
D

Delta Compression
Techniques

Torsten Suel

Department of Computer Science and

Engineering, Tandon School of Engineering,

New York University, Brooklyn, NY, USA

Synonyms

Data differencing; Delta encoding; Differential

compression

Definition

Delta compression techniques encode a target

file with respect to one or more reference files,

such that a decoder who has access to the same

reference files can recreate the target file from the

compressed data. Delta compression is usually

applied in cases where there is a high degree of

redundancy between target and references files,

leading to a much smaller compressed size than

could be achieved by just compressing the tar-

get file by itself. Typical application scenarios

include revision control systems and versioned

file systems that store many versions of a file or

software or content updates over networks where

the recipient already has an older version of the

data. Most work on delta compression techniques

has focused on the case of textual and binary files,

but the concept can also be applied to multimedia

and structured data.

Delta compression should not be confused

with Elias delta codes, a technique for encod-

ing integer values, or with the idea of coding

sorted sequences of integers by first taking the

difference (or delta) between consecutive values.

Also, delta compression requires the encoder to

have complete knowledge of the reference files

and thus differs from more general techniques for

redundancy elimination in networks and storage

systems where the encoder has limited or even

no knowledge of the reference files, though the

boundaries with that line of work are not clearly

defined.

Overview

Many applications of big data technologies in-

volve very large data sets that need to be stored on

disk or transmitted over networks. Consequently,

data compression techniques are widely used to

reduce data sizes. However, there are many sce-

narios where there are significant redundancies

between different data files that cannot be ex-

ploited by compressing each file independently.

For example, there may be many versions of

a document, say a Wikipedia article, that dif-

fer only slightly from one to the next. Delta

compression techniques attempt to exploit such

redundancy between pairs or groups of files to

achieve better compression.

© Springer International Publishing AG, part of Springer Nature 2018

S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,

https://doi.org/10.1007/978-3-319-63962-8_63-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Data differencing
http://link.springer.com/Delta encoding
http://link.springer.com/Differential compression
https://doi.org/10.1007/978-3-319-63962-8_63-1


2 Delta Compression Techniques

We define delta compression for the most

common case of a single reference file. Formally,

we have two strings (files): ftar 2 ˙� (the target

file) and fref 2 ˙� (the reference file). Then the

goal for an encoder E with access to both ftar and

fref is to construct a file fı 2 ˙� of minimum

size, such that a decoder D can reconstruct ftar

from fref and fı . We also refer to fı as the delta

of ftar and fref .

Given this definition, research on delta com-

pression techniques has focused on three chal-

lenges: (1) How to build delta compression tools

that result in fı of small size while also achieving

fast compression and decompression speeds and

small memory footprint. (2) How to use delta

compression techniques to compress collections

of files, i.e., how to select suitable reference files

given a target file, or how to select a sequence of

delta compression steps between files to achieve

good compression for a collection ideally while

also allowing fast retrieval of individual files.

(3) How to apply delta compression in various

application scenarios.

Key Research Findings

String-to-String Correction and

Differencing

Some early related work was done by Wagner and

Fisher (1974), who studied the string-to-string

correction problem. This is the problem of find-

ing the best (shortest) sequence of insert, delete,

and update operations that transform one string

fref to another string ftar. The solution in Wagner

and Fisher (1974) is based on finding the longest

common subsequence of the two strings using

dynamic programming and adding all remaining

characters to ftar explicitly. However, the string-

to-string correction problem does not capture the

full generality of the delta compression problem.

In particular, in the string-to-string correction

problem, it is implicitly assumed that the data

common to ftar and fref appears in (roughly) the

same order in the two files, and the approach can-

not exploit the case of substrings in fref appearing

repeatedly in ftar.

This early work motivated Unix tools such as

diff and bdiff, which create a patch, i.e., a set

of edit commands, that can be used to update

the reference file to the target file. Such tools

are widely used to create patches for software

updates, and one advantage is that these patches

are easily readable by humans who need to under-

stand the changes. However, the tools typically do

not generate delta files of competitive size, due to

(1) limitations in the type of edit operations that

are supported, as discussed in the previous para-

graph, and (2) the absence of native compression

methods for reducing the size of the patch. The

latter issue can be partially addressed by applying

general purpose file compressors such as gzip or

bzip to the generated patches, though this is still

far from optimal.

The first problem was partially addressed by

Tichy (1984), who defined the string-to-string

correction problem with block moves. For a file

f , let f Œi � denote the i th symbol of f , 0 � i <

jf j, and f Œi; j � denote the block of symbols from

i until (and including) j . Then a block move is a

triple .p; q; l/ such that fref Œp; : : : ; p C l � 1� D

ftarŒq; : : : ; q C l � 1�, representing a nonempty

common substring of fref and ftar of length l .

The file fı can now be constructed as a minimal

covering set of block moves, such that every

ftarŒi � that also appears in fref is included in

exactly one block move.

Tichy (1984) also showed that a greedy algo-

rithm results in a minimal cover set, leading to

an fı that can be constructed in linear space and

time using suffix trees. However, the multiplica-

tive constant in the space complexity made the

approach impractical. A more practical approach

uses hash tables with linear space but quadratic

time worst-case complexity (Tichy 1984). Subse-

quent work in Ajtai et al. (2002) showed how to

further reduce the space used during compression

while avoiding a significant increase in com-

pressed size, while Agarwal et al. (2004) showed

how to reduce size by picking better copies than

a greedy approach. Finally, Xiao et al. (2005)

showed bounds for delta compression under a

very simple model of file generation where a file

is edited according to a two-state Markov process

that either keeps or replaces content.



Delta Compression Techniques 3

D

Delta Compression Using Lempel-Ziv

Coding

The block move-based approach proposed in

Tichy (1984) leads to a basic shift in the

development of delta compression algorithms,

as it suggests thinking about delta compression

as a sequence of copies from the reference file

into the target file, as opposed to a sequence of

edit operations on the reference file. This led to

a set of new algorithms based on the Lempel-

Ziv family of compression algorithms (Ziv

and Lempel 1977, 1978), which naturally lend

themselves to such a copy-based approach while

also allowing for compression of the resulting

patches.

In particular, the LZ77 algorithm can be

viewed as a sequence of copy operations that

replace a prefix of the string being encoded by

a reference to an identical previously encoded

substring. Thus, delta compression could be

viewed as simply performing LZ77 compression

with the file fref representing previously encoded

text. In fact, we can also include the part of ftar

that has already been encoded in the search for

a longest matching prefix. A few extra changes

are needed to get a practical implementation of

LZ77-based delta compression. Implementations

of this approach include vdelta (Hunt et al. 1998),

several versions of xdelta (MacDonald 2000),

zdelta (Trendafilov et al. 2002), the recent and

very fast ddelta (Xia et al. 2014b) and edelta (Xia

et al. 2015), and a number of implementations

following the vcdiff differencing format.

A Sample Implementation

We now describe a possible implementation in

more detail, using the example of zdelta. In fact,

zdelta is based on a modification of the zlib

library implementation of gzip by Gailly and

Adler (Gailly 2017), with some additional ideas

inspired by vdelta (Hunt et al. 1998). Note that

zlib finds previous occurrences of substrings us-

ing a hash table. In zdelta, this is extended to

several hash tables, one for each reference file

and one for the already coded part of the target

file. The table for ftar is essentially handled as

in zlib, where new entries are inserted as ftar is

traversed and encoded. The table for fref can be

built beforehand by scanning fref , assuming fref

is not too large. When looking for matches, all

tables are searched to find the best match. Hash-

ing of substrings is done based on the initial three

characters, with chaining inside each hash bucket.

As observed in Hunt et al. (1998), in many

cases, the location of the next match in fref is

a short distance after the end of the previous

match, especially when the files are very similar.

Thus, the locations of matches in fref are usu-

ally best represented as offsets from the end of

the previous match in fref . However, sometimes

there are isolated matches in other parts of fref .

This motivates zdelta to maintain two pointers

into each reference file and to code locations by

storing which pointer is used, the direction of the

offset, and the offset itself. Pointers are initially

set to the start of the file and afterward usually

point to the ends of the previous two matches in

the same reference file. If a match is far away

from both pointers, a pointer is only moved to the

end of it if it is the second such match in a row.

Other more complex pointer movement policies

might give additional moderate improvements.

To encode the generated offsets, pointers, di-

rections, match lengths, and literals, zdelta uses

the Huffman coding facilities provided by zlib,

while vdelta uses a byte-based encoding that is

faster but less compact.

Window Management in LZ-Based Delta

Compressors

The above description assumes that reference

files are small enough to completely fit into the

hash table. However, this is usually not realistic.

By default, zlib only indexes a history of up to

32 KB of already processed data in the hash

table, in two blocks of 16 KB each. Whenever

the second block is filled, the first one is freed

up, temporarily reducing indexed history to 16

KB. This is for efficiency reasons: Indexing more

than 32 KB would result in larger hash tables

that lead to increased L1 cache misses (as L1

cache sizes have not increased much over the

last two decades) and, more importantly, result

in very long hash chains for common three-

character substrings that would be traversed when

searching for matches.



4 Delta Compression Techniques

In the target file, we could just index the last up

to 32 KB in the hash table by their first 3 bytes,

as done in zlib. But which parts of the reference

files should we index? There are several possible

choices, as follows:

• Sliding Window Forward: In zdelta, a 32

KB window is initially placed at the start of

the reference file and then moved forward

by 16 KB whenever the median of the last

few copies comes within a certain distance

from the end of the current window. This

works well if the content is reasonably aligned

between the reference and target case, which

is the common case in many applications, but

can perform very badly when large blocks of

content occur in a very different order in the

two files.

• Block Fingerprints: Another possible

approach chooses the parts in the reference

files that should be indexed based on

their similarity to the content currently

being encoded. This is done by computing

fingerprint for certain substrings and then

indexing parts of the reference file that

share many fingerprints with the content we

are currently encoding. This approach was

considered by Korn and Vo in the context of

implementing vcdiff (Korn and Vo 2002).

• Hashing Longer Substrings: Another

approach indexes the entire reference file

and avoids long hash chains by hashing

substrings much longer than three characters.

This allows finding copies from anywhere

in the reference and target files, as long as

copies are longer than the hashed substrings.

This approach was taken in earlier versions of

xdelta, making it very robust against content

reordering between the files, but compression

may be slightly worse than other approaches

on well-aligned files, since only large copies

are supported. However, the approach can be

combined with the others above, to allow both

longer and shorter copies, by first using larger

fixed-size chunks as proposed in Bentley and

McIlroy (1999) and Tridgell (2000) or with

content-defined chunking and then finding

smaller copies more locally; see, e.g., ddelta

(Xia et al. 2014b).

Compressing Collections of Files

Larger collections of files can be compressed by

repeatedly applying delta compression to pairs or

groups of files. This raises the question of what

reference files to choose for which target files in

order to achieve a cycle-free compression of the

entire collection with minimum compressed size.

In some scenarios, it is also crucial to be able

to quickly decompress individual files without

having to decompress too many other files.

In the case of revision control systems, older

files are usually compressed using a newer ver-

sion as a reference file, since newer versions are

more frequently accessed. However, retrieving an

old version could be very slow if it requires de-

compressing a long chain of more recent versions

before reaching the one that is needed. For this

reason, such systems may often create shortcuts,

where versions are occasionally encoded using a

much later version as reference, at the cost of a

slight increase in size.

Delta compression can also be used to com-

press collections of non-versioned files that share

some degree of similarity. For the case of a single

reference file, finding an optimal and cycle-free

assignment of reference files to target files can

be modeled as an optimum branching problem

on a complete graph (Tate 1997; Ouyang et al.

2002), which can be solved in jV j2 time on

dense graphs where jV j is the number of vertices.

For the case of more than one reference file,

the problem is known to be NP-complete (Adler

and Mitzenmacher 2001). However, the cost of

computing the edge weights of the input graph

is prohibitive, motivating (Ouyang et al. 2002) to

propose using text clustering to identify for each

target file a small set of promising reference file

candidates. Work in Bagchi et al. (2006) showed

that an optimum branching on a reduced degree

graph of highest weight edges in fact provides a

provable approximation ratio to the solution on

the full graph.

Work by Molfetas et al. (2014b,a) studied

how to optimize and trade off access speed and



Delta Compression Techniques 5

D

compression ratio in delta-compressed file collec-

tions, e.g., by avoiding references to substrings

in certain files when other copies could be used

instead. It is shown that significant improvements

are possible by judiciously picking copies during

compression.

However, for bulk archival and retrieval of

large collections of non-versioned web pages,

work in Trendafilov et al. (2004), Chang et al.

(2006), and Ferragina and Manzini (2010)

suggests that better speed and compression can

be achieved by applying optimized compression

tools for archiving large data sets on top of a

suitable linear ordering of the files, say one

obtained via text clustering or URL ordering.

The main reason is that such tools can identify

repeated substrings over very long distances,

while delta compressors are limited to one or a

few reference files.

Examples of Applications

There are a number of scenarios where delta

compression can be applied in order to reduce

networking and storage cost. A few of them are

now discussed briefly.

• Software Revision Control Systems: Delta

compression techniques were originally pro-

posed and developed in the context of sys-

tems used for maintaining the revision his-

tory of software projects and other documents

(Berliner 1990; Rochkind 1975; Tichy 1985).

In such systems, there are multiple, often

almost identical, versions of each document,

including different branches, that have to be

stored, to enable users to retrieve and roll back

to past versions. See Hunt et al. (1998) for

more discussion on delta compression in the

context of such systems.

• Software Patch Distribution: Delta com-

pression techniques are used to generate

software patches that can be efficiently

transmitted over a network in order to update

installed software packages. A good delta

compressor can significantly reduce the cost

of rolling out updates, say, for security-critical

updates to popular software that need to be

quickly disseminated. The case of updating

automobile software over wireless links was

recently discussed in Nakanishi et al. (2013),

while Samteladze and Christensen (2012)

addresses efficient app updates on mobile

devices. Tools such as bspatch and bsdiff are

especially optimized for the case of updating

executables, and even better algorithms for

this case are proposed in Percival (2006) and

Motta et al. (2007).

• Improving Data Downloading: There is a

long history of proposals to employ delta com-

pression to improve web access, by exploit-

ing the similarity between the current and an

older cached version of a page or between

different pages on the same site. A scheme

called optimistic delta was proposed in Banga

et al. (1997) and Mogul et al. (1997), where

a caching proxy hides server latency by first

returning a potentially outdated cached ver-

sion, followed if needed by a small patch

once the server replies. In another approach,

a client with a cached old version sends a tag

identifying the version as part of the HTTP

request and then receives a patch (Housel and

Lindquist 1996; Delco and Ionescu, xProxy:

a transparent caching and delta transfer sys-

tem for web objects. Unpublished manuscript,

2000). A specialized tool called jdelta for

XML data in push-based services is proposed

in Wang et al. (2008)

It is well known that pages from the same

web site are often very similar, mostly due

to common layout and menu structure and

that this could be exploited with delta com-

pression. Work in Chan and Woo (1999) and

Savant and Suel (2003) studies how to identify

cached pages that make good reference files

for delta compression, while Douglis et al.

(1997) proposes a similar idea for shared dy-

namic pages, e.g., different stock quotes from

a financial site.

While delta compression has the poten-

tial to significantly reduce latency and band-

width usage, particularly over slower mobile

links, such schemes have only seen limited



6 Delta Compression Techniques

adoption. Examples of widely used implemen-

tations are the Shared Dictionary Compres-

sion over HTTP mechanism implemented by

Google in the Chrome browser and in their

Brotli compressor (Alakuijala and Szabadka

2016) (which is based on the vcdiff differenc-

ing format and employs a mechanism similar

to delta compression) and the use of delta

compression for reducing network traffic in

Dropbox (Drago et al. 2013).

• Delta Compression in File and Storage Sys-

tems: Delta compression is also useful for

versioning file systems that keep old versions

of files. The Xdelta File System (MacDonald

2000) aimed to provide efficient support for

delta compression at the file system level us-

ing xdelta. Delta compression is also used for

redundancy elimination in backup systems.

In particular, Kulkarni et al. (2014), Shilane

et al. (2012), and Xia et al. (2014b,a) showed

that adding delta compression between sim-

ilar files or chunks of data on top of dupli-

cate elimination (removal of identical files or

chunks) can give significant additional size

reductions, though at some processing cost.

Delta compression was implemented, e.g., in

the EMC Data Domain line of products.

• Efficient Storage of File Collections: As dis-

cussed in the previous section, delta com-

pression has been considered as a way to

improve compression of general collections of

files that share some degree of similarity; see,

e.g., Ouyang et al. (2002). However, subse-

quent work (Trendafilov et al. 2004; Chang

et al. 2006; Ferragina and Manzini 2010) indi-

cates that this approach is often outperformed

by optimized compression tools for archiving

large data sets, after suitable reordering of the

files.

• Exploring File Differences: Delta compres-

sion tools can be used to visualize differences

between documents. For example, the diff

utility displays the differences between two

files as a set of edit commands, while the

HtmlDiff and topblend tools in Chen et al.

(2000) visualize the difference between

HTML documents. Here, the focus is less

on compressed size and more on readability.

Future Directions for Research

Delta compression is a fairly mature technology,

and future gains in compression may thus be

modest for general scenarios. However, there are

still a number of challenges that remain, includ-

ing the following:

• Speed Improvements: Recent years have

seen significant improvements in speed

for many compression techniques, in some

cases due to use of available data parallel

(SIMD) instruction sets in modern processors.

Examples of recent high-speed methods for

delta compression are ddelta (Xia et al. 2014b)

and edelta (Xia et al. 2015), and future work

should further improve on these results.

• Alternative Approaches: Almost all current

delta compressors use LZ-based approaches.

While this is a natural approach, there might

be alternative approaches (e.g., methods

based on Burrows-Wheeler compression

Burrows and Wheeler 1994) that could lead

to improvements. On a more speculative

level, researchers have recently started

using recurrent neural networks for better

compression, and such an approach might

also lead to better delta compression.

• Formal Analysis of Methods: Current delta

compression algorithms are very heuristic

in nature, and there is limited work on

formally analyzing their performance or

optimality with respect to information

theoretic measures. An exception is the

work in Xiao et al. (2005), which shows

some bounds under a very simple model of

document generation, but there is a need for

more formal analysis.

• Integration in Storage Systems: As

discussed, delta compression techniques

have been deployed inside storage systems

in conjunction with other redundancy

elimination techniques. In such systems,

it can be challenging to identity suitable

reference files for a target file that needs to

be stored and to decide when it is worth to

apply delta compression techniques, which

require fetching the reference files for coding



Delta Compression Techniques 7

D

and decoding, in conjunction with other

redundancy elimination techniques. Future

research could look for new methods that

use fingerprints and associated indexes to

quickly find good reference files or explore

better tradeoffs between compression and the

amount of knowledge that is needed about the

reference data (where delta compression is the

case of full knowledge).

Cross-References

�Redundancy Elimination in Networks and Stor-

age Systems

References

Adler M, Mitzenmacher M (2001) Towards compressing

web graphs. In: IEEE data compression conference

Agarwal R, Amalapuraru S, Jain S (2004) An approxi-

mation to the greedy algorithm for differential com-

pression of very large files. In: IEEE data compression

conference

Ajtai M, Burns R, Fagin R, Long D, Stockmeyer L

(2002) Compactly encoding unstructured inputs with

differential compression. J ACM 49(3):318–367

Alakuijala J, Szabadka Z (2016) Rfc7932: Brotli com-

pressed data format. Available at https://tools.ietf.org/

html/rfc7932

Bagchi A, Bhargava A, Suel T (2006) Approximate max-

imum weighted branchings. Inf Process Lett 99(2):

54–58

Banga G, Douglis F, Rabinovich M (1997) Optimistic

deltas for WWW latency reduction. In: USENIX an-

nual technical conference

Bentley J, McIlroy D (1999) Data compression using long

common strings. In: IEEE data compression confer-

ence

Berliner B (1990) CVS II: Parallelizing software develop-

ment. In: Winter 1990 USENIX conference

Burrows M, Wheeler D (1994) A block-sorting lossless

data compression algorithm. Technical report. 124,

SRC. Digital Systems Research Center, Palo Alto

Chan M, Woo T (1999) Cache-based compaction: a new

technique for optimizing web transfer. In: INFOCOM

conference

Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Bur-

rows M, Chandra T, Fikes A, Gruber R (2006) Bigtable:

a distributed storage system for structured data. In:

Seventh symposium on operating system design and

implementation

Chen Y, Douglis F, Huang H, Vo K (2000) Topblend:

an efficient implementation of HtmlDiff in Java. In:

WebNet 2000 conference

Douglis F, Haro A, Rabinovich M (1997) HPP: HTML

macro-preprocessing to support dynamic document

caching. In: USENIX symposium on internet technolo-

gies and systems

Drago I, Bocchi E, Mellia M, Slatman H, Pras A (2013)

Benchmarking personal cloud storage. In: Internet

measurement conference

Ferragina P, Manzini G (2010) On compressing the textual

web. In: ACM international conference on web search

and data mining

Gailly J (2017) zlib compression library, version 1.2.11.

Available at https://zlib.net

Housel B, Lindquist D (1996) WebExpress: a system for

optimizing web browsing in a wireless environment. In:

ACM conference on mobile computing and network-

ing, pp 108–116

Hunt J, Vo KP, Tichy W (1998) Delta algorithms: an

empirical analysis. ACM Trans Softw Eng Methodol

7:192–213

Korn D, Vo KP (2002) Engineering a differencing and

compression data format. In: USENIX annual technical

conference, pp 219–228

Kulkarni P, Douglis F, LaVoie J, Tracey JM (2014) Redun-

dancy elimination within large collections of files. In:

USENIX annual technical conference

MacDonald J (2000) File system support for delta com-

pression. MS thesis, University of California, Berkeley

Mogul JC, Douglis F, Feldmann A, Krishnamurthy B

(1997) Potential benefits of delta-encoding and data

compression for HTTP. In: ACM SIGCOMM confer-

ence, pp 181–196

Molfetas A, Wirth A, Zobel J (2014a) Scalability in

recursively stored delta compressed collections of files.

In: Second Australasian web conference

Molfetas A, Wirth A, Zobel J (2014b) Using inter-file

similarity to improve intra-file compression. In: IEEE

international congress on big data

Motta G, Gustafson J, Chen S (2007) Differential com-

pression of executable code. In: IEEE data compression

conference

Nakanishi T, Shih H, Hisazumi K, Fukuda A (2013) A

software update scheme by airwaves for automotve

equipment. In: International conference on informa-

tion, electronics, and vision

Ouyang Z, Memon N, Suel T, Trendafilov D (2002)

Cluster-based delta compression of a collection of files.

In: Third international conference on web information

systems engineering

Percival C (2006) Matching with mismatches and assorted

applications. PhD thesis, University of Oxford

Rochkind M (1975) The source code control system. IEEE

Trans Softw Eng 1:364–370

Samteladze N, Christensen K (2012) Delta: delta encoding

for less traffic for apps. In: IEEE conference on local

computer networks

http://link.springer.com/Redundancy Elimination in Networks and Storage Systems
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://zlib.net


8 Delta Compression Techniques

Savant A, Suel T (2003) Server-friendly delta compres-

sion for efficient web access. In: 8th international

workshop on web content caching and distribution

Shilane P, Huang M, Wallace G, Hsu W (2012) WAN

optimized replication of backup datasets using stream-

informed delta compression. In: USENIX symposium

on file and storage technologies

Tate S (1997) Band ordering in lossless compression

of multispectral images. IEEE Trans Comput 46(45):

211–320

Tichy W (1984) The string-to-string correction problem

with block moves. ACM Trans Comput Syst 2(4):

309–321

Tichy W (1985) RCS: a system for version control. Softw

Pract Exp 15:637–654

Trendafilov D, Memon N, Suel T (2002) zdelta: a simple

delta compression tool. Technical report. Polytechnic

University, CIS Department

Trendafilov D, NMemon, Suel T (2004) Compressing

file collections with a TSP-based approach. Technical

report TR-CIS-2004-02. Polytechnic University

Tridgell A (2000) Efficient algorithms for sorting and

synchronization. PhD thesis, Australian National Uni-

versity

Wagner RA, Fisher MJ (1974) The string-to-string correc-

tion problem. J ACM 21(1):168–173

Wang J, Guo Y, Huang B, Ma J, Mo Y (2008) Delta

compression for information push services. In: Interna-

tional conference on advanced information networking

and applications – workshops

Xia W, Jiang H, Feng D, Tian L (2014a) Combining

deduplication and delta compression to achieve low-

overhead data reduction on backup datasets. In: IEEE

data compression conference

Xia W, Jiang H, Feng D, Tian L, Fu M, Zhou Y (2014b)

Ddelta: a deduplication-inspired fast delta compression

approach. Perform Eval 79:258–272

Xia W, Li C, Jiang H, Feng D, Hua Y, Qin L, Zhang

Y (2015) Edelta: a word-enlarging based fast delta

compression approach. In: USENIX workshop on hot

topics in storage and file systems

Xiao C, Bing B, Chang GK (2005) Delta compression for

fast wireless internet downloads. In: IEEE GlobeCom

Ziv J, Lempel A (1977) A universal algorithm for data

compression. IEEE Trans Inf Theory 23(3):337–343

Ziv J, Lempel A (1978) Compression of individual se-

quences via variable-rate coding. IEEE Trans Inf The-

ory 24(5):530–536


	Delta Compression Techniques
	Synonyms
	Definition
	Overview
	Key Research Findings
	String-to-String Correction and Differencing
	Delta Compression Using Lempel-Ziv Coding
	A Sample Implementation
	Window Management in LZ-Based Delta Compressors
	Compressing Collections of Files

	Examples of Applications
	Future Directions for Research

	Cross-References
	References
	References


