)− 1 = 2− 1 = 1.

• To verify whether I, i, s can be eliminated from (4.4), we consider the affine variety
defined by (4.4) over Q(a, b, c, d,∆t, N1, N2, S, σ(S)), and so d = 2, D = 2. We
compute

B(2, 2)− 1 = 135− 1 = 134.

It turns out to be computationally feasible to carry out a computation with 134

transforms and probability p = 0.99 as described in Remark 4.2. The output of the
computation is that the elimination is possible.

Example 4.8. Let Fn be the n-th Fibonacci number. It turns out [10, p. 856] that the
sequence An := F2n satisfies a nonlinear difference equation. Such an equation can be
found using difference elimination as follows. We introduce Bn := F2n+1. Then standard
identities F2k = Fk(2Fk+1 − Fk) and F2k+1 = F 2

k+1 + F 2
k for the Fibonacci numbers

imply the following system of difference equations{
An+1 = An(2Bn − An),

Bn+1 = A2
n +B2

n.
(4.5)

Considered as a system of polynomial equations in Bn and Bn+1, (4.5) defines an affine
variety of dimension zero and degree two over Q(An, An+1). Theorem 3.4 implies that it
is sufficient to consider system (4.5) and two of its transforms to eliminate B. Performing
this elimination, we find the difference equation

5F 4
2nF2n+1 − 2F 2

2nF2n+2 + F 3
2n+1 = 0,

giving an alternative to the difference equation stated in [10, p. 856]. Our approach to
finding a difference equation for F2n can be viewed as a generalization of the transfer
matrix method [34, §4.7] to the case of nonlinear recurrences.

Example 4.9. The following example shows that our bound is sharp in the case d = 0

(this is the case in Examples 4.4, 4.6, and 4.8). We fix a positive integer D and consider
the system {

x(x− 1) · . . . · (x−D + 1) = 0,

σ(x)− x− 1 = 0.
(4.6)

System (4.6) does not have a solution in CZ, because the elements of the solution can
only take values from 0, 1, . . . , D− 1 and strictly increase. On the other hand, the system



Effective difference elimination and Nullstellensatz 13

consisting of the 0-th,. . . , D − 1 = (B(0, D) − 2)-th transforms of (4.6) has a solution
σi(x) = i for 0 6 i 6 D. Hence, it is necessary to consider one more transform in order
to express 1 (i.e. eliminate x).

Example 4.10. This example obtained by analyzing the proof of Proposition 6.24 shows
that our bound is sharp for d = 1 and D = 2. Consider a system of difference equations
given by any set of generators of the polynomial ideal I := I1 ∩ I2 of the polynomial ring
Q[x, σ(x), y, σ(y)], where

I1 := 〈x, σ(x) + σ(y)− 1, y + 2σ(y)− 1〉, I2 := 〈σ(x), y, x+ 3σ(y)− 1〉.

The variety X defined by I is a union of two affine subspaces of dimension one, so
d = dimX = 1 and D = degX = 2. Thus, B(d,D) − 1 = 6. Our computation in
MAPLE shows that

1 ∈ 〈I, σ(I), . . . , σ6(I)〉 but 1 6∈ 〈I, σ(I), . . . , σ5(I)〉.

Thus, our bound for d = 1 and D = 2 is sharp.

5 Counterexamples

5.1 Failure of the standard DEP method

Consider the system of difference equations given by any set of generators of the polyno-
mial ideal I := I1 ∩ I2 of the polynomial ring Q[x, σ(x), y, σ(y), z, w], where

I1 := 〈σ(y)z − 1, x, σ(x)− y〉, I2 := 〈σ(x), σ(y)− 1, (y − 1)z − 1, (x− 1)w − 1〉.

We do not present the actual generators of I due to the size of this set, the generators can
be computed by a computer algebra system such as MAPLE. A computation in MAPLE

shows that
1 ∈

〈
I, σ(I), σ2(I), σ3(I), σ4(I)

〉
.

Therefore, by Proposition 6.3, the system has no solutions in any difference ring. Using
MAPLE, one can also verify that

I = 〈I, σ(I)〉 ∩Q[x, σ(x), y, σ(y), z, w], (5.1)

σ(I) = 〈I, σ(I)〉 ∩Q[σ(x), σ2(x), σ(y), σ2(y), σ(z), σ(w)]. (5.2)

Most of the existing effective bounds for systems of ordinary differential and difference
equations [3, 9, 19, 20, 29] use sufficient conditions for the existence of a solution based
on the system and its first prolongation (differential equations) or first transform (differ-
ence equations), introduced for difference equations in [6, Section 14, Chapter 8] and
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also known as geometric axioms [5, 30] in model theory, which are summarized under
the DEP method mentioned in the introduction. In our case, it is tempting to formulate an
analogue of such conditions as:

Let Γ be the affine variety defined by the system and its first transform. If
the projections of Γ onto the varieties defined by the system and by its first
transform alone, respectively, are dominant, then the system is consistent.

However, this is false in the above example as we have shown, where Γ is the
affine variety corresponding to the ideal 〈I, σ(I)〉 in the affine space with coordinates
x, σ(x), σ2(x), y, σ(y), σ2(y), z, σ(z), w, σ(w), and (the Zariski closures of) the projec-
tions are given by the intersections in (5.1) and (5.2).

5.2 Non-existence of coefficient-independent effective strong Null-
stellensatz

A (non-effective) strong Nullstellensatz for systems of difference equations can be stated
as follows. Let f1 = . . . = fN = 0 be a system of difference equations. If a difference
polynomial f vanishes at all solutions of the system in CN, then there exists ` such that f
belongs to the radical of the ideal generated by the 0-th,. . . , `-th transforms of f1, . . . , fN .

The following example shows that there is no uniform upper bound for this ` in terms
of the degree, order, and number of variables of f1, . . . , fN . For every positive integer M ,
consider {

f1 = σ(x)− x− 1
M

= 0,

f2 = x (y(x− 1)− 1) = 0.
(5.3)

Let f = y(x − 1) − 1 and x = {xn}∞n=0 and y = {yn}∞n=0 any solution of (5.3) in CN. If
yk(xk − 1)− 1 6= 0 for some k, then xk = 0. Hence, xk+M = 1, and so

xk+M (yk+M(xk+M − 1)− 1) = −1.

Therefore, f vanishes at every solution of (5.3) in CN. However, f does not belong to the
radical of the ideal generated by the 0-th,. . . , (M − 1)-th transforms of f1 and f2. These
transforms belong to the polynomial ring C[x, . . . , σM(x), y, . . . , σM−1(y)]. Consider the
substitution

σk(x) =
k

M
for every 0 6 k 6M, σk(y) =

M

k −M
for every 1 6 k 6M − 1, y = 0.

A direct computation shows that the polynomials f1, . . . , σ
M−1(f1), f2, . . . , σ

M−1(f2)

vanish after this substitution, but f does not.
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5.3 Non-existence of coefficient-independent effective full elimina-
tion theorem.

Let F ⊂ k{x,u} be a finite set of difference polynomials and h a positive integer. Since
k
[
x, . . . , σh(x)

]
is Noetherian, there exists a positive integer ` such that

〈σi(F ) | 0 6 i <∞〉∩k
[
x, . . . , σh(x)

]
= 〈σi(F ) | 0 6 i < `〉∩k

[
x, . . . , σh(x)

]
. (5.4)

A bound on such an ` in terms of h, degrees and orders of F , and the number of variables
would be a natural difference counterpart of the full elimination result for differential-
algebraic equations [29, Theorem 3]. However, the following modification of the example
from Section 5.2 shows that such a bound does not exist. We fix a positive integer M and
consider system (5.3) with one extra equation

f3 = z − y(x− 1) + 1 = 0,

where z is a new unknown. We have shown in Section 5.2 that y(x− 1)− 1 vanishes on
every solution of (5.3) in CN. Then z vanishes on every solution of f1 = f2 = f3 = 0 in
CN. Then Hilbert’s Nullstellensatz [33, Tag 00FU] combined with the Rabinowitz trick
implies that there exists a positive integer N such that

zN ∈ 〈σi({f1, f2, f3}) | 0 6 i <∞〉.

On the other hand, following the argument from Section 5.2, we see that

zN 6∈ 〈σi({f1, f2, f3}) | 0 6 i < M〉.

Thus, an integer ` such that

〈σi({f1, f2, f3}) | 0 6 i <∞〉 ∩ C[z] = 〈σi({f1, f2, f3}) | 0 6 i < `〉 ∩ C[z]

must satisfy ` >M . Hence there is no coefficient-independent bound for such an `.

6 Proofs of the main results

6.1 Difference Nullstellensatz

Definition 6.1 (Inversive difference rings).

• We say that a difference ring (A, σ) is inversive if σ : A→ A is an automorphism.

• For any difference ring (A, σ), there is an inversive difference ring (Ainv, σ) and a
map of difference ring (A, σ)→ (Ainv, σ) that is universal for maps from (A, σ) to
inversive difference rings (see [25, Proposition 2.1.7]).

https://stacks.math.columbia.edu/tag/00FU
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• Given a difference ring (A, σ), the ring of inversive difference polynomials over A
in the variables, A{x1, . . . , xn}∗, is realized as the ordinary polynomial ring over A
in the formal variables σj(xi), for j ∈ Z and 1 ≤ i ≤ n, with σ extending the given
endomorphism on A and

σ(σj(xi)) = σj+1(xi)

on the variables.

• If (A, σ) is inversive, then so is A{x1, . . . , xn}∗.

Definition 6.2. Let k be a difference field, F ⊂ k{x1, . . . , xn} a finite set of difference
polynomials, and h = max{ord f | f ∈ F}. The set of n tuples a1, . . . , an ∈ k`+h, where
ai := (ai,0, . . . , ai,`+h−1), is called a partial solution of length ` if, for every f ∈ F and
0 6 s 6 `− 1, the polynomial σs(f) vanishes after the substitution

σi(xj) = aj,i for every 1 6 j 6 n, 0 6 i 6 `+ h− 1.

Let K be an inversive difference field. Then the difference ring of sequences KZ with
respect to the shift automorphism can be endowed with a structure of a difference K-
algebra via the embedding of difference rings iK : K → KZ defined by

iK(f) =
(
. . . , σ−1(f), f, σ(f), σ2(f), . . .

)
for f ∈ K.

This can be similarly done for KN.

Proposition 6.3. For all uncountable algebraically closed inversive difference fields K
and finite sets F ⊆ K{x1, . . . , xn}, the following statements are equivalent:

1. F has a solution in KZ.

2. F has a solution in KN.

3. F has finite partial solutions of length ` for all `� 0.

4. The ideal [F ] := 〈{σj(F ) | j ∈ N}〉 ⊆ K{x1, . . . , xn} does not contain 1.

5. The ideal [F ]∗ := 〈{σj(F ) | j ∈ Z}〉 ⊆ K{x1, . . . , xn}∗ does not contain 1.

6. F has a solution in some difference K-algebra.

Proof. The implications 1 =⇒ 2, 2 =⇒ 3, and 6 =⇒ 4 are straightforward.
3 =⇒ 4. Assume that there exist arbitrarily long partial solutions, but 1 ∈ [F ]. Then

there is an expression of the form

1 =
∑̀
i=0

∑
f∈F

ai,fσ
i(f), (6.1)
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where ai,f ∈ K{x1, . . . , xn}. Let h = max{ord f | f ∈ F}. Consider a partial solution
of F of length ` + h + 1 and plug it into the equality (6.1). Then the right-hand side will
vanish, so we arrive at contradiction.

4 =⇒ 5. Assume that 1 ∈ [F ]∗. We fix some representation of 1 as an element
of [F ]∗. Let N be the maximum number such that σ−N(xi) occurs in the representation.
Applying σN to both sides of the representation, we obtain a representation of 1 as an
element of [F ].

5 =⇒ 6. Let π : K{x1, . . . , xn}∗ → K{x1, . . . , xn}∗/[F ]∗ be the canonical surjec-
tion. Then (π(x1), . . . , π(xn)) is a solution of F in K{x1, . . . , xn}∗/[F ]∗.

5 =⇒ 1. Let E be the inversive difference subfield of K generated by the co-
efficients of elements of F over the prime subfield of K. Since 1 does not belong to
[F ]∗ ∩ E{x1, . . . , xn}∗, there exists a maximal (not necessarily difference) ideal m ⊂
E{x1, . . . , xn}∗ containing [F ]∗ ∩ E{x1, . . . , xn}∗. Then L := E{x1, . . . , xn}∗/m is a
field, and the transcendence degree of L over E is at most countable. Since K is alge-
braically closed and has uncountable transcendence degree, there exists an embedding
ϕ : L → K over the common subfield E. Composing ϕ with the canonical surjection
E{x1, . . . , xn}∗ → L, we obtain an E-algebra homomorphism ψ : E{x1, . . . , xn}∗ → K

such that [F ]∗ ⊂ Kerψ. For every 1 6 i 6 n, we construct a sequence ai := {ai,j}j∈Z ∈
KZ by the formula

ai,j = ψ
(
σj(xi)

)
.

A direct computation shows that (a1, . . . , an) is a solution of F in KZ.

6.2 Variety and two projections

Let k be a difference field and F = 0 a system of difference equations, where F =

{f1, . . . , fN} ⊂ k{u1, . . . , ur}. We set

hi := max
j=1,...,N

ordui fj and H = h1 + . . .+ hr + r.

For the rest of Section 6, we fix K to be an inversive uncountable algebraically closed
difference field containing k. With the system F = 0 of difference equations, we associate
the following geometric data:

• the subvariety X of AH defined by the polynomials f1, . . . , fN ;

• two projections π1, π2 : AH → AH−r defined by

π1

(
u1, . . . , σ

h1(u1), u2, . . . , σ
hr(ur)

)
:=
(
u1, . . . , σ

h1−1(u1), u2, . . . , σ
hr−1(ur)

)
,

(6.2)

π2

(
u1, . . . , σ

h1(u1), u2, . . . , σ
hr(ur)

)
:=
(
σ(u1), . . . , σh1(u1), σ(u2), . . . , σhr(ur)

)
.

(6.3)
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Let Z ⊂ AH be a variety defined by polynomials g1, . . . , gs ∈ K[AH ]. Let σi(Z),
where i ∈ Z, denote the variety defined by the polynomials gσi

1 , . . . , g
σi

s ∈ K[AH ], where
gσ

i means the result of applying σi to all coefficients of g. The coordinate-wise application
of σi defines a bijection between Z and σi(Z).

Definition 6.4. A sequence p1, . . . , p` ∈ AH(K) is a partial solution of the triple
(X, π1, π2) if {

π1(pi+1) = π2(pi) for every 1 6 i < `,

pi ∈ σi−1(X)(K) for every 1 6 i 6 `.

A two-sided infinite sequence with such a property is called a solution of the triple
(X, π1, π2).

Lemma 6.5. For every positive integer `, the system F = 0 has a partial solution of
length ` if and only if the triple (X, π1, π2) has a partial solution of length `.

The system F = 0 has a solution in KZ if and only if the triple (X, π1, π2) has an
infinite solution.

Proof. Let h = max
16i6r

hi. Consider a partial solution u1, . . . ,ur ∈ K`+h of F , where

ui = (ui,1, . . . , ui,`+h) for every 1 6 i 6 r. We set

pj := (u1,j, . . . , u1,j+h1 , u2,j, . . . , ur,j+hr) for every 1 6 j 6 `.

By the construction

π2(pj) = (u1,j+1, . . . , u1,j+h1 , u2,j+1, . . . , ur,j+hr) = π1(pj+1),

so pj+1 ∈ π−1
1 (π2(pj)) for every 1 6 j 6 `− 1. The definition of partial solution implies

that pj ∈ σj−1(X) for every 1 6 j 6 `. Hence, p1, . . . , p` is a partial solution of the
triple (X, π1, π2). The above argument can be straightforwardly reversed to construct a
partial solution of F from a partial solution of (X, π1, π2). The case of infinite solutions
is completely analogous.

In the introduced geometric language, we can formulate the following question equiv-
alent to an effective difference Nullstellensatz

Question 6.6. Let X be an algebraic subvariety of AH and π1, π2 be the surjective linear
maps AH → AH−r defined by (6.2) and (6.3). How long a partial solution of (X, π1, π2) is
it sufficient to find in order to conclude that the triple (X, π1, π2) has an infinite solution?

Thus, in what follows, we fix a triple (X, π1, π2), where X is an algebraic subvariety
of AH and π1, π2 are surjective linear maps AH → AH−r defined over the σ-constants of
K.
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6.2.1 Trains

The goal of this section is to generalize the notion of a solution of the triple to not neces-
sarily zero-dimensional points.

Definition 6.7. For ` a positive integer or +∞, a sequence of irreducible subvarieties
(Y1, . . . , Y`) in AH is said to be a train of length ` in X if{

π1(Yi+1) = π2(Yi) for every 1 6 i < `,where Y denotes the Zariski closure of Y ,
Yi ⊂ σi−1(X) for every 1 6 i 6 `.

Remark 6.8. Let p1, . . . , p` ∈ AH be a partial solution of (X, π1, π2) (see Definition 6.4).
Considering the singletons {p1}, . . . , {p`} as irreducible zero-dimensional subvarieties of
AH , we see that ({p1}, . . . , {p`}) is a train in X .

Lemma 6.9. For every train (Y1, . . . , Y`) in X , there exists a partial solution p1, . . . , p`

of (X, π1, π2) such that, for all i, 1 6 i 6 `, we have pi ∈ Yi.

Proof. We will prove the following statement by induction on `: there exists a nonempty
open subset U ⊂ Y` such that, for every point p` ∈ U , there exists a partial solution
p1, . . . , p` of (X, π1, π2) such that, for every i, 1 6 i 6 `, we have pi ∈ Yi. In the case
` = 1, we can set U = Y1, because every single point in X is a partial solution of length
one.

Assume that ` > 1. Applying the inductive hypothesis to the train (Y1, . . . , Y`−1), we
obtain an open nonempty subset U0 ⊂ Y`−1. Since U0 is dense in Y`−1, π2(U0) is dense in
π2(Y`−1) = π1(Y`). Since π1(Y`) is a constructible dense subset in π1(Y`), π2(U0)∩π1(Y`)

is also dense constructible in π1(Y`). Let U1 ⊂ π2(U0) ∩ π1(Y`) be an open dense subset
of π1(Y`). Then U2 := Y` ∩ π−1

1 (U1) is nonempty open in Y`. We claim that every point
p` ∈ U2 can be extended to a partial solution p1, . . . , p` such that pi ∈ Yi. By the definition
of U2, π1(p`) ∈ π2(U0), so there exists p`−1 ∈ U0 such that π2(p`−1) = π1(p`). By the
inductive hypothesis, p`−1 can be further extended to a partial solution.

Corollary 6.10. If there is an infinite train in X , then there is a solution for the triple
(X, π1, π2).

Proof. Since there is an infinite train, there are arbitrarily long finite trains. Due to
Lemma 6.9, there are arbitrarily long finite partial solutions of (X, π1, π2). Lemma 6.5
implies that there are arbitrarily long finite partial solutions of the corresponding sys-
tem F . Hence, due to Proposition 6.3, there is a solution of F in KZ. Lemma 6.5 implies
that there exists an infinite solution of the triple (X, π1, π2).

Definition 6.11 (Train operations).
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• For two trains Y and Y ′ of the same length, the inclusion Y ⊂ Y ′ is understood as
a component-wise containment.

• For a train Y in X and i ∈ Z, σi(Y ) is the result of the component-wise application
of σi to Y , and, since π1 and π2 are defined over the constants, σi(Y ) is a train in
σi(X).

Remark 6.12. Since the component-wise union of any chain of trains of the same length
is again a train of this length, trains of fixed length satisfy Zorn’s lemma with respect to
inclusion. Hence, maximal trains of a fixed length are well-defined.

6.2.2 The number of maximal trains

Our next Lemma 6.13 appears to be part of the folklore, but for want of a written reference,
we offer a proof here.

Lemma 6.13. Let ϕX : X → Z and ϕY : Y → Z be dominant morphisms of affine vari-
eties over an algebraically closed field. Assume that X and Y are irreducible. Consider
the fibered product X ×Z Y of ϕX and ϕY , considered as a variety, and denote the nat-
ural morphisms to X and Y by πX and πY , respectively. Then there exists an irreducible
component V ⊂ X ×Z Y such that the restrictions of both πX and πY to V are dominant.

Proof. Denote the algebras of regular functions on X , Y , and Z by A, B, and C, respec-
tively. Since X , Y , and Z are irreducible (Z is irreducible as an image of an irreducible
variety under a dominant morphism), these algebras are domains. We denote the fields of
fractions of A, B, and C by E, F , and L, respectively. The dominant maps ϕX and ϕY
give rise to injective homomorphisms ϕ#

X : C → A and ϕ#
Y : C → B. These homomor-

phisms equip A and B with a C-algebra structure. Then, the algebra of regular functions
on X ×Z Y , as a scheme, is A⊗C B (see [33, Tag 01I4]).

Let p be any prime ideal in E ⊗L F . Let D := (E ⊗L F )/p and π : E ⊗L F → D

be the canonical projection. Consider the natural homomorphism i : A⊗C B → E ⊗L F .
Since 1 ∈ i(A ⊗C B), the composition π ◦ i is a nonzero homomorphism. Consider the
natural embeddings iA : A → A ⊗C B and iB : B → A ⊗C B. We will show that the
compositions π ◦ i ◦ iA : A → D and π ◦ i ◦ iB : B → D are injective. Introducing the
natural embeddings iE : E → E ⊗L F and jA : A→ E, we can rewrite

π ◦ i ◦ iA = π ◦ iE ◦ jA.

The homomorphisms iE and jA are injective. The restriction of π to iE(E) is also injec-
tive, sinceE is a field. Hence, the whole composition π◦iE ◦jA is injective. The argument
for π ◦ i ◦ iB is analogous.

https://stacks.math.columbia.edu/tag/01I4
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Thus, we have an irreducible subvariety of X ×Z Y , and hence of the variety (X ×Z
Y )red [33, Tag 0356], defined by the ideal Ker(π ◦ i) that projects dominantly on both X
and Y . Hence, the component containing this subvariety also projects dominantly on X
and Y .

Definition 6.14 (Marked trains). Let X1 ∪X2 ∪ . . .∪Xs be the decomposition of X into
irreducible components.

• A pair (Y, c), where Y = (Y1, . . . , Y`) is a train in X and c = (c1, . . . , c`) ∈
{1, . . . , s}`, is called a marked train of length ` and signature c if Yi ⊂ σi−1(Xci)

for every 1 6 i 6 `.

• Every train has at least one signature (maybe several), so that it becomes a marked
train.

• Analogously to trains, we define a notion of a maximal train of given length ` and
signature c.

Let c = (c1, . . . , c`) ∈ {1, . . . , s}` be a tuple. Consider

Xc := Xc1 × σ(Xc2)× . . .× σ`−1(Xc`) ⊂ (AH)`.

We denote the projections (AH)` → AH onto the components by ψ`,1, . . . , ψ`,`, respec-
tively. We introduce

Wc :=
{
p ∈ Xc

∣∣ π2 (ψ`,i(p)) = π1 (ψ`,i+1(p)) for all i, 1 6 i < `
}
. (6.4)

The restrictions of ψ`,1, . . . , ψ`,` to Wc will be denoted by the same symbols.

Lemma 6.15. For every irreducible subvariety Z ⊂ Wc,(
ψ`,1(Z), . . . , ψ`,`(Z)

)
is a marked train of signature c.

Proof. For every i, 1 6 i 6 `,

Yi := ψ`,i(Z) ⊂ ψ`,i(Wc) ⊂ σi−1(Xci).

Moreover, since Z is irreducible, ψ`,i(Z) is also irreducible. Fix some i, 1 6 i < `. We
will show that π2(Yi) = π1(Yi+1). We can write π2(Yi) as π2(ψ`,i(Z)). By (6.4), the latter
is equal to π1(ψ`,i+1(Z)), which is the same as π1(Yi+1).

Lemma 6.16. For every marked train (Y1, . . . , Y`) of signature c in X , there exists an
irreducible subvariety Y ⊂ Wc such that, for every i, 1 6 i 6 `, we have Yi = ψ`,i(Y ).

https://stacks.math.columbia.edu/tag/0356
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Proof. We will prove the lemma by induction on `. For ` = 1, c = (c1), Wc = Xc1 , and
we can set Y = Y1.

Let ` > 1. Apply the inductive hypothesis to the train (Y1, . . . , Y`−1) of signature
c′ := (c1, . . . , c`−1) and obtain an irreducible subvariety Y ′ ⊂ Wc′ ⊂ (AH)`−1. Then
there is a natural embedding of Y ′ × Y` into (AH)`. Denote (Y ′ × Y`) ∩Wc by W . Since
Y ′ is already contained in Wc′ ,

W = {p ∈ Y ′ × Y` | π2 (ψ`,`−1(p)) = π1 (ψ`,`(p))}. (6.5)

Let ψ = (ψ`,1, ψ`,2, . . . , ψ`,`−1) : (AH)` → (AH)`−1 and

Z := π2 (ψ`−1,`−1(Y ′)) = π1(Y`). (6.6)

Then equality (6.5) implies (see [15, Ex. 2.26]) that W together with the morphisms
ψ : W → Y ′ and ψ`,` : W → Y` is the fibered product of the morphisms π2 ◦
ψ`−1,`−1 : Y ′ → Z and π1 : Y` → Z. Equality (6.6) implies that both of these morphisms
are dominant.

Due to Lemma 6.13, there exists an irreducible subset Y ⊂ W such that ψ : Y → Y ′

and ψ`,` : Y → Y` are dominant. For every i, 1 6 i < `, since ψ`,i = ψ`−1,i ◦ ψ, the
restriction ψ`,i : Y → Yi is dominant as a composition of two dominant morphisms.

Lemma 6.17. Let the degree of Xi be Di (see Definition 2.10), and fix a tuple c =

(c1, . . . , c`) ∈ {1, . . . , s}`. The number of maximal trains of signature c in X does not
exceed Dc1 ·Dc2 · . . . ·Dc` .

Proof. Since Wc is the intersection of Xc with a linear subspace,

degWc 6 degXc = degXc1 · deg σ(Xc2) · . . . · deg σ`−1(Xc`). (6.7)

Since application of σ to a variety does not change the degree, the product in (6.7) does
not exceed Dc1 · . . . · Dc` . Hence, the number of components of Wc does not exceed
Dc1 · . . . ·Dc` .

Let (Y1, . . . , Y`) be a maximal train in X of signature c. Lemma 6.16 implies that
there exists an irreducible subvariety Y ⊂ Wc such that for every i, 1 6 i 6 `, we
have Yi = ψ`,i(Y ). Let C be an irreducible component of Wc containing Y . Lemma 6.15
implies that (

ψ`,1(C), . . . , ψ`,`(C)
)

is also a train of signature c. Moreover, since C ⊃ Y , this train contains (Y1, . . . , Y`).
The maximality of the latter implies that these trains are equal. Hence, Y could be chosen
to be an irreducible component of Wc. Thus, we obtain an injective map from the set of
maximal trains of signature c to the set of all irreducible component of Wc. Hence, the
number of maximal trains also does not exceed Dc1 · . . . ·Dc` .
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Corollary 6.18. The number of maximal trains inX of length ` does not exceed (degX)`.

Proof. Since every maximal train can be considered as a marked maximal train, the num-
ber of maximal trains of length ` in X does not exceed the sum of products Dc1 · . . . ·Dc`

over all tuples c of length `. This sum is equal to

s∑
c1=1

s∑
c2=1

. . .

s∑
c`=1

∏̀
i=1

Dci = (D1 + . . .+Ds)
` = D`.

6.2.3 A bound for trains

Definition 6.19. For a train Y = (Y1, . . . , Y`) in X , we introduce the codimension of Y
as

codimY := dimX − min
16i6`

dimYi.

Definition 6.20. We call a train Y = (Y1, . . . , Y`) in X skew-cyclic if ` > 1 and Y` =

σ`−1(Y1).

Lemma 6.21. If there exists a skew-cyclic train in X of codimension d, then there exists
an infinite train in X of codimension d.

Proof. Let (Y1, . . . , Y`) be a skew-cyclic train in X of codimension d. Then we can con-
struct an infinite train of codimension d as follows:(

Y1, Y2, . . . , Y`−1, σ
`−1(Y1), σ`−1(Y2), . . . , σ`−1(Y`−1), σ2`−1(Y1), . . .

)
.

Definition 6.22. We define B′(d,D) to be the smallest natural number N such that, for
every triple (X, π1, π2) such that the degX 6 D, the existence of a train of length N and
codimension at most d in X implies the existence of a skew-cyclic train in X of length at
most N and codimension at most d, or∞ if such N does not exist.

The following statement implies that B′(d,D) is finite for all d ∈ Z>0 and D ∈ Z>0

and gives an upper bound for B′(d,D).

Proposition 6.23. For all D ∈ Z>0,

1. B′(0, D) 6 D + 1 and

2. for every d ∈ Z>0, B′(d+ 1, D) 6 B′(d,D) +DB′(d,D).

Proof. Throughout the proof, we will use the observation that the existence of a skew-
cyclic train in σi(X) for some i ∈ Z implies (via component-wise application of σ−i) the
existence of a skew-cyclic train of the same codimension in X .
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We prove the first statement of the proposition. Consider a train (Y1, . . . , YD+1) of
codimension zero and length D + 1. Since, for every i, 1 6 i 6 D + 1, we have
dimYi = dimX , then every σ−i+1(Yi) is an irreducible component of X . The num-
ber of components of X does not exceed D, so some of the σ−i+1(Yi)’s coincide. If
σ−i+1(Yi) = σ−j+1(Yj) for some i < j, then Yj = σj−i(Yi), so (Yi, . . . , Yj) is a skew-
cyclic train of codimension zero.

We prove the second statement of the proposition. Consider a train (Y1, . . . , YB) of
codimension at most d+ 1 and length

B := B′(d,D) +DB′(d,D).

We introduce N := DB′(d,D) + 1 trains Z(1), . . . , Z(N) of length ` := B′(d,D) in
X, σ(X), . . . , σN−1(X), respectively, such that, for all i, 1 6 i 6 N , we have

Z(i) =
(
Z

(i)
1 , . . . , Z

(i)
`

)
:= (Yi, . . . , Yi+`−1).

For every i, 1 6 i 6 N , consider a maximal train Z̃(i) =
(
Z̃

(i)
1 , . . . , Z̃

(i)
`

)
of length

` in σi−1(X) containing Z(i). Then σ−i+1(Z̃(i)) is a maximal train of length ` in X . If
there exists i such that codim Z̃(i) 6 d, then there is a skew-cyclic train of length at
most B′(d,D) and codimension at most d due to the definition of B′(d,D). Otherwise,
codim Z̃(i) = d+ 1 for every 1 6 i 6 N .

Corollary 6.18 implies that there are at most D` = N − 1 maximal trains of length `
in X . Hence, there are a and b, 1 6 a < b 6 N , such that

σ−a+1(Z̃(a)) = σ−b+1(Z̃(b)).

Since codim Z̃(a) = codim Z̃(b) = d+ 1, there exists j, 1 6 j 6 `, such that

dim Z̃
(a)
j = dim Z̃

(b)
j = dimX − (d+ 1).

Hence, since both Z̃(a)
j and Z(a)

j are irreducible, dimZ
(a)
j > dimX − (d+ 1) and Z(a)

j ⊂
Z̃

(a)
j , they are equal. Analogously, Z̃(b)

j = Z
(b)
j . Therefore,

σ−a+1(Ya+j−1) = σ−a+1(Z
(a)
j ) = σ−a+1(Z̃

(a)
j )

= σ−b+1(Z̃
(b)
j ) = σ−b+1(Z

(b)
j ) = σ−b+1(Yb+j−1).

Hence,

Yb+j−1 = σb−a(Ya+j−1),

so, (Ya+j−1, Ya+j, . . . , Yb+j−1) is a skew-cyclic train of codimension at most d+ 1.

Proposition 6.24. B′(1, D) 6 D3

6
+ D2

2
+ 4D

3
+ 1 for every D > 1.
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Proof. Let degX 6 D. Assume that there is no skew-cyclic train of codimension at most
one in X . Let

X = X1 ∪X2 ∪ . . . ∪Xs

be the irreducible decomposition of X and Di := degXi. We construct a directed graph
(with loops and multiple edges) G with vertices numbered from 1 to s as follows. For
every maximal train among the marked trains of signature (i, j) in X , we draw an edge
from i to j (the number of such trains is finite by Lemma 6.17). The codimension of an
edge is defined to be the codimension of the corresponding train.

Case 1: there is a directed cycle (c1, . . . , c`, c1) consisting of edges of codimension zero
(since the graph has s vertices, there would be such a cycle with ` 6 s). Then
there is a skew-cyclic train

(Xc1 , σ(Xc2), . . . , σ
`−1(Xc`), σ

`(Xc1)),

of codimension zero and length at most s+ 1 6 D + 1.

Case 2: there is no such a directed cycle inG. Therefore, we can reenumerate the compo-
nents in such a way that i < j for every codimension zero edge (i, j). Consider
a train Y = (Y1, . . . , Y`) in X of length

` :=
D3

6
+
D2

2
+

4D

3
+ 1 (6.8)

and codimension one. The train Y can be considered as a marked train with
respect to a signature c = (c1, . . . , c`). For every i, 1 6 i < `, we
choose a maximal marked train Ti of signature (ci, ci+1) in X containing
(σ−i+1(Yi), σ

−i+1(Yi+1)) and let ei be the edge in G corresponding to Ti. Note
that

(e1, . . . , e`−1)

is a path in G.

Case 2a: some edge e corresponding to a maximal train, denoted (Z1, Z2), of
codimension one occurs twice in this path, so e = ei = ej for some
1 6 i < j < `. Without loss of generality, we may assume that

dimZ1 = dimX − 1.

Since dimYi and dimYj are both at least dimX − 1 and (Z1, Z2) is
maximal, we conclude that

Z1 = σ−i+1(Yi) = σ−j+1(Yj).

Hence, (σ−i+1(Yi), σ
−i+1(Yi+1), . . . , σ−i+1(Yj)) is a skew-cyclic train

in X of length at most ` and codimension at most one.
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Case 2b: every edge of codimension one occurs in the path (e1, . . . , e`−1) at
most once. Until the end of the proof, we fix the path (e1, . . . , e`−1),
and all of the quantities below are computed for this path. For an edge
e = (i, j), we introduce the weight w(i, j) := i− j. Let

N+ := |{i | 1 6 i < `, w(ei) > 0}| ,
N− := |{i | 1 6 i < `, w(ei) < 0}| ,

W+ :=
`−1∑
i=1

max{0, w(ei)}, W− :=
`−1∑
i=1

min{0, w(ei)}.

By the above reenumeration, all edges with positive weight are of
codimension at least one. Therefore, N+ does not exceed the number
of maximal marked trains with signatures of the form (i, j) with i > j.
Hence, due to Lemma 6.17, we obtain

N+ 6
∑

16j6i6s

DiDj.

Since the sum of weights along any path between vertices a and b is
equal to a−b and the vertices in G are numbered by the integers from
1 to s,

W+ +W− > −s+ 1.

Combining this inequality with the fact that N− 6 −W−, we obtain

N− 6 W+ + s− 1.

Due to Lemma 6.17,

W+ 6
∑

16j<i6s

(i− j)DiDj.

Thus,

` = N+ +N− + 1 6
∑

16j6i6s

DiDj +
∑

16j<i6s

(i− j)DiDj + s

6 D2 +
∑

16j<i6s

(i− j − 1)DiDj + s.
(6.9)

For every integer q > 1, we introduce a function

fq(z1, . . . , zq) :=
∑

16j<i6q

(i− j − 1)zizj + q.

We claim that, for every positive integer M , the set

{fq(z1, . . . , zq) | q, z1, . . . , zq ∈ Z>1, z1 + . . .+ zq = M}
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reaches its maximum at q = M and z1 = . . . = zq = 1.

To prove the claim, consider any integer p > 1 and a tuple of positive
integers (w1, . . . , wp). Let r 6 p be an integer such that wr 6= 1. We
have

fp+1(w1, . . . , wr−1, wr − 1, 1, wr+1, . . . , wp) =∑
j<i<r

(i− j − 1)wiwj +
∑
r<j<i

(i− j − 1)wiwj

+
∑
j<r

wj((r − j − 1)wr + 1)

+
∑
r<i

wi((i− r − 1)wr + wr − 1) + (p+ 1)

(6.10)

and

fp(w1, . . . , wr, . . . , wp) =∑
j<i<r

(i− j − 1)wiwj +
∑
r<j<i

(i− j − 1)wiwj

+
∑
j<r<i

(i− j − 1)wiwj +
∑
j<r

(r − j − 1)wjwr

+
∑
r<i

(i− r − 1)wrwi + p.

(6.11)

Comparing (6.10) and (6.11) term by term, we see that

fp+1(w1, . . . , wr−1, wr−1, 1, wr+1, . . . , wp) > fp(w1, . . . , wr, . . . , wp).

Hence, the claim is proved. Let D̂ := D1 + . . .+Ds. Combining the
claim with (6.9), we obtain

` 6 D2 + fD̂(D1, . . . , Ds) 6 D2 + fD̂(1, . . . , 1)

6 D2 + fD(1, . . . , 1) = D2 +
∑

16j<i6D

(i− j − 1) +D

= D +D2 +
D−2∑
i=1

i(D − 1− i) =
D3

6
+
D2

2
+

4D

3

and arrive at the contradiction with the definition (6.8) of `.

Propositions 6.23 and 6.24 imply

Corollary 6.25. For all d ∈ Z>0 and D ∈ Z>0, B′(d,D) 6 B(d,D).
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6.3 Proof of effective Nullstellensatz
Proof of Theorem 3.1. The =⇒ implication is straightforward, we will prove ⇐= . We
will use the notation introduced in Section 6.2. The fact that the system consisting of 0-th,
. . ., B(d,D)− 1-th transforms of F = 0 considered as a polynomial system is consistent
implies that F = 0 has a partial solution of length B(d,D) > B′(d,D). Lemma 6.5
implies that there is a partial solution of the triple (X, π1, π2) of length B′(d,D). This
partial solution is a train in X of codimension dimX = d and length B′(d,D). The
definition of B′(d,D) and Lemma 6.21 imply that there exists an infinite train in X . Then
Lemma 6.5 and Corollary 6.10 imply that the system F = 0 has a solution in some
difference ring extending k.

Proof of Corollary 3.2. The =⇒ implication is straightforward, we will prove ⇐= .
We will use the notation introduced in Section 6.2. If k = C, then K can be chosen to be
C, too. A solution of the system {σi(F ) = 0 | 0 6 i < B(d,D)} yields a partial solution
of F = 0 of length B(d,D). Analogously to the proof of Theorem 3.1, we have that the
system F = 0 is consistent. Then Proposition 6.3 implies that F = 0 has a solution in
CZ.

6.4 Proof of effective elimination
Proof of Theorem 3.4. The ⇐= implication is straightforward, we will prove =⇒ . Let
E0 ⊃ E = Frac(k{x}) be any difference field extension such that E0 is algebraically
closed and has uncountable transcendence degree over the prime subfield. Since the dif-
ference ideal generated by F in k{x,u} contains a nonzero polynomial depending only
on x and their transforms, the difference ideal generated by F inE0{u} contains 1. So, the
system does not have a solution in EZ

0 . Theorem 3.1 implies that the system F = 0 does
not have a partial solution inE0 of lengthB(d,D). Hence, the ideal generated byB(d,D)

transforms of F contains 1. Since the ideal is defined over E, there is an expression of 1

over E of the form

1 =

B(d,D)−1∑
i=0

N∑
j=1

ci,jσ
i(fj),

where ci,j ∈ E{u}. Multiplying both sides of the above equality by the product of the
denominators of ci,j’s, we obtain an expression of a nonzero polynomial from k{x} as a
k{x,u}-linear combination of B(d,D) transforms of F .

7 Difference Nullstellensatz over small fields

An hypothesis of our Proposition 6.3 is that the field K is uncountable. In practice, this is
a harmless assumption as one might take that field to be C. However, this result may be
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conceptually unsatisfactory, and one might wish to find solutions to difference equations
in sequences taken from a small field, such as the field of algebraic numbers.

With the next proposition, we show how to weaken the uncountability hypothesis by
appealing to a more refined equivalent condition to the consistency of a system of differ-
ence equations coming from our work towards the effective Nullstellensatz and a theorem
of Hrushovski on the limit theory of the Frobenius automorphisms [18]. Our invocation
of Hrushovski’s theorem is essentially contained in Fakhruddin’s proof of the density of
periodic points for polarized algebraic dynamical systems in [12]. For our purposes a
slightly weaker result due to Varshavsky [38] suffices.

Theorem 7.1. For all algebraically closed inversive difference fields K (without any re-
striction on the cardinality) and finite sets F ⊆ K{x1, . . . , xn}, the following statements
are equivalent:

1. F has a solution in KZ.

2. F has a solution in KN.

3. F has finite partial solutions in KN for all N � 0.

4. The ideal [F ] := 〈{σj(F ) | j ∈ N}〉 ⊆ K{x1, . . . , xn} does not contain 1.

5. The ideal [F ]∗ := 〈{σj(F ) | j ∈ Z}〉 ⊆ K{x1, . . . , xn}∗ does not contain 1.

6. F has a solution in some difference K-algebra.

In order to prove Theorem 7.1, we will extract two consequences of [38]. In Lemma 7.2
and 7.3, φs denotes the s-th power of the Frobenius automorphism.

Lemma 7.2. For every finitely generated difference subring R of a difference field K,
there exist a prime p, a positive integer s, and a difference homomorphism ψ : R → F,
where F is the algebraic closure of Fp considered as a difference ring with respect to φs.

Proof. The proof will proceed in two steps.

Step 1: We will show that there exists a prime p and a difference field L of character-
istic p such that there exists a homomorphism R → L of difference rings. If
charK > 0, then we can take L to be K. Let now charK = 0 and R generated
by a1, . . . , a`. Since R is a difference subring of a difference field, the ideal

I := {f ∈ Z{x1, . . . , x`} | f(a1, . . . , a`) = 0} (7.1)

is a perfect difference ideal [6, p. 76, §12]. As such, because every finitely gener-
ated difference ring is a Ritt difference ring [6, Chapter 3, Theorems II, and V], I
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is finitely generated as a perfect difference ideal. Let g1, . . . , gs ∈ Z{x1, . . . , x`}
be a finite set of such generators. Consider a model of ACFA0 containing K.
Then the sentence

ϕ := ∃x (g1(x) = . . . = gs(x) = 0)

is true in this model. [5, (1.6), 2nd paragraph] implies that there exists a finite
disjunction, say ψ, of sentences specifying (up to an isomorphism) a difference
field structure on some Galois extensions of the prime subfield such that

• ϕ and ψ are equivalent in ACFA0. In particular, ψ holds in some model of
ACFA0.

• There exists a positive integer N such that, for every prime p > N , ϕ and
ψ are equivalent in ACFAp.

Applying the Chebotarev density theorem as in [5, (1.14)], one can show that,
since ψ is consistent with ACFA0, there are inifinitely many primes p such that
ψ holds in some model of ACFAp. We fix such p that is greater than N and
a model L of ACFAp in which ψ and, consequently, ϕ hold. Then there are
b1, . . . , b` ∈ L such that g1(b1, . . . , b`) = . . . = gs(b1, . . . , b`) = 0. Then the
kernel of a difference homomorphism Z{x1, . . . , x`} → L defined by xi 7→ bi

contains I , so it yields a difference homomorphism R→ L.

Step 2: If charK = 0, we replace K with L and R with its image in L. Thus, in what
follows, we assume that charK = p > 0. Let h be the maximum of the orders
of g1, . . . , gs. Let b1, . . . , bN be the elements of

{σj(ai) | 1 6 i 6 `, 0 6 j < h}

written in some order, so N = `h. Then R is also generated by b1, . . . , bN as a
difference ring, and the corresponding vanishing ideal in the difference polyno-
mial ring Z{y1, . . . , yN} is generated as a perfect difference ideal by difference
polynomials of order one. Replacing a1, . . . , a` by b1, . . . , bN , we may assume
that I , defined in (7.1), is generated as a perfect difference ideal by order one
difference polynomials.

Let q ⊆ Fp[x1, . . . , x`, y1, . . . , y`] be the ideal of all polynomials vanishing on
(a1, . . . , a`, σ(a1), . . . , σ(a`)). Since a1, . . . , a` are elements of a difference field,
the ideals

p1 := q ∩ Fp[x] and p2 := q ∩ Fp[y]

are transformed one to the other under the substitution x 7→ y. Then

X := Spec(Fp[x]/p1) = Spec(Fp[y]/p2) and C := Spec(Fq[x,y]/q)
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are irreducible schemes of finite type over Fp, and C is a subset of X×X . Then,
by [38, Theorem 0.1], there exists a positive integer s such that the intersection
of C with the graph of φs in F2` is nonempty, where F is the algebraic closure of
Fp. Let (a∗1, . . . , a

∗
` , φs(a

∗
1), . . . , φs(a

∗
`)) be a point in the intersection. Since the

substitution σj(xi) = φjs(a
∗
i ) annihilates q, it also annihilates every polynomial in

its perfect closure I (mod p). Then the map ψ : R→ F defined by ψ (σj(ai)) =

φjs(a
∗
i ) is a desired homomorphism of difference rings (R, σ) and (F, φs).

Lemma 7.3. For every

• prime number p,

• positive integer s,

• scheme X of finite type defined over F, the algebraic closure of Fp,

• irreducible subvariety Γ ⊂ X × φs(X) such that the projections to X and φs(X)

are dominant,

there exists an infinite sequence (ai)
∞
i=−∞ such that (ai, ai+1) ∈ φsi(Γ) for every i ∈ Z.

Proof. SinceX and Γ are defined over some finite subfield of F, there is a positive integer
` with φs`(X) = X and φs`(Γ) = Γ. Lemma 6.13 implies that there exists an irreducible
component Ξ of the fiber product

Γ×φs(X) φs(Γ)×φ2s(X) · · · ×φ(`−1)s(X) φ(`−1)s(Γ).

such that the projections of Ξ onto Γ, φs(Γ), . . . , φ(`−1)s(Γ) are dominant. We denote the
projection Ξ→ φsi(Γ) by ρi for every 0 6 i 6 `− 1.

Let τ1 : Γ → X and τ2 : Γ → φs(X) denote the projections. We define projections
πi : Ξ→ φsi(X) for 0 6 i 6 ` as follows:

πi =


τ1 ◦ ρ0, for i = 0,

τ1 ◦ ρi = τ2 ◦ ρi−1, for 0 < i < `,

τ2 ◦ ρ`−1, for i = `.

Note that the πi’s are dominant. Consider the fiber product of Ξ ×X Ξ where the first
Ξ → X is π` and the second map Ξ → X is π0. Lemma 6.13 implies that there exists an
irreducible component Υ of this product such that the projections of Υ onto both Ξ’s are
dominant. Take r so that Ξ and Υ are both defined over Fpr and

s` | r.

By [38, Theorem 0.1], there is a power φt of φr and a point a = (a0, . . . , a`−1) ∈ Ξ(F)

with (a, φt(a)) ∈ Υ(F). Note that φt leaves invariant Γ, Ξ, and Υ. Since coefficients of
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the πi’s and ρj’s are invariant under φ1, we will denote the conjugation of any of these
maps by any power of φ1 by the same letter. For 0 ≤ i < ` and j ∈ Z, define

ai+j` := πi(φtj(a)).

Let us show that the sequence {ai}∞i=−∞ satisfies the requirement of the lemma. Con-
sider j ∈ Z and 0 6 i < `. Then ai+j` = τ1 (ρi(φtj(a))). We also have

ai+j`+1 = τ1 (ρi+1(φtj(a))) = τ2 (ρi(φtj(a))) for i < `− 1,

ai+j`+1 = τ1

(
ρ0(φt(j+1)(a))

)
= τ2 (ρ`−1(φtj(a))) for i = `− 1

because Ξ and Υ are components of the corresponding fiber products. In both cases,

(ai+j`, ai+j`+1) ∈ ρi (φtj(Ξ)) = ρi(Ξ) ⊂ φsi(Γ) = φs(i+j`)(Γ).

In Lemmas 7.4 and 7.5, for a valued field (K, v), we write

O = {x ∈ K : v(x) > 0}

for the valuation ring,

m = {x ∈ K : v(x) > 0}

for the maximal ideal of O, and k = O/m for the residue field. We denote the reduction
map r : O → k by r and will abuse notation writing r for the reduction map on associated
objects.

Lemma 7.4. Let (K, v) be a Henselian field, n 6 m positive integers, f1, . . . , fn ∈
O[x1, . . . , xm] and a = (a1, . . . , am) ∈ km. We assume that, for each i, we have
r(fi)(a) = 0 and that the matrix

(
∂r(fi)
∂xj

(a)
)

16i6n, 16j6m
has rank n. Then there is

c = (c1, . . . , cm) ∈ Om such that f1(c) = . . . = fn(c) = 0 and r(c) = a.

Proof. By hypothesis, there is some J ⊆ {x1, . . . , xm} with |J | = n and invertible ma-
trix

(
∂r(fi)
∂xj

(a)
)

16i6n, j∈J
. Relabeling the variables, we may assume that J = {1, . . . , n}.

Define fi := xi for n < i ≤ m. Then the square matrix
(
∂r(fi)
∂xj

(a)
)

16i6n, 16j6n
is in-

vertible. There exists some b ∈ Om such that r(b) = a. Then, by to [24, Section 4,
Multidimensional Hensel’s Lemma], there is some c ∈ On with f1(c) = · · · = fn(c) = 0

and r(c) = r(a).

Lemma 7.5. Let (K, v) be a Henselian field and f : X → Y a smooth map of schemes of
finite type over O. Suppose that a ∈ X(k) and b ∈ Y (O) satisfy f(a) = r(b). Then there
is a point c ∈ X(O) with f(c) = b and r(c) = a.
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Proof. [33, Tag 01V7] implies that there are affine open neighborhoods U ⊆ X and
V ⊆ Y of a and r(b), respectively, for which fU : U → V is standard smooth. That is,
there exist:

• positive integers m and n,

• a finitely generated O-algebra S such that V = Spec(S),

• polynomials g1, . . . , gn ∈ S[x1, . . . , xm] such that U = Spec(T ), where T =

S[x1, . . . , xm]/(g1, . . . , gn),

such that

• some n× n minor of the Jacobian ( ∂gi
∂xj

) is an invertible element of T and

• fU is the dual morphism of schemes to the natural homomorphism S → T .

Since O is a local ring and r(b) is a reduction of b modulo m ⊂ O, the point b belongs to
any open neighborhood of r(b), in particular, b ∈ V (O). This corresponds to anO-algebra
homomorphism b] : S → O. Let a] denote the O-algebra homomorphism O[U ] → k

corresponding to a ∈ U(k).
For each i, 1 6 i 6 n, consider the polynomials b](gi) ∈ O[x1, . . . , xm] and

a](gi) ∈ k[x1, . . . , xm] that are obtained from gi by applying b] and a], respectively, to
the coefficients. The fact r(b) = f(a) implies that r

(
b](gi)

)
= a](gi). Let aj be the result

of applying a] to the image of xj in T for 1 6 j 6 m. Since a] is a homomorphism,

a](gi)(a1, . . . , am) = 0 for every 1 6 i 6 n and also the Jacobian matrix
(
∂a](gi)
∂xj

)
has

full rank at (a1, . . . , am).
Then, by Lemma 7.4, we may find (c1, . . . , cm) ∈ Om for which b](gi)(c1, . . . , cm) =

0 for 1 6 i 6 n and r(cj) = aj for 1 6 j 6 m. Since b](gi)(c1, . . . , cm) = 0 for
1 6 i 6 n, the map c] : T → O defined by c]|S = b] and by c](xi) = ci for 1 6 i 6 m

is a well-defined O-algebra homomorphism. This gives us a point c ∈ U(O) such that
f(c) = b. Moreover, r(c) = a since r(ci) = ai for every 1 6 i 6 m.

Corollary 7.6. Let (K, v) be a Henselian field and X a scheme of finite type overO such
that the canonical morphism X → Spec(O) is smooth. Then, for every a ∈ X(k), there
exists c ∈ X(O) such that r(c) = a.

Proof. The corollary follows from Lemma 7.5 applied to Y = Spec(O) and b being the
identity map Spec(O)→ Spec(O).

With these statements in place, we finish the proof of Theorem 7.1.
In what follows, for a positive integer m and a commutative ring R, Rm denotes the

commutative ring generated by the set {rm |r ∈ R}. For an affine schemeX over a perfect

https://stacks.math.columbia.edu/tag/01V7
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ring R of characteristic p and q = pn, we define a scheme X(q) by X(q) := Spec(OqX).
There is a map Fn : X → X(q) that is dual to the inclusion OqX ↪→ OX . This map is a
special case of what is called the relative Frobenius morphism. See [33, Tag 0CC6] for
more details. If R is perfect, Fn defines a bijection between X(R) and X(q)(R). If p = 0,
we will assume that q = 1 and Fn is the identity map.

Lemma 7.7. If µ : Γ → Z is morphism of irreducible affine varieties over an alge-
braically closed field K, then there exist

• an affine variety Υ,

• morphisms ν : Γ→ Υ and τ : Υ→ Z,

• a positive integer n and a morphism γ : Υ→ Γ(q), where q = pn,

such that µ = τ ◦ ν, γ ◦ ν = Fn, ν is finite, and τ is generically smooth.

Proof. If charK = 0, take Υ = Γ, ν = idΓ and τ = µ by [32, Theorem 2.27].
Let charK = p > 0, t1, . . . , t` be a transcendence basis of K(Γ) over E :=

Quot(µ∗(OZ)), and L be the relative separable closure of E(t1, . . . , t`) in K(Γ). Then, as
K(Γ) is a finite purely inseparable extension of L, for n � 0 we have K(Γ)p

n ⊆ L. Let
q := pn and A = µ∗(OZ)[OqΓ], the ring generated by µ∗(OZ) and OqΓ. Set Υ := Spec(A)

over K.
Dual to the homomorphisms of rings OZ → A and A → OΓ, we have morphisms

τ : Υ → Z and ν : Γ → Υ with µ = τ ◦ ν. Since the field extensions E ↪→ K(Υ) is a
subextension of the the separable extension E ↪→ L, the morphism τ : Υ→ Z is smooth
at the generic point of Υ due to [33, Tag 07ND]. Form the inclusion OqΓ ↪→ A = OΥ, we
obtain the morphism γ : Υ→ Γ(q) with Fn = γ ◦ ν.

Since OqΓ ⊂ OΓ is a finite integral extension and OqΓ ⊂ A ⊂ OΓ, the extension
A ⊂ OΓ is also a finite integral extension. Hence, the dual map ν : Γ → Υ is a finite
morphism.

Proof of Theorem 7.1. The only implication whose proof in the original argument for
Proposition 6.3 used uncountability is from 5. to 1. We observe that 5. implies 3., be-
cause 1 is not contained in any ideal generated by finitely many transforms of the system,
so Hilbert’s Nullstellensatz implies that there exist arbitrarily long partial solutions of the
system over K. This is exactly 3.

Consider the triple (X, π1, π2) constructed in Section 6.2. Due to Lemma 6.5, item 3
implies that (X, π1, π2) has arbitrarily long partial solutions. On the other hand, the exis-
tence of a solution to F = 0 in KZ is equivalent to the existence of a two-sided infinite
solution to (X, π1, π2) over K (see Lemma 6.5). We thus reduce to finding a solution to

https://stacks.math.columbia.edu/tag/0CC6
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(X, π1, π2) over K. Then Proposition 6.23 implies that there exists an infinite skew-cyclic
train (

. . . , Y1, Y2, . . . , Y`, σ
`(Y1), . . .

)
(7.2)

inX . Let c be a signature of the train (Y1, . . . , Y`) and let Y ⊂ Wc ⊂ Xc be the associated
irreducible variety given by Lemma 6.16. For 1 ≤ i ≤ `, let ρi : Y → Yi be the dominant
projection to Yi (which is ψ`,i|Y in the notation of Lemma 6.16). The projection σj(Y )→
σj(Yi) obtained by conjugation by σj of ρi will be denoted by σj(ρi) for every j ∈ Z.
Recall that, since (7.2) is a train, π2 ◦ ρ` and π1 ◦ σ`(ρ1) are dominant onto the same
variety. Due to Lemma 6.13, there exists an irreducible component Γ, which we fix, of
the fiber product of Y with σ`(Y ) over π2 ◦ ρ` and π1 ◦ σ`(ρ1) such that µ1 : Γ→ Y and
µ2 : Γ→ σ`(Y ) are dominant.

Let us call a sequence (ai)
∞
i=−∞ with ai ∈ σi`(Y ) and (ai, ai+1) ∈ σi`(Γ) for all i a

weak solution to (Y,Γ). Such a weak solution gives rise to the solution

(. . . , σ−`(ρ1)(a−1), . . . , σ−`(ρ`)(a−1), ρ1(a0), ρ2(a0), . . . , ρ`(a0), σ`(ρ1)(a1), . . . , σ`(ρ`)(a1), . . .)

of (X, π1, π2). Thus, it suffices for us to find a weak solution. Lemma 7.7 implies that
there exist

• Υ1 and Υ2 be affine varieties

• n a positive integer,

• νi : Γ→ Υi, τi : Υi → Y , γi : Υi → Γ(q), morphisms, where q = pn and i = 1, 2,

so that, for i = 1, 2,

• γi ◦ νi = Fn,

• τi is generically smooth,

• µi = τi ◦ νi.

We fix some equations defining Γ, Y , Υi, γi, τi, νi, and µi for i = 1, 2. Denote the
difference ring generated by the coefficients of these equations by R. Let π : Γ(q) →
Spec(R) be the dual to the natural embedding R→ OqΓ. [33, Tag 07ND] implies that π is
generically smooth. Let Γ, Y, Υ1, and Υ2 be the models of Γ, Y , Υ1, and Υ2 defined by

https://stacks.math.columbia.edu/tag/07ND
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these fixed equations over R. Thus, we have the following diagram:

Γ

Fn

��

ν1zz
ν2 $$

µ1

��

µ2

��

Υ1

��

τ1
��

γ1

##

Υ2

��

τ2 ""

γ2

{{
Y

((

Γ(q)

π

��

σ`(Y)

uu
Spec(R)

Let Υ̂1, Υ̂2, and Γ̂(q) be dense open subsets in Υ1, Υ2, and Γ(q), respectively, such that τ1,
τ2, and π, respectively, are smooth on these subsets, which exist since smoothness of a
morphism is an open condition (see the discussion just after [33, Tag 01V5]). Let

Γ̃ = ν−1
1 (Υ̂1) ∩ ν−1

2 (Υ̂1) ∩ F−1
n (Γ̂(q)),

which is dense open in Γ. Let Γ′ be a non-empty open subset of Γ̃ defined by a single
inequality f 6= 0, where f ∈ OΓ. The image of Γ′ under Fn is open dense in (Γ′)(q) ⊂ Γ(q),
defined by f q 6= 0. Let

Υ′i = γ−1
i

(
(Γ′)(q)

)
∩ Υ̂i, i = 1, 2.

Then νi (Γ′) ⊂ Υ′i, and (Γ′)(q) ⊂ Γ̂(q).
We apply Lemma 7.2 to (R, σ`) and obtain ψ : (R, σ`) → (F, φs), where F is the

algebraic closure of Fp and, in the case charK = 0, p is some prime number provided
by Lemma 7.2. Let XF denote the base change of a scheme X over R to F via ψ. Let
(ai)

∞
i=−∞ be a sequence such that, for each i ∈ Z,

(ai, ai+1) ∈ φsi(Γ′F)(F).

Such a sequence exists by Lemma 7.3. Fix an extension of ψ to a place ϑ on K (see [11,
Theorem 3.1.1]). Let O be the valuation ring of ϑ and v be a valuation on K. Note that
R ⊂ O. Also note that we do not assert that ϑ respects σ on all of O nor even that O is
preserved by σ. Let E be the residue field of O. Since K is algebraically closed, E is also
algebraically closed [11, Theorem 3.2.11]. Since Fp ⊂ E, F is embedded into E.

[33, Tag 01VB] implies that the morphisms of schemes (Υ′1)O → YO, (Υ′2)O →
σ`(Y)O, and (Γ′)

(q)
O → Spec(O) are smooth as well as all their shifts/conjugations by σ`.

We shall now build a weak solution (bi)
∞
i=−∞ to (YO(O), Γ′O(O)) so that

∀ i ∈ Z ϑ(bi) = ai.

https://stacks.math.columbia.edu/tag/01V5
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Since K is algebraically closed, (K, v) is Henselian [24, Lemma 4.1]. For i = 0 and
i = 1, since π : (Γ′)

(q)
O → Spec(O) is smooth, every point in (Γ′)

(q)
F (F) lifts to a point in

(Γ′)
(q)
O (O) due to Corollary 7.6. Thus, we may choose some (b̂0, b̂1) ∈ (Γ′)

(q)
O (O) special-

izing to (Fn(a0), Fn(a1)) and set b0 = F−1
n (b̂0) and b1 = F−1

n (b̂1).
Assume that we have already constructed bi for some i > 0 so that ϑ(bi) = ai. Due to

Lemma 7.5 applied to the morphism of schemes

σi` ◦ τ1 ◦ σ−i` : σi` ((Υ′1)O)→ σi` (YO)

and points (σi` ◦ ν1 ◦ σ−i`) ((ai, ai+1)) and bi, there exists P ∈ σi` ((Υ′1)O) such that

(σi` ◦ τ1 ◦ σ−i`)(P ) = bi and ϑ(P ) = (φis ◦ ν1 ◦ φ−is ) ((ai, ai+1)) .

Consider
Q = F−1

n

(
σi` ◦ γ1 ◦ σ−i`(P )

)
∈ σi` (Γ′O(O)) .

Since ν1 is a finite morphism, it is surjective on O-points due to [32, Theorem 1.12]
together with [11, Theorem 3.1.3]. Using this and the fact that Fn is bijective onO-points,
σi` ◦ ν1 ◦ σ−i`(Q) = P . Hence,

(σi` ◦ µ1 ◦ σ−i`)(Q) = (σi` ◦ τ1 ◦ σ−i`)(P ) = bi,

so Q can be written as (bi, c). Since

F−1
n ◦ φis ◦ γ1 ◦ ν1 ◦ φ−is = φis ◦ F−1

n ◦ γ1 ◦ ν1 ◦ φ−is = φis ◦ id ◦φ−is = id,

we have
ϑ(Q) = F−1

n ◦ φis ◦ γ1 ◦ ν1 ◦ φ−is ((ai, ai+1)) = (ai, ai+1).

Thus, we can set bi+1 = c. In the same way, we produce the bi with i < 0 using the fact
that (Υ′2)O → σ`(Y)O is smooth.
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