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ABSTRACT. For a partial differential field K, we show that the triviality of the first differ-
ential Galois cohomology of every linear differential algebraic group over K is equivalent
to K being algebraically, Picard—Vessiot, and linearly differentially closed. This coho-
mological triviality condition is also known to be equivalent to the uniqueness up to an
isomorphism of a Picard—Vessiot extension of a linear differential equation with parame-
ters.

1. INTRODUCTION

Galois theory of linear differential equations with parameters [5] (also known as the
parameterized Picard—Vessiot theory) provides theoretical and algorithmic tools to study
differential algebraic dependencies of solutions of a linear ODE with one or several pa-
rameters. A parameterized Picard—Vessiot extension is a differential field generated by a
complete set of solutions of the ODE and also satisfying additional technical conditions.
How to decide whether such an extension is unique is an open problem in this theory. We
study this question in the present paper as follows.

Let F' be a differential field of characteristic zero with commuting derivations
{0, 01,...,0m}. One can show using [7] that the uniqueness up to an isomorphism of a
Picard—Vessiot extension of any parameterized linear differential equation with coefficients
in F'is equivalent to the triviality of the first differential Galois (also known as constrained)
cohomology [11] over K, the 0, -constants of F, of all linear differential algebraic groups
with respect to {91, ..., 0p} [2]. We show in our main result, Theorem 1, that the latter
triviality holds if and only if K is algebraically, Picard—Vessiot, and linearly differentially
closed (the terminology is explained in Section 2).

Such a question for m = 1 was settled in [15], in which case the “linearly differentially
closed” condition does not play a role. This was extended to m > 1 in [6] in terms of gen-
eralized strongly normal extensions. Our characterization is different and our arguments
can be viewed as more transparent. The first Galois cohomology for groups defined by
algebraic difference equations were studied in [1].

2. DEFINITIONS AND NOTATION

Definition 1 (Differential rings and fields).

o A differential ring is aring R with a finite set A = {01, ..., ., } of commuting deriva-
tions on R. A differential ideal of (R, A) is an ideal of R stable under any derivation in

A.

e For any derivation § : R — R, we denote R° = {r € R|§(r) = 0}, which is a
d-subring of R and is called the ring of §-constants of R. If R is a field and (R, A) is
a differential ring, then (R, A) is called a differential field. The notion of differential
algebra over (R, A) is defined analogously.
1
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e The ring of A-differential polynomials K{x1,...,x,} in the differential indetermi-
nates x1, . . ., &, and with coefficients in a A-field (K, A) is the ring of polynomials in
the indeterminates formally denoted

{07 . Ora |y 2 0,1 <i <nj

m

with coefficients in K. We endow this ring with a structure of K-A-algebra by setting
O (81 .o Slmay) =07 .ot

e A differential field (K, A) is said to be differentially closed if, for every n > 1 and
every finite set of A-polynomials ' C K{x1,...,2,}, if the system of differential
equations F' = 0 has a solution with entries in some A-field extension L, then it has a
solution with entries in K (see [13, Corollary 1.2(ii)]).

Let U be a differentially closed A-field of characteristic 0 and K C U be a differential
subfield.

Definition 2 (Kolchin-closed sets).

e A Kolchin-closed set W C U™ over K is the set of common zeroes of a system of
differential polynomials with coefficients in K, that is, there exists S C K{y1,...,Yn}
such that

W={acl"| f(a)=0forall feS}.
More generally, for a differential algebra R over K,
W(R)={a€ R"| f(a) =0forall f € S}.
o If W C U™ is a Kolchin-closed set defined over K, the differential ideal
IW)={fe€ K{y1,.--,yn}| f(w) =0forall we W(U)}

is called the defining ideal of W over K. Conversely, for a subset S of K{y1,...,yn},
the following subset is Kolchin-closed in /™ and defined over K:

V(S)={aeclU"]| f(a) =0forall f e S}.

e Let W C U™ be a Kolchin-closed set defined over K. The coordinate ring K{W} of
W over K is the differential algebra over K

If K{W} is an integral domain, then W is said to be irreducible. This is equivalent to
I(W) being a prime differential ideal.

e Let W C U™ be a Kolchin-closed set defined over K. Let (W) = p; N ... N p, be
a minimal differential prime decomposition of I(W), that is, the p, C K{y1,...,yn}
are prime differential ideals containing I(7¥) and minimal with this property. This
decomposition is unique up to permutation (see [9, Section VII.29]). The irreducible
Kolchin-closed sets W; = V (p;) are defined over K and called the irreducible compo-
nents of W. Wehave W =W U...UW,.

o Let Wy C U™ and Wy C U™ be two Kolchin-closed sets defined over K. A differen-
tial polynomial map (morphism) defined over K is a map

o: W1 = Ws, ar (fi(a),..., fn(a)), a€ Wy,

where f; € K{z1,...,xp,, } foralli=1,... no.
If W1 C Wha, the inclusion map of W7 in Wj is a differential polynomial map. In
this case, we say that 1/ is a Kolchin-closed subset of 5.
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Let W be an irreducible Kolchin-closed set and P C K{x1,...,z,} be its defining
differential ideal, which is prime. It is shown in [10, Section II.12] that there exists a
non-negative integer H such that, forall h > H,

dim (PNK[6 ... 0ma; [1<i<n, 4; 20, 1 <j<m, i1 +...+im <h])

coincides with a polynomial in h. The degree of this polynomial is denoted by 7(W') and
called the differential type of W (if W is a single point and so the above polynomial is O,
we set 7(W) = —1).

Example 1. Let GL,, C U™ be the group of n x n invertible matrices with entries in
U. One can see GL,, as a Kolchin-closed subset of U”2 x U defined over K, defined by
the equation « - det(X) — 1 in K{Z/{”2 x U} = K{X,z}, where X is an n x n-matrix
of differential indeterminates over K and x a differential indeterminate over K. One can
thus identify the differential coordinate ring of GL,, over K with F{X, 1/ det(X)}, where
X = (2i)1<i,j<n is a matrix of differential indeterminates over K. We also denote the
special linear group that consists of the matrices of determinant 1 by SL,, C GL,,.

Definition 3 (Linear differential algebraic groups).

e [2, Chapter II, Section 1, page 905] A linear differential algebraic group (LDAG) G C
U™ defined over K is a subgroup of GL,, that is a Kolchin-closed set defined over
K. If G ¢ H Cc GL, are Kolchin-closed subgroups of GL,,, we say that G is a
Kolchin-closed subgroup of H.

e Let G be an LDAG defined over F'. The irreducible component of G containing the
identity element e is called the identity component of G and denoted by G°. The LDAG
G° is a d-subgroup of G defined over F. The LDAG G is said to be connected if
G = G°, which is equivalent to GG being an irreducible Kolchin-closed set [2, page 906].

e [4, Definition 2.6] Let G be an LDAG over K. The strong identity component G of
G is defined to be the smallest differential algebraic subgroup H of GG defined over I/
such that 7(G/H) < 7(G).

By [4, Remark 2.7(2)], Gy is a normal subgroup of G defined over K.
e [4, Definition 2.10] An infinite LDAG G defined over K is almost simple if, for any

normal proper differential algebraic subgroup H of G defined over K, we have 7(H ) <
7(G).

Definition 4 (Differentially closed with respect to systems of equations).

e For a system S of A-differential equations over K, K is said to be S-closed, or closed
w.r.t. S, if the consistency of S (i.e., the existence of a solution in {f) implies the
existence of a solution in K.

e Let KA denote the K-span of A (it is a Lie ring). The field K is said to be PV closed

if, for all », 1 < r < m, for all sets {D1,...,D,} C KA of commuting derivations,
foralln > 1, and for all Ay, ..., A, € Mat,x,(K), K is closed w.r.t.
(1) (Di(Z)=A;- Z, z-det Z =1},

where Z and z are unknown matrices of sizes n x n and 1 x 1, respectively (see [8,
page 51] for a coordinate-free definition).

e K is said to be A-linearly closed if it is closed w.r.t. any system of linear (not neces-
sarily homogeneous) A-differential equations in one unknown over K.

Definition 5 (The first differential Galois cohomology).
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e A principal homogeneous space (PHS) over an LDAG G over K is a Kolchin-closed X
defined over K together with a differential algebraic isomorphism X x G — X x X
over K.

e For an LDAG G and G-principal homogeneous spaces X and Y, a differential algebraic
map ¢ : X — Y is said to be a morphism if it is G-equivariant.
e The set of isomorphism classes of PHS of G over K is denoted by HJ (K, G). We

write H} (K, G) = {1} if all principal homogeneous spaces of G are isomorphic over
K. For example, HA (U, G) = {1}.

3. MAIN RESULT

Theorem 1. The following are equivalent:

(1) K is algebraically closed, PV closed, and A-linearly closed;
(2) for any linear differential algebraic group G, HX (K, G) = {1}.

Remark 1. If we additionally assume that the field of A-constants of K is algebraically
closed, then K being algebraically closed is implied by K being PV closed [16, Exer-
cise 1.24].

Proof. Let us show the implication <. If K is not algebraically closed, then there exists
a non-trivial (finite) Galois extension E/K. Let « € E be such that F = K(«) and f
be the minimal polynomial of o over K. The set X of roots of f is a K-torsor for G =
Gal(E/K). Tt is non-trivial since there are no K -points of X, that is, homomorphisms
E — K over K. Hence, H' (K, G) = H) (K, G) # {1} (with the isomorphism following
from [11, p. 177, Theorem 4]).

Suppose that K is not PV closed. Hence, there exists a set D = {D1,...,D,} C KA
of commuting derivations and a system (1) with no solutions in GL,, (K). We claim that
H)(K,GLP) # {1}. Indeed, let

J = {(Bl, . .,BT) € g[n(u)T : DZBJ — D]Bl = [BJ,BZ]}
and
¢:GL, — J, z (Dy(z) -2t ..., Dp(x) - 271).
We have Ker(¢) = GLS . Moreover, by [11, Proposition 14, p. 26], ¢ is surjective. Hence,
the sequence

4

{1} —— GL? GL, J {o}
is exact. By assumption, £ is not surjective on K-points. Let (Cy,...,Cy) ¢ £(GL,(K)).
By [11, p. 192, Proposition 8], £~ 1(CY, ..., C,,) is a non-trivial torsor for GLZ (K).

If K is not A-linearly closed, then there exist a positive integer r, a A-subgroup B C
G/, defined over K, and a surjective A-linear map A : G, — B over K that is not
surjective on K-points. By [11, p. 192, Proposition 8], HA (K, Ker A) # {1}.

Let us prove the implication =-. By [l1, p. 170, Theorem 2], given a short exact
sequence

{1} G’ G G" {1}
of LDAGs over K in which G’ C G is normal [11, p. 169],
©) HA(K,G') = HA(K,G") = {1} = HA(K,G)={1}.

This is called the inductive principle [15]. As in [15], the problem reduces to the following
cases:

(1) G is finite;
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(2 G CGg

(3) G = G,,(C) — the group of constants of G,;

(4) G = HP, where H is a linear algebraic group (LAG) over Q, P C KA is a
Lie subspace, and H” is the functor of taking constant points with respect to P:
HFY (L) := H(LT) for a A-ring extension L of K. Note that case (3) is included
into this case, but we have separated case (3) for the clarity of the presentation.

Let us explain the reduction and then show that H i (K, G ) = 1 for any G of types (1)—(4).
The exact sequence

1} Ge G G/G° — {1}

reduces the problem to case (1) and to showing that, for a connected G, HA (K, G) = 1.
To show the latter equality, let us use induction on the differential type 7(G), the case
7(G) = —1 (that is, G = {1}, because G is assumed to be connected) being trivial. Let
Go C G be the strong identity component. Suppose 7(G) > 0. One has the following
exact sequence:

{1} Go G G/Go — {1},

and 7(G/Go) < 7(G). By the induction, this reduces the problem to the case G =
Go. Moreover, by [4, Theorem 2.27 and Remark 2.28(2)], it suffices to assume that G
is almost simple. If G is almost simple non-commutative, it is simple by [14, Theorem
3]. By [3, Theorems 9 and 17], it corresponds to case (4) because K is PV-closed. If G
is commutative, the Zariski closure G is also commutative, hence there are ny,ng = 0
such that G is isomorphic over K (recall that K is algebraically closed) to a direct product
of ny copies of G, and ns copies of G,,, (we will not use the almost simplicity in the
commutative case). It follows by induction on ny +nq that Hy (K, G) = 1if HL (K, G) =
1 for any connected Kolchin closed subgroup G of G, or G,,. Indeed, if n; > 1, one has
a natural projection G C G — G, whose kernel is contained in the direct product of
n1 — 1 copies of G, and ny copies of G,,,. Similarly, if no > 1, one considers a projection
G CG— Gy,

The case G C G, reduces to G = GE2 = G,,(C) and case (2) by considering the
logarithmic derivatives (defined on G,,,)

b G = G, x> (0;2) cah

fori = 1,...,m subsequently, as all infinite differential algebraic subgroups of G,,, con-
tain GE2 [2, Proposition 31].
In case (1), HA(K,G) = {1} by [11, p. 177, Theorem 4] because K is algebraically
closed. In case (2), we have the following exact sequence:
{0} G —— Gy —— Gy {0},

and we have HA (K,G) = {1} by [11, p. 193, Corollary 1] since K is linearly A-closed.
Case (3) is included into case (4), as noted before. It remains to consider case (4). Choose
abasis {Dy, ..., D,} of commuting derivations of P and let

(3) J = {(Bl, .. .,Br) S (LIGH)T : DZBJ - DJB1 = [Bz,BJ]}
and, since H is defined over Q, by [2, p. 924, Corollary], we have:
(:H — J, s (Dy(z) -2t ... Dp(x) -2 t).

We have Ker(¢) = HY = G. Let By, ..., B, € J. Since [12, Lemma 1] can be rewritten
in a straightforward way for several commuting derivations, the surjectivity of £ is implied
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by the fact that p does not belong to the differential ideal generated by
(4) Dl(x)fBl'zv"'aDr(x)fBr'I

for any order 0 non-zero differential polynomial p in « (which includes p = det x), as in
the proof [12, Proposition 6]. Since (4) is shown in the proof of [11, Proposition 14, p. 26]
given the conditions in (3), we conclude that / is surjective. Hence, the sequence

{1} G H J {0}

is exact. Since K is algebraically closed, HA (K, H) = {1}. By [11, p. 192, Proposition
8], this implies that all torsors for G are isomorphic to £~1(a), a € J(K). Moreover, all
of them are isomorphic (that is, H} (K, G) = {1}) if £ is surjective on K -points.

Let H = GL,. Due to the PV closedness, ¢ is surjective. Hence, by the above,
HA(K, GLS ) = {1}. Let H C GL, now be any linear algebraic group defined over
Q. Then taking P-constants, which can be viewed as applying the functor Hom( - ,U*),
is exact, because U* is algebraically closed and so the polynomial map 7 is surjective:

L

{1}y —— G=H" —~— oL —~— (GL,/H)Y —— {1}.

Since K is algebraically closed, the map 7 is surjective on K -points. Therefore, by the
corresponding exact sequence of cohomology [11, p. 170, Theorem 2], HA(K,G) =
HA(K,GLY) = {1}. O

ACKNOWLEDGMENTS

The authors are grateful to Anand Pillay and Michael F. Singer for the discussions and
to referees for their comments. This work has been partially supported by the NSF grants
CCF-0952591, DMS-1413859, DMS-1760448, by the Austrian Science Foundation FWF,
grant P28079, and by the PSC-CUNY grant 60098-00 48.

REFERENCES

[1] A. Bachmayr and M. Wibmer. Torsors for difference algebraic groups. 2016. URL
https://arxiv.org/abs/1607.07035.

[2] P. Cassidy. Differential algebraic groups. American Journal of Mathematics, 94:
891-954, 1972. URL http://www. jstor.org/stable/2373764.

[3] P. Cassidy. The classification of the semisimple differential algebraic groups and
linear semisimple differential algebraic Lie algebras. Journal of Algebra, 121
(1):169-238, 1989. URL http://dx.doi.org/10.1016/0021-8693(89)
90092-6.

[4] P.Cassidy and M. Singer. A Jordan—Holder theorem for differential algebraic groups.
Journal of Algebra, 328(1):190-217, 2011. URL http://dx.doi.org/10.
1016/73.jalgebra.2010.08.019.

[5] P. Cassidy and M. F. Singer. Galois theory of parametrized differential equations and
linear differential algebraic group. IRMA Lectures in Mathematics and Theoretical
Physics, 9:113-157,2007. URL http://dx.doi.org/10.4171/020-1/7.

[6] Z. Chatzidakis and A. Pillay. Generalized Picard—Vessiot extensions and differential
Galois cohomology. 2017. URL http://arxiv.org/abs/1702.01969.

[7] H. Gillet, S. Gorchinskiy, and A. Ovchinnikov. Parameterized Picard—Vessiot exten-
sions and Atiyah extensions. Advances in Mathematics, 238:322-411, 2013. URL
http://dx.doi.org/10.1016/j.aim.2013.02.006.


https://arxiv.org/abs/1607.07035
http://www.jstor.org/stable/2373764
http://dx.doi.org/10.1016/0021-8693(89)90092-6
http://dx.doi.org/10.1016/0021-8693(89)90092-6
http://dx.doi.org/10.1016/j.jalgebra.2010.08.019
http://dx.doi.org/10.1016/j.jalgebra.2010.08.019
http://dx.doi.org/10.4171/020-1/7
http://arxiv.org/abs/1702.01969
http://dx.doi.org/10.1016/j.aim.2013.02.006

TRIVIALITY OF COHOMOLOGY OF DIFFERENTIAL ALGEBRAIC GROUPS 7

[8] S. Gorchinskiy and A. Ovchinnikov. Isomonodromic differential equations and dif-

(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

ferential categories. Journal de Mathématiques Pures et Appliquées, 102:48-78,
2014. URL http://dx.doi.org/10.1016/j.matpur.2013.11.001.

1. Kaplansky. An introduction to differential algebra. Hermann, Paris, 1957.

E. Kolchin. Differential Algebra and Algebraic Groups. Academic Press, New York,
1973.

E. R. Kolchin. Differential Algebraic Groups, volume 114 of Pure and Applied Math-
ematics. Academic Press Inc., Orlando, FL, 1985. ISBN 0-12-417640-2.

J. Kovacic. The inverse problem in the Galois theory of differential fields. Annals
of Mathematics, 89(3):583-608, 1969. URL http://dx.doi.org/10.2307/
1970653.

D. Marker. Model theory of differential fields. In Model theory, algebra, and ge-
ometry, volume 39 of Mathematical Sciences Research Institute Publications, pages
53-63. Cambridge University Press, Cambridge, 2000. URL http://library.
msri.org/books/Book39/files/dcf.pdf.

A. Minchenko. On central extensions of simple differential algebraic groups.
Proceedings of the American Mathematical Society, 143:2317-2330, 2015.
arXiv:1401.0522.

A. Pillay. The Picard—Vessiot theory, constrained cohomology, and linear differential
algebraic groups. Journal de Mathématiques Pures et Appliquées, 108(6):809-817,
2017. URL http://dx.doi.org/10.1016/3j.matpur.2017.05.005.
M. van der Put and M. F. Singer. Galois theory of linear differential equa-
tions. Springer-Verlag, Berlin, 2003. URL http://dx.doi.org/10.1007/
978-3-642-55750-"7.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIENNA, AUSTRIA
E-mail address: an.minchenko@gmail.com

CUNY QUEENS COLLEGE, DEPARTMENT OF MATHEMATICS, 65-30 KISSENA BLVD, QUEENS, NY
11367 AND CUNY GRADUATE CENTER, PH.D. PROGRAMS IN MATHEMATICS AND COMPUTER SCIENCE,
365 FIFTH AVENUE, NEW YORK, NY 10016

E-mail address: aovchinnikov@gc.cuny.edu

URL: http://gc.edu/ aovchinnikov/


http://dx.doi.org/10.1016/j.matpur.2013.11.001
http://dx.doi.org/10.2307/1970653
http://dx.doi.org/10.2307/1970653
http://library.msri.org/books/Book39/files/dcf.pdf
http://library.msri.org/books/Book39/files/dcf.pdf
http://dx.doi.org/10.1016/j.matpur.2017.05.005
http://dx.doi.org/10.1007/978-3-642-55750-7
http://dx.doi.org/10.1007/978-3-642-55750-7

	1. Introduction
	2. Definitions and notation
	3. Main result
	Acknowledgments
	References

