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Abstract—Static index pruning techniques remove postings
from inverted index structures in order to decrease index size
and query processing cost, while minimizing the resulting loss
in result quality. A number of authors have proposed pruning
techniques that use basic properties of postings as well as results
of past queries to decide what postings should be kept. However,
many open questions remain, and our goal is to address some
of them using a machine learning based approach that tries to
predict the usefulness of a posting. In this paper, we explore
the following questions: (1) How much does an approach that
learns from a rich set of features outperform previous work that
uses heuristic approaches or just a few features? (2) What is
the relationship between index size and query processing speed
in static index pruning? We show that an approach that prunes
postings using a rich set of features including post-hits and doc-
hits can significantly outperform previous approaches, and that
there is a very pronounced trade-off between index size and
query processing speed for static index pruning that has not
been previously explored.

Index Terms—static index pruning, web search engine, search
engine performance, search optimization

I. INTRODUCTION

Large search engines receive billions of queries per day

that are evaluated over many billions of documents, leading

to significant hardware and energy costs for executing queries.

Current engines are based on inverted index structures, and

storing and accessing these indexes accounts for a significant

fraction of the overall query processing costs. This has moti-

vated a lot of research on improving the efficiency of inverted

indexes. In this paper, we focus on one of many proposed

approaches, called static index pruning.

The basic idea in static index pruning is simple: remove

index entries (postings) from the inverted index that are

unlikely to be useful, thus obtaining a smaller index that can

still achieve a result quality close to that of a full index. A

smaller index then implies less memory needed to hold the

index in main memory, and faster traversal of the now much

shorter inverted lists for query terms. As argued, e.g., in [15],

even with billions of queries per day, the vast majority of index

postings never lead to a top-10 result in a given month; thus,

many postings could potentially be pruned if we can predict

which postings are unlikely to be useful for real user queries.

Static index pruning was first proposed in [14], and since

then a number of authors have proposed methods for pruning

[1], [5], [6], [8]–[15], [17], [18], [21], [24]. This includes

various heuristics that use basic properties of the postings or

documents, approaches that use observations from past queries

to identify particularly useful postings or documents [1], [4],

plus a few other methods. While overall a lot of progress

has been made, with significant improvements in the trade-

off between index size and result quality, there are still many

open problems and possibilities for improvements. Our goal

here is to address several of these issues.

Our main contributions are as follows:

• We approach pruning as a learning problem, where the

goal is to predict for each posting how likely it is to

lead to top results on future queries. This allows us to

combine many basic and advanced features for improved

pruning decisions. We show that by including features

based on query language models and based on past

occurrences of postings and documents in top results, we

can significantly outperform previous work that mostly

uses heuristics based on only one or two features.

• We study the problem of how to prune an index to mini-

mize query processing cost. Previous work has focused on

minimizing index size, with the expectation that a smaller

index also reduces query processing cost. We study how

to optimize for speed using an approach based on linear

programming, and explore the trade-off between size and

speed. Our experimental results show that focusing only

on index size often gives only limited reductions in query

processing costs, but that query processing costs can be

significantly reduced if we allow a moderate increase in

index size over the minimum size case.

This paper is organized as follows. Section II gives some

technical background and discusses related work. Section III

describes the basic setup for our approach. Section IV details

our experimental setup, and section V explains the results of

our work. We present our closing remarks in Section VI.

II. Background and Related Work

A. Inverted Indexes

Suppose we have a set D of n documents d0, d1, . . . dn−1

where each di is a sequence of words (terms). Then an

inverted index for D contains one inverted list Lt for each



distinct term t that occurs anywhere in D. Each inverted list

Lt is a sequence of postings, where each posting p contains

information about the occurrences of term t in some document

di.

We assume that postings are of the form (d, f), where d

is a document ID, and f is the frequency of the term in that

document. However, the approach does not require this exact

format, and we could have additional data such as impact

scores or position data in the postings.

We also assume that queries are run as disjunctive top-k

queries, where k is typically between 10 and 1000. While

the basic approach can be also applied to conjunctive queries,

some changes would be needed to get best results. (In particu-

lar, the query cost model would have to be changed to account

for the conjunctive case.)

We run our experiments using BM25 as a ranking function,

other functions could also be used. An end-to-end evaluation

of static pruning under complex ranking functions (with top-k

disjunction as an initial filter) is deferred to future work.

B. Previous Work on Static Index Pruning

Static index pruning was first proposed in [14] in 2001,

and since then a number of authors have studied the problem

[1], [3], [5], [6], [8]–[13], [15], [17], [18], [21], [22], [24].

The focus of previous work is on achieving the best possible

result quality given a limit on index size. While some papers

also report running times for queries on the pruned index, they

do not attempt to directly model and optimize for speed.

Previous work can be divided into several groups. Posting-

oriented pruning techniques decide whether to keep individual

postings, document-oriented pruning techniques keep or delete

complete documents, and list-oriented pruning techniques keep

or remove entire inverted lists. We can also group methods by

their approach as follows:

Impact-Based Methods: Several papers consider posting

pruning rules based on the impact or within-list rank of a

posting according to a given ranking function, e.g., BM25 or a

Cosine measure. Rules are designed to preserve as many of the

top results obtained by that ranking function on the full index.

Carmel et al. proposed two methods, UP, which uses a global

cut-off on the impact scores of postings, and TCP, which

selects the highest impact postings from each inverted list.

Büttcher et al. [9] also evaluated TCP as part of TREC 2006,

with promising results. Work by Chen and Lee [10] revisited

the UP method, providing a theoretical foundation. Other

work by Chen et al. [11] improves on [10] by refining the

mathematical foundation and optimization objective. Nguyen

[18] showed how to improve pruning by combining features

to determine which postings should be kept.

Retrieval Quality-Oriented Methods: Another set of ap-

proaches try to select postings such that retrieval quality,

measured in terms of measures such as P@10 or MAP, is

optimized. An example is the work by Büttcher and Clarke

[8], which selects postings based on KL-divergence, where

the postings are selected based on their likelihood to result

in the document being highly relevant under a query. Other

approaches by Blanco and Barreiro [6], de Moura et al.,

and Thota and Carterette [21] use language models to select

postings. Yet other approaches try to remove entire documents

[22], [24] or inverted lists [5], [20] that are unlikely to be

useful from the index.

Using Query Traces: Another approach is to use past

queries to decide which postings should be kept. Work by

Lam et al. [17] combines the impact-based approach in [14]

with a query-based approach that looks at how often a posting

appears in the result set. Altingovde et al. [1] introduce

an approach called QueryView (QV) that marks and keeps

postings that were part of top results in past queries. Another

version combines this rule with the TCP method in [14]. Work

by Anagnostopoulos et al. [3] applies this idea to documents,

by keeping all postings in documents that were often returned

as top results in the past.

Hybrid Methods: Recent work by Jiang et al. [15] imple-

ments a posting selection model, UPP, based on combinations

of language modeling, impact-based models, and query-views

to derive the promise of a posting as the basis for selection.

UPP was shown to outperform previous methods.

We compare our results in Section IV to TCP, UP, UPP.

C. Related Work

There are many techniques for improving the performance

of query processing algorithms on inverted indexes, including

early termination algorithms (also called dynamic pruning)

that choose which postings to consider at query time, index

tiering techniques, index compression methods, and index

reordering approaches. Static index pruning is an example of

an unsafe early termination technique, i.e., a technique that

does not guarantee to return the same results as an exhaustive

algorithm. Current large search engines commonly apply a

number of such techniques in conjunction.

Among these techniques, index tiering may be the most

closely related. In this technique, the index is divided into two

or more subsets called tiers, and queries are first routed to the

first tier, and only evaluated on further tiers if results from

lower tiers are considered insufficient. Index pruning could be

considered as a special case of tiering where we only keep the

first tier and queries are never sent to additional tiers.

Finally, there has been some amount of recent work on

predicting query execution costs that is relevant to our work.

We note here that complex models such as those in [23]

would be too unwieldy to use in making pruning decisions. For

disjunctive queries, which are the focus in this paper, a simple

model uses the sum of the inverted list lengths of the query

terms as an estimate of query cost. We use this model, which

allows us to assign an expected query processing cost to each

posting that is determined by the query language model. We

note that this model primarily applies to a scenario where the

index is kept completely in memory, or where enough index

data is cached so that disk access is not the main performance

bottleneck.



III. Problem Definition and Approach

A. Problem Definition

Static index pruning aims to reduce index size by removing

postings that are unlikely to lead to top results for likely

queries. We now formalize this in several definitions that

capture the goals of small index size, fast query processing

speed, and the trade-off between size and speed.

Setup: We assume that we have a full inverted index I that

we need to prune, and a query distribution Q that models how

likely a query is to occur in the future. In practice, during

the pruning process, we only have an estimate of Q based

on a language model built from a set of past queries, and

then evaluate based on a distinct set of testing queries. In

fact, our approach only uses unigram estimates during pruning:

for any possible query term t we need an estimate of the

likelihood p(t) of t occurring in a random query. Similarly,

we need to model index size, query processing cost, and result

quality, as discussed further below. Given this, we now define

the following problems:

Problem 1 – Optimizing Quality Given Index Size: Given

a bound S on index size, the goal is to produce a pruned index

I ′ of size at most S that maximizes the average quality of

queries under distribution Q.

Problem 2 – Trading Off Size and Query Cost: Given a

bound S on index size and a bound R on result quality, the

goal is to produce a pruned index I ′ that satisfies these bounds

while minimizing average query processing cost.

A related problem we have studied but do not address in

this paper is the following: given a bound C on query cost,

produce a pruned index I ′ that maximizes the average quality

while achieving an average query processing cost of at most

C. The size and cost models introduced in our work can be

easily adjusted to solving this problem as well. We leave the

experimentation to future work.

The above definitions require some way to model query

probabilities, index size, query cost, and result quality. These

models will be defined next.

B. Learning to Minimize Index Size

We start with Problem 1, where we optimize result quality

given a bound on index size. The idea is simple: during

pruning we optimize for a simple model of result quality,

the expected number of top-k postings that are kept in the

pruned index under a random query. We then use more realistic

models of result quality, such as the number of top-k results

preserved, and standard information retrieval measures such as

P@10 and MAP, to evaluate the pruned index. We note that

there is no guarantee that maximizing the number of preserved

top-k postings also maximizes these other measures; however,

we do not know how to directly optimize for these measures.

We model index size as just the number of postings. It would

be difficult to model the exact size increase when including a

posting in the pruned index under state-of-the-art compression

methods, especially since that increase depends on how many

other postings from the same inverted list are kept.

Formally, we say that a posting p = (d, f) is part of a

top-k result for a query q if document d is among the top-

k results for q. We define Pr[p ∈ topk] as the probability

that p is part of a top-k result for q, and Pr[p ∈ q] as the

probability that the term associated with posting p occurs in

q, given a random query q from the query distribution. Note

that of course Pr[p ∈ topk] = Pr[p ∈ q] ·Pr[p ∈ topk|p ∈ q].
Our main goal is then to get a good estimate of Pr[p ∈ topk].

Approach

The first step is to select a set of features that are likely to

be useful for predicting Pr[p ∈ topk]. Before giving the list

of all the features, we give a short description of the more

involved and interesting features that we used:

• Pr[p ∈ q]: We build a language model on a subset of a

few ten thousand queries, which allows us to get reason-

able estimates of the probability of a term occurring in

a random query. (This subset is of course disjoint from

the queries used in the evaluation.) With the exception of

[15], no previous work seems to have used this feature

for pruning. Using this, we define an additional feature

for each document d, called xdoc, as
∑

p∈d Pr[p ∈ q].
This feature measures how likely it is that a document is

at least marginally relevant to any of the query terms.

• Doc-hit features: Work in [4] used a set of training

queries and then counted how often each document was

returned in the top-m results. A greedy pruning heuristic

then kept the documents with the highest counts or, as we

say, the highest number of hits. One problem is that it is

not clear how to choose m – it is not clear that m should

be the same as the number k used when we evaluate top-

k result quality. In fact, a larger m will give us more data

and thus coverage of more documents, and we observed

that if a document has occurred before in, say, the top-

100, this actually increases its chance to occur in the

top-10 in the future. Thus we may choose m much larger

than k. However, for such large m we need to suitably

weigh hit counts, since a past hit at a rank around 1000
is not as predictive as one in the top-10. Our solution

is to partition the ranks from 1 to m into a number of

ranges, and collect hit counts separately for each range,

to be used as features for the learner.

• Post-hit features: Work by [1], [2] showed how to use

post-hits, i.e., past cases where an individual posting

was part of a top-m result. The main problem with this

approach, however, is sparsity: large indexes have billions

of postings, and for each past query, only a few postings

are part of the top results. For example, if the average

query has 3 terms and we consider top-10 post-hits, then

at most 30 postings will see their counts increased. We

address this by choosing a large m, keeping separate

counts for different rank ranges, and then relying on the

machine learner to figure out how to weigh these features

versus other features.

A complete table of the features we used for learning

Pr[p ∈ topk] is given in Table I.



TABLE I: Learning to Prune Feature List

Family Feature Description

term tf term frequency in the corpus
tl term list size
p bm25 partial BM25 score
Pr[p ∈ q] probability of posting in a random query

document docSize # words in document
docTerms # unique terms in document
xdoc promise of document

dochits bins 1 - 17 dochit ranges, quantized by rank
top10 top10 dochits from language model queries
top1k top1k dochits from language model queries

posthits bins 1 - 17 posthit ranges, quantized by rank
top10 top10 posthits from language model queries
top1k top1k posthits from language model queries

Another problem in generating post-hit features is that the

Clueweb09 data set only comes with a few hundred thousand

queries, not enough to actually hit most of postings of the

index. Previous work using hits relied on the AOL query trace,

but we felt that it was not appropriate to use this set, which

also does not really “fit” with the Clueweb09 data anyway.

Instead, we used the language model created for queries, as

described in connection with the Pr[p ∈ q] feature, to generate

millions of artificial queries, and then ran these queries. (Since

our evaluation queries are disjoint from the queries used to

train the model, this is acceptable.) Our results show that this

actually works pretty well, though one could argue that a larger

real query trace might do even better.

We create labeled training data by generating features for

a subset of postings by running another set of queries on the

whole index, and checking how often the postings are in top-

k results. Finally, the trained estimator is run on all postings,

and the highest scoring postings kept in the index.

Given this model, it is straightforward to generate a selec-

tion algorithm to maximize quality: greedily select postings

for the pruned index based on Pr[p ∈ topk], up to a given

bound on size S.

More details, e.g., on the number of training queries and

machine-learning tools used, and the method used to generate

the hit ranges are provided in Section IV.

C. Exploring the Size-Speed Trade-Off

Next, we address Problem 2, how to trade size versus

execution cost in static index pruning. To do so, we first need

to discuss a suitable model for query execution cost that can

be used for pruning decisions.

Cost Model

One model that has been used in a number of previous

studies models the cost of a disjunctive query as the sum of the

lengths of the inverted lists of the query terms. The advantage

of this model is that it allows us to assign a query execution

cost to each individual posting: such a posting has an expected

execution cost per query of Pr[p ∈ q], since it causes one unit

of cost whenever its term is part of an incoming query!

In summary, including a posting p in the pruned index in-

creases query execution cost by Pr[p ∈ q], index size by one,

and result quality by an amount proportional to Pr[p ∈ topk]
(where both Pr[p ∈ q] and Pr[p ∈ topk] are estimations based

on the language model and the machine learning approach

in the previous subsection). When evaluating the proposed

pruned index, we will of course use not just estimated running

times, but also wall clock times, and quality measures such as

P@10 and MAP.

Size-Speed Trade-Off

Given an upper bound S on total size and a lower bound R

on result quality, we wish to minimize query processing costs.

This is in fact a generalized version of a Knapsack problem

where each item has a cost and a benefit, and we need to select

at most S items with a total benefit at least R such that total

cost is minimized.

While a precise solution to this problem is difficult, we can

solve a fractional version (where we can choose a fraction of a

posting to be in the pruned index) using the following Linear

Programming relaxation:

min
∑

i

xi · ci

where
∑

i xi · bi ≥ R,
∑

xi ≤ S, and for all i, 0 ≤ xi ≤ 1.

Here, i ranges over all postings, and ci and bi are the cost

and benefit of the ith posting. The resulting solution (the xi’s)

tells us what fraction of each posting is kept in the pruned

index. We note that such a fractional solution can be easily

transformed into an integer solution (where a posting is either

in or out of the pruned index) via randomized rounding [19],

by randomly including each posting in the index or not with

probability xi. The expected benefit, cost, and size of this

solution would be the same as for the fractional solution,

and given the large number of postings the solution would

be almost guaranteed to be very close to the expected value.

There is however one major problem with this approach,

the size of the LP, as we have one variable for each posting in

the index. State-of-the-art LP solvers can deal with millions

of variables, but not with the billions required here. Luckily,

there is a fairly easy solution. We simply quantize the benefit

and cost values into a smaller value range. Thus, we quantize

benefit and cost each into only m = 1000 distinct values using

a simple form of logarithmic quantization. As a result, each

posting belongs to one of m2 classes based on benefit and

cost. The resulting LP now has only m2 variables xi, where

0 ≤ xi ≤ ni with ni is the number of postings in class i.

In summary, we estimate costs and benefits of each posting

as before using an ML approach, quantize these into a smaller

range of values, solve the resulting LP relaxation using a

state-of-the-art LP solver, and then create a feasible solution

by rounding the xi to integer values. We note that there are

some possible pitfalls with approaches that run an optimization

method on top of machine-learned estimates. First, the actual

quality achieved depends on the quality of these estimates, and

moreover we would prefer these estimates to be unbiased over



the whole range of values. Second, when picking postings for

the pruned index based on an estimate, we run into a form of

selection bias where we are more likely to pick items whose

benefit we overestimate; this leads to a pruned index whose

overall quality is lower than what one would expect from

naively adding up the estimated contributions of the selected

postings. In fact, as we will see later, these problems show up

in some of our data points.

IV. Experimental Setup

A. Corpus, Parsing and Indexing

We run all our experiments on the ClueWeb-09 Category B

English text collection. We use a customized version of MG4J

[7] as our search engine, using defaults parameters, no stem-

ming, no stop word removal and no positional information.

The relevant statistics for our initial baseline index are shown

on table II.

TABLE II: ClueWeb 09 Cat B Text - Full Index

documents 5002579
terms 90382443
postings 16748354659
size on disk 26.2Gb

B. Query Log

We collected 165k queries from the TREC1 01-09 and 2002-

2009 Adhoc, Terabyte and Web tracks for our work. The

queries were then randomly split into 4 disjoint sets. We also

have a set of 10M queries derived from the language model,

which we explain in the next section. The final collection of

query sets is shown in table III.

TABLE III: Query Log - Set partitioning

100k for language modeling
60k for hits generation
5k for evaluation queries
TREC-2009 Web-track topics for relevance measurements

10M for feature generation

C. Language Model

We used the OpenGrm NGram2 toolkit to build a 5-gram

language model from our 100K query set. We modify the

model by adding 5k randomly sampled pages from the CW09B

corpus, at an interpolation factor of 85% (query set) + 15%

(clueweb corpus).

We use the language model in two ways:

• We use the 5-gram model to generate a set of 10 million

queries. We use these to create document and postings

hits to use as a features in our machine learning.

• We use the model’s unigram probability as the probability

Pr[p ∈ q], which forms the basis of our cost model.

1https://trec.nist.gov
2http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary

D. Feature Engineering

Our features were introduced in section III-B. In this

section, we elaborate on how we generate the hits features.

Hit Features

We ran 2M randomly sampled queries, from the 10M query

set created by our language model, through the search engine,

and captured the first 1000 results for both document and

postings. For each document and posting, we classify the hits

into one of 17 bins as shown in table IV. The document and

posting bins become features in our machine learning.

TABLE IV: Hits - binning/quantizing

result rank bin # (hits)

1...10 1...10 (one-to-one mapping)
11...20 11
21...40 12
41...80 13
81...160 14
161...320 15
321...640 16
641...1000 17

We evaluated the hits model quality, using MAP and P@10,

at several sizes of between 400k and 2M queries. Each

incremental size in query set showed an increase in model

quality on those two metrics. We chose 2M queries as a trade-

off between feature generation efficiency and quality. As noted

elsewhere, access to a large corpus of real-world queries may

also produce a better model.

Training Set

We ran our 60k query set on the full index and collected

all postings that are in the first 1000 results of each query.

This gives us a collection of several million postings as our

training set.

During querying, we also collect the number of times each

posting is in the top10 result of a query. This top10 count

becomes the label for our supervised machine learning.

E. Learning to Prune : Pr[p ∈ topk]

We used a random forest tree regression algorithm to learn

Pr[p ∈ topk]. We set the parameters of our learner to gradient

boosting, 1500 trees, 1000-bin quantization, learning rate of

0.03, feature fraction of 0.8, and L2 minimization as the

objective. We left all other parameters at their default values.

Our ML tool is the Microsoft LighGBM library [16].

We run the ML predictor generated by our model for each

posting in the full index, and append the predicted top-k value,

normalized as a probability, back into the index. Note we

could also use the predicted top-k count for pruning decisions,

depending on the problem we are solving. We use the predicted

probability as our pruning selector during in our solution to

Problem 1.

We note that generating features for each posting in the

index is computationally expensive, but easily parallelized, and

in fact we perform this step in a Hadoop cluster.



F. Optimizing for Cost (MLP-CO)

We quantize all posting’s benefit b, and cost c, modeled

by Pr[p ∈ topk] and Pr[p ∈ q] respectively, into a k × k

table using a simple logarithmic quantization. We use a cell’s

coordinate as the posting’s class, so that each posting maps to

exactly one of k2 cells.

The cell’s value is a tuple (K,B,C), where K is the # of

postings in cell, B is the cell’s benefit, and C the cell’s cost,

computed as the average value of the benefits and costs of the

postings in the cell.

We formulate our linear programming equations as:

Objective : min
k∑

i=1

(xi · Ci)

Constraints :

k∑

i=1

(xi ·Bi) ≥ TotalBenefit

k∑

i=1

xi ≥ PrunedSize

k∑

i=1

xi ≤ MaxSize

0 ≥ xi ≤ Ki

where Bi is the cell’s benefit, Ci the cell’s cost, and Ki is the

number of postings that mapped to the cell. In our work, we

set k = 1000.

We can select a desired pruned size, say 5%, and incre-

mentally relax the MaxSize constraint. The LP solver will

solve for the set of xi variables, and our pruner uses the given

solution to select ceiling(xi) number of postings of class i.

We call this algorithm the Machine Learned Pruning - Cost

Optimized model (MLP-CO).

G. Computing Resources, Software and Datasets

The hardware environment used for this work consists of

two Linux machines, each with 64Gb of RAM and 8Tb of

hard disk, and a Hadoop cluster with a computational capacity

of 1088 cores, 3TB of RAM, and 128Tb of HDFS storage.

Source code, datasets, query logs and global ordering data

are available from the authors upon request.

V. Experimental Results

We used the following metrics as our measures of quality:

P@10, P@100, P@1K, MAP , PK@10, and RK@10. We

define PK@10, and RK@10 as the percentage of postings and

results, respectively, retained in the pruned index that were also

part of the top-k results against the full index, when issuing

the 5K held out queries. All relevance metrics are computed

using the TREC 2009 Web track relevance topics.

A. Machine Learned Static Pruning, MLP

As noted earlier, MLP is designed to maximize quality

metrics, with the implied assumption that a smaller index leads

to lower processing costs.

Table V lists the results of MLP at the very high pruning

ratios that are the subject of this study. Our results show that

an ML approach can be effective at these ratios. We are not

aware of other published work targeting such high pruning

ratios. Relevance

TABLE V: Machine Learned Static Pruning (MLP) Metrics

Size RK@10 PK@10 P@10 P@100 P@1000 MAP

100% 1 1 0.2944 0.1880 0.0397 0.1319

1% 0.6850 0.6850 0.2306 0.1335 0.0293 0.0868
2% 0.7975 0.7980 0.2572 0.1517 0.0324 0.1015
3% 0.8505 0.8510 0.2701 0.1592 0.0342 0.1078
4% 0.8815 0.8720 0.2758 0.1674 0.0353 0.1130
5% 0.8965 0.9329 0.2747 0.1707 0.0360 0.1152

10% 0.9380 0.9525 0.2840 0.1774 0.0377 0.1199
15% 0.9595 0.9774 0.2862 0.1810 0.0384 0.1236
20% 0.9665 0.9875 0.2888 0.1812 0.0389 0.1259
25% 0.9770 0.9876 0.2909 0.1812 0.0389 0.1267
30% 0.9815 0.9926 0.2919 0.1831 0.0392 0.1282

Figure 1 compares MLP against previous work: TCP and

UP [14], and UPP [15]. Due to the computational expense of

computing previous work, we limit the comparison to a mini-

mum of 90% pruning ratio (our experiment was designed for

parallel computation, and allows for more experimentation).

Our results show that MLP can outperform previous meth-

ods, while significantly increasing the number of relevant

postings and documents retained in a pruned index. This is

as expected since we are learning to maximize the number of

top-k items retained the pruned index.

B. Size/Speed Trade-Offs

We selected 5%, 15% and 25% pruned index sizes as the

starting point for our speed optimizations. The results of our

experiments are shown in Figure 2 and Table VI. Because

MLP is a greedy algorithm, it allows for the possibility that

other posting combinations exist that can provide the same

or better benefit but at a lower cost than one that has been

selected by MLP, and in fact MLP-CO is able to optimize

for speed at the same original size, with no degradation in

quality; e.g. MLP 5% and MLP-CO 5%. This effect is more

pronounced at lower prune ratios (higher index sizes).

We also note that quality starts to break down after several

step increases, e.g. the 5.7% size level for the 5% pruned

size. We believe there is a form of selection bias effect from

our algorithm, as previously noted: that as we grow the index

by adding less costly but also less beneficial postings, our

ML method might be overestimating the real benefit of the

postings at the lower end of the benefit ranges - that our model

is not a fully unbiased estimate of Pr[p ∈ topk], and that

it exaggerates the usefulness of relatively poor postings. We

leave the exploration of this effect to future work.

VI. Concluding Remarks

In this paper, we proposed a machine-learning approach for

static index pruning based on multiple features that is shown

to outperform previous methods. Using this approach, we then
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Fig. 1: Quality metrics for MLP and previous-work static pruning models. Queried using disjunctive queries.
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Fig. 2: MLP-CO Speed/Size trade-off at several base pruned sizes. Run as disjunctive queries, on a single threaded, single

core computer.

explored the trade-off between pruned index size and query

processing cost using an LP formulation.

Our results also show how a pruned index that is optimized

for size can be made to run substantially faster by allowing a

marginally larger index that achieves the same result quality

with significantly smaller query costs, sometimes by a factor

of 2 to 5.

There are several unresolved questions and new open prob-

lems that arise from our work, as follows:

• A More Robust Trade-Off: The quality-speed trade-off

eventually breaks down. We are currently working on

changes in our ML setup that we hope will address this

issue.

• Complex Rankers: Simple rankers such as BM25 are

used to generate an initial set of candidate results that are

then re-ranked by a more complex ranker. An interesting

open problem is how to build pruned indexes that perform

well for the task of candidate generation for the re-

ranking phase.
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[2] I. S. Altingovde, R. Ozcan, and Ö. Ulusoy, “A Practitioner’s Guide for
Static Index Pruning,” in Advances in Information Retrieval, 2009, pp.
675–679.

[3] A. Anagnostopoulos, L. Becchetti, I. Mele, S. Leonardi, and
P. Sankowski, “Stochastic Query Covering,” in Proc. 4th ACM Int. Conf.

on Web Search and Data Mining, 2011.
[4] A. Anagnostopoulos, L. Becchetti, I. Bordino, S. Leonardi, I. Mele,

and P. Sankowski, “Stochastic Query Covering for Fast Approximate
Document Retrieval,” ACM Trans. Information Systems, vol. 33, no. 3,
pp. 11:1–11:35, Feb. 2015.

[5] R. Blanco and A. Barreiro, “Static Pruning of Terms in Inverted Files,”
in Proc. of the 29th European Conf. on IR Research, 2007, pp. 64–75.

[6] R. Blanco and A. Barreiro, “Probabilistic Static Pruning of Inverted
Files,” ACM Transactions on Information Systems, vol. 28, 2010.



TABLE VI: MLP and MLP-CO static pruning results. The area where quality starts to decline is shown on red (lighter color

on b/w). The best quality results are in bold. Speed measured on a single-threaded, single processor environment

min size max size model speed postings RK@10 PK@10 P@10 P@100 P@1000 MAP
% % ms/query scored/query

100 100 baseline 1405.80 15,552,973 1.0000 1.0000 0.2944 0.1880 0.0397 0.1319

5 5.0 MLP 430.60 3,708,027 0.8965 0.9329 0.2747 0.1707 0.0360 0.1152
5 5.0 MPL-CO 417.16 3,640,072 0.8980 0.9329 0.2753 0.1708 0.0360 0.1152
5 5.1 MLP-CO 204.61 1,382,320 0.9035 0.9228 0.2768 0.1731 0.0312 0.1166
5 5.3 MLP-CO 120.29 661,134 0.9145 0.9105 0.2790 0.1727 0.0368 0.1164
5 5.5 MLP-CO 97.39 456,832 0.9110 0.9001 0.2781 0.1719 0.0368 0.1164
5 5.7 MLP-CO 84.42 346,555 0.9025 0.8896 0.2821 0.1713 0.0350 0.1158
5 5.9 MLP-CO 78.75 281,108 0.8940 0.8833 0.2796 0.1698 0.0362 0.1145
5 6.0 MLP-CO 72.61 256,335 0.8840 0.8786 0.2750 0.1687 0.0359 0.1134
5 7.0 MLP-CO 54.64 139,973 0.7750 0.8654 0.2530 0.1520 0.0332 0.1024
5 8.0 MLP-CO 48.30 103,752 0.6800 0.7616 0.2247 0.1375 0.0320 0.0910
5 10.0 MLP-CO 44.41 78,956 0.6080 0.7072 0.1995 0.1326 0.0312 0.0871

15 15.0 MLP 939.98 8,243,194 0.9595 0.9774 0.2862 0.1810 0.0384 0.1236
15 15.0 MPL-CO 868.11 7,992,232 0.9595 0.9774 0.2862 0.1810 0.0384 0.1237
15 15.1 MLP-CO 771.39 6,463,987 0.9590 0.9774 0.2857 0.1812 0.0385 0.1240
15 15.5 MLP-CO 537.15 3,969,644 0.9595 0.9726 0.2852 0.1812 0.0387 0.1245
15 16.0 MLP-CO 368.68 2,409,762 0.9625 0.9577 0.2888 0.1816 0.0389 0.1255
15 17.0 MLP-CO 259.86 1,669,210 0.9725 0.9516 0.2904 0.1816 0.0386 0.1258
15 18.0 MLP-CO 216.68 1,322,280 0.9675 0.9304 0.2899 0.1794 0.0386 0.1259
15 20.0 MLP-CO 186.21 974,019 0.9520 0.9195 0.2899 0.1772 0.0386 0.1249
15 25.0 MLP-CO 120.80 699,919 0.9175 0.9251 0.2828 0.1730 0.0376 0.1198

25 25.0 MLP 1023.92 10,998,628 0.9770 0.9876 0.2909 0.1812 0.0389 0.1267
25 25.0 MPL-CO 971.61 10,511,112 0.9770 0.9876 0.2914 0.1810 0.0389 0.1267
25 25.1 MLP-CO 920.53 9,687,611 0.9770 0.9875 0.2914 0.1813 0.0390 0.1270
25 25.5 MLP-CO 762.58 7,939,274 0.9805 0.9880 0.2914 0.1819 0.0391 0.1276
25 26.0 MLP-CO 677.71 6,472,689 0.9805 0.9811 0.2914 0.1823 0.0391 0.1278
25 28.0 MLP-CO 401.99 3,516,511 0.9830 0.9690 0.2929 0.1831 0.0392 0.1286
25 30.0 MLP-CO 332.96 2,749,935 0.9860 0.9616 0.2924 0.1842 0.0393 0.1294

[7] P. Boldi and S. Vigna, “MG4J at TREC 2005,” in The Fourteenth Text

REtrieval Conf. Proceedings, 2005.
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