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Abstract

The Spectral Density Function (SDF) based analysis of the domain features for both experimental
and simulated two-dimensional images are presented here. With the SDF used from the
mathematical model developed, the domain distances and domain sizes for simulated data match
well with the input verifying our model is correct and have more physical insights. Further using
the SDF fitting for STM/S (Scanning Tunneling Microscopy and Spectroscopy) data, the domain
size and domain distance are obtained. This SDF method for image analysis is not only restricted
to STM images but can be used for AFM, SEM, TEM and all other type of two-dimensional

images. This approach can be extended to SAXS data analysis as well.



Introduction:

Owing to the various properties like environment friendly, flexibility, light weight, low cost of
production organic photovoltaic (OPVC) has drawn much attention as one of the most promising
candidate for next generation photovoltaics [1][2][3]. It has been shown that the Bulk
heterojunction (BHJ) architecture is the key factor to ensure the high efficiency and compensate
the short exciton length of the OSC. It is reported that with bulk heterojunction architecture the
OSC has domain like features corresponding to donor and acceptor molecules [1] [4]. Organic
photovoltaic study has gained importance from not only on experimental approach but in
computational approach too using Coarse Grained Molecular simulations (CGMD) and other
computational techniques [4-9]. It is widely accepted that the OPVC active layer has two domain
structure but the domain properties like the domain distance and domain size are not explored well
yet. With the most studied organic semiconductor’s P3HT and PCBM, here we study the domain

features using SDF.

SDF has been a unique representation from physics point of view [4] [5]. Mathematically, SDF
is calculated as the radial average of the squared magnitude of Fourier spectrum. SDF function
fitting gives the information about the real space features like the domain size and the domain
distance through the Fourier transform. Previous work has proven that SDF is an essential tool for
the characterization of the heterogeneous microstructural features in the spatial space.
Reconstruction of the original microstructure has been achieved using SDF function [4] [10].
Spectral Density function used for the reconstruction of various Quasi-Random Nanostructured
Material System illustrate the various physical phenomena like the Light trapping in solar cells,

various biological and natural phenomena [11]. The use of SDF to understand the Nano structured



Material System is growing. Hyperuniform two phase material constructed with the SDF showed
novel and optimal transport and electromagnetic properties [12]. Similarly, studies on the
disordered hyperuniform many body systems for two-phase media suggests a relation between
autocovariance function and associated spectral density [13] [14]. SDF based analysis and fitting
of the nanostructured material system data is not a new practice [15] [16]. But in most of the
studies the SDF fitting function used are chosen randomly and hence doesn’t have much physical
insights into the material system. Thus, to have more physical insights, here we have developed a
mathematical model of the SDF that can be used for all two-dimensional and three-dimensional

Small Angle X-ray Scattering (SAXS) data.

Here we use the SDF approach for simulated data and Scanning Tunneling Microscopy (STM)
data. STM is widely used technique in material science, Organic Photovoltaic, Polymer physics,
Nanostructured Material system to understand the atomic scale mapping of those material [9] [17].
STM has unique tool called d//dV mapping that can measure electronic Local Density of States
(LDOS) of the nanostructured material system which represents the electronic LDOS for two
domain, acceptor and donor semiconductors. Organic Photovoltaic are also an example of quasi
random nanostructured material system. Understanding of STM data of Organic photovoltaic

using SDF is an unique approach which gives the domain size, the domain distance in the K space.

Similarly, SAXS techniques are widely used in polymer physics, material science for the
characterization of the nanostructured material system. Developments of the experimental and the
computational tools have made it easier for the characterization of Nano Structured Material
Systems [18]. The mathematical model we developed here for the three dimensional dot feature

is similar to what people have already reported for fitting the SAXS data [19]. Thus, our approach



of SDF based analysis works for SAXS data as well. Further in this paper we present the simulation
of gaussian function, step function and compute the SDF that can represent the real STM data of

photovoltaic and correlate the simulation and the real data.

Sample Preparation and STM Measurements:

Solutions containing 20 mg P3HT/ 1 mL of chlorobenzene (purity >99.5%, sigma-aldrich) and 20
mg PCBM/ 1 mL of chlorobenzene is prepared and mixed in 1:1, 2:1 and 1:2 weight ratio. The
solutions were spin coated onto the Si (100) substrate with 1050 rpm speed for 1 minute. The films
containing P3HT: PCBM/Si (100) were annealed at 100°C for 20 minutes for 1:1 ratio, at 150°C
for 5 min for 2:1 weight ratio and at 150°C for 5 min for 1:2 weight ratio inside the glove box. The
sample mounted on a sample plate with stainless steel clamps for in-situ fracturing in UHV
environment prior to the XSTM/S (Cross-Sectional Scanning Tunneling Microscopy and
Spectroscopy) measurements [9] [20]. The sample is then fractured in UHV from the side so that
the film region is not affected. Finally, the cross-sectional fresh fractured Si and P3HT: PCBM

film region is scanned inside the scanning chamber of STM.

STM/S is a technique that utilizes quantum tunneling effects across the tip—sample junction to
perform topographical imaging and electronic Local Density of States (LDOS) with atomic
resolution [20]. The active layers were imaged with XSTM/S [20], to image OPVCs [4,9] and
perovskite solar cells [21]. Cleaving and fracturing of the sample were applied to generate the fresh
surface on Si for measurements as organic solar cell active layer degrade upon sputtering and

annealing of the active layer.
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Figure 1(a) STM d//dV mapping of images of size 160 nm. (b) Fourier transform of (a). (c)
Radial Average curve (SDF) of (a).

Figure 1 (a) shows the local electronic density of states mapping (LDOS) represented by two
contrast color showing donor rich region i.e P3HT rich region and PCBM rich region. Fig. 1(b) is
the Fourier transform of fig. 1(a) which is isotropic and fig. 1(c) is the SDF curve obtained by the
radial average of fig 1(b) showing peak like features representing the domain information. The
peak features in the SDF curve corresponds to the domain distance whereas the overall decay is

represented by the domain size.



Result and Discussion
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Fig. 2. Simulation of 100 dot features with image size 200 nm X 200 nm using the gaussian function; (a)
with the FWHM as 2 nm, (b) with the FWHM as 4 nm, (c¢) with FWHM as 2nm and periodic separation of
gaussian of 20 nm and , (d) Simulation of 400 dot features with image size 200 nm X 200 nm using the
gaussian function with FWHM as 2nm and periodic separation of gaussian of 10 nm (e) SDF curve of (a)
and (b). (f) SDF curve of (a) and (¢). (g) SDF curve of (c¢) and (d).

The dI/dV mapping of P3HT: PCBM looks like a Gaussian function, so to understand the SDF
curve and physical meaning of it we try to see the simulation of multiple gaussian and see how the
SDF evolves. Figure 2(a)-(d) shows the simulations of the random same size, different size and
periodic dot features. Figure (e) shows that the SDF function changes with the size of the dot
features where red curve with 4 nm dot size decays to 0 faster as compared to one with 2 nm. This

shows larger the size of the dot features, larger is the decay rate and thus the SDF curves goes to



0 faster. Figures (f) demonstrate that the SDF function changes with the periodicity. The blue curve
in the fig. 2(f) shows peak features corresponding to the periodic distance of 20 nm in the fig. 2(c).
Fig. 2(g) shows how the SDF function changes with the different distance distribution. Both curves
in fig. 2(g) shows peak features corresponding to their periodicity as seen in fig. 2(c), periodic
distance of 20 nm and 2(d) with periodic distance of 10 nm. Thus, it is observed that for SDF
function, the decay rate, shape of the function, the peak feature is determined by the domain size,

domain distance and the domain texture.
Mathematical Basis:

For further understanding of the SDF function and get more information about the domain features,

we did some mathematical derivation for the SDF function in 1D, 2D and 3D.

1D Gaussian:

First, we start with the two one-dimensional Gaussian function given by:

2

fx) = Z e~ (x—x)?/c?

i=1
Where c is the size of Gaussian, x; is the position of the Gaussian.
Use the Fourier transform relation:

Fourier Transform F (k) = f_oooo f(x) e™2™* dx to calculate the FFT as shown below:

2

F(k) = Z e—2mixik  p—c*m?k?

i=1
For a one-dimensional Gaussian the SDF is given by the amplitude square of the FFT. For two one

dimensional Gaussian, the SDF is given by:

SDF = 27c2e 2T K% (1 4 €OS (27KA) oo (1)



Where d is the distance between the Gaussian.
2D Gaussian:

For two dimensional Gaussian with two Gaussian as,

2

fy) = Z e~ (=x)?+(y-yp?)/c?

i=1
Where c is the size of the Gaussian, (x;, y;) give the position of the Gaussian in 2D.
Using the Fourier transform relation:

Fourier Transform F (k) = ffooo ffooo f(x,y) e 2TikeXx o=2TikyY dy dy to calculate the FFT as:

2
F(k) = z o~ €22 (3 +k3) o —2mi(kyi+hyyy)
i=1

For a two-dimensional Gaussian the SDF is given by radial average of the amplitude square of the
FFT. The amplitude square of the FFT is calculated as:
|F(k)|? = 2n%cte 2" *K*[1 + cos{2n(kArcos6)}]
where k - Ar = {kx(xl —x2) + ky(y1 — yz)}
Using the following relation to calculate the SDF:

A OGIRE
21

Finally, the SDF is given by:
SDF = 212c*e 2T (1 4 Jo(2hd)) ..o 2)

Where J, is the Bessel function of first kind, d is the distance between the Gaussian.

3D Gaussian:

For three dimensional Gaussian with two Gaussian as,



2
flx,y,2z) = z e~ ((e=x)?+(y-yp?+(z-2)?)/c?
i=1

Where c is the size of the Gaussian, (x;,y;,z; ) give the position of the Gaussian in 3D.
Using the Fourier transform relation:
: _ ([ (> o —2mik,yx ,—2mikyy ,—2mik,z
Fourier Transform F(k)=[__[_ [ f(x,y)e X g »Yoe 2Z dxdydz to

calculate the FFT as:

2
F(k) = Z 7T3/zc3e—cznz(k,%+k,2,+k§) e—2ni(kxxi+kyyi+kzzi)

i=1
For a three-dimensional Gaussian the SDF is given by radial average of the amplitude square of

the FFT. The amplitude square of the FFT is calculated as:
|F(k)|? = 2n3ce~2""*k*[1 + cos{2r (kArcos6)}]

Where k - A7 = {k, (%, — %) + ky (v1 — ¥2)}

Using the following relation to calculate the SDF:

ST [2IF () 2 ksindo kde

SDF
41rk?
Finally, the SDF is given by:
_ 9.3 .6,-2m2c2k? sin(2nkd)
SDF = 2n°c®e 1+ pw— ) e 3)

Where d is the distance between the Gaussian
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Fig.3, Inset: Simulation of two gaussian each with size 5 nm in 200 nm window: (a) two one dimensional
Gaussian, (b) two one dimensional step function, (¢) two two-dimensional Gaussian, (d) two two-dimensional
step function, (e) two three-dimensional Gaussian, (f) two three-dimensional step function. Fig3(a)-(f) SDF

curve is represented by black line and the fitting with the mathematical equation developed is the red line.

From figures 3(a), (c) and (e), it is seen that the mathematical SDF and the experimental SDF
matches well for 1D, 2D and 3D dot features. The peak features in the SDF curve corresponds to
the input domain distance and the decay features corresponds to the domain size which is the size
of the dot features. From figures 3(b), it is seen that the mathematical SDF and the experimental
SDF matches well for 1D step function except few points. Similarly, figure 3(d) also shows that
the mathematical SDF and experimental SDF have similar overall trend whereas from figure 3(f),
there is some deviations for the step function. This might be because the method we developed is
for dot features not for the step function. This shows our method works not only for dot features,

it works for 1D and 2D step function. To further broadening our understanding to multiple dot



features, we do simulation of 100 of dot features in 2D. With the simulations of 100 of dot features,
we need to modify our math to convolute all the possible sizes and distances.

Convolution for same size:

For n two-dimensional same size Gaussian, the sum is given as:

2

n-—n

2
Sum = m2cte 2K’ (i 4 2 2Jo(2mkd;))
i=1
For convolution:

—.2
(c=c)2 (d-d)

Fitting Equation: F(k) = e~ o® (A,c*e™2K™°¢%) [“e oa® (14 Jo(2mkd))dd ......... (4)

where, ¢ is the average domain size, o, is the S.d of the domain, d is the average domain distance,
04 1s the S.d of the domain distance.

Convolution for different size:

For n two-dimensional different size Gaussian, the sum is given as:

n n i-1
SDE, = Sum = m? Z cite 2ml R 4 o2 cizcjze_”zkz(ciz’LCJ2 ) Jo(2mkd, )
i=1 i=2 j=1
For convolution:
2_
Fitting Equation: F(K) = A(m?®nG (cc) + 2m2 2 - = (F(cc))zE(]O) ............................. 5)
. (ﬂ)
cery = Jo & @D Jo(2nkd) dd)
(]0) - ( _(d_a)z)
e @ g
e (_(C_E)z) 2.2 .2
J, (e (@* “cZeTF T dc)
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Fig. 4(a) Simulation of 100 dot features using the gaussian function and keeping the FWHM as 4.83 nm
and image size 200 nm X 200 nm. (b) Distance Histogram for all the dot features from fig(a) represented
by black line and fitting represented by blue line. (c) SDF, sum curve and the convolution fitting represented
by the black, red and blue curve respectively. (d) Simulation of 100 dot features of different size using the
gaussian function and keeping the average size as 4.83 nm and image size 200 nm X 200 nm. (e) Size
Histogram for all the dot features from fig(d) represented by black line and fitting represented by blue line.

(f) SDF, sum curve and the convolution fitting represented by the black, red and blue curve respectively.

Fig 4(c), the SDF convolution and sum from fig 4(a) is fitted with the equation 4, the convolution
for the same size. Similarly, fig 4(f), the SDF convolution and sum from fig 4(d) is fitted with

equation 5, the convolution for different size. With the convolution fitting we extract the



information about the domain size and the domain distance, like the input as seen in table 1. While
fitting the different size SDF with the different size convolution, the s.d of the size has a large error
0. =-6.3e7> +6.9¢ as seen in table 1. Taking this into account, different size image is fitted with
same size convolution which improved the fitting as shown in table 1. Thus, this proves that our
math works well for 100’s of dot features. This method of fitting two-dimensional data is an unique
approach with the correct physical interpretation of the equation. Thus, with this SDF based
approach, the domain distances and the domain sizes can be obtained precisely.

Further as the convolution equation (4) and (5) has n, w terms that doesn’t have much physical
significance, we run 100’s of simulation to determine the value of w. With 100’s of simulations

for different dot sizes, the range of w is found to be from 0.04 £+ 0.02-0.06 = 0.01. Then we run 20

Input Histogram fitting Convolution Convolution
—(a—d)* (same Size) (Diff. Size)
£(d) = Ae( @p%))
Same Size d=945nm + 1.6 1m d=85.6nm +3.7nm
c:4.83nmm, d:102nm | b=1547nm =+ 533nm |b=1473 nm + 228.2nm
w=0.08 £0.04 w=0.10 £0.15

n=752x10*+1.17 x 103
c=4.37nm + 0.63 nm

Diff Size d=85.2nm +2.9nm d=85.6 nm + 3.6 nm

€:4.831mm, d: 102 nm b=79.3nm + 169.1 nm b=105.9 nm + 220.0 nm
w=0.03 +0.22 W =0.06 +0.21
n=0.18 X 10* +6.27 x 10® | n=7.52 x 103+ 1.17 x 103
£=4.67nm + 1.13 om £=4.62nm + 1.21 nm

0,=-6.3 X 10° nm % 6.9 X 103nm
n=0.94 x 103+ 3.33 x 103

Table 1: Fitting results for fig 4(c) and 4 (f) using the convolution equation 4 and 5.

convolution fitting fixing w and n and found the value of w to be 0.04 and n to be 100 which is
close to our input parameter (details in supporting information). This modified fitting equation is

used to fit the SDF obtained from the STM data.



STM data Convolution fitting:
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Fig. 5. STM dZ/dV mapping: (a) size 160 nm with P3HT:PCBM in the ratio 1:1, (c) size 120 nm
with P3HT:PCBM in the ratio 1:2, Fig (b), (d) are Radial Average (SDF) of (a) and (c)
respectively with the black line representing the SDF and blue line representing the convolution

fitting

Using the convolution equation for the same size gaussian i.e equation 4, we fit the STM data
assuming the same average size of the domain. We fit the SDF obtained for the STM data from

the second point as the first point has much higher intensity. With the fitting results, we obtained

the domain size and the domain distance information tabulated in table 2.



Input Convolution
(same Size)

P3HT:PCBM 1:1 d=38.3 nm+ 3 nm
ratio. 160 nm b=64.1 nm+ 8.0 nm
c=3.0nm £0.3 nm

P3HT:-PCBM 1:2 d=57.7nm + 0.4 nm
ratio. 120 nm b=60.8 nm + 2.0 nm
c=2.78 nm + 0.09 nm

Table 3: Fitting results from SDF fitting in fig. 14(b) and (d) using the
convolution equation 8 for same size convolution.

With the mathematical SDF fitting model, the domain distance and domain size for two STM
images were found to be 38.3 nm + 0.30 nm, 3.0 nm £ 0.3 nm and 57.66 nm + 0.04 nm, 2.72 nm
+ 0.009 nm respectively as shown in table 2. Thus, our SDF approach worked well for the
extraction of the important parameter for two-dimensional images for both simulated and
experimental data. This approach can further be applied to AFM, STM, SEM and other two-

dimensional images as well.

Conclusion

In summary, the SDF mathematical model developed for 1D. 2D and 3D dot features works well
with the simulated data. The domain size and domain distance information extracted from the SDF
fitting using the mathematical SDF model matches well with input. This mathematical SDF model
developed not only gives the domain information but also have physical insights about the fitting
function used. Further, with the mathematical SDF fitting model, the domain distance and domain
size for two STM images were found to be 38.3 nm + 0.30 nm, 3.0 nm £ 0.3 nm and 57.66 nm =+

0.04 nm, 2.72 nm + 0.009 nm respectively as shown in table 2. Finally, this SDF fitting method



for image analysis is not only restricted to STM images but can be used for AFM, SEM, TEM and
all other type of two-dimensional images and can further be applied for SAXS data analysis with

physical meaning of the parameters used in the equation.
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