
Fast Bag-Of-Words Candidate Selection in

Content-Based Instance Retrieval Systems

Michał Siedlaczek∗

Tandon School of Engineering

New York University

Brooklyn, NY, USA

michal.siedlaczek@nyu.edu

Qi Wang∗

Tandon School of Engineering

New York University

Brooklyn, NY, USA

qw376@nyu.edu

Yen-Yu Chen

Blippar, Inc.

Mountain View, CA, USA

yyc211@gmail.com

Torsten Suel

Tandon School of Engineering

New York University

Brooklyn, NY, USA

torsten.suel@nyu.edu

Abstract—Many content-based image search and instance
retrieval systems implement bag-of-visual-words strategies for
candidate selection. Visual processing of an image results in
hundreds of visual words that make up a document, and these
words are used to build an inverted index. Query processing
then consists of an initial candidate selection phase that queries
the inverted index, followed by more complex reranking of
the candidates using various image features. The initial phase
typically uses disjunctive top-k query processing algorithms
originally proposed for searching text collections.

Our objective in this paper is to optimize the performance of
disjunctive top-k computation for candidate selection in content-
based instance retrieval systems. While there has been extensive
previous work on optimizing this phase for textual search engines,
we are unaware of any published work that studies this problem
for instance retrieval, where both index and query data are quite
different from the distributions commonly found and exploited
in the textual case. Using data from a commercial large-scale
instance retrieval system, we address this challenge in three steps.
First, we analyze the quantitative properties of index structures
and queries in the system, and discuss how they differ from the
case of text retrieval. Second, we describe an optimized term-at-
a-time retrieval strategy that significantly outperforms baseline
term-at-a-time and document-at-a-time strategies, achieving up
to 66% speed-up over the most efficient baseline. Finally, we show
that due to the different properties of the data, several common
safe and unsafe early termination techniques from the literature
fail to provide any significant performance benefits.

Index Terms—inverted index; bag-of-visual-words; image re-
trieval; candidate selection; top-k search; cascade ranking

I. INTRODUCTION

The bag-of-words retrieval model represents text as a multi-

set—or a bag—of words. Documents and queries form sparse

vectors in the vocabulary space. An inverted index is a widely

used structure under such assumptions [1], [2], [3], [4]. Results

satisfying a search condition can be ranked based on a distance

score between a query and a document. Typically, due to

abundance of matching results, the user receives only a limited

number of top k documents. We refer to such approach as

top-k retrieval.

Modern search engines employ highly complex ranking

functions, such as those based on learning-to-rank models

[5], [6]. However, using them to rank matching documents is

infeasible due to time restrictions. A widely used solution is

∗Work performed during an internship at Blippar, Inc.

to build a cascade ranking architecture [7], [8], which breaks

down ranking into several cascades. The first cascade, also

known as the candidate selection phase, ranks all matching

documents using a very fast ranking function, and then selects

a limited number of highest scoring results as candidates.

The following cascades rerank smaller and smaller sets of

candidates using increasingly better, but also more expensive,

ranking functions. In this paper, we deal with the candidate

selection phase.

It has been shown that the bag-of-words model generalizes

beyond text search applications. In particular, Sivic and Zis-

serman showed how to extract visual words from video frames

and store them in an inverted index [9]. They used standard

text retrieval techniques to produce a set of candidates to be

reranked by more precise methods. Since then, similar bag-of-

visual-words (BoVW) approaches have been widely used for

first-phase candidate retrieval in image search engines [10],

[11], [12]. Nevertheless, previous work has focused on the

effectiveness rather than efficiency of this phase, leaving many

questions concerning performance of the BoVW model open.

State-of-the-art image detection methods employ convolu-

tional neural networks (CNN) to generate feature vectors used

to compare images in the database with incoming queries [13],

[14], [15], [16]. While this yields good results, calculating

distances between a query and a large number of images

is undesirable in a number of scenarios. It can be found

infeasible with respect to resource or latency requirements

[12]. Therefore, a bag-of-words method might be necessary

in the initial phase to limit the number of candidates that are

then reranked using more advanced features. Local BoVW

features can be retrieved from a CNN’s activations to achieve

this. Although CNNs have been shown to outperform SIFT

in many applications, many cases still merit using SIFT,

including retrieving: generic objects, gray-scale images, or

images having rich textures or intense color changes [17].

In this paper, we deal with the following augmented reality

scenario, which is currently deployed in a commercial setting:

We are given a set of carefully curated images representing

certain objects or categories of objects. A mobile app is

provided to the user who can continuously point their phone

camera at different objects and then receive information about

these objects in real time. This requires a system that, given a



picture from a camera, retrieves its best match. As the system

works in real time, it must have extremely low latencies. Thus,

pictures are submitted to an inverted index, which generates

candidates that are passed along to the next cascade, where

the top result is selected.

We experiment with a BoVW inverted index containing

images provided to us by Blippar1 (later referred to as the

BoVW index). These documents are a subset of images

deployed in the production environment. Our goal is finding

the most efficient first-phase query processing technique in the

scenario described above.

Our contributions are as follows:

1) We analyze the quantitative properties of the BoVW

index and associated queries, and compare them to those

of the Clueweb09-B [18] text collection, a standard

collection used for textual IR.

2) We compare the efficiency of the term-at-a-time and

document-at-a-time strategies in our image search set-

ting, and show the former to outperform the latter; we

further describe optimizations that significantly improve

the efficiency of the term-at-a-time approach.

3) We discuss the properties of both safe and unsafe early

termination techniques, and show that they perform

poorly on the BoVW index, or indices with similar

properties.

The remainder of the paper follows the following structure.

Section II provides background on inverted indices, retrieval

strategies, and content-based image retrieval. Section III de-

scribes our experimental setup. In Section IV, we analyze the

structure of the BoVW index and discuss differences between

text and image search. Section V compares document-at-a-

time and term-at-a-time strategies. In Section VI, we introduce

a set of term-at-a-time optimizations, which significantly im-

prove efficiency. In Section VII, we analyze the performance

of common early termination techniques on the BoVW index.

Finally, Section VIII provides a summary.

II. BACKGROUND AND RELATED WORK

This section outlines top-k retrieval methods and puts them

in the context of content-based instance retrieval (CBIR). We

refer to the survey by Zobel and Moffat [4] for a more ex-

haustive description of text retrieval structures and algorithms.

A. Inverted Index

An inverted index (or inverted file) indexes a collection

of documents, such as web pages, to enable fast document

retrieval. Every distinct term contributes a list of postings

(or pointers), each referring to a single document containing

the term. Along with a unique ID of the document, it may

contain (or point to) additional information, such as the term-

document frequency, a pre-computed impact score, or a list

of the occurrences within a document. Each posting list is

commonly sorted by increasing document IDs, for fast joining

of lists and effective compression. However, there are other

1http://blippar.com

ordering strategies to support a range of query processing

techniques. We discuss those in the following sections.

B. Bag-Of-Visual-Words Model

Although inverted indices primarily deal with text corpora,

they generalize to other applications, including CBIR. In this

section, we briefly describe how an inverted index can be used

in such a setting. We refer to the survey Zheng et al. [17] for

a more in-depth explanation.

The first step is to extract local features from an image,

using methods such as Scale-Invariant Feature Transform

(SIFT) or Convolutional Neural Networks (CNN). The former

detects a set of key points and their support regions in an

image [19]. Then, a local descriptor is identified for each key

point [20], [21], [22]. Both key points and their descriptors

are intended to be robust in the presence of most geometric

and photometric changes. Alternatively, the features can be

retrieved from activations of the fully connected layers or the

lower-level convolutional filters of a CNN. The latter are used

to detect local visual patterns, and are more robust to image

transformation [17], similar to the local invariant detectors

used in SIFT. Various CNN architectures have been used, such

as AlexNet [23], VGGNet [24], GoogleNet [25], and ResNet

[26].

Since the total number of distinct features might be too

large, they are quantized to a set of visual words (or code-

words) by identifying cluster centroids to generate the final

vocabulary. Each feature is assigned to one (hard assignment)

or several (soft assignment) codewords. Soft assignment has

been shown to improve retrieval effectiveness [27] but at the

same time increases the index size. Determining the size of

the vocabulary poses a challenge: a small vocabulary might

fail to distinguish between distant descriptors, while a large

one might generalize poorly. In consequence, the size of the

vocabulary varies between implementations and applications

[28], [29], [30].

The extracted codewords serve as a corpus for building an

index. Typically, queries consist of codewords extracted from

an input image by approximating its detected descriptors to the

closest word, or words if soft assignment is used for queries,

in the vocabulary. From that point forward, the search engine

exploits text retrieval techniques during the candidate selection

phase.

BoVW search can be used as a building block in many

applications, such as finding similar images, or recognizing

objects in images. The index we used in our work is a subset

of an index deployed as part of an augmented reality (AR)

system, where one of the subtasks is to recognize objects

in front of a camera, in order to then retrieve additional

information about these objects. This is achieved by querying

an inverted index to find candidate matches in a set of images

of known objects, followed by additional more specialized

retrieval and recognition systems. We note that Hu et al.

recently used a similar architecture for visual search in Bing

[12], where a set of inverted indices distributed over many



nodes reduces the size of the candidate set by a factor of

10,000.

C. Text Retrieval Strategies

We now describe common techniques for candidate selec-

tion in textual search engines. We focus on disjunctive queries,

as these are necessary in image search scenarios due to the fact

that a document rarely contains all query terms. We distinguish

two major groups of query processing approaches. Exhaustive

methods traverse all postings that satisfy the Boolean condition

(in our case, a disjunction). Early termination (or dynamic

pruning) techniques may choose to ignore some postings to

speed up processing. These further divide into safe and unsafe

methods. The former always return the same top-k results as

an exhaustive search on the same ranking function, while the

latter might yield different results.

The term-at-a-time (TAAT) strategy is arguably the most

straightforward. Each posting list is traversed separately to

accumulate scores for all documents, which determine the

top k results. This simple, sequential nature allows for highly

efficient implementations. On the other hand, accumulating all

partial scores requires time as well as significant memory for

score accumulators (which in turn might result in additional

costs due to cache misses, as the accumulators usually do not

fit in L1).

The document-at-a-time (DAAT) strategy [31] introduces

an orthogonal approach: All posting lists are sorted in order

of increasing document IDs and traversed simultaneously one

document at a time, as if merged together. Since all relevant

postings of one document are fully processed before those

of the next, score accumulators become unnecessary, and the

top-k documents can be collected in a small priority queue.

This technique works especially well for conjunctive queries,

where only documents containing all query terms need to be

evaluated.

The score-at-a-time (SAAT) strategy is facilitated by

impact-ordered indices, where postings are sorted by pre-

computed partial scores (impacts), which are quantized by

fixed-length integers. Thus, postings can be traversed in order

of decreasing scores. This is particularly important for a type

of safe early termination, which processes as many leading

postings as allowed by the allocated budget or a stopping

condition [32]. For simplicity, we refer to this technique as

SAAT, implicitly assuming early termination.

D. Safe Early Termination

In this section, we describe three well known safe early

termination approaches: Threshold Algorithm, WAND, and

Max-Score.

a) Threshold Algorithm: Introduced by Fagin et al. [33],

the Threshold Algorithm (TA) traverses all posting lists, sorted

in descending order by their impact scores, in parallel: at step

i, it considers the i-th posting from each list. The sum of

the impact scores of these postings is the current threshold

T , which either decreases or remains the same with each

step. Any newly discovered document is fully scored using

random access lookups into all of the lists. If at least k

documents scored so far have a score of T or higher, then

the algorithm can be terminated, as no new document can

make it into the top-k results. The algorithm is well studied

and analyzed in terms of query cost. It is known to work well

in some scenarios, but can perform poorly in others due to

the large number of random lookups. In particular, efficiency

significantly drops as the number of query terms increases.

b) WAND: This algorithm, as proposed by Broder et

al. [34], is based on a DAAT approach, and therefore keeps

pointers to the currently processed posting for every query

term. Additionally, the terms themselves are kept sorted by

their current document IDs. Each step starts by accumulating

the score upper bounds for the posting lists in order of

increasing IDs until their sum reaches the current threshold

T—the lowest score that can still possibly end up in the top-k

results. The last term in the sum is called the pivot term. If

all the terms up to the pivot point to the same document, we

calculate its score. Otherwise, we advance all pointers to the

pivot’s document (or to the next greater document ID existing

in that list), as no documents before that one can make it into

the top-k. We repeat these steps until all of the terms are fully

processed.

WAND improves upon DAAT by skipping documents that

are known to have a score below the threshold. If enough of

them exist, the processing can be sped up significantly. On the

other hand, WAND introduces additional overhead for sorting

terms and selecting the pivot, which can prove significant for

large numbers of terms.

Block-Max WAND (BMW) [35] is a generalization of

the WAND algorithm in which the score upper bounds are

considered per block of a posting list. Recent work has shown

that allowing variable length blocks can further improve query

efficiency [36].

c) Max-Score: The family of Max-Score algorithms [31]

relies on the score upper bounds for all query terms to partition

them into essential and non-essential terms: Given a list of

terms sorted by increasing upper bounds, the non-essential

terms are those comprising the longest prefix of that list such

that the sum of all lists’ upper bounds is less than T—the

current threshold for top-k results. As a consequence, no top-k

result can occur only in the non-essential lists. The Max-Score

approach comes in both DAAT and TAAT variants.

The DAAT version uses the above property of non-essential

lists as follows: Since any top-k document must occur in at

least one essential list, a DAAT union operation is performed

first only within essential lists. Once a document’s score for

essential terms is known, we calculate its overall upper bound

by adding all the non-essential score upper bounds. If it

exceeds T , then it potentially belongs to the top-k results, and

we must perform lookups in the non-essential lists to calculate

the actual full score of the document. Otherwise, we ignore

it and proceed to the next one. Every time T changes, we

update the essential and non-essential lists to reflect the new

threshold.



The TAAT variant simply processes terms—sorted by de-

creasing maximum score or by increasing posting list length,

depending on the implementation—until the remaining upper

bounds drop below T , which is increasing as we accumulate

postings. After that, we only need to accumulate the scores

of the documents that have already been scored. As with

the DAAT version, we can perform lookups to the remaining

lists utilizing block-skipping. Furthermore, after accumulating

a posting, we can remove its document from the list of

candidates if its score increased by the sum of the remaining

upper bounds is less than T .

E. Long Queries

The queries we encounter in this work are much longer than

those usually seen in text search engines. There has been some

amount of previous work on longer text queries. One line of

work has focused on longer queries issued by users to search

engines, and how such queries should be processed [37], [38],

[39], [40]. The focus in that work is on understanding and

exploiting the characteristics of user text queries, which rarely

have more than about 20 terms, and thus the conclusions

are not very relevant to our scenario of image search queries

derived from query images, where we have hundreds of query

terms.

Another line of work going back more than two decades

focuses on very long text queries that may derive from longer

topic descriptions used as queries, or from automatic query

expansion techniques, with evaluations taking place on older

TREC collections. In particular, Kaszkiel and Zobel [41]

showed that term-at-a-time processing is more efficient than

document-at-a-time for longer queries—though these are still

significantly shorter than our queries. Performance results for

queries with up to about 300 terms on older TREC collections

were for example reported by Ahn et al. [42] and Persin et

al. [43]. The latter propose a filtering algorithm working on a

frequency-ordered index that limits the number of accumulated

postings by over 80% with little decrease in accuracy. Even

though many improved early termination techniques have been

proposed since, including SAAT strategies on impact-ordered

indices [44], [45], we are unaware of any recent work that

evaluates them on such long queries.

F. Alternative Approaches

Content-based image retrieval bears a resemblance to near-

est neighbor search: based on visual features, we look for the

indexed image (or images) that matches the query as closely

as possible. Some algorithms based on indices such as k-d

trees [46] and R-trees [47] address the issue of finding the

nearest neighbors in an n-dimensional space. However, the

complexity of those depends on the number of dimensions,

and thus they perform poorly when n is large [48], [49], [50].

In fact, in practice it is quite difficult to obtain significant

performance improvements over a simple sequential scan in

the high-dimensional case [51], [52]. Since image retrieval is

a high-dimensional problem, these approaches are unlikely to

be efficient.

Fine-tuned single-pass convolutional neural networks reign

supreme among object recognition systems due to their pre-

cision [17]. However, they can prove inefficient or ineffective

for a large, generic domain [17], [12]. On the other hand, this

approach can be preferable for search in limited, specialized

domains. For example, Blippar implements a range of targeted

neural networks, such as cars, logos, or dog breeds recogni-

tion, among others. Here, a single shot detector [53] detects

categories and passes queries along to specialized engines, and

an inverted index is used whenever no specialized engine can

be selected by the detector.

III. DATA AND SETUP

Our collection consists of roughly 2.6 million images made

available to us by Blippar, which is a subset of the images

uploaded to their production database. We use the OpenCV

(opencv.org) implementation of SIFT [20] for key point and

descriptor detection. Query image descriptors are converted to

vocabulary codewords using an approximate k-nearest neigh-

bors algorithm [54]. Unless stated otherwise, we use hard

descriptor assignment.

When evaluating unsafe algorithms in Section VII, we

report N-S scores based on the UK Bench [55] collection,

a standard data set used for instance retrieval, which was

incorporated into the collection for evaluation purposes. This

collection consists of a set of photographs of real-life objects,

where each object is photographed four times from different

angles. The N-S score is the average number of correct, i.e.,

representing the queried object, images in the top 4 results

(thus the score always falls between 0 and 4). However,

since we want to evaluate the first-phase candidate retrieval

independently of the re-ranking phase, we report the results

assuming a perfect re-ranker that always puts the correct

images first, provided they are in the candidate set. Therefore

we count the number of the correct results in the top k = 30

documents.

In Section IV, we compare our collection to Clueweb09-B,

a standard textual data set used by the Information Retrieval

community. It contains roughly 50 million documents in

English retrieved by a web crawler. We assume BM25 scoring

for text retrieval.

Although many index compression methods exist [56],

we leave our index uncompressed. This decision is dictated

by a relatively small size (see Section IV), simplicity, and

speed requirements. The index stores document IDs in a

contiguous memory region for each list, along with another

region containing consecutive partial impact scores, acquired

from the visual processing of the indexed images (with tf-idf

type weights). Both IDs and scores are represented by 4-byte

integers. The the entire index is in main memory.

We ran our experiments on a server with an Intel Xeon E5-

2670 v2 CPU @ 2.50GHz. We executed queries sequentially

in a single thread. The latency is reported in milliseconds. We

exclude time of tasks common to all methods, such as query

parsing, fetching posting lists, and printing results.













[9] J. Sivic and A. Zisserman, “Video google: Efficient visual search of
videos,” in Toward Category-Level Object Recognition, 2006.

[10] R. Shekhar and C. V. Jawahar, “Word image retrieval using bag of visual
words,” in Proc. of the 10th IAPR Intl. Workshop on Document Analysis

Systems, 2012.

[11] J. Liu, “Image retrieval based on bag-of-words model,” arXiv preprint

arXiv:1304.5168, 2013.

[12] H. Hu, Y. Wang, L. Yang, P. Komlev, L. Huang, J. Huang, Y. Wu,
M. Merchant, A. Sacheti et al., “Web-scale responsive visual search at
Bing,” in Proc. of the 24th ACM SIGKDD Intln. Conf. on Knowledge

Discovery & Data Mining, 2018, pp. 359–367.

[13] K. Lin, J. Lu, C.-S. Chen, and J. Zhou, “Learning compact binary
descriptors with unsupervised deep neural networks,” in Proc. of the

IEEE Conf. on Computer Vision and Pattern Recognition, 2016.

[14] W.-L. Ku, H.-C. Chou, and W.-H. Peng, “Discriminatively-learned
global image representation using cnn as a local feature extractor for
image retrieval,” in Visual Communications and Image Processing, 2015.

[15] L. Gao, J. Song, F. Zou, D. Zhang, and J. Shao, “Scalable multimedia
retrieval by deep learning hashing with relative similarity learning,” in
Proc. of the 23rd ACM Intl. Conf. on Multimedia, 2015.

[16] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep
learning for content-based image retrieval: A comprehensive study,” in
Proc. of the 22nd ACM Intl. Conf. on Multimedia, 2014.

[17] L. Zheng, Y. Yang, and Q. Tian, “Sift meets cnn: A decade survey of
instance retrieval,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2017.

[18] J. Callan, M. Hoy, C. Yoo, and L. Zhao, “Clueweb09 data set,” 2009.
[Online]. Available: http://lemurproject.org/clueweb09/

[19] Y.-G. Jiang, C.-W. Ngo, and J. Yang, “Towards optimal bag-of-features
for object categorization and semantic video retrieval,” in Proc. of the

6th ACM international Conf. on Image and Video Retrieval, 2007.

[20] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. of the 7th IEEE Intl. Conf. on Computer Vision, 1999.

[21] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Proc. of the 9th European Conf. on Computer Vision, 2006.

[22] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern Recognition, 1996.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems 25, 2012.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. of the Conf. on Computer Vision and Pattern Recognition, 2015.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the Conf. on Computer Vision and Pattern

Recognition, 2016.

[27] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost
in quantization: Improving particular object retrieval in large scale
image databases,” in 2008 IEEE Conf. on Computer Vision and Pattern

Recognition, 2008.

[28] A. Mikulik, M. Perdoch, O. Chum, and J. Matas, “Learning vocabularies
over a fine quantization,” Intl. Journal of Computer Vision, 2013.

[29] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
2006 IEEE Computer Society Conf. on Computer Vision and Pattern

Recognition, 2006.

[30] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: An in-
depth study,” INRIA, Research Report RR-5737, 2005.

[31] H. Turtle and J. Flood, “Query evaluation: Strategies and optimizations,”
Information Processing & Management, 1995.

[32] V. N. Anh and A. Moffat, “Pruned query evaluation using pre-computed
impacts,” in Proc. of the 29th Ann. Intl. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2006.

[33] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” Journal of computer and system sciences, 2003.

[34] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien, “Efficient
query evaluation using a two-level retrieval process,” in Proc. of the 12th

Intl. Conf. on Information and Knowledge Mgmt., 2003.

[35] S. Ding and T. Suel, “Faster top-k document retrieval using block-max
indexes,” in Proc. of the 34th Ann. Intl. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2011.
[36] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini,

“Faster blockmax wand with variable-sized blocks,” in Proc. of the

40th Ann. Intl. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2017.
[37] M. Bendersky and W. B. Croft, “Analysis of long queries in a large

scale search log,” in Proc. of the 2009 Workshop on Web Search Click

Data, 2009.
[38] M. Gupta and M. Bendersky, “Information retrieval with verbose

queries,” Foundations and Trends in Information Retrieval, 2015.
[39] S. Huston and W. B. Croft, “Evaluating verbose query processing

techniques,” in Proc. of the 33rd Ann. Intl. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2010.
[40] J. Mackenzie, F. Scholer, and J. S. Culpepper, “Early termination

heuristics for score-at-a-time index traversal,” in Proc. of the 22nd

Australasian Document Computing Symposium, 2017.
[41] M. Kaszkiel and J. Zobel, “Term-ordered query evaluation versus

document-ordered query evaluation for large document databases,” in
Proc. of the 21th Ann. Intl. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1998.
[42] V. N. Anh, O. de Kretser, and A. Moffat, “Vector-space ranking with

effective early termination,” in Proc. of the 24th Ann. Intl. ACM SIGIR

Conf. on Research and Development in Information Retrieval, 2001.
[43] M. Persin, J. Zobel, and R. Sacks-Davis, “Filtered document retrieval

with frequency-sorted indexes,” Journal of the American Society for

Information Science, 1996.
[44] J. Lin and A. Trotman, “Anytime ranking for impact-ordered indexes,”

in Proc. of the 2015 Intl. Conf. on The Theory of Inf. Retrieval, 2015.
[45] J. Lin, M. Crane, A. Trotman, J. Callan, I. Chattopadhyaya, J. Foley,

G. Ingersoll, C. Macdonald, and S. Vigna, “Toward reproducible base-
lines: The open-source ir reproducibility challenge,” in Proc. of the 38th

European Conf. on IR Research, 2016.
[46] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Communications of the ACM, 1975.
[47] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”

in Proc. of the 1995 ACM Intl. Conf. On Management of Data, 1995.
[48] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is nearest

neighbor meaningful?” in Proc. of the 7th Intl. Conf. on Database

Theory, 1999.
[49] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the nearest

neighbor in high dimensional spaces?” in Proc. of the 26th Intl. Conf.

on Very Large Databases, 2000.
[50] D. Tunkelang, “Making the nearest neighbor meaningful,” in SIAM

Workshop on Clustering High Dimensional Data and its Applications,
2002.

[51] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in Proc. of the 24th Very Large Data Bases Conf., 1998.

[52] U. Shaft, J. Goldstein, and K. Beyer, “Nearest neighbor query perfor-
mance for unstable distributions,” Department of Computer Science,
University of Wisconsin, Tech. Rep., 1998.

[53] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Proc. of the 14th

European Conf. on Computer Vision, 2016.
[54] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object

retrieval with large vocabularies and fast spatial matching,” in Proc. of

2007 IEEE Conf. on Computer Vision and Pattern Recognition, 2007.
[55] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary

tree,” in 2006 IEEE Computer Society Conf. on Computer Vision and

Pattern Recognition, 2006.
[56] I. H. Witten, T. C. Bell, and A. Moffat, Managing gigabytes: compress-

ing and indexing documents and images. Morgan Kaufmann, 1994.
[57] X.-F. Jia, A. Trotman, and R. OKeefe, “Efficient accumulator ini-

tialisation,” in Proc. of the 15th Australasian Document Computing

Symposium, 2010.
[58] T. Strohman and W. B. Croft, “Efficient document retrieval in main

memory,” in Proc. of the 30th Ann. Intl. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2007.
[59] M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman, “A

comparison of document-at-a-time and score-at-a-time query evalua-
tion,” in Proc. of the 10th ACM Intl. Conf. on Web Search and Data

Mining, 2017.


