Delta Compression
Techniques

Torsten Suel

Department of Computer Science and
Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Synonyms

Data differencing; Delta encoding; Differential
compression

Definition

Delta compression techniques encode a target
file with respect to one or more reference files,
such that a decoder who has access to the same
reference files can recreate the target file from the
compressed data. Delta compression is usually
applied in cases where there is a high degree of
redundancy between target and references files,
leading to a much smaller compressed size than
could be achieved by just compressing the tar-
get file by itself. Typical application scenarios
include revision control systems and versioned
file systems that store many versions of a file or
software or content updates over networks where
the recipient already has an older version of the
data. Most work on delta compression techniques
has focused on the case of textual and binary files,

but the concept can also be applied to multimedia
and structured data.

Delta compression should not be confused
with Elias delta codes, a technique for encod-
ing integer values, or with the idea of coding
sorted sequences of integers by first taking the
difference (or delta) between consecutive values.
Also, delta compression requires the encoder to
have complete knowledge of the reference files
and thus differs from more general techniques for
redundancy elimination in networks and storage
systems where the encoder has limited or even
no knowledge of the reference files, though the
boundaries with that line of work are not clearly
defined.

Overview

Many applications of big data technologies in-
volve very large data sets that need to be stored on
disk or transmitted over networks. Consequently,
data compression techniques are widely used to
reduce data sizes. However, there are many sce-
narios where there are significant redundancies
between different data files that cannot be ex-
ploited by compressing each file independently.
For example, there may be many versions of
a document, say a Wikipedia article, that dif-
fer only slightly from one to the next. Delta
compression techniques attempt to exploit such
redundancy between pairs or groups of files to
achieve better compression.

© Springer International Publishing AG, part of Springer Nature 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,

https://doi.org/10.1007/978-3-319-63962-8_63-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Data differencing
http://link.springer.com/Delta encoding
http://link.springer.com/Differential compression
https://doi.org/10.1007/978-3-319-63962-8_63-1

We define delta compression for the most
common case of a single reference file. Formally,
we have two strings (files): fi,, € X* (the target
file) and f,,s € X* (the reference file). Then the
goal for an encoder E with access to both f,, and
Jrer s to construct a file f5 € X™* of minimum
size, such that a decoder D can reconstruct f,,
from f,,r and f5. We also refer to fs as the delta
of fiur and frr.

Given this definition, research on delta com-
pression techniques has focused on three chal-
lenges: (1) How to build delta compression tools
that result in fg of small size while also achieving
fast compression and decompression speeds and
small memory footprint. (2) How to use delta
compression techniques to compress collections
of files, i.e., how to select suitable reference files
given a target file, or how to select a sequence of
delta compression steps between files to achieve
good compression for a collection ideally while
also allowing fast retrieval of individual files.
(3) How to apply delta compression in various
application scenarios.

Key Research Findings

String-to-String Correction and

Differencing

Some early related work was done by Wagner and
Fisher (1974), who studied the string-to-string
correction problem. This is the problem of find-
ing the best (shortest) sequence of insert, delete,
and update operations that transform one string
Jrer to another string f;,-. The solution in Wagner
and Fisher (1974) is based on finding the longest
common subsequence of the two strings using
dynamic programming and adding all remaining
characters to f,, explicitly. However, the string-
to-string correction problem does not capture the
full generality of the delta compression problem.
In particular, in the string-to-string correction
problem, it is implicitly assumed that the data
common to f, and f,r appears in (roughly) the
same order in the two files, and the approach can-
not exploit the case of substrings in f,,; appearing
repeatedly in fi,,.

Delta Compression Techniques

This early work motivated Unix tools such as
diff and bdiff, which create a patch, i.e., a set
of edit commands, that can be used to update
the reference file to the target file. Such tools
are widely used to create patches for software
updates, and one advantage is that these patches
are easily readable by humans who need to under-
stand the changes. However, the tools typically do
not generate delta files of competitive size, due to
(1) limitations in the type of edit operations that
are supported, as discussed in the previous para-
graph, and (2) the absence of native compression
methods for reducing the size of the patch. The
latter issue can be partially addressed by applying
general purpose file compressors such as gzip or
bzip to the generated patches, though this is still
far from optimal.

The first problem was partially addressed by
Tichy (1984), who defined the string-to-string
correction problem with block moves. For a file
f,let fi] denote the ith symbol of f,0 <i <
| f1,and f[i, j] denote the block of symbols from
i until (and including) j. Then a block move is a
triple (p,q,!) such that for[p,....p+1—1] =
Sfuarlg,--..q + 1 — 1], representing a nonempty
common substring of f,r and fi, of length /.
The file f5 can now be constructed as a minimal
covering set of block moves, such that every
Jiar[i] that also appears in f, is included in
exactly one block move.

Tichy (1984) also showed that a greedy algo-
rithm results in a minimal cover set, leading to
an fs that can be constructed in linear space and
time using suffix trees. However, the multiplica-
tive constant in the space complexity made the
approach impractical. A more practical approach
uses hash tables with linear space but quadratic
time worst-case complexity (Tichy 1984). Subse-
quent work in Ajtai et al. (2002) showed how to
further reduce the space used during compression
while avoiding a significant increase in com-
pressed size, while Agarwal et al. (2004) showed
how to reduce size by picking better copies than
a greedy approach. Finally, Xiao et al. (2005)
showed bounds for delta compression under a
very simple model of file generation where a file
is edited according to a two-state Markov process
that either keeps or replaces content.

Delta Compression Techniques

Delta Compression Using Lempel-Ziv

Coding

The block move-based approach proposed in
Tichy (1984) leads to a basic shift in the
development of delta compression algorithms,
as it suggests thinking about delta compression
as a sequence of copies from the reference file
into the target file, as opposed to a sequence of
edit operations on the reference file. This led to
a set of new algorithms based on the Lempel-
Ziv family of compression algorithms (Ziv
and Lempel 1977, 1978), which naturally lend
themselves to such a copy-based approach while
also allowing for compression of the resulting
patches.

In particular, the LZ77 algorithm can be
viewed as a sequence of copy operations that
replace a prefix of the string being encoded by
a reference to an identical previously encoded
substring. Thus, delta compression could be
viewed as simply performing LZ77 compression
with the file f,,; representing previously encoded
text. In fact, we can also include the part of f,,
that has already been encoded in the search for
a longest matching prefix. A few extra changes
are needed to get a practical implementation of
LZ77-based delta compression. Implementations
of this approach include vdelta (Hunt et al. 1998),
several versions of xdelta (MacDonald 2000),
zdelta (Trendafilov et al. 2002), the recent and
very fast ddelta (Xia et al. 2014b) and edelta (Xia
et al. 2015), and a number of implementations
following the vediff differencing format.

A Sample Implementation

We now describe a possible implementation in
more detail, using the example of zdelta. In fact,
zdelta is based on a modification of the zlib
library implementation of gzip by Gailly and
Adler (Gailly 2017), with some additional ideas
inspired by vdelta (Hunt et al. 1998). Note that
zIlib finds previous occurrences of substrings us-
ing a hash table. In zdelta, this is extended to
several hash tables, one for each reference file
and one for the already coded part of the target
file. The table for f, is essentially handled as
in zlib, where new entries are inserted as f, is
traversed and encoded. The table for f,.r can be

built beforehand by scanning f,.r, assuming fr.r
is not too large. When looking for matches, all
tables are searched to find the best match. Hash-
ing of substrings is done based on the initial three
characters, with chaining inside each hash bucket.

As observed in Hunt et al. (1998), in many
cases, the location of the next match in f is
a short distance after the end of the previous
match, especially when the files are very similar.
Thus, the locations of matches in f,.r are usu-
ally best represented as offsets from the end of
the previous match in f,,;. However, sometimes
there are isolated matches in other parts of f.r.
This motivates zdelta to maintain two pointers
into each reference file and to code locations by
storing which pointer is used, the direction of the
offset, and the offset itself. Pointers are initially
set to the start of the file and afterward usually
point to the ends of the previous two matches in
the same reference file. If a match is far away
from both pointers, a pointer is only moved to the
end of it if it is the second such match in a row.
Other more complex pointer movement policies
might give additional moderate improvements.

To encode the generated offsets, pointers, di-
rections, match lengths, and literals, zdelta uses
the Huffman coding facilities provided by zlib,
while vdelta uses a byte-based encoding that is
faster but less compact.

Window Management in LZ-Based Delta
Compressors

The above description assumes that reference
files are small enough to completely fit into the
hash table. However, this is usually not realistic.
By default, zlib only indexes a history of up to
32 KB of already processed data in the hash
table, in two blocks of 16 KB each. Whenever
the second block is filled, the first one is freed
up, temporarily reducing indexed history to 16
KB. This is for efficiency reasons: Indexing more
than 32 KB would result in larger hash tables
that lead to increased L1 cache misses (as L1
cache sizes have not increased much over the
last two decades) and, more importantly, result
in very long hash chains for common three-
character substrings that would be traversed when
searching for matches.

In the target file, we could just index the last up
to 32 KB in the hash table by their first 3 bytes,
as done in z/ib. But which parts of the reference
files should we index? There are several possible
choices, as follows:

¢ Sliding Window Forward: In zdelta, a 32
KB window is initially placed at the start of
the reference file and then moved forward
by 16 KB whenever the median of the last
few copies comes within a certain distance
from the end of the current window. This
works well if the content is reasonably aligned
between the reference and target case, which
is the common case in many applications, but
can perform very badly when large blocks of
content occur in a very different order in the
two files.

e Block Fingerprints: Another possible
approach chooses the parts in the reference
files that should be indexed based on
their similarity to the content currently
being encoded. This is done by computing
fingerprint for certain substrings and then
indexing parts of the reference file that
share many fingerprints with the content we
are currently encoding. This approach was
considered by Korn and Vo in the context of
implementing vediff (Korn and Vo 2002).

e Hashing Longer Substrings: Another
approach indexes the entire reference file
and avoids long hash chains by hashing
substrings much longer than three characters.
This allows finding copies from anywhere
in the reference and target files, as long as
copies are longer than the hashed substrings.
This approach was taken in earlier versions of
xdelta, making it very robust against content
reordering between the files, but compression
may be slightly worse than other approaches
on well-aligned files, since only large copies
are supported. However, the approach can be
combined with the others above, to allow both
longer and shorter copies, by first using larger
fixed-size chunks as proposed in Bentley and
Mcllroy (1999) and Tridgell (2000) or with
content-defined chunking and then finding

Delta Compression Techniques

smaller copies more locally; see, e.g., ddelta
(Xia et al. 2014b).

Compressing Collections of Files

Larger collections of files can be compressed by
repeatedly applying delta compression to pairs or
groups of files. This raises the question of what
reference files to choose for which target files in
order to achieve a cycle-free compression of the
entire collection with minimum compressed size.
In some scenarios, it is also crucial to be able
to quickly decompress individual files without
having to decompress too many other files.

In the case of revision control systems, older
files are usually compressed using a newer ver-
sion as a reference file, since newer versions are
more frequently accessed. However, retrieving an
old version could be very slow if it requires de-
compressing a long chain of more recent versions
before reaching the one that is needed. For this
reason, such systems may often create shortcuts,
where versions are occasionally encoded using a
much later version as reference, at the cost of a
slight increase in size.

Delta compression can also be used to com-
press collections of non-versioned files that share
some degree of similarity. For the case of a single
reference file, finding an optimal and cycle-free
assignment of reference files to target files can
be modeled as an optimum branching problem
on a complete graph (Tate 1997; Ouyang et al.
2002), which can be solved in |V|? time on
dense graphs where | V| is the number of vertices.
For the case of more than one reference file,
the problem is known to be NP-complete (Adler
and Mitzenmacher 2001). However, the cost of
computing the edge weights of the input graph
is prohibitive, motivating (Ouyang et al. 2002) to
propose using text clustering to identify for each
target file a small set of promising reference file
candidates. Work in Bagchi et al. (2006) showed
that an optimum branching on a reduced degree
graph of highest weight edges in fact provides a
provable approximation ratio to the solution on
the full graph.

Work by Molfetas et al. (2014b,a) studied
how to optimize and trade off access speed and

Delta Compression Techniques

compression ratio in delta-compressed file collec-
tions, e.g., by avoiding references to substrings
in certain files when other copies could be used
instead. It is shown that significant improvements
are possible by judiciously picking copies during
compression.

However, for bulk archival and retrieval of
large collections of non-versioned web pages,
work in Trendafilov et al. (2004), Chang et al.
(2006), and Ferragina and Manzini (2010)
suggests that better speed and compression can
be achieved by applying optimized compression
tools for archiving large data sets on top of a
suitable linear ordering of the files, say one
obtained via text clustering or URL ordering.
The main reason is that such tools can identify
repeated substrings over very long distances,
while delta compressors are limited to one or a
few reference files.

Examples of Applications

There are a number of scenarios where delta
compression can be applied in order to reduce
networking and storage cost. A few of them are
now discussed briefly.

¢ Software Revision Control Systems: Delta
compression techniques were originally pro-
posed and developed in the context of sys-
tems used for maintaining the revision his-
tory of software projects and other documents
(Berliner 1990; Rochkind 1975; Tichy 1985).
In such systems, there are multiple, often
almost identical, versions of each document,
including different branches, that have to be
stored, to enable users to retrieve and roll back
to past versions. See Hunt et al. (1998) for
more discussion on delta compression in the
context of such systems.

¢ Software Patch Distribution: Delta com-
pression techniques are used to generate
software patches that can be efficiently
transmitted over a network in order to update
installed software packages. A good delta
compressor can significantly reduce the cost

of rolling out updates, say, for security-critical
updates to popular software that need to be
quickly disseminated. The case of updating
automobile software over wireless links was
recently discussed in Nakanishi et al. (2013),
while Samteladze and Christensen (2012)
addresses efficient app updates on mobile
devices. Tools such as bspatch and bsdiff are
especially optimized for the case of updating
executables, and even better algorithms for
this case are proposed in Percival (2006) and
Motta et al. (2007).

Improving Data Downloading: There is a
long history of proposals to employ delta com-
pression to improve web access, by exploit-
ing the similarity between the current and an
older cached version of a page or between
different pages on the same site. A scheme
called optimistic delta was proposed in Banga
et al. (1997) and Mogul et al. (1997), where
a caching proxy hides server latency by first
returning a potentially outdated cached ver-
sion, followed if needed by a small patch
once the server replies. In another approach,
a client with a cached old version sends a tag
identifying the version as part of the HTTP
request and then receives a patch (Housel and
Lindquist 1996; Delco and Ionescu, xProxy:
a transparent caching and delta transfer sys-
tem for web objects. Unpublished manuscript,
2000). A specialized tool called jdelta for
XML data in push-based services is proposed
in Wang et al. (2008)

It is well known that pages from the same
web site are often very similar, mostly due
to common layout and menu structure and
that this could be exploited with delta com-
pression. Work in Chan and Woo (1999) and
Savant and Suel (2003) studies how to identify
cached pages that make good reference files
for delta compression, while Douglis et al.
(1997) proposes a similar idea for shared dy-
namic pages, e.g., different stock quotes from
a financial site.

While delta compression has the poten-
tial to significantly reduce latency and band-
width usage, particularly over slower mobile
links, such schemes have only seen limited

adoption. Examples of widely used implemen-
tations are the Shared Dictionary Compres-
sion over HTTP mechanism implemented by
Google in the Chrome browser and in their
Brotli compressor (Alakuijala and Szabadka
2016) (which is based on the vediff differenc-
ing format and employs a mechanism similar
to delta compression) and the use of delta
compression for reducing network traffic in
Dropbox (Drago et al. 2013).

Delta Compression in File and Storage Sys-
tems: Delta compression is also useful for
versioning file systems that keep old versions
of files. The Xdelta File System (MacDonald
2000) aimed to provide efficient support for
delta compression at the file system level us-
ing xdelta. Delta compression is also used for
redundancy elimination in backup systems.
In particular, Kulkarni et al. (2014), Shilane
et al. (2012), and Xia et al. (2014b,a) showed
that adding delta compression between sim-
ilar files or chunks of data on top of dupli-
cate elimination (removal of identical files or
chunks) can give significant additional size
reductions, though at some processing cost.
Delta compression was implemented, e.g., in
the EMC Data Domain line of products.
Efficient Storage of File Collections: As dis-
cussed in the previous section, delta com-
pression has been considered as a way to
improve compression of general collections of
files that share some degree of similarity; see,
e.g., Ouyang et al. (2002). However, subse-
quent work (Trendafilov et al. 2004; Chang
et al. 2006; Ferragina and Manzini 2010) indi-
cates that this approach is often outperformed
by optimized compression tools for archiving
large data sets, after suitable reordering of the
files.

Exploring File Differences: Delta compres-
sion tools can be used to visualize differences
between documents. For example, the diff
utility displays the differences between two
files as a set of edit commands, while the
HmmlIDiff and topblend tools in Chen et al.
(2000) visualize the difference between
HTML documents. Here, the focus is less
on compressed size and more on readability.

Delta Compression Techniques

Future Directions for Research

Delta compression is a fairly mature technology,
and future gains in compression may thus be
modest for general scenarios. However, there are
still a number of challenges that remain, includ-
ing the following:

Speed Improvements: Recent years have
seen significant improvements in speed
for many compression techniques, in some
cases due to use of available data parallel
(SIMD) instruction sets in modern processors.
Examples of recent high-speed methods for
delta compression are ddelta (Xia et al. 2014b)
and edelta (Xia et al. 2015), and future work
should further improve on these results.
Alternative Approaches: Almost all current
delta compressors use LZ-based approaches.
While this is a natural approach, there might
be alternative approaches (e.g., methods
based on Burrows-Wheeler compression
Burrows and Wheeler 1994) that could lead
to improvements. On a more speculative
level, researchers have recently started
using recurrent neural networks for better
compression, and such an approach might
also lead to better delta compression.

Formal Analysis of Methods: Current delta
compression algorithms are very heuristic
in nature, and there is limited work on
formally analyzing their performance or
optimality with respect to information
theoretic measures. An exception is the
work in Xiao et al. (2005), which shows
some bounds under a very simple model of
document generation, but there is a need for
more formal analysis.

Integration in Storage Systems: As
discussed, delta compression techniques
have been deployed inside storage systems
in conjunction with other redundancy
elimination techniques. In such systems,
it can be challenging to identity suitable
reference files for a target file that needs to
be stored and to decide when it is worth to
apply delta compression techniques, which
require fetching the reference files for coding

Delta Compression Techniques

and decoding, in conjunction with other
redundancy elimination techniques. Future
research could look for new methods that
use fingerprints and associated indexes to
quickly find good reference files or explore
better tradeoffs between compression and the
amount of knowledge that is needed about the
reference data (where delta compression is the
case of full knowledge).

Cross-References

Redundancy Elimination in Networks and Stor-
age Systems

References

Adler M, Mitzenmacher M (2001) Towards compressing
web graphs. In: IEEE data compression conference
Agarwal R, Amalapuraru S, Jain S (2004) An approxi-
mation to the greedy algorithm for differential com-
pression of very large files. In: IEEE data compression
conference

Ajtai M, Burns R, Fagin R, Long D, Stockmeyer L
(2002) Compactly encoding unstructured inputs with
differential compression.] ACM 49(3):318-367

Alakuijala J, Szabadka Z (2016) Rfc7932: Brotli com-
pressed data format. Available at https://tools.ietf.org/
html/rfc7932

Bagchi A, Bhargava A, Suel T (2006) Approximate max-
imum weighted branchings. Inf Process Lett 99(2):
54-58

Banga G, Douglis F, Rabinovich M (1997) Optimistic
deltas for WWW latency reduction. In: USENIX an-
nual technical conference

Bentley J, Mcllroy D (1999) Data compression using long
common strings. In: IEEE data compression confer-
ence

Berliner B (1990) CVS II: Parallelizing software develop-
ment. In: Winter 1990 USENIX conference

Burrows M, Wheeler D (1994) A block-sorting lossless
data compression algorithm. Technical report. 124,
SRC. Digital Systems Research Center, Palo Alto

Chan M, Woo T (1999) Cache-based compaction: a new
technique for optimizing web transfer. In: INFOCOM
conference

Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Bur-
rows M, Chandra T, Fikes A, Gruber R (2006) Bigtable:
a distributed storage system for structured data. In:
Seventh symposium on operating system design and
implementation

Chen Y, Douglis F, Huang H, Vo K (2000) Topblend:
an efficient implementation of HtmlDiff in Java. In:
WebNet 2000 conference

Douglis F, Haro A, Rabinovich M (1997) HPP: HTML
macro-preprocessing to support dynamic document
caching. In: USENIX symposium on internet technolo-
gies and systems

Drago I, Bocchi E, Mellia M, Slatman H, Pras A (2013)
Benchmarking personal cloud storage. In: Internet
measurement conference

Ferragina P, Manzini G (2010) On compressing the textual
web. In: ACM international conference on web search
and data mining

Gailly J (2017) zlib compression library, version 1.2.11.
Available at https://zlib.net

Housel B, Lindquist D (1996) WebExpress: a system for
optimizing web browsing in a wireless environment. In:
ACM conference on mobile computing and network-
ing, pp 108-116

Hunt J, Vo KP, Tichy W (1998) Delta algorithms: an
empirical analysis. ACM Trans Softw Eng Methodol
7:192-213

Korn D, Vo KP (2002) Engineering a differencing and
compression data format. In: USENIX annual technical
conference, pp 219-228

Kulkarni P, Douglis F, LaVoie J, Tracey JM (2014) Redun-
dancy elimination within large collections of files. In:
USENIX annual technical conference

MacDonald J (2000) File system support for delta com-
pression. MS thesis, University of California, Berkeley

Mogul JC, Douglis F, Feldmann A, Krishnamurthy B
(1997) Potential benefits of delta-encoding and data
compression for HTTP. In: ACM SIGCOMM confer-
ence, pp 181-196

Molfetas A, Wirth A, Zobel J (2014a) Scalability in
recursively stored delta compressed collections of files.
In: Second Australasian web conference

Molfetas A, Wirth A, Zobel J (2014b) Using inter-file
similarity to improve intra-file compression. In: IEEE
international congress on big data

Motta G, Gustafson J, Chen S (2007) Differential com-
pression of executable code. In: IEEE data compression
conference

Nakanishi T, Shih H, Hisazumi K, Fukuda A (2013) A
software update scheme by airwaves for automotve
equipment. In: International conference on informa-
tion, electronics, and vision

Ouyang Z, Memon N, Suel T, Trendafilov D (2002)
Cluster-based delta compression of a collection of files.
In: Third international conference on web information
systems engineering

Percival C (2006) Matching with mismatches and assorted
applications. PhD thesis, University of Oxford

Rochkind M (1975) The source code control system. IEEE
Trans Softw Eng 1:364-370

Samteladze N, Christensen K (2012) Delta: delta encoding
for less traffic for apps. In: IEEE conference on local
computer networks

http://link.springer.com/Redundancy Elimination in Networks and Storage Systems
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://zlib.net

Savant A, Suel T (2003) Server-friendly delta compres-
sion for efficient web access. In: 8th international
workshop on web content caching and distribution

Shilane P, Huang M, Wallace G, Hsu W (2012) WAN
optimized replication of backup datasets using stream-
informed delta compression. In: USENIX symposium
on file and storage technologies

Tate S (1997) Band ordering in lossless compression
of multispectral images. IEEE Trans Comput 46(45):
211-320

Tichy W (1984) The string-to-string correction problem
with block moves. ACM Trans Comput Syst 2(4):
309-321

Tichy W (1985) RCS: a system for version control. Softw
Pract Exp 15:637-654

Trendafilov D, Memon N, Suel T (2002) zdelta: a simple
delta compression tool. Technical report. Polytechnic
University, CIS Department

Trendafilov D, NMemon, Suel T (2004) Compressing
file collections with a TSP-based approach. Technical
report TR-CIS-2004-02. Polytechnic University

Tridgell A (2000) Efficient algorithms for sorting and
synchronization. PhD thesis, Australian National Uni-
versity

Delta Compression Techniques

Wagner RA, Fisher MJ (1974) The string-to-string correc-
tion problem.] ACM 21(1):168-173

Wang J, Guo Y, Huang B, Ma J, Mo Y (2008) Delta
compression for information push services. In: Interna-
tional conference on advanced information networking
and applications — workshops

Xia W, Jiang H, Feng D, Tian L (2014a) Combining
deduplication and delta compression to achieve low-
overhead data reduction on backup datasets. In: IEEE
data compression conference

Xia W, Jiang H, Feng D, Tian L, Fu M, Zhou Y (2014b)
Ddelta: a deduplication-inspired fast delta compression
approach. Perform Eval 79:258-272

Xia W, Li C, Jiang H, Feng D, Hua Y, Qin L, Zhang
Y (2015) Edelta: a word-enlarging based fast delta
compression approach. In: USENIX workshop on hot
topics in storage and file systems

Xiao C, Bing B, Chang GK (2005) Delta compression for
fast wireless internet downloads. In: IEEE GlobeCom

Ziv J, Lempel A (1977) A universal algorithm for data
compression. IEEE Trans Inf Theory 23(3):337-343

Ziv J, Lempel A (1978) Compression of individual se-
quences via variable-rate coding. IEEE Trans Inf The-
ory 24(5):530-536

	Delta Compression Techniques
	Synonyms
	Definition
	Overview
	Key Research Findings
	String-to-String Correction and Differencing
	Delta Compression Using Lempel-Ziv Coding
	A Sample Implementation
	Window Management in LZ-Based Delta Compressors
	Compressing Collections of Files

	Examples of Applications
	Future Directions for Research

	Cross-References
	References
	References

