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Abstract 

The Spectral Density Function (SDF) based analysis of the domain features for both experimental 

and simulated two-dimensional images are presented here. With the SDF used from the 

mathematical model developed, the domain distances and domain sizes for simulated data match 

well with the input verifying our model is correct and have more physical insights.  Further using 

the SDF fitting for STM/S (Scanning Tunneling Microscopy and Spectroscopy) data, the domain 

size and domain distance are obtained. This SDF method for image analysis is not only restricted 

to STM images but can be used for AFM, SEM, TEM and all other type of two-dimensional 

images. This approach can be extended to SAXS data analysis as well. 

 

 

 



Introduction: 

Owing to the various properties like environment friendly, flexibility, light weight, low cost of 

production organic photovoltaic (OPVC) has drawn much attention as one of the most promising 

candidate for next generation photovoltaics [1] [2] [3]. It has been shown that the Bulk 

heterojunction (BHJ) architecture is the key factor to ensure the high efficiency and compensate 

the short exciton length of the OSC. It is reported that with bulk heterojunction architecture the 

OSC has domain like features corresponding to donor and acceptor molecules [1] [4]. Organic 

photovoltaic study has gained importance from not only on experimental approach but in 

computational approach too using Coarse Grained Molecular simulations (CGMD) and other 

computational techniques  [4–9]. It is widely accepted that the OPVC active layer has two domain 

structure but the domain properties like the domain distance and domain size are not explored well 

yet. With the most studied organic semiconductor’s P3HT and PCBM, here we study the domain 

features using SDF. 

  

SDF has been a unique representation from physics point of view  [4]  [5]. Mathematically, SDF 

is calculated as the radial average of the squared magnitude of Fourier spectrum. SDF function 

fitting gives the information about the real space features like the domain size and the domain 

distance through the Fourier transform. Previous work has proven that SDF is an essential tool for 

the characterization of the heterogeneous microstructural features in the spatial space. 

Reconstruction of the original microstructure has been achieved using SDF function [4] [10]. 

Spectral Density function used for the reconstruction of various Quasi-Random Nanostructured 

Material System illustrate the various physical phenomena like the Light trapping in solar cells, 

various biological and natural phenomena [11]. The use of SDF to understand the Nano structured 



Material System is growing. Hyperuniform two phase material constructed with the SDF showed 

novel and optimal transport and electromagnetic properties [12]. Similarly, studies on the 

disordered hyperuniform many body systems for two-phase media suggests a relation between 

autocovariance function and associated spectral density  [13] [14]. SDF based analysis and fitting 

of the nanostructured material system data is not a new practice [15] [16]. But in most of the 

studies the SDF fitting function used are chosen randomly and hence doesn’t have much physical 

insights into the material system. Thus, to have more physical insights, here we have developed a 

mathematical model of the SDF that can be used for all two-dimensional and three-dimensional 

Small Angle X-ray Scattering (SAXS) data. 

Here we use the SDF approach for simulated data and Scanning Tunneling Microscopy (STM) 

data. STM is widely used technique in material science, Organic Photovoltaic, Polymer physics, 

Nanostructured Material system to understand the atomic scale mapping of those material [9] [17].  

STM has unique tool called dI/dV mapping that can measure electronic Local Density of States 

(LDOS) of the nanostructured material system which represents the electronic LDOS for two 

domain, acceptor and donor semiconductors. Organic Photovoltaic are also an example of quasi 

random nanostructured material system. Understanding of STM data of Organic photovoltaic 

using SDF is an unique approach which gives the domain size, the domain distance in the K space.  

 

Similarly, SAXS techniques are widely used in polymer physics, material science for the 

characterization of the nanostructured material system. Developments of the experimental and the 

computational tools have made it easier for the characterization of Nano Structured Material 

Systems  [18]. The mathematical model we developed here for the three dimensional dot feature 

is similar to what people have already reported for fitting the SAXS data [19]. Thus, our approach 



of SDF based analysis works for SAXS data as well. Further in this paper we present the simulation 

of gaussian function, step function and compute the SDF that can represent the real STM data of 

photovoltaic and correlate the simulation and the real data. 

Sample Preparation and STM Measurements: 

Solutions containing 20 mg P3HT/ 1 mL of chlorobenzene (purity ≥99.5%, sigma-aldrich) and 20 

mg PCBM/ 1 mL of chlorobenzene is prepared and mixed in 1:1, 2:1 and 1:2 weight ratio. The 

solutions were spin coated onto the Si (100) substrate with 1050 rpm speed for 1 minute. The films 

containing P3HT: PCBM/Si (100) were annealed at 100°C for 20 minutes for 1:1 ratio, at 150°C 

for 5 min for 2:1 weight ratio and at 150°C for 5 min for 1:2 weight ratio inside the glove box. The 

sample mounted on a sample plate with stainless steel clamps for in-situ fracturing in UHV 

environment prior to the XSTM/S (Cross-Sectional Scanning Tunneling Microscopy and 

Spectroscopy) measurements [9] [20]. The sample is then fractured in UHV from the side so that 

the film region is not affected. Finally, the cross-sectional fresh fractured Si and P3HT: PCBM 

film region is scanned inside the scanning chamber of STM. 

STM/S is a technique that utilizes quantum tunneling effects across the tip–sample junction to 

perform topographical imaging and electronic Local Density of States (LDOS) with atomic 

resolution [20]. The active layers were imaged with XSTM/S [20], to image OPVCs [4,9]  and 

perovskite solar cells [21]. Cleaving and fracturing of the sample were applied to generate the fresh 

surface on Si for measurements as organic solar cell active layer degrade upon sputtering and 

annealing of the active layer. 



  

Figure 1 (a) shows the local electronic density of states mapping (LDOS) represented by two 

contrast color showing donor rich region i.e P3HT rich region and PCBM rich region. Fig. 1(b) is 

the Fourier transform of fig. 1(a) which is isotropic and fig. 1(c) is the SDF curve obtained by the 

radial average of fig 1(b) showing peak like features representing the domain information. The 

peak features in the SDF curve corresponds to the domain distance whereas the overall decay is 

represented by the domain size. 

Figure 1(a) STM dI/dV mapping of images of size 160 nm. (b) Fourier transform of (a). (c) 

Radial Average curve (SDF) of (a). 



Result and Discussion 

The dI/dV mapping of P3HT: PCBM looks like a Gaussian function, so to understand the SDF 

curve and physical meaning of it we try to see the simulation of multiple gaussian and see how the 

SDF evolves. Figure 2(a)-(d) shows the simulations of the random same size, different size and 

periodic dot features. Figure (e) shows that the SDF function changes with the size of the dot 

features where red curve with 4 nm dot size decays to 0 faster as compared to one with 2 nm. This 

shows larger the size of the dot features, larger is the decay rate and thus the SDF curves goes to 

Fig. 2. Simulation of 100 dot features with image size 200 nm X 200 nm using the gaussian function; (a)  

with the FWHM as 2 nm, (b) with the FWHM as 4 nm, (c) with FWHM as 2nm and periodic separation of 

gaussian of 20 nm and , (d) Simulation of 400 dot features with image size 200 nm X 200 nm using the 

gaussian function with FWHM as 2nm and periodic separation of gaussian of 10 nm (e) SDF curve of (a) 

and (b). (f) SDF curve of (a) and (c). (g) SDF curve of (c) and (d).   



0 faster. Figures (f) demonstrate that the SDF function changes with the periodicity. The blue curve 

in the fig. 2(f) shows peak features corresponding to the periodic distance of 20 nm in the fig. 2(c). 

Fig. 2(g) shows how the SDF function changes with the different distance distribution. Both curves 

in fig. 2(g) shows peak features corresponding to their periodicity as seen in fig. 2(c), periodic 

distance of 20 nm and 2(d) with periodic distance of 10 nm.  Thus, it is observed that for SDF 

function, the decay rate, shape of the function, the peak feature is determined by the domain size, 

domain distance and the domain texture.  

Mathematical Basis: 

For further understanding of the SDF function and get more information about the domain features, 

we did some mathematical derivation for the SDF function in 1D, 2D and 3D. 

1D Gaussian: 

First, we start with the two one-dimensional Gaussian function given by: 

𝑓(𝑥) = ∑𝑒−(𝑥−𝑥𝑖)
2/𝑐2

2

𝑖=1

 

Where c is the size of Gaussian, 𝑥𝑖 is the position of the Gaussian. 

Use the Fourier transform relation:  

Fourier Transform 𝐹(𝑘) = ∫ 𝑓(𝑥) 𝑒−2𝜋𝑖𝑘𝑥  𝑑𝑥
∞

−∞
  to calculate the FFT as shown below: 

𝐹(𝑘) = ∑  𝑒−2𝜋𝑖𝑥𝑖𝑘   

2

𝑖=1

𝑒−𝑐2𝜋2𝑘2
 

For a one-dimensional Gaussian the SDF is given by the amplitude square of the FFT. For two one 

dimensional Gaussian, the SDF is given by: 

𝑆𝐷𝐹 = 2𝜋𝑐2𝑒−2𝑐2𝜋2𝑘2
(1 + cos (2𝜋𝑘𝑑)………………………………………………………(1) 

 



Where d is the distance between the Gaussian. 

2D Gaussian: 

For two dimensional Gaussian with two Gaussian as,  

𝑓(𝑥, 𝑦) = ∑𝑒−((𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2)/𝑐2

2

𝑖=1

 

Where c is the size of the Gaussian, (𝑥𝑖, 𝑦𝑖)  give the position of the Gaussian in 2D. 

Using the Fourier transform relation: 

Fourier Transform 𝐹(𝑘) = ∫ ∫  
∞

−∞
𝑓(𝑥, 𝑦) 𝑒−2𝜋𝑖𝑘𝑥𝑥  𝑒−2𝜋𝑖𝑘𝑦𝑦  𝑑𝑥 𝑑𝑦

∞

−∞
 to calculate the FFT as: 

𝐹(𝑘) = ∑𝑒−𝑐2𝜋2(𝑘𝑥
2+𝑘𝑦

2)

2

𝑖=1

𝑒−2𝜋𝑖(𝑘𝑥𝑥𝑖+𝑘𝑦𝑦𝑖) 

For a two-dimensional Gaussian the SDF is given by radial average of the amplitude square of the 

FFT. The amplitude square of the FFT is calculated as:  

   |𝐹(𝑘)|2 = 2𝜋2𝑐4𝑒−2𝜋2𝑐2𝐾2
[1 + 𝑐𝑜𝑠{2𝜋(𝑘∆𝑟𝑐𝑜𝑠𝜃)}] 

 𝑤ℎ𝑒𝑟𝑒 𝑘⃗ ∙ ∆𝑟⃗⃗⃗⃗ = {𝑘𝑥(𝑥1 − 𝑥2) + 𝑘𝑦(𝑦1 − 𝑦2)} 

Using the following relation to calculate the SDF: 

𝑆𝐷𝐹 =
∫ |𝐹(𝑘)|2𝑑𝜃

2𝜋

0

2𝜋
 

Finally, the SDF is given by: 

𝑆𝐷𝐹 = 2𝜋2𝑐4𝑒−2𝑘2𝜋2𝑐2
(1 +  𝐽0(2𝜋𝑘𝑑))……………………………………………………….(2) 

Where  𝐽0 is the Bessel function of first kind, d is the distance between the Gaussian. 

 

3D Gaussian: 

For three dimensional Gaussian with two Gaussian as,  



𝑓(𝑥, 𝑦, 𝑧) = ∑𝑒−((𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2+(𝑧−𝑧𝑖)
2)/𝑐2

2

𝑖=1

 

 

Where c is the size of the Gaussian, (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 )  give the position of the Gaussian in 3D. 

Using the Fourier transform relation: 

Fourier Transform  𝐹(𝑘) = ∫ ∫  ∫  
∞

−∞

∞

−∞
𝑓(𝑥, 𝑦) 𝑒−2𝜋𝑖𝑘𝑥𝑥  𝑒−2𝜋𝑖𝑘𝑦𝑦  𝑒−2𝜋𝑖𝑘𝑧𝑧  𝑑𝑥 𝑑𝑦 𝑑𝑧

∞

−∞
  to 

calculate the FFT as: 

𝐹(𝑘) = ∑𝜋3/2𝑐3𝑒−𝑐2𝜋2(𝑘𝑥
2+𝑘𝑦

2+𝑘𝑧
2)

2

𝑖=1

𝑒−2𝜋𝑖(𝑘𝑥𝑥𝑖+𝑘𝑦𝑦𝑖+𝑘𝑧𝑧𝑖) 

For a three-dimensional Gaussian the SDF is given by radial average of the amplitude square of 

the FFT. The amplitude square of the FFT is calculated as:  

   |𝐹(𝑘)|2 = 2𝜋3𝑐6𝑒−2𝜋2𝑐2𝑘2
[1 + 𝑐𝑜𝑠{2𝜋(𝑘∆𝑟𝑐𝑜𝑠𝜃)}] 

Where 𝑘⃗ ∙ ∆𝑟⃗⃗⃗⃗ = {𝑘𝑥(𝑥1 − 𝑥2) + 𝑘𝑦(𝑦1 − 𝑦2)} 

Using the following relation to calculate the SDF: 

𝑆𝐷𝐹 =
∫ ∫ |𝐹(𝑘)|2𝑘𝑠𝑖𝑛𝜃𝑑𝜃

2𝜋

0
𝑘𝑑𝛷

𝜋

0

4𝜋𝑘2
 

Finally, the SDF is given by: 

𝑆𝐷𝐹 = 2𝜋3𝑐6𝑒−2𝜋2𝑐2𝑘2
(1 +

𝑠𝑖𝑛(2𝜋𝑘𝑑)

2𝜋𝑘𝑑
) ………………………………………………………(3) 

Where d is the distance between the Gaussian 

 



From figures 3(a), (c) and (e), it is seen that the mathematical SDF and the experimental SDF 

matches well for 1D, 2D and 3D dot features. The peak features in the SDF curve corresponds to 

the input domain distance and the decay features corresponds to the domain size which is the size 

of the dot features. From figures 3(b), it is seen that the mathematical SDF and the experimental 

SDF matches well for 1D step function except few points. Similarly, figure 3(d) also shows that 

the mathematical SDF and experimental SDF have similar overall trend whereas from figure 3(f), 

there is some deviations for the step function. This might be because the method we developed is 

for dot features not for the step function. This shows our method works not only for dot features, 

it works for 1D and 2D step function. To further broadening our understanding to multiple dot 

Fig.3, Inset: Simulation of two gaussian each with size 5 nm in 200 nm window: (a) two one dimensional 

Gaussian, (b) two one dimensional step function, (c) two two-dimensional Gaussian, (d) two two-dimensional 

step function, (e) two three-dimensional Gaussian, (f) two three-dimensional step function. Fig3(a)-(f) SDF 

curve is represented by black line and the fitting with the mathematical equation developed is the red line.  



features, we do simulation of 100 of dot features in 2D. With the simulations of 100 of dot features, 

we need to modify our math to convolute all the possible sizes and distances. 

Convolution for same size: 

For n two-dimensional same size Gaussian, the sum is given as: 

𝑆𝑢𝑚 = 𝜋2𝑐4𝑒−2𝑘2𝜋2𝑐2
(𝑛 + ∑ 2𝐽0(2𝜋𝑘𝑑𝑖)

𝑛2−𝑛
2

𝑖=1

) 

For convolution:  

Fitting Equation: 𝐹(𝑘) = 𝑒
− 

(𝑐−𝑐 )2

𝜎𝑐
2 (𝐴1𝑐

4𝑒−2𝑘2𝜋2𝑐2
) ∫ 𝒆

 

− 
(𝒅−𝒅 )

𝟐

𝝈𝒅
𝟐∞

𝟎
 (1 + 𝐽0(2𝜋𝑘𝑑))𝑑𝑑    ………(4) 

where, 𝑐 is the average domain size, 𝜎𝑐 is the S.d of the domain, 𝑑 is the average domain distance, 

𝜎𝑑 is the S.d of the domain distance. 

Convolution for different size: 

For n two-dimensional different size Gaussian, the sum is given as: 

𝑆𝐷𝐹𝑛 = 𝑆𝑢𝑚 = 𝜋2 ∑𝑐𝑖
4𝑒−2𝜋2𝑐𝑖

2𝑘2 

𝑛

𝑖=1

+ 2𝜋2 ∑∑𝑐𝑖
2𝑐𝑗

2
𝑒−𝜋2𝑘2(𝑐𝑖

2+𝑐𝑗
2 ) 𝐽0(2𝜋𝑘𝑑𝑖,𝑗)

𝑖−1

𝑗=1

𝑛

𝑖=2

 

For convolution:  

 𝐹𝑖𝑡𝑡𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝐹(𝐾) = 𝐴(𝜋2𝑛𝐺(𝑐𝑐) + 2𝜋2 𝑛2−𝑛

2
(𝐹(𝑐𝑐))

2
𝐸(𝐽0)……………………….. (5) 

𝐸(𝐽0) =
∫ 𝑒

( 
−(𝑑−𝑑̅)2

(𝑑𝑤[3]𝑏)2
) 
𝐽0(2𝜋𝑘𝑑)

∞

0
𝑑𝑑)

∫ 𝑒
( 

−(𝑑−𝑑̅)2

(𝑑𝑤[3]𝑏)2
) ∞

0
𝑑𝑑

 

𝐹(𝑐𝑐) =
∫ (𝑒

( 
−(𝑐−𝑐̅)2

(𝜎𝑐)2
) 
𝑐2𝑒−𝑘2𝜋2𝑐2

𝑑𝑐)
∞

0

∫ 𝑒
( 
−(𝑐−𝑐̅)2

(𝜎𝑐)
2 ) ∞

0
𝑑𝑐

 



𝐺(𝑐𝑐) =
∫ (𝑒

( 
−(𝑐−𝑐̅)2

(𝜎𝑐)2
) 
𝑐4𝑒−2𝑘2𝜋2𝑐2

𝑑𝑐
∞

0
)

∫ 𝑒
( 
−(𝑐−𝑐̅)2

(𝜎𝑐)
2 ) ∞

0
𝑑𝑐

 

 

Fig 4(c), the SDF convolution and sum from fig 4(a) is fitted with the equation 4, the convolution 

for the same size. Similarly, fig 4(f), the SDF convolution and sum from fig 4(d) is fitted with 

equation 5, the convolution for different size. With the convolution fitting we extract the  

Fig. 4(a) Simulation of 100 dot features using the gaussian function and keeping the FWHM as 4.83 nm 

and image size 200 nm X 200 nm. (b) Distance Histogram for all the dot features from fig(a) represented 

by black line and fitting represented by blue line. (c) SDF, sum curve and the convolution fitting represented 

by the black, red and blue curve respectively. (d) Simulation of 100 dot features of different size using the 

gaussian function and keeping the average size as 4.83 nm and image size 200 nm X 200 nm. (e) Size 

Histogram for all the dot features from fig(d) represented by black line and fitting represented by blue line. 

(f) SDF, sum curve and the convolution fitting represented by the black, red and blue curve respectively.  



information about the domain size and the domain distance, like the input as seen in table 1. While 

fitting the different size SDF with the different size convolution, the s.d of the size has a large error 

σ𝑐 = -6.3𝑒−5  ± 6.9𝑒5 as seen in table 1. Taking this into account, different size image is fitted with 

same size convolution which improved the fitting as shown in table 1. Thus, this proves that our 

math works well for 100’s of dot features. This method of fitting two-dimensional data is an unique 

approach with the correct physical interpretation of the equation. Thus, with this SDF based 

approach, the domain distances and the domain sizes can be obtained precisely.  

Further as the convolution equation (4) and (5) has n, w terms that doesn’t have much physical 

significance, we run 100’s of simulation to determine the value of w. With 100’s of simulations 

for different dot sizes, the range of w is found to be from 0.04 ± 0.02-0.06 ± 0.01. Then we run 20 

convolution fitting fixing w and n and found the value of w to be 0.04 and n to be 100 which is 

close to our input parameter (details in supporting information). This modified fitting equation is 

used to fit the SDF obtained from the STM data. 

Table 1: Fitting results for fig 4(c) and 4 (f) using the convolution equation 4 and 5. 



STM data Convolution fitting: 

Using the convolution equation for the same size gaussian i.e equation 4, we fit the STM data 

assuming the same average size of the domain. We fit the SDF obtained for the STM data from 

the second point as the first point has much higher intensity. With the fitting results, we obtained 

the domain size and the domain distance information tabulated in table 2. 

 

Fig. 5.  STM dI/dV mapping: (a) size 160 nm with P3HT:PCBM in the ratio 1:1, (c) size 120 nm 

with P3HT:PCBM in the ratio 1:2, Fig (b), (d) are Radial Average (SDF) of (a) and (c) 

respectively with the black line representing the SDF and blue line representing the convolution 

fitting 



 

 

 

 

 

 

 

With the mathematical SDF fitting model, the domain distance and domain size for two STM 

images were found to be 38.3 nm ± 0.30 nm, 3.0 nm ± 0.3 nm and 57.66 nm ± 0.04 nm, 2.72 nm 

± 0.009 nm respectively as shown in table 2. Thus, our SDF approach worked well for the 

extraction of the important parameter for two-dimensional images for both simulated and 

experimental data. This approach can further be applied to AFM, STM, SEM and other two-

dimensional images as well. 

Conclusion 

In summary, the SDF mathematical model developed for 1D. 2D and 3D dot features works well 

with the simulated data. The domain size and domain distance information extracted from the SDF 

fitting using the mathematical SDF model matches well with input. This mathematical SDF model 

developed not only gives the domain information but also have physical insights about the fitting 

function used. Further, with the mathematical SDF fitting model, the domain distance and domain 

size for two STM images were found to be 38.3 nm ± 0.30 nm, 3.0 nm ± 0.3 nm and 57.66 nm ± 

0.04 nm, 2.72 nm ± 0.009 nm respectively as shown in table 2. Finally, this SDF fitting method 

Table 3: Fitting results from SDF fitting in fig. 14(b) and (d) using the 

convolution equation 8 for same size convolution. 

 



for image analysis is not only restricted to STM images but can be used for AFM, SEM, TEM and 

all other type of two-dimensional images and can further be applied for SAXS data analysis with 

physical meaning of the parameters used in the equation.  
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